| 1 | /* hyperloglog.c - Redis HyperLogLog probabilistic cardinality approximation. | 
|---|
| 2 | * This file implements the algorithm and the exported Redis commands. | 
|---|
| 3 | * | 
|---|
| 4 | * Copyright (c) 2014, Salvatore Sanfilippo <antirez at gmail dot com> | 
|---|
| 5 | * All rights reserved. | 
|---|
| 6 | * | 
|---|
| 7 | * Redistribution and use in source and binary forms, with or without | 
|---|
| 8 | * modification, are permitted provided that the following conditions are met: | 
|---|
| 9 | * | 
|---|
| 10 | *   * Redistributions of source code must retain the above copyright notice, | 
|---|
| 11 | *     this list of conditions and the following disclaimer. | 
|---|
| 12 | *   * Redistributions in binary form must reproduce the above copyright | 
|---|
| 13 | *     notice, this list of conditions and the following disclaimer in the | 
|---|
| 14 | *     documentation and/or other materials provided with the distribution. | 
|---|
| 15 | *   * Neither the name of Redis nor the names of its contributors may be used | 
|---|
| 16 | *     to endorse or promote products derived from this software without | 
|---|
| 17 | *     specific prior written permission. | 
|---|
| 18 | * | 
|---|
| 19 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|---|
| 20 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|---|
| 21 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|---|
| 22 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|---|
| 23 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|---|
| 24 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|---|
| 25 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|---|
| 26 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|---|
| 27 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|---|
| 28 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|---|
| 29 | * POSSIBILITY OF SUCH DAMAGE. | 
|---|
| 30 | */ | 
|---|
| 31 |  | 
|---|
| 32 | #include "hyperloglog.hpp" | 
|---|
| 33 | #include "sds.hpp" | 
|---|
| 34 |  | 
|---|
| 35 | #include <assert.h> | 
|---|
| 36 | #include <stdint.h> | 
|---|
| 37 | #include <math.h> | 
|---|
| 38 | #include <stddef.h> | 
|---|
| 39 | #include <string.h> | 
|---|
| 40 | #include <stdlib.h> | 
|---|
| 41 |  | 
|---|
| 42 | #define HLL_SPARSE_MAX_BYTES 3000 | 
|---|
| 43 |  | 
|---|
| 44 | /* The Redis HyperLogLog implementation is based on the following ideas: | 
|---|
| 45 | * | 
|---|
| 46 | * * The use of a 64 bit hash function as proposed in [1], in order to don't | 
|---|
| 47 | *   limited to cardinalities up to 10^9, at the cost of just 1 additional | 
|---|
| 48 | *   bit per register. | 
|---|
| 49 | * * The use of 16384 6-bit registers for a great level of accuracy, using | 
|---|
| 50 | *   a total of 12k per key. | 
|---|
| 51 | * * The use of the Redis string data type. No new type is introduced. | 
|---|
| 52 | * * No attempt is made to compress the data structure as in [1]. Also the | 
|---|
| 53 | *   algorithm used is the original HyperLogLog Algorithm as in [2], with | 
|---|
| 54 | *   the only difference that a 64 bit hash function is used, so no correction | 
|---|
| 55 | *   is performed for values near 2^32 as in [1]. | 
|---|
| 56 | * | 
|---|
| 57 | * [1] Heule, Nunkesser, Hall: HyperLogLog in Practice: Algorithmic | 
|---|
| 58 | *     Engineering of a State of The Art Cardinality Estimation Algorithm. | 
|---|
| 59 | * | 
|---|
| 60 | * [2] P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier. Hyperloglog: The | 
|---|
| 61 | *     analysis of a near-optimal cardinality estimation algorithm. | 
|---|
| 62 | * | 
|---|
| 63 | * Redis uses two representations: | 
|---|
| 64 | * | 
|---|
| 65 | * 1) A "dense" representation where every entry is represented by | 
|---|
| 66 | *    a 6-bit integer. | 
|---|
| 67 | * 2) A "sparse" representation using run length compression suitable | 
|---|
| 68 | *    for representing HyperLogLogs with many registers set to 0 in | 
|---|
| 69 | *    a memory efficient way. | 
|---|
| 70 | * | 
|---|
| 71 | * | 
|---|
| 72 | * HLL header | 
|---|
| 73 | * === | 
|---|
| 74 | * | 
|---|
| 75 | * Both the dense and sparse representation have a 16 byte header as follows: | 
|---|
| 76 | * | 
|---|
| 77 | * +------+---+-----+----------+ | 
|---|
| 78 | * | HYLL | E | N/U | Cardin.  | | 
|---|
| 79 | * +------+---+-----+----------+ | 
|---|
| 80 | * | 
|---|
| 81 | * The first 4 bytes are a magic string set to the bytes "HYLL". | 
|---|
