1 | #include "duckdb/planner/binder.hpp" |
2 | #include "duckdb/planner/expression/bound_aggregate_expression.hpp" |
3 | #include "duckdb/planner/expression/bound_cast_expression.hpp" |
4 | #include "duckdb/planner/expression/bound_columnref_expression.hpp" |
5 | #include "duckdb/planner/expression/bound_comparison_expression.hpp" |
6 | #include "duckdb/planner/expression/bound_constant_expression.hpp" |
7 | #include "duckdb/planner/expression/bound_reference_expression.hpp" |
8 | #include "duckdb/planner/expression/bound_subquery_expression.hpp" |
9 | #include "duckdb/planner/expression_iterator.hpp" |
10 | #include "duckdb/planner/binder.hpp" |
11 | #include "duckdb/planner/operator/list.hpp" |
12 | #include "duckdb/planner/subquery/flatten_dependent_join.hpp" |
13 | #include "duckdb/function/aggregate/distributive_functions.hpp" |
14 | |
15 | using namespace std; |
16 | |
17 | namespace duckdb { |
18 | |
19 | static unique_ptr<Expression> PlanUncorrelatedSubquery(Binder &binder, BoundSubqueryExpression &expr, |
20 | unique_ptr<LogicalOperator> &root, |
21 | unique_ptr<LogicalOperator> plan) { |
22 | assert(!expr.IsCorrelated()); |
23 | switch (expr.subquery_type) { |
24 | case SubqueryType::EXISTS: { |
25 | // uncorrelated EXISTS |
26 | // we only care about existence, hence we push a LIMIT 1 operator |
27 | auto limit = make_unique<LogicalLimit>(1, 0); |
28 | limit->AddChild(move(plan)); |
29 | plan = move(limit); |
30 | |
31 | // now we push a COUNT(*) aggregate onto the limit, this will be either 0 or 1 (EXISTS or NOT EXISTS) |
32 | auto count_star = make_unique<BoundAggregateExpression>(TypeId::INT64, CountStarFun::GetFunction(), false); |
33 | auto idx_type = count_star->return_type; |
34 | vector<unique_ptr<Expression>> aggregate_list; |
35 | aggregate_list.push_back(move(count_star)); |
36 | auto aggregate_index = binder.GenerateTableIndex(); |
37 | auto aggregate = |
38 | make_unique<LogicalAggregate>(binder.GenerateTableIndex(), aggregate_index, move(aggregate_list)); |
39 | aggregate->AddChild(move(plan)); |
40 | plan = move(aggregate); |
41 | |
42 | // now we push a projection with a comparison to 1 |
43 | auto left_child = make_unique<BoundColumnRefExpression>(idx_type, ColumnBinding(aggregate_index, 0)); |
44 | auto right_child = make_unique<BoundConstantExpression>(Value::Numeric(idx_type, 1)); |
45 | auto comparison = |
46 | make_unique<BoundComparisonExpression>(ExpressionType::COMPARE_EQUAL, move(left_child), move(right_child)); |
47 | |
48 | vector<unique_ptr<Expression>> projection_list; |
49 | projection_list.push_back(move(comparison)); |
50 | auto projection_index = binder.GenerateTableIndex(); |
51 | auto projection = make_unique<LogicalProjection>(projection_index, move(projection_list)); |
52 | projection->AddChild(move(plan)); |
53 | plan = move(projection); |
54 | |
55 | // we add it to the main query by adding a cross product |
56 | // FIXME: should use something else besides cross product as we always add only one scalar constant |
57 | auto cross_product = make_unique<LogicalCrossProduct>(); |
58 | cross_product->AddChild(move(root)); |
59 | cross_product->AddChild(move(plan)); |
60 | root = move(cross_product); |
61 | |
62 | // we replace the original subquery with a ColumnRefExpression refering to the result of the projection (either |
63 | // TRUE or FALSE) |
64 | return make_unique<BoundColumnRefExpression>(expr.GetName(), TypeId::BOOL, ColumnBinding(projection_index, 0)); |
65 | } |
66 | case SubqueryType::SCALAR: { |
