| 1 | /* |
| 2 | * Legal Notice |
| 3 | * |
| 4 | * This document and associated source code (the "Work") is a part of a |
| 5 | * benchmark specification maintained by the TPC. |
| 6 | * |
| 7 | * The TPC reserves all right, title, and interest to the Work as provided |
| 8 | * under U.S. and international laws, including without limitation all patent |
| 9 | * and trademark rights therein. |
| 10 | * |
| 11 | * No Warranty |
| 12 | * |
| 13 | * 1.1 TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE INFORMATION |
| 14 | * CONTAINED HEREIN IS PROVIDED "AS IS" AND WITH ALL FAULTS, AND THE |
| 15 | * AUTHORS AND DEVELOPERS OF THE WORK HEREBY DISCLAIM ALL OTHER |
| 16 | * WARRANTIES AND CONDITIONS, EITHER EXPRESS, IMPLIED OR STATUTORY, |
| 17 | * INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED WARRANTIES, |
| 18 | * DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FITNESS FOR A PARTICULAR |
| 19 | * PURPOSE, OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF |
| 20 | * WORKMANLIKE EFFORT, OF LACK OF VIRUSES, AND OF LACK OF NEGLIGENCE. |
| 21 | * ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, |
| 22 | * QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT |
| 23 | * WITH REGARD TO THE WORK. |
| 24 | * 1.2 IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THE WORK BE LIABLE TO |
| 25 | * ANY OTHER PARTY FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO THE |
| 26 | * COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS |
| 27 | * OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, |
| 28 | * INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, |
| 29 | * OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT |
| 30 | * RELATING TO THE WORK, WHETHER OR NOT SUCH AUTHOR OR DEVELOPER HAD |
| 31 | * ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. |
| 32 | * |
| 33 | * Contributors: |
| 34 | * Gradient Systems |
| 35 | */ |
| 36 | #include "config.h" |
| 37 | #include "porting.h" |
| 38 | #include <stdio.h> |
| 39 | #include <assert.h> |
| 40 | #include <stdio.h> |
| 41 | #include "config.h" |
| 42 | #include "porting.h" |
| 43 | #include "dist.h" |
| 44 | #include "constants.h" |
| 45 | #include "genrand.h" |
| 46 | #include "columns.h" |
| 47 | #include "tdefs.h" |
| 48 | #include "error_msg.h" |
| 49 | #include "r_params.h" |
| 50 | #include "tdefs.h" |
| 51 | #include "tdef_functions.h" |
| 52 | #include "w_inventory.h" |
| 53 | #include "scaling.h" |
| 54 | #include "tpcds.idx.h" |
| 55 | #include "parallel.h" |
| 56 | #include "scd.h" |
| 57 | |
| 58 | static struct SCALING_T { |
| 59 | ds_key_t kBaseRowcount; |
| 60 | ds_key_t kNextInsertValue; |
| 61 | int nUpdatePercentage; |
| 62 | ds_key_t kDayRowcount[6]; |
| 63 | } arRowcount[MAX_TABLE + 1]; |
| 64 | static int arUpdateDates[6]; |
| 65 | static int arInventoryUpdateDates[6]; |
| 66 | |
| 67 | static int arScaleVolume[9] = {1, 10, 100, 300, 1000, 3000, 10000, 30000, 100000}; |
| 68 | |
| 69 | void setUpdateScaling(int table); |
| 70 | int row_skip(int tbl, ds_key_t count); |
| 71 | |
| 72 | /* |
| 73 | * Routine: |
| 74 | * Purpose: |
| 75 | * Algorithm: |
