1 | /* |
2 | ** This code taken from the SQLite test library. Originally found on |
3 | ** the internet. The original header comment follows this comment. |
4 | ** The code is largerly unchanged, but there have been some modifications. |
5 | */ |
6 | /* |
7 | * This code implements the MD5 message-digest algorithm. |
8 | * The algorithm is due to Ron Rivest. This code was |
9 | * written by Colin Plumb in 1993, no copyright is claimed. |
10 | * This code is in the public domain; do with it what you wish. |
11 | * |
12 | * Equivalent code is available from RSA Data Security, Inc. |
13 | * This code has been tested against that, and is equivalent, |
14 | * except that you don't need to include two pages of legalese |
15 | * with every copy. |
16 | * |
17 | * To compute the message digest of a chunk of bytes, declare an |
18 | * MD5Context structure, pass it to MD5Init, call MD5Update as |
19 | * needed on buffers full of bytes, and then call MD5Final, which |
20 | * will fill a supplied 16-byte array with the digest. |
21 | */ |
22 | #include <string.h> |
23 | |
24 | /* |
25 | * If compiled on a machine that doesn't have a 32-bit integer, |
26 | * you just set "uint32" to the appropriate datatype for an |
27 | * unsigned 32-bit integer. For example: |
28 | * |
29 | * cc -Duint32='unsigned long' md5.c |
30 | * |
31 | */ |
32 | #ifndef uint32 |
33 | #define uint32 unsigned int |
34 | #endif |
35 | |
36 | struct Context { |
37 | int isInit; |
38 | uint32 buf[4]; |
39 | uint32 bits[2]; |
40 | unsigned char in[64]; |
41 | }; |
42 | typedef struct Context MD5Context; |
43 | |
44 | /* |
45 | * Note: this code is harmless on little-endian machines. |
46 | */ |
47 | static void byteReverse(unsigned char *buf, unsigned longs) { |
48 | uint32 t; |
49 | do { |
50 | t = (uint32)((unsigned)buf[3] << 8 | buf[2]) << 16 | ((unsigned)buf[1] << 8 | buf[0]); |
51 | *(uint32 *)buf = t; |
52 | buf += 4; |
53 | } while (--longs); |
54 | } |
55 | /* The four core functions - F1 is optimized somewhat */ |
56 | |
57 | /* #define F1(x, y, z) (x & y | ~x & z) */ |
58 | #define F1(x, y, z) (z ^ (x & (y ^ z))) |
59 | #define F2(x, y, z) F1(z, x, y) |
60 | #define F3(x, y, z) (x ^ y ^ z) |
61 | #define F4(x, y, z) (y ^ (x | ~z)) |
62 | |
63 | /* This is the central step in the MD5 algorithm. */ |
64 | #define MD5STEP(f, w, x, y, z, data, s) (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x) |
65 | |
66 | /* |
67 | * The core of the MD5 algorithm, this alters an existing MD5 hash to |
68 | * reflect the addition of 16 longwords of new data. MD5Update blocks |
69 | * the data and converts bytes into longwords for this routine. |
70 | */ |
71 | static void MD5Transform(uint32 buf[4], const uint32 in[16]) { |
72 | uint32 a, b, c, d; |
73 | |
74 | a = buf[0]; |
75 | b = buf[1]; |
76 | c = buf[2]; |
77 | d = buf[3]; |
78 | |
79 | MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); |
80 | MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); |
81 | MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); |
82 | MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); |
83 | MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); |
84 | MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); |
85 | MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); |
86 | MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); |
87 | MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); |
88 | MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); |
89 | MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); |
90 | MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); |
91 | MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); |
92 | MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); |
93 | MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); |
94 | MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); |
95 | |
96 | MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); |
97 | MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); |
98 | MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); |
99 | MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); |
100 | MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); |
101 | MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); |
102 | MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); |
103 | MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); |
104 | MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); |
105 | MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); |
106 | MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); |
107 | MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); |
108 | MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); |
109 | MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); |
110 | MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); |
111 | MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); |
112 | |
113 | MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); |
114 | MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); |
115 | MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); |
116 | MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); |
117 | MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); |
118 | MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); |
119 | MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); |
120 | MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); |
121 | MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); |
122 | MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); |
123 | MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); |
124 | MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); |
125 | MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); |
126 | MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); |
127 | MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); |
128 | MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); |
129 | |
