| 1 | #include "duckdb/optimizer/rule/constant_folding.hpp" |
|---|---|
| 2 | |
| 3 | #include "duckdb/common/exception.hpp" |
| 4 | #include "duckdb/execution/expression_executor.hpp" |
| 5 | #include "duckdb/optimizer/expression_rewriter.hpp" |
| 6 | #include "duckdb/planner/expression/bound_constant_expression.hpp" |
| 7 | |
| 8 | using namespace duckdb; |
| 9 | using namespace std; |
| 10 | |
| 11 | namespace duckdb { |
| 12 | |
| 13 | //! The ConstantFoldingExpressionMatcher matches on any scalar expression (i.e. Expression::IsFoldable is true) |
| 14 | class ConstantFoldingExpressionMatcher : public FoldableConstantMatcher { |
| 15 | public: |
| 16 | bool Match(Expression *expr, vector<Expression *> &bindings) override { |
| 17 | // we also do not match on ConstantExpressions, because we cannot fold those any further |
| 18 | if (expr->type == ExpressionType::VALUE_CONSTANT) { |
| 19 | return false; |
| 20 | } |
| 21 | return FoldableConstantMatcher::Match(expr, bindings); |
| 22 | } |
| 23 | }; |
| 24 | } // namespace duckdb |
| 25 | |
| 26 | ConstantFoldingRule::ConstantFoldingRule(ExpressionRewriter &rewriter) : Rule(rewriter) { |
| 27 | auto op = make_unique<ConstantFoldingExpressionMatcher>(); |
| 28 | root = move(op); |
| 29 | } |
| 30 | |
| 31 | unique_ptr<Expression> ConstantFoldingRule::Apply(LogicalOperator &op, vector<Expression *> &bindings, |
| 32 | bool &changes_made) { |
| 33 | auto root = bindings[0]; |
| 34 | // the root is a scalar expression that we have to fold |
| 35 | assert(root->IsFoldable() && root->type != ExpressionType::VALUE_CONSTANT); |
| 36 | |
| 37 | // use an ExpressionExecutor to execute the expression |
| 38 | auto result_value = ExpressionExecutor::EvaluateScalar(*root); |
| 39 | assert(result_value.type == root->return_type); |
| 40 | // now get the value from the result vector and insert it back into the plan as a constant expression |
| 41 | return make_unique<BoundConstantExpression>(result_value); |
| 42 | } |
| 43 |