| 76 | * Data Structures: |
| 77 | * |
| 78 | * Params: |
| 79 | * Returns: |
| 80 | * Called By: |
| 81 | * Calls: |
| 82 | * Assumptions: |
| 83 | * Side Effects: |
| 84 | * TODO: None |
| 85 | */ |
| 86 | int getScaleSlot(int nTargetGB) { |
| 87 | int i; |
| 88 | |
| 89 | for (i = 0; nTargetGB > arScaleVolume[i]; i++) |
| 90 | ; |
| 91 | |
| 92 | return (i); |
| 93 | } |
| 94 | |
| 95 | /* |
| 96 | * Routine: LogScale(void) |
| 97 | * Purpose: use the command line volume target, in GB, to calculate the global |
| 98 | * rowcount multiplier Algorithm: Data Structures: |
| 99 | * |
| 100 | * Params: |
| 101 | * Returns: |
| 102 | * Called By: |
| 103 | * Calls: |
| 104 | * Assumptions: |
| 105 | * Side Effects: arRowcounts are set to the appropriate number of rows for the |
| 106 | * target scale factor |
| 107 | * TODO: None |
| 108 | */ |
| 109 | static ds_key_t LogScale(int nTable, int nTargetGB) { |
| 110 | int nIndex = 1, nDelta, i; |
| 111 | float fOffset; |
| 112 | ds_key_t hgRowcount = 0; |
| 113 | |
| 114 | i = getScaleSlot(nTargetGB); |
| 115 | |
| 116 | nDelta = dist_weight(NULL, "rowcounts" , nTable + 1, i + 1) - dist_weight(NULL, "rowcounts" , nTable + 1, i); |
| 117 | fOffset = (float)(nTargetGB - arScaleVolume[i - 1]) / (float)(arScaleVolume[i] - arScaleVolume[i - 1]); |
| 118 | |
| 119 | hgRowcount = (int)(fOffset * (float)nDelta); |
| 120 | hgRowcount += dist_weight(NULL, "rowcounts" , nTable + 1, nIndex); |
| 121 | |
| 122 | return (hgRowcount); |
| 123 | } |
| 124 | |
| 125 | /* |
| 126 | * Routine: StaticScale(void) |
| 127 | * Purpose: use the command line volume target, in GB, to calculate the global |
| 128 | * rowcount multiplier Algorithm: Data Structures: |
| 129 | * |
| 130 | * Params: |
| 131 | * Returns: |
| 132 | * Called By: |
| 133 | * Calls: |
| 134 | * Assumptions: |
| 135 | * Side Effects: arRowcounts are set to the appropriate number of rows for the |
| 136 | * target scale factor |
| 137 | * TODO: None |
| 138 | */ |
| 139 | static ds_key_t StaticScale(int nTable, int nTargetGB) { |
| 140 | return (dist_weight(NULL, "rowcounts" , nTable + 1, 1)); |
| 141 | } |
| 142 | |
| 143 | /* |
| 144 | * Routine: LinearScale(void) |
| 145 | * Purpose: use the command line volume target, in GB, to calculate the global |
| 146 | *rowcount multiplier Algorithm: Data Structures: |
| 147 | * |
| 148 | * Params: |
| 149 | * Returns: |
| 150 | * Called By: |
| 151 | * Calls: |
| 152 | * Assumptions: scale factors defined in rowcounts distribution define |
| 153 | *1/10/100/1000/... GB with sufficient accuracy Side Effects: arRowcounts are |
| 154 | *set to the appropriate number of rows for the target scale factor |
| 155 | * TODO: None |
| 156 | */ |
| 157 | static ds_key_t LinearScale(int nTable, int nTargetGB) { |
| 158 | int i; |
| 159 | ds_key_t hgRowcount = 0; |
| 160 | |
| 161 | for (i = 8; i >= 0; i--) /* work from large scales down)*/ |
| 162 | { |
| 163 | /* |
| 164 | * use the defined rowcounts to build up the target GB volume |
| 165 | */ |
| 166 | while (nTargetGB >= arScaleVolume[i]) { |
| 167 | hgRowcount += dist_weight(NULL, "rowcounts" , nTable + 1, i + 1); |