67 | // uncorrelated scalar, we want to return the first entry |
68 | // figure out the table index of the bound table of the entry which we want to return |
69 | auto bindings = plan->GetColumnBindings(); |
70 | assert(bindings.size() == 1); |
71 | idx_t table_idx = bindings[0].table_index; |
72 | |
73 | // in the uncorrelated case we are only interested in the first result of the query |
74 | // hence we simply push a LIMIT 1 to get the first row of the subquery |
75 | auto limit = make_unique<LogicalLimit>(1, 0); |
76 | limit->AddChild(move(plan)); |
77 | plan = move(limit); |
78 | |
79 | // we push an aggregate that returns the FIRST element |
80 | vector<unique_ptr<Expression>> expressions; |
81 | auto bound = make_unique<BoundColumnRefExpression>(expr.return_type, ColumnBinding(table_idx, 0)); |
82 | auto first_agg = make_unique<BoundAggregateExpression>( |
83 | expr.return_type, FirstFun::GetFunction(SQLTypeFromInternalType(expr.return_type)), false); |
84 | first_agg->children.push_back(move(bound)); |
85 | expressions.push_back(move(first_agg)); |
86 | auto aggr_index = binder.GenerateTableIndex(); |
87 | auto aggr = make_unique<LogicalAggregate>(binder.GenerateTableIndex(), aggr_index, move(expressions)); |
88 | aggr->AddChild(move(plan)); |
89 | plan = move(aggr); |
90 | |
91 | // in the uncorrelated case, we add the value to the main query through a cross product |
92 | // FIXME: should use something else besides cross product as we always add only one scalar constant and cross |
93 | // product is not optimized for this. |
94 | assert(root); |
95 | auto cross_product = make_unique<LogicalCrossProduct>(); |
96 | cross_product->AddChild(move(root)); |
97 | cross_product->AddChild(move(plan)); |
98 | root = move(cross_product); |
99 | |
100 | // we replace the original subquery with a BoundColumnRefExpression refering to the first result of the |
101 | // aggregation |
102 | return make_unique<BoundColumnRefExpression>(expr.GetName(), expr.return_type, ColumnBinding(aggr_index, 0)); |
103 | } |
104 | default: { |
105 | assert(expr.subquery_type == SubqueryType::ANY); |
106 | // we generate a MARK join that results in either (TRUE, FALSE or NULL) |
107 | // subquery has NULL values -> result is (TRUE or NULL) |
108 | // subquery has no NULL values -> result is (TRUE, FALSE or NULL [if input is NULL]) |
109 | // fetch the column bindings |
110 | auto plan_columns = plan->GetColumnBindings(); |
111 | |
112 | // then we generate the MARK join with the subquery |
113 | idx_t mark_index = binder.GenerateTableIndex(); |
114 | auto join = make_unique<LogicalComparisonJoin>(JoinType::MARK); |
115 | join->mark_index = mark_index; |
116 | join->AddChild(move(root)); |
117 | join->AddChild(move(plan)); |
118 | // create the JOIN condition |
119 | JoinCondition cond; |
120 | cond.left = move(expr.child); |
121 | cond.right = BoundCastExpression::AddCastToType( |
122 | make_unique<BoundColumnRefExpression>(GetInternalType(expr.child_type), plan_columns[0]), expr.child_type, |
123 | expr.child_target); |
124 | cond.comparison = expr.comparison_type; |
125 | join->conditions.push_back(move(cond)); |
126 | root = move(join); |
127 | |
128 | // we replace the original subquery with a BoundColumnRefExpression refering to the mark column |
129 | return make_unique<BoundColumnRefExpression>(expr.GetName(), expr.return_type, ColumnBinding(mark_index, 0)); |
130 | } |
131 | } |
132 | } |
133 | |
