1 | #include "duckdb/planner/expression/bound_columnref_expression.hpp" |
2 | #include "duckdb/planner/expression/bound_comparison_expression.hpp" |
3 | #include "duckdb/planner/expression/bound_conjunction_expression.hpp" |
4 | #include "duckdb/planner/expression/bound_constant_expression.hpp" |
5 | #include "duckdb/planner/expression/bound_operator_expression.hpp" |
6 | #include "duckdb/planner/expression/bound_subquery_expression.hpp" |
7 | #include "duckdb/planner/expression_iterator.hpp" |
8 | #include "duckdb/planner/binder.hpp" |
9 | #include "duckdb/planner/operator/logical_any_join.hpp" |
10 | #include "duckdb/planner/operator/logical_comparison_join.hpp" |
11 | #include "duckdb/planner/operator/logical_cross_product.hpp" |
12 | #include "duckdb/planner/operator/logical_filter.hpp" |
13 | #include "duckdb/planner/tableref/bound_joinref.hpp" |
14 | |
15 | using namespace duckdb; |
16 | using namespace std; |
17 | |
18 | //! Create a JoinCondition from a comparison |
19 | static bool CreateJoinCondition(Expression &expr, unordered_set<idx_t> &left_bindings, |
20 | unordered_set<idx_t> &right_bindings, vector<JoinCondition> &conditions) { |
21 | // comparison |
22 | auto &comparison = (BoundComparisonExpression &)expr; |
23 | auto left_side = JoinSide::GetJoinSide(*comparison.left, left_bindings, right_bindings); |
24 | auto right_side = JoinSide::GetJoinSide(*comparison.right, left_bindings, right_bindings); |
25 | if (left_side != JoinSide::BOTH && right_side != JoinSide::BOTH) { |
26 | // join condition can be divided in a left/right side |
27 | JoinCondition condition; |
28 | condition.comparison = expr.type; |
29 | auto left = move(comparison.left); |
30 | auto right = move(comparison.right); |
31 | if (left_side == JoinSide::RIGHT) { |
32 | // left = right, right = left, flip the comparison symbol and reverse sides |
33 | swap(left, right); |
34 | condition.comparison = FlipComparisionExpression(expr.type); |
35 | } |
36 | condition.left = move(left); |
37 | condition.right = move(right); |
38 | conditions.push_back(move(condition)); |
39 | return true; |
40 | } |
41 | return false; |
42 | } |
43 | |
44 | unique_ptr<LogicalOperator> LogicalComparisonJoin::CreateJoin(JoinType type, unique_ptr<LogicalOperator> left_child, |
45 | unique_ptr<LogicalOperator> right_child, |
46 | unordered_set<idx_t> &left_bindings, |
47 | unordered_set<idx_t> &right_bindings, |
48 | vector<unique_ptr<Expression>> &expressions) { |
49 | vector<JoinCondition> conditions; |
50 | vector<unique_ptr<Expression>> arbitrary_expressions; |
51 | // first check if we can create |
52 | for (idx_t i = 0; i < expressions.size(); i++) { |
53 | auto &expr = expressions[i]; |
54 | auto total_side = JoinSide::GetJoinSide(*expr, left_bindings, right_bindings); |
55 | if (total_side != JoinSide::BOTH) { |
56 | // join condition does not reference both sides, add it as filter under the join |
57 | if (type == JoinType::LEFT && total_side == JoinSide::RIGHT) { |
58 | // filter is on RHS and the join is a LEFT OUTER join, we can push it in the right child |
59 | if (right_child->type != LogicalOperatorType::FILTER) { |
60 | // not a filter yet, push a new empty filter |
61 | auto filter = make_unique<LogicalFilter>(); |
62 | filter->AddChild(move(right_child)); |
63 | right_child = move(filter); |
64 | } |
65 | // push the expression into the filter |
66 | auto &filter = (LogicalFilter &)*right_child; |
67 | filter.expressions.push_back(move(expr)); |
68 | continue; |
69 | } |
70 | } else if (expr->type >= ExpressionType::COMPARE_EQUAL && |
71 | expr->type <= ExpressionType::COMPARE_GREATERTHANOREQUALTO) { |
72 | // comparison, check if we can create a comparison JoinCondition |
73 | if (CreateJoinCondition(*expr, left_bindings, right_bindings, conditions)) { |
74 | // successfully created the join condition |
75 | continue; |
76 | } |
77 | } |
78 | arbitrary_expressions.push_back(move(expr)); |
79 | } |
80 | if (conditions.size() > 0) { |
81 | // we successfully convertedexpressions into JoinConditions |
82 | // create a LogicalComparisonJoin |
83 | auto comp_join = make_unique<LogicalComparisonJoin>(type); |
84 | comp_join->conditions = move(conditions); |
85 | comp_join->children.push_back(move(left_child)); |
86 | comp_join->children.push_back(move(right_child)); |
87 | if (arbitrary_expressions.size() > 0) { |