| 168 | nTargetGB -= arScaleVolume[i]; |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | return (hgRowcount); |
| 173 | } |
| 174 | /* |
| 175 | * Routine: |
| 176 | * Purpose: |
| 177 | * Algorithm: |
| 178 | * Data Structures: |
| 179 | * |
| 180 | * Params: |
| 181 | * Returns: |
| 182 | * Called By: |
| 183 | * Calls: |
| 184 | * Assumptions: |
| 185 | * Side Effects: |
| 186 | * TODO: None |
| 187 | */ |
| 188 | ds_key_t getIDCount(int nTable) { |
| 189 | ds_key_t kRowcount, kUniqueCount; |
| 190 | tdef *pTdef; |
| 191 | |
| 192 | kRowcount = get_rowcount(nTable); |
| 193 | if (nTable >= PSEUDO_TABLE_START) |
| 194 | return (kRowcount); |
| 195 | pTdef = getSimpleTdefsByNumber(nTable); |
| 196 | if (pTdef->flags & FL_TYPE_2) { |
| 197 | kUniqueCount = (kRowcount / 6) * 3; |
| 198 | switch (kRowcount % 6) { |
| 199 | case 1: |
| 200 | kUniqueCount += 1; |
| 201 | break; |
| 202 | case 2: |
| 203 | case 3: |
| 204 | kUniqueCount += 2; |
| 205 | break; |
| 206 | case 4: |
| 207 | case 5: |
| 208 | kUniqueCount += 3; |
| 209 | break; |
| 210 | } |
| 211 | return (kUniqueCount); |
| 212 | } else { |
| 213 | return (kRowcount); |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | /* |
| 218 | * Routine: get_rowcount(int table) |
| 219 | * Purpose: |
| 220 | * Algorithm: |
| 221 | * Data Structures: |
| 222 | * |
| 223 | * Params: |
| 224 | * Returns: |
| 225 | * Called By: |
| 226 | * Calls: |
| 227 | * Assumptions: |
| 228 | * Side Effects: |
| 229 | * TODO: 20040820 jms Need to address special case scaling in a more general |
| 230 | * fashion |
| 231 | */ |
| 232 | ds_key_t get_rowcount(int table) { |
| 233 | |
| 234 | static int bScaleSet = 0, nScale; |
| 235 | int nTable, nMultiplier, i, nBadScale = 0, nRowcountOffset = 0; |
| 236 | tdef *pTdef; |
| 237 | |
| 238 | if (!bScaleSet) { |
| 239 | nScale = get_int("SCALE" ); |
| 240 | if (nScale > 100000) |
| 241 | ReportErrorNoLine(QERR_BAD_SCALE, NULL, 1); |
| 242 | |
| 243 | memset(arRowcount, 0, sizeof(long) * MAX_TABLE); |
| 244 | for (nTable = CALL_CENTER; nTable <= MAX_TABLE; nTable++) { |
| 245 | switch (nScale) { |
| 246 | case 100000: |
| 247 | arRowcount[nTable].kBaseRowcount = dist_weight(NULL, "rowcounts" , nTable + nRowcountOffset + 1, 9); |
| 248 | break; |
| 249 | case 30000: |
| 250 | arRowcount[nTable].kBaseRowcount = dist_weight(NULL, "rowcounts" , nTable + nRowcountOffset + 1, 8); |
| 251 | break; |
| 252 | case 10000: |
| 253 | arRowcount[nTable].kBaseRowcount = dist_weight(NULL, "rowcounts" , nTable + nRowcountOffset + 1, 7); |
| 254 | break; |
| 255 | case 3000: |
| 256 | arRowcount[nTable].kBaseRowcount = dist_weight(NULL, "rowcounts" , nTable + nRowcountOffset + 1, 6); |
| 257 | break; |
| 258 | case 1000: |
| 259 | arRowcount[nTable].kBaseRowcount = dist_weight(NULL, "rowcounts" , nTable + nRowcountOffset + 1, 5); |
| 260 | break; |
| 261 | case 300: |
| 262 | nBadScale = QERR_BAD_SCALE; |
| 263 | arRowcount[nTable].kBaseRowcount = dist_weight(NULL, "rowcounts" , nTable + nRowcountOffset + 1, 4); |
| 264 | break; |
| 265 | case 100: |
| 266 | nBadScale = QERR_BAD_SCALE; |