130 | MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); |
131 | MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); |
132 | MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); |
133 | MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); |
134 | MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); |
135 | MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); |
136 | MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); |
137 | MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); |
138 | MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); |
139 | MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); |
140 | MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); |
141 | MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); |
142 | MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); |
143 | MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); |
144 | MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); |
145 | MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); |
146 | |
147 | buf[0] += a; |
148 | buf[1] += b; |
149 | buf[2] += c; |
150 | buf[3] += d; |
151 | } |
152 | |
153 | /* |
154 | * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
155 | * initialization constants. |
156 | */ |
157 | static void MD5Init(MD5Context *ctx) { |
158 | ctx->isInit = 1; |
159 | ctx->buf[0] = 0x67452301; |
160 | ctx->buf[1] = 0xefcdab89; |
161 | ctx->buf[2] = 0x98badcfe; |
162 | ctx->buf[3] = 0x10325476; |
163 | ctx->bits[0] = 0; |
164 | ctx->bits[1] = 0; |
165 | } |
166 | |
167 | /* |
168 | * Update context to reflect the concatenation of another buffer full |
169 | * of bytes. |
170 | */ |
171 | static void MD5Update(MD5Context *pCtx, const unsigned char *buf, unsigned int len) { |
172 | struct Context *ctx = (struct Context *)pCtx; |
173 | uint32 t; |
174 | |
175 | /* Update bitcount */ |
176 | |
177 | t = ctx->bits[0]; |
178 | if ((ctx->bits[0] = t + ((uint32)len << 3)) < t) |
179 | ctx->bits[1]++; /* Carry from low to high */ |
180 | ctx->bits[1] += len >> 29; |
181 | |
182 | t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ |
183 | |
184 | /* Handle any leading odd-sized chunks */ |
185 | |
186 | if (t) { |
187 | unsigned char *p = (unsigned char *)ctx->in + t; |
188 | |
189 | t = 64 - t; |
190 | if (len < t) { |
191 | memcpy(p, buf, len); |
192 | return; |
193 | } |
194 | memcpy(p, buf, t); |
195 | byteReverse(ctx->in, 16); |
196 | MD5Transform(ctx->buf, (uint32 *)ctx->in); |
197 | buf += t; |
198 | len -= t; |
199 | } |
200 | |
201 | /* Process data in 64-byte chunks */ |
202 | |
203 | while (len >= 64) { |
204 | memcpy(ctx->in, buf, 64); |
205 | byteReverse(ctx->in, 16); |
206 | MD5Transform(ctx->buf, (uint32 *)ctx->in); |
207 | buf += 64; |
208 | len -= 64; |
209 | } |
210 | |
211 | /* Handle any remaining bytes of data. */ |
212 | |
213 | memcpy(ctx->in, buf, len); |
214 | } |
215 | |
216 | /* |
217 | * Final wrapup - pad to 64-byte boundary with the bit pattern |
218 | * 1 0* (64-bit count of bits processed, MSB-first) |
219 | */ |
220 | static void MD5Final(unsigned char digest[16], MD5Context *pCtx) { |
221 | struct Context *ctx = (struct Context *)pCtx; |
222 | unsigned count; |
223 | unsigned char *p; |
224 | |
225 | /* Compute number of bytes mod 64 */ |
226 | count = (ctx->bits[0] >> 3) & 0x3F; |
227 | |
228 | /* Set the first char of padding to 0x80. This is safe since there is |
229 | always at least one byte free */ |
230 | p = ctx->in + count; |
231 | *p++ = 0x80; |
232 | |
233 | /* Bytes of padding needed to make 64 bytes */ |
234 | count = 64 - 1 - count; |
235 | |
236 | /* Pad out to 56 mod 64 */ |
237 | if (count < 8) { |
238 | /* Two lots of padding: Pad the first block to 64 bytes */ |
239 | memset(p, 0, count); |
240 | byteReverse(ctx->in, 16); |
241 | MD5Transform(ctx->buf, (uint32 *)ctx->in); |
242 | |
243 | /* Now fill the next block with 56 bytes */ |
244 | memset(ctx->in, 0, 56); |
245 | } else { |
246 | /* Pad block to 56 bytes */ |
247 | memset(p, 0, count - 8); |
248 | } |
249 | byteReverse(ctx->in, 14); |
250 | |
251 | /* Append length in bits and transform */ |
252 | ((uint32 *)ctx->in)[14] = ctx->bits[0]; |
253 | ((uint32 *)ctx->in)[15] = ctx->bits[1]; |
254 | |
255 | MD5Transform(ctx->buf, (uint32 *)ctx->in); |
256 | byteReverse((unsigned char *)ctx->buf, 4); |
257 | memcpy(digest, ctx->buf, 16); |
258 | memset(&ctx, 0, sizeof(ctx)); /* In case it is sensitive */ |
259 | } |
260 | |
261 | /* |
262 | ** Convert a digest into base-16. digest should be declared as |
263 | ** "unsigned char digest[16]" in the calling function. The MD5 |
264 | ** digest is stored in the first 16 bytes. zBuf should |
265 | ** be "char zBuf[33]". |
266 | */ |
267 | static void DigestToBase16(unsigned char *digest, char *zBuf) { |
268 | static char const zEncode[] = "0123456789abcdef" ; |
269 | int i, j; |
270 | |
271 | for (j = i = 0; i < 16; i++) { |
272 | int a = digest[i]; |
273 | zBuf[j++] = zEncode[(a >> 4) & 0xf]; |
274 | zBuf[j++] = zEncode[a & 0xf]; |
275 | } |
276 | zBuf[j] = 0; |
277 | } |
278 | |
279 | /* |
280 | ** Status of an MD5 hash. |
281 | */ |
282 | static MD5Context ctx; |
283 | static int isInit = 0; |
284 | static char zResult[34] = "" ; |
285 | |
286 | /* |
287 | ** Add additional text to the current MD5 hash. |
288 | */ |
289 | void md5_add(const char *z); |
290 | |
291 | void md5_add(const char *z) { |
292 | if (!isInit) { |
293 | MD5Init(&ctx); |
294 | isInit = 1; |
295 | } |
296 | MD5Update(&ctx, (unsigned char *)z, (unsigned)strlen(z)); |
297 | } |
298 | |
299 | /* |
300 | ** Compute the final signature. Reset the hash generator in preparation |
301 | ** for the next round. |
302 | */ |
303 | const char *md5_finish(void); |
304 | |
305 | const char *md5_finish(void) { |
306 | if (isInit) { |
307 | unsigned char digest[16]; |
308 | MD5Final(digest, &ctx); |
309 | isInit = 0; |
310 | DigestToBase16(digest, zResult); |
311 | } |
312 | return zResult; |
313 | } |
314 | |