134 | static unique_ptr<LogicalDelimJoin> CreateDuplicateEliminatedJoin(vector<CorrelatedColumnInfo> &correlated_columns, |
135 | JoinType join_type) { |
136 | auto delim_join = make_unique<LogicalDelimJoin>(join_type); |
137 | for (idx_t i = 0; i < correlated_columns.size(); i++) { |
138 | auto &col = correlated_columns[i]; |
139 | delim_join->duplicate_eliminated_columns.push_back( |
140 | make_unique<BoundColumnRefExpression>(col.type, col.binding)); |
141 | } |
142 | return delim_join; |
143 | } |
144 | |
145 | static void CreateDelimJoinConditions(LogicalDelimJoin &delim_join, vector<CorrelatedColumnInfo> &correlated_columns, |
146 | vector<ColumnBinding> bindings, idx_t base_offset) { |
147 | for (idx_t i = 0; i < correlated_columns.size(); i++) { |
148 | auto &col = correlated_columns[i]; |
149 | JoinCondition cond; |
150 | cond.left = make_unique<BoundColumnRefExpression>(col.name, col.type, col.binding); |
151 | cond.right = make_unique<BoundColumnRefExpression>(col.name, col.type, bindings[base_offset + i]); |
152 | cond.comparison = ExpressionType::COMPARE_EQUAL; |
153 | cond.null_values_are_equal = true; |
154 | delim_join.conditions.push_back(move(cond)); |
155 | } |
156 | } |
157 | |
158 | static unique_ptr<Expression> PlanCorrelatedSubquery(Binder &binder, BoundSubqueryExpression &expr, |
159 | unique_ptr<LogicalOperator> &root, |
160 | unique_ptr<LogicalOperator> plan) { |
161 | auto &correlated_columns = expr.binder->correlated_columns; |
162 | assert(expr.IsCorrelated()); |
163 | // correlated subquery |
164 | // for a more in-depth explanation of this code, read the paper "Unnesting Arbitrary Subqueries" |
165 | // we handle three types of correlated subqueries: Scalar, EXISTS and ANY |
166 | // all three cases are very similar with some minor changes (mainly the type of join performed at the end) |
167 | switch (expr.subquery_type) { |
168 | case SubqueryType::SCALAR: { |
169 | // correlated SCALAR query |
170 | // first push a DUPLICATE ELIMINATED join |
171 | // a duplicate eliminated join creates a duplicate eliminated copy of the LHS |
172 | // and pushes it into any DUPLICATE_ELIMINATED SCAN operators on the RHS |
173 | |
174 | // in the SCALAR case, we create a SINGLE join (because we are only interested in obtaining the value) |
175 | // NULL values are equal in this join because we join on the correlated columns ONLY |
176 | // and e.g. in the query: SELECT (SELECT 42 FROM integers WHERE i1.i IS NULL LIMIT 1) FROM integers i1; |
177 | // the input value NULL will generate the value 42, and we need to join NULL on the LHS with NULL on the RHS |
178 | auto delim_join = CreateDuplicateEliminatedJoin(correlated_columns, JoinType::SINGLE); |
179 | |
180 | // the left side is the original plan |
181 | // this is the side that will be duplicate eliminated and pushed into the RHS |
182 | delim_join->AddChild(move(root)); |
183 | // the right side initially is a DEPENDENT join between the duplicate eliminated scan and the subquery |
184 | // HOWEVER: we do not explicitly create the dependent join |
185 | // instead, we eliminate the dependent join by pushing it down into the right side of the plan |
186 | FlattenDependentJoins flatten(binder, correlated_columns); |
187 | |
188 | // first we check which logical operators have correlated expressions in the first place |
189 | flatten.DetectCorrelatedExpressions(plan.get()); |
190 | // now we push the dependent join down |
191 | auto dependent_join = flatten.PushDownDependentJoin(move(plan)); |
192 | |
193 | // now the dependent join is fully eliminated |