| 267 | arRowcount[nTable].kBaseRowcount = dist_weight(NULL, "rowcounts" , nTable + nRowcountOffset + 1, 3); |
| 268 | break; |
| 269 | case 10: |
| 270 | nBadScale = QERR_BAD_SCALE; |
| 271 | arRowcount[nTable].kBaseRowcount = dist_weight(NULL, "rowcounts" , nTable + nRowcountOffset + 1, 2); |
| 272 | break; |
| 273 | case 1: |
| 274 | nBadScale = QERR_QUALIFICATION_SCALE; |
| 275 | arRowcount[nTable].kBaseRowcount = dist_weight(NULL, "rowcounts" , nTable + nRowcountOffset + 1, 1); |
| 276 | break; |
| 277 | default: |
| 278 | nBadScale = QERR_BAD_SCALE; |
| 279 | switch (dist_member(NULL, "rowcounts" , nTable + 1, 3)) { |
| 280 | case 2: |
| 281 | arRowcount[nTable].kBaseRowcount = LinearScale(nTable + nRowcountOffset, nScale); |
| 282 | break; |
| 283 | case 1: |
| 284 | arRowcount[nTable].kBaseRowcount = StaticScale(nTable + nRowcountOffset, nScale); |
| 285 | break; |
| 286 | case 3: |
| 287 | arRowcount[nTable].kBaseRowcount = LogScale(nTable + nRowcountOffset, nScale); |
| 288 | break; |
| 289 | } /* switch(FL_SCALE_MASK) */ |
| 290 | break; |
| 291 | } /* switch(nScale) */ |
| 292 | |
| 293 | /* now adjust for the multiplier */ |
| 294 | nMultiplier = 1; |
| 295 | if (nTable < PSEUDO_TABLE_START) { |
| 296 | pTdef = getSimpleTdefsByNumber(nTable); |
| 297 | nMultiplier = (pTdef->flags & FL_TYPE_2) ? 2 : 1; |
| 298 | } |
| 299 | for (i = 1; i <= dist_member(NULL, "rowcounts" , nTable + 1, 2); i++) |
| 300 | nMultiplier *= 10; |
| 301 | arRowcount[nTable].kBaseRowcount *= nMultiplier; |
| 302 | |
| 303 | } /* for each table */ |
| 304 | |
| 305 | // if (nBadScale && !is_set("QUIET")) |
| 306 | // ReportErrorNoLine(nBadScale, NULL, 0); |
| 307 | |
| 308 | bScaleSet = 1; |
| 309 | } |
| 310 | |
| 311 | if (table == INVENTORY) |
| 312 | return (sc_w_inventory(nScale)); |
| 313 | if (table == S_INVENTORY) |
| 314 | return (getIDCount(ITEM) * get_rowcount(WAREHOUSE) * 6); |
| 315 | |
| 316 | return (arRowcount[table].kBaseRowcount); |
| 317 | } |
| 318 | |
| 319 | /* |
| 320 | * Routine: setUpdateDates |
| 321 | * Purpose: determine the dates for fact table updates |
| 322 | * Algorithm: |
| 323 | * Data Structures: |
| 324 | * |
| 325 | * Params: |
| 326 | * Returns: |
| 327 | * Called By: |
| 328 | * Calls: |
| 329 | * Assumptions: |
| 330 | * Side Effects: |
| 331 | * TODO: None |
| 332 | */ |
| 333 | void setUpdateDates(void) { |
| 334 | assert(0); |
| 335 | int nDay, nUpdate, i; |
| 336 | date_t dtTemp; |
| 337 | |
| 338 | nUpdate = get_int("UPDATE" ); |
| 339 | while (nUpdate--) { |
| 340 | /* pick two adjacent days in the low density zone */ |
| 341 | arUpdateDates[0] = getSkewedJulianDate(calendar_low, 0); |
| 342 | jtodt(&dtTemp, arUpdateDates[0]); |
| 343 | dist_weight(&nDay, "calendar" , day_number(&dtTemp) + 1, calendar_low); |
| 344 | if (nDay) |
| 345 | arUpdateDates[1] = arUpdateDates[0] + 1; |
| 346 | else |
| 347 | arUpdateDates[1] = arUpdateDates[0] - 1; |
| 348 | |
| 349 | /* |
| 350 | * pick the related Thursdays for inventory |
| 351 | * 1. shift first date to the Thursday in the current update week |
| 352 | * 2. move forward/back to get into correct comparability zone |