88 | // we have some arbitrary expressions as well |
89 | // add them to a filter |
90 | auto filter = make_unique<LogicalFilter>(); |
91 | for (auto &expr : arbitrary_expressions) { |
92 | filter->expressions.push_back(move(expr)); |
93 | } |
94 | LogicalFilter::SplitPredicates(filter->expressions); |
95 | filter->children.push_back(move(comp_join)); |
96 | return move(filter); |
97 | } |
98 | return move(comp_join); |
99 | } else { |
100 | if (arbitrary_expressions.size() == 0) { |
101 | // all conditions were pushed down, add TRUE predicate |
102 | arbitrary_expressions.push_back(make_unique<BoundConstantExpression>(Value::BOOLEAN(true))); |
103 | } |
104 | // if we get here we could not create any JoinConditions |
105 | // turn this into an arbitrary expression join |
106 | auto any_join = make_unique<LogicalAnyJoin>(type); |
107 | // create the condition |
108 | any_join->children.push_back(move(left_child)); |
109 | any_join->children.push_back(move(right_child)); |
110 | // AND all the arbitrary expressions together |
111 | // do the same with any remaining conditions |
112 | any_join->condition = move(arbitrary_expressions[0]); |
113 | for (idx_t i = 1; i < arbitrary_expressions.size(); i++) { |
114 | any_join->condition = make_unique<BoundConjunctionExpression>( |
115 | ExpressionType::CONJUNCTION_AND, move(any_join->condition), move(arbitrary_expressions[i])); |
116 | } |
117 | return move(any_join); |
118 | } |
119 | } |
120 | |
121 | unique_ptr<LogicalOperator> Binder::CreatePlan(BoundJoinRef &ref) { |
122 | auto left = CreatePlan(*ref.left); |
123 | auto right = CreatePlan(*ref.right); |
124 | if (ref.type == JoinType::RIGHT) { |
125 | ref.type = JoinType::LEFT; |
126 | std::swap(left, right); |
127 | } |
128 | |
129 | if (ref.type == JoinType::INNER) { |
130 | // inner join, generate a cross product + filter |
131 | // this will be later turned into a proper join by the join order optimizer |
132 | auto cross_product = make_unique<LogicalCrossProduct>(); |
133 | |
134 | cross_product->AddChild(move(left)); |
135 | cross_product->AddChild(move(right)); |
136 | |
137 | unique_ptr<LogicalOperator> root = move(cross_product); |
138 | |
139 | auto filter = make_unique<LogicalFilter>(move(ref.condition)); |
140 | // visit the expressions in the filter |
141 | for (idx_t i = 0; i < filter->expressions.size(); i++) { |
142 | PlanSubqueries(&filter->expressions[i], &root); |
143 | } |
144 | filter->AddChild(move(root)); |
145 | return move(filter); |
146 | } |
147 | |
148 | // split the expressions by the AND clause |
149 | vector<unique_ptr<Expression>> expressions; |
150 | expressions.push_back(move(ref.condition)); |
151 | LogicalFilter::SplitPredicates(expressions); |
152 | |
153 | // find the table bindings on the LHS and RHS of the join |
154 | unordered_set<idx_t> left_bindings, right_bindings; |
155 | LogicalJoin::GetTableReferences(*left, left_bindings); |
156 | LogicalJoin::GetTableReferences(*right, right_bindings); |
157 | // now create the join operator from the set of join conditions |
158 | auto result = LogicalComparisonJoin::CreateJoin(ref.type, move(left), move(right), left_bindings, right_bindings, |
159 | expressions); |
160 | |
161 | LogicalOperator *join; |
162 | if (result->type == LogicalOperatorType::FILTER) { |
163 | join = result->children[0].get(); |
164 | } else { |
165 | join = result.get(); |
166 | } |
167 | |
168 | // we visit the expressions depending on the type of join |
169 | if (join->type == LogicalOperatorType::COMPARISON_JOIN) { |
170 | // comparison join |
171 | // in this join we visit the expressions on the LHS with the LHS as root node |
172 | // and the expressions on the RHS with the RHS as root node |
173 | auto &comp_join = (LogicalComparisonJoin &)*join; |
174 | for (idx_t i = 0; i < comp_join.conditions.size(); i++) { |
175 | PlanSubqueries(&comp_join.conditions[i].left, &comp_join.children[0]); |
176 | PlanSubqueries(&comp_join.conditions[i].right, &comp_join.children[1]); |
177 | } |
178 | } else if (join->type == LogicalOperatorType::ANY_JOIN) { |
179 | auto &any_join = (LogicalAnyJoin &)*join; |
180 | // for the any join we just visit the condition |
181 | if (any_join.condition->HasSubquery()) { |
182 | throw NotImplementedException("Cannot perform non-inner join on subquery!" ); |
183 | } |
184 | } |
185 | return result; |
186 | } |
187 | |