194 | // we only need to create the join conditions between the LHS and the RHS |
195 | // fetch the set of columns |
196 | auto plan_columns = dependent_join->GetColumnBindings(); |
197 | |
198 | // now create the join conditions |
199 | CreateDelimJoinConditions(*delim_join, correlated_columns, plan_columns, flatten.delim_offset); |
200 | delim_join->AddChild(move(dependent_join)); |
201 | root = move(delim_join); |
202 | // finally push the BoundColumnRefExpression referring to the data element returned by the join |
203 | return make_unique<BoundColumnRefExpression>(expr.GetName(), expr.return_type, |
204 | plan_columns[flatten.data_offset]); |
205 | } |
206 | case SubqueryType::EXISTS: { |
207 | // correlated EXISTS query |
208 | // this query is similar to the correlated SCALAR query, except we use a MARK join here |
209 | idx_t mark_index = binder.GenerateTableIndex(); |
210 | auto delim_join = CreateDuplicateEliminatedJoin(correlated_columns, JoinType::MARK); |
211 | delim_join->mark_index = mark_index; |
212 | // LHS |
213 | delim_join->AddChild(move(root)); |
214 | // RHS |
215 | FlattenDependentJoins flatten(binder, correlated_columns); |
216 | flatten.DetectCorrelatedExpressions(plan.get()); |
217 | auto dependent_join = flatten.PushDownDependentJoin(move(plan)); |
218 | |
219 | // fetch the set of columns |
220 | auto plan_columns = dependent_join->GetColumnBindings(); |
221 | |
222 | // now we create the join conditions between the dependent join and the original table |
223 | CreateDelimJoinConditions(*delim_join, correlated_columns, plan_columns, flatten.delim_offset); |
224 | delim_join->AddChild(move(dependent_join)); |
225 | root = move(delim_join); |
226 | // finally push the BoundColumnRefExpression referring to the marker |
227 | return make_unique<BoundColumnRefExpression>(expr.GetName(), expr.return_type, ColumnBinding(mark_index, 0)); |
228 | } |
229 | default: { |
230 | assert(expr.subquery_type == SubqueryType::ANY); |
231 | // correlated ANY query |
232 | // this query is similar to the correlated SCALAR query |
233 | // however, in this case we push a correlated MARK join |
234 | // note that in this join null values are NOT equal for ALL columns, but ONLY for the correlated columns |
235 | // the correlated mark join handles this case by itself |
236 | // as the MARK join has one extra join condition (the original condition, of the ANY expression, e.g. |
237 | // [i=ANY(...)]) |
238 | idx_t mark_index = binder.GenerateTableIndex(); |
239 | auto delim_join = CreateDuplicateEliminatedJoin(correlated_columns, JoinType::MARK); |
240 | delim_join->mark_index = mark_index; |
241 | // LHS |
242 | delim_join->AddChild(move(root)); |
243 | // RHS |
244 | FlattenDependentJoins flatten(binder, correlated_columns); |
245 | flatten.DetectCorrelatedExpressions(plan.get()); |
246 | auto dependent_join = flatten.PushDownDependentJoin(move(plan)); |
247 | |
248 | // fetch the columns |
249 | auto plan_columns = dependent_join->GetColumnBindings(); |
250 | |
251 | // now we create the join conditions between the dependent join and the original table |
252 | CreateDelimJoinConditions(*delim_join, correlated_columns, plan_columns, flatten.delim_offset); |
253 | // add the actual condition based on the ANY/ALL predicate |
254 | JoinCondition compare_cond; |
255 | compare_cond.left = move(expr.child); |
256 | compare_cond.right = BoundCastExpression::AddCastToType( |
257 | make_unique<BoundColumnRefExpression>(GetInternalType(expr.child_type), plan_columns[0]), expr.child_type, |