| 353 | * 3. set next date to next/prior Thursday based on comparability zone |
| 354 | */ |
| 355 | jtodt(&dtTemp, arUpdateDates[0] + (4 - set_dow(&dtTemp))); |
| 356 | dist_weight(&nDay, "calendar" , day_number(&dtTemp), calendar_low); |
| 357 | arInventoryUpdateDates[0] = dtTemp.julian; |
| 358 | if (!nDay) { |
| 359 | jtodt(&dtTemp, dtTemp.julian - 7); |
| 360 | arInventoryUpdateDates[0] = dtTemp.julian; |
| 361 | dist_weight(&nDay, "calendar" , day_number(&dtTemp), calendar_low); |
| 362 | if (!nDay) |
| 363 | arInventoryUpdateDates[0] += 14; |
| 364 | } |
| 365 | |
| 366 | arInventoryUpdateDates[1] = arInventoryUpdateDates[0] + 7; |
| 367 | jtodt(&dtTemp, arInventoryUpdateDates[1]); |
| 368 | dist_weight(&nDay, "calendar" , day_number(&dtTemp) + 1, calendar_low); |
| 369 | if (!nDay) |
| 370 | arInventoryUpdateDates[1] -= 14; |
| 371 | |
| 372 | /* repeat for medium calendar zone */ |
| 373 | arUpdateDates[2] = getSkewedJulianDate(calendar_medium, 0); |
| 374 | jtodt(&dtTemp, arUpdateDates[2]); |
| 375 | dist_weight(&nDay, "calendar" , day_number(&dtTemp) + 1, calendar_medium); |
| 376 | if (nDay) |
| 377 | arUpdateDates[3] = arUpdateDates[2] + 1; |
| 378 | else |
| 379 | arUpdateDates[3] = arUpdateDates[2] - 1; |
| 380 | |
| 381 | jtodt(&dtTemp, arUpdateDates[2] + (4 - set_dow(&dtTemp))); |
| 382 | dist_weight(&nDay, "calendar" , day_number(&dtTemp), calendar_medium); |
| 383 | arInventoryUpdateDates[2] = dtTemp.julian; |
| 384 | if (!nDay) { |
| 385 | jtodt(&dtTemp, dtTemp.julian - 7); |
| 386 | arInventoryUpdateDates[2] = dtTemp.julian; |
| 387 | dist_weight(&nDay, "calendar" , day_number(&dtTemp), calendar_medium); |
| 388 | if (!nDay) |
| 389 | arInventoryUpdateDates[2] += 14; |
| 390 | } |
| 391 | |
| 392 | arInventoryUpdateDates[3] = arInventoryUpdateDates[2] + 7; |
| 393 | jtodt(&dtTemp, arInventoryUpdateDates[3]); |
| 394 | dist_weight(&nDay, "calendar" , day_number(&dtTemp), calendar_medium); |
| 395 | if (!nDay) |
| 396 | arInventoryUpdateDates[3] -= 14; |
| 397 | |
| 398 | /* repeat for high calendar zone */ |
| 399 | arUpdateDates[4] = getSkewedJulianDate(calendar_high, 0); |
| 400 | jtodt(&dtTemp, arUpdateDates[4]); |
| 401 | dist_weight(&nDay, "calendar" , day_number(&dtTemp) + 1, calendar_high); |
| 402 | if (nDay) |
| 403 | arUpdateDates[5] = arUpdateDates[4] + 1; |
| 404 | else |
| 405 | arUpdateDates[5] = arUpdateDates[4] - 1; |
| 406 | |
| 407 | jtodt(&dtTemp, arUpdateDates[4] + (4 - set_dow(&dtTemp))); |
| 408 | dist_weight(&nDay, "calendar" , day_number(&dtTemp), calendar_high); |
| 409 | arInventoryUpdateDates[4] = dtTemp.julian; |
| 410 | if (!nDay) { |
| 411 | jtodt(&dtTemp, dtTemp.julian - 7); |
| 412 | arInventoryUpdateDates[4] = dtTemp.julian; |
| 413 | dist_weight(&nDay, "calendar" , day_number(&dtTemp), calendar_high); |
| 414 | if (!nDay) |
| 415 | arInventoryUpdateDates[4] += 14; |
| 416 | } |
| 417 | |
| 418 | arInventoryUpdateDates[5] = arInventoryUpdateDates[4] + 7; |
| 419 | jtodt(&dtTemp, arInventoryUpdateDates[5]); |
| 420 | dist_weight(&nDay, "calendar" , day_number(&dtTemp), calendar_high); |
| 421 | if (!nDay) |
| 422 | arInventoryUpdateDates[5] -= 14; |
| 423 | } |
| 424 | |
| 425 | // /* |
| 426 | // * output the update dates for this update set |
| 427 | // */ |
| 428 | // openDeleteFile(1); |
| 429 | // for (i = 0; i < 6; i += 2) |
| 430 | // print_delete(&arUpdateDates[i]); |
| 431 | // |
| 432 | // /* |
| 433 | // * inventory uses separate dates |
| 434 | // */ |
| 435 | // openDeleteFile(2); |
| 436 | // for (i = 0; i < 6; i += 2) |
| 437 | // print_delete(&arInventoryUpdateDates[i]); |
| 438 | // openDeleteFile(0); |
| 439 | |
| 440 | return; |
| 441 | } |
| 442 | |
| 443 | /* |
| 444 | * Routine: |
| 445 | * Purpose: |
| 446 | * Algorithm: |
| 447 | * Data Structures: |
| 448 | * |
| 449 | * Params: |
| 450 | * Returns: |
| 451 | * Called By: |
| 452 | * Calls: |
| 453 | * Assumptions: |
| 454 | * Side Effects: |
| 455 | * TODO: None |
| 456 | */ |
| 457 | int getUpdateDate(int nTable, ds_key_t kRowcount) { |
| 458 | static int nIndex = 0, nLastTable = -1; |
| 459 | |
| 460 | if (nLastTable != nTable) { |
| 461 | nLastTable = nTable; |
| 462 | get_rowcount(nTable); |
| 463 | nIndex = 0; |
| 464 | } |
| 465 | |
| 466 | for (nIndex = 0; kRowcount > arRowcount[nTable].kDayRowcount[nIndex]; nIndex++) |
| 467 | if (nIndex == 5) |
| 468 | break; |
| 469 | |
| 470 | if (nTable == S_INVENTORY) { |
| 471 | return (arInventoryUpdateDates[nIndex]); |
| 472 | } else |
| 473 | return (arUpdateDates[nIndex]); |
| 474 | } |
| 475 | |
| 476 | /* |
| 477 | * Routine: getUpdateID(int nTable, ds_key_t *pDest) |
| 478 | * Purpose: select the primary key for an update set row |
| 479 | * Algorithm: |
| 480 | * Data Structures: |
| 481 | * |
| 482 | * Params: |
| 483 | * Returns: 1 if the row is new, 0 if it is reusing an existing ID |
| 484 | * Called By: |
| 485 | * Calls: |
| 486 | * Assumptions: |
| 487 | * Side Effects: |
| 488 | * TODO: 20040326 jms getUpdateID() this MUST be updated for 64bit -- all usages |
| 489 | * use casts today |
| 490 | * TODO: 20060102 jms this will need to be looked at for parallelism at some |
| 491 | * point |
| 492 | */ |
| 493 | /* |
| 494 | int |
| 495 | getUpdateID(ds_key_t *pDest, int nTable, int nColumn) |
| 496 | { |
| 497 | int bIsUpdate = 0, |
| 498 | nTemp; |
| 499 | |
| 500 | if (genrand_integer(NULL, DIST_UNIFORM, 0, 99, 0, nColumn) < |
| 501 | arRowcount[nTable].nUpdatePercentage) |
| 502 | { |
| 503 | bIsUpdate = 1; |
| 504 | genrand_integer(&nTemp, DIST_UNIFORM, 1, (int)getIDCount(nTable), 0, |
| 505 | nColumn); *pDest = (ds_key_t)nTemp; |
| 506 | } |
| 507 | else |
| 508 | { |
| 509 | *pDest = ++arRowcount[nTable].kNextInsertValue; |
| 510 | } |
| 511 | |
| 512 | return(bIsUpdate); |
| 513 | } |
| 514 | */ |
| 515 | |
| 516 | /* |
| 517 | * Routine: getSkewedJulianDate() |
| 518 | * Purpose: return a julian date based on the given skew and column |
| 519 | * Algorithm: |
| 520 | * Data Structures: |
| 521 | * |
| 522 | * Params: |
| 523 | * Returns: |
| 524 | * Called By: |
| 525 | * Calls: |
| 526 | * Assumptions: |
| 527 | * Side Effects: |
| 528 | * TODO: None |
| 529 | */ |
| 530 | int getSkewedJulianDate(int nWeight, int nColumn) { |
| 531 | int i; |
| 532 | date_t Date; |