258 | expr.child_target); |
259 | compare_cond.comparison = expr.comparison_type; |
260 | delim_join->conditions.push_back(move(compare_cond)); |
261 | |
262 | delim_join->AddChild(move(dependent_join)); |
263 | root = move(delim_join); |
264 | // finally push the BoundColumnRefExpression referring to the marker |
265 | return make_unique<BoundColumnRefExpression>(expr.GetName(), expr.return_type, ColumnBinding(mark_index, 0)); |
266 | } |
267 | } |
268 | } |
269 | |
270 | class RecursiveSubqueryPlanner : public LogicalOperatorVisitor { |
271 | public: |
272 | RecursiveSubqueryPlanner(Binder &binder) : binder(binder) { |
273 | } |
274 | void VisitOperator(LogicalOperator &op) override { |
275 | if (op.children.size() > 0) { |
276 | root = move(op.children[0]); |
277 | VisitOperatorExpressions(op); |
278 | op.children[0] = move(root); |
279 | for (idx_t i = 0; i < op.children.size(); i++) { |
280 | VisitOperator(*op.children[i]); |
281 | } |
282 | } |
283 | } |
284 | |
285 | unique_ptr<Expression> VisitReplace(BoundSubqueryExpression &expr, unique_ptr<Expression> *expr_ptr) override { |
286 | return binder.PlanSubquery(expr, root); |
287 | } |
288 | |
289 | private: |
290 | unique_ptr<LogicalOperator> root; |
291 | Binder &binder; |
292 | }; |
293 | |
294 | unique_ptr<Expression> Binder::PlanSubquery(BoundSubqueryExpression &expr, unique_ptr<LogicalOperator> &root) { |
295 | assert(root); |
296 | // first we translate the QueryNode of the subquery into a logical plan |
297 | // note that we do not plan nested subqueries yet |
298 | Binder sub_binder(context); |
299 | sub_binder.plan_subquery = false; |
300 | auto subquery_root = sub_binder.CreatePlan(*expr.subquery); |
301 | assert(subquery_root); |
302 | |
303 | // now we actually flatten the subquery |
304 | auto plan = move(subquery_root); |
305 | unique_ptr<Expression> result_expression; |
306 | if (!expr.IsCorrelated()) { |
307 | result_expression = PlanUncorrelatedSubquery(*this, expr, root, move(plan)); |
308 | } else { |
309 | result_expression = PlanCorrelatedSubquery(*this, expr, root, move(plan)); |
310 | } |
311 | // finally, we recursively plan the nested subqueries (if there are any) |
312 | if (sub_binder.has_unplanned_subqueries) { |
313 | RecursiveSubqueryPlanner plan(*this); |
314 | plan.VisitOperator(*root); |
315 | } |
316 | return result_expression; |
317 | } |
318 | |
319 | void Binder::PlanSubqueries(unique_ptr<Expression> *expr_ptr, unique_ptr<LogicalOperator> *root) { |
320 | auto &expr = **expr_ptr; |
321 | |
322 | // first visit the children of the node, if any |
323 | ExpressionIterator::EnumerateChildren(expr, [&](unique_ptr<Expression> expr) -> unique_ptr<Expression> { |
324 | PlanSubqueries(&expr, root); |
325 | return move(expr); |
326 | }); |
327 | |
328 | // check if this is a subquery node |
329 | if (expr.expression_class == ExpressionClass::BOUND_SUBQUERY) { |
330 | auto &subquery = (BoundSubqueryExpression &)expr; |
331 | // subquery node! plan it |
332 | if (subquery.IsCorrelated() && !plan_subquery) { |
333 | // detected a nested correlated subquery |
334 | // we don't plan it yet here, we are currently planning a subquery |
335 | // nested subqueries will only be planned AFTER the current subquery has been flattened entirely |
336 | has_unplanned_subqueries = true; |
337 | return; |
338 | } |
339 | *expr_ptr = PlanSubquery(subquery, *root); |
340 | } |
341 | } |
342 | |
343 | } // namespace duckdb |
344 | |