| 533 | |
| 534 | pick_distribution(&i, "calendar" , 1, nWeight, nColumn); |
| 535 | genrand_integer(&Date.year, DIST_UNIFORM, YEAR_MINIMUM, YEAR_MAXIMUM, 0, nColumn); |
| 536 | dist_member(&Date.day, "calendar" , i, 3); |
| 537 | dist_member(&Date.month, "calendar" , i, 5); |
| 538 | return (dttoj(&Date)); |
| 539 | } |
| 540 | |
| 541 | /* |
| 542 | * Routine: initializeOrderUpdate() |
| 543 | * Purpose: skip over prior updates for the named table |
| 544 | * Algorithm: |
| 545 | * Data Structures: |
| 546 | * |
| 547 | * Params: |
| 548 | * Returns: |
| 549 | * Called By: |
| 550 | * Calls: |
| 551 | * Assumptions: |
| 552 | * Side Effects: |
| 553 | * TODO: None |
| 554 | */ |
| 555 | /* |
| 556 | int |
| 557 | initializeOrderUpdates(int nParent, int nChild, int nIDColumn, int nDateColumn, |
| 558 | int *pnOrderNumber) |
| 559 | { |
| 560 | int i, |
| 561 | nRowcount, |
| 562 | nRowsRemaining, |
| 563 | nStep = 0; |
| 564 | date_t Date; |
| 565 | |
| 566 | |
| 567 | *pnOrderNumber = 0; |
| 568 | |
| 569 | for (i=0; i < (get_int("UPDATE") - 1); i++) |
| 570 | { |
| 571 | nRowsRemaining = (int)get_rowcount(nParent); |
| 572 | while (nRowsRemaining > 0) |
| 573 | { |
| 574 | nStep = nStep % 3; |
| 575 | nStep += 1; |
| 576 | Date.julian = getSkewedJulianDate((nStep++ % 3) + 8, nDateColumn); |
| 577 | nRowcount = (int)dateScaling(getTableFromColumn(nIDColumn), |
| 578 | Date.julian); *pnOrderNumber += nRowcount; row_skip(nParent, nRowcount); |
| 579 | row_skip(nChild, LINES_PER_ORDER * nRowcount); |
| 580 | nRowsRemaining -= nRowcount; |
| 581 | } |
| 582 | } |
| 583 | |
| 584 | return(nStep); |
| 585 | } |
| 586 | */ |
| 587 | |
| 588 | /* |
| 589 | * Routine: dateScaling(int nTable, ds_key_t jDate) |
| 590 | * Purpose: determine the number of rows to build for a given date and fact |
| 591 | * table Algorithm: Data Structures: |
| 592 | * |
| 593 | * Params: |
| 594 | * Returns: |
| 595 | * Called By: |
| 596 | * Calls: |
| 597 | * Assumptions: |
| 598 | * Side Effects: |
| 599 | * TODO: None |
| 600 | */ |
| 601 | ds_key_t dateScaling(int nTable, ds_key_t jDate) { |
| 602 | static int bInit = 0; |
| 603 | static dist_t *pDist; |
| 604 | d_idx_t *pDistIndex; |
| 605 | date_t Date; |
| 606 | int nDateWeight = 1, nCalendarTotal, nDayWeight; |
| 607 | ds_key_t kRowCount = -1; |
| 608 | tdef *pTdef = getSimpleTdefsByNumber(nTable); |
| 609 | |
| 610 | if (!bInit) { |
| 611 | pDistIndex = find_dist("calendar" ); |
| 612 | pDist = pDistIndex->dist; |
| 613 | if (!pDist) |
| 614 | ReportError(QERR_NO_MEMORY, "dateScaling()" , 1); |
| 615 | bInit = 1; |
| 616 | } |
| 617 | |
| 618 | jtodt(&Date, (int)jDate); |
| 619 | |
| 620 | switch (nTable) { |
| 621 | case STORE_SALES: |
| 622 | case CATALOG_SALES: |
| 623 | case WEB_SALES: |
| 624 | kRowCount = get_rowcount(nTable); |
| 625 | nDateWeight = calendar_sales; |
| 626 | break; |
| 627 | case S_CATALOG_ORDER: |
| 628 | kRowCount = get_rowcount(CATALOG_SALES); |
| 629 | nDateWeight = calendar_sales; |
| 630 | break; |
| 631 | case S_PURCHASE: |
| 632 | kRowCount = get_rowcount(STORE_SALES); |
| 633 | nDateWeight = calendar_sales; |
| 634 | break; |
| 635 | case S_WEB_ORDER: |
| 636 | kRowCount = get_rowcount(WEB_SALES); |
| 637 | nDateWeight = calendar_sales; |
| 638 | break; |
| 639 | case S_INVENTORY: |
| 640 | case INVENTORY: |
| 641 | nDateWeight = calendar_uniform; |
| 642 | kRowCount = get_rowcount(WAREHOUSE) * getIDCount(ITEM); |
| 643 | break; |
| 644 | default: |
| 645 | ReportErrorNoLine(QERR_TABLE_NOP, pTdef->name, 1); |
| 646 | break; |
| 647 | } |
| 648 | |
| 649 | if (nTable != INVENTORY) /* inventory rowcount is uniform thorughout the year */ |
| 650 | { |
| 651 | if (is_leap(Date.year)) |
| 652 | nDateWeight += 1; |
| 653 | |
| 654 | nCalendarTotal = dist_max(pDist, nDateWeight); |
| 655 | nCalendarTotal *= 5; /* assumes date range is 5 years */ |
| 656 | |
| 657 | dist_weight(&nDayWeight, "calendar" , day_number(&Date), nDateWeight); |
| 658 | kRowCount *= nDayWeight; |
| 659 | kRowCount += nCalendarTotal / 2; |
| 660 | kRowCount /= nCalendarTotal; |
| 661 | } |
| 662 | |
| 663 | return (kRowCount); |
| 664 | } |
| 665 | |
| 666 | /* |
| 667 | * Routine: getUpdateBase(int nTable) |
| 668 | * Purpose: return the offset to the first order in this update set for a given |
| 669 | * table Algorithm: Data Structures: |
| 670 | * |
| 671 | * Params: |
| 672 | * Returns: |
| 673 | * Called By: |
| 674 | * Calls: |
| 675 | * Assumptions: |
| 676 | * Side Effects: |
| 677 | * TODO: None |
| 678 | */ |
| 679 | ds_key_t getUpdateBase(int nTable) { |
| 680 | return (arRowcount[nTable - S_BRAND].kNextInsertValue); |
| 681 | } |
| 682 | |
| 683 | /* |
| 684 | * Routine: |
| 685 | * Purpose: |
| 686 | * Algorithm: |
| 687 | * Data Structures: |
| 688 | * |
| 689 | * Params: |
| 690 | * Returns: |
| 691 | * Called By: |
| 692 | * Calls: |
| 693 | * Assumptions: |
| 694 | * Side Effects: |
| 695 | * TODO: None |
| 696 | */ |
| 697 | void setUpdateScaling(int nTable) { |
| 698 | tdef *pTdef; |
| 699 | int i, nBaseTable; |
| 700 | ds_key_t kNewRowcount = 0; |
| 701 | |
| 702 | pTdef = getSimpleTdefsByNumber(nTable); |
| 703 | if (!(pTdef->flags & FL_SOURCE_DDL) || !(pTdef->flags & FL_DATE_BASED) || (pTdef->flags & FL_NOP)) |
| 704 | return; |
| 705 | |
| 706 | switch (nTable) { |
| 707 | case S_PURCHASE: |
| 708 | nBaseTable = STORE_SALES; |
| 709 | break; |
| 710 | case S_CATALOG_ORDER: |
| 711 | nBaseTable = CATALOG_SALES; |
| 712 | break; |
| 713 | case S_WEB_ORDER: |
| 714 | nBaseTable = WEB_SALES; |
| 715 | break; |
| 716 | case S_INVENTORY: |
| 717 | nBaseTable = INVENTORY; |
| 718 | break; |
| 719 | default: |
| 720 | fprintf(stderr, "ERROR: Invalid table in setUpdateScaling\n" ); |
| 721 | exit(1); |
| 722 | break; |
| 723 | } |
| 724 | |
| 725 | arRowcount[nTable].kNextInsertValue = arRowcount[nTable].kBaseRowcount; |
| 726 | |
| 727 | for (i = 0; i < 6; i++) { |
| 728 | kNewRowcount += dateScaling(nBaseTable, arUpdateDates[i]); |
| 729 | arRowcount[nTable].kDayRowcount[i] = kNewRowcount; |
| 730 | } |
| 731 | |
| 732 | arRowcount[nTable].kBaseRowcount = kNewRowcount; |
| 733 | arRowcount[nTable].kNextInsertValue += kNewRowcount * (get_int("update" ) - 1); |
| 734 | |
| 735 | return; |
| 736 | } |
| 737 | |