| 82 | * "E" is one byte encoding, currently set to HLL_DENSE or | 
|---|
| 83 | * HLL_SPARSE. N/U are three not used bytes. | 
|---|
| 84 | * | 
|---|
| 85 | * The "Cardin." field is a 64 bit integer stored in little endian format | 
|---|
| 86 | * with the latest cardinality computed that can be reused if the data | 
|---|
| 87 | * structure was not modified since the last computation (this is useful | 
|---|
| 88 | * because there are high probabilities that HLLADD operations don't | 
|---|
| 89 | * modify the actual data structure and hence the approximated cardinality). | 
|---|
| 90 | * | 
|---|
| 91 | * When the most significant bit in the most significant byte of the cached | 
|---|
| 92 | * cardinality is set, it means that the data structure was modified and | 
|---|
| 93 | * we can't reuse the cached value that must be recomputed. | 
|---|
| 94 | * | 
|---|
| 95 | * Dense representation | 
|---|
| 96 | * === | 
|---|
| 97 | * | 
|---|
| 98 | * The dense representation used by Redis is the following: | 
|---|
| 99 | * | 
|---|
| 100 | * +--------+--------+--------+------//      //--+ | 
|---|
| 101 | * |11000000|22221111|33333322|55444444 ....     | | 
|---|
| 102 | * +--------+--------+--------+------//      //--+ | 
|---|
| 103 | * | 
|---|
| 104 | * The 6 bits counters are encoded one after the other starting from the | 
|---|
| 105 | * LSB to the MSB, and using the next bytes as needed. | 
|---|
| 106 | * | 
|---|
| 107 | * Sparse representation | 
|---|
| 108 | * === | 
|---|
| 109 | * | 
|---|
| 110 | * The sparse representation encodes registers using a run length | 
|---|
| 111 | * encoding composed of three opcodes, two using one byte, and one using | 
|---|
| 112 | * of two bytes. The opcodes are called ZERO, XZERO and VAL. | 
|---|
| 113 | * | 
|---|
| 114 | * ZERO opcode is represented as 00xxxxxx. The 6-bit integer represented | 
|---|
| 115 | * by the six bits 'xxxxxx', plus 1, means that there are N registers set | 
|---|
| 116 | * to 0. This opcode can represent from 1 to 64 contiguous registers set | 
|---|
| 117 | * to the value of 0. | 
|---|
| 118 | * | 
|---|
| 119 | * XZERO opcode is represented by two bytes 01xxxxxx yyyyyyyy. The 14-bit | 
|---|
| 120 | * integer represented by the bits 'xxxxxx' as most significant bits and | 
|---|
| 121 | * 'yyyyyyyy' as least significant bits, plus 1, means that there are N | 
|---|
| 122 | * registers set to 0. This opcode can represent from 0 to 16384 contiguous | 
|---|
| 123 | * registers set to the value of 0. | 
|---|
| 124 | * | 
|---|
| 125 | * VAL opcode is represented as 1vvvvvxx. It contains a 5-bit integer | 
|---|
| 126 | * representing the value of a register, and a 2-bit integer representing | 
|---|
| 127 | * the number of contiguous registers set to that value 'vvvvv'. | 
|---|
| 128 | * To obtain the value and run length, the integers vvvvv and xx must be | 
|---|
| 129 | * incremented by one. This opcode can represent values from 1 to 32, | 
|---|
| 130 | * repeated from 1 to 4 times. | 
|---|
| 131 | * | 
|---|
| 132 | * The sparse representation can't represent registers with a value greater | 
|---|
| 133 | * than 32, however it is very unlikely that we find such a register in an | 
|---|
| 134 | * HLL with a cardinality where the sparse representation is still more | 
|---|
| 135 | * memory efficient than the dense representation. When this happens the | 
|---|
| 136 | * HLL is converted to the dense representation. | 
|---|
| 137 | * | 
|---|
| 138 | * The sparse representation is purely positional. For example a sparse | 
|---|
| 139 | * representation of an empty HLL is just: XZERO:16384. | 
|---|
| 140 | * | 
|---|
| 141 | * An HLL having only 3 non-zero registers at position 1000, 1020, 1021 | 
|---|
| 142 | * respectively set to 2, 3, 3, is represented by the following three | 
|---|
| 143 | * opcodes: | 
|---|
| 144 | * | 
|---|
| 145 | * XZERO:1000 (Registers 0-999 are set to 0) | 
|---|
| 146 | * VAL:2,1    (1 register set to value 2, that is register 1000) | 
|---|
| 147 | * ZERO:19    (Registers 1001-1019 set to 0) | 
|---|
| 148 | * VAL:3,2    (2 registers set to value 3, that is registers 1020,1021) | 
|---|
| 149 | * XZERO:15362 (Registers 1022-16383 set to 0) | 
|---|
| 150 | * | 
|---|
| 151 | * In the example the sparse representation used just 7 bytes instead | 
|---|
| 152 | * of 12k in order to represent the HLL registers. In general for low | 
|---|
| 153 | * cardinality there is a big win in terms of space efficiency, traded | 
|---|
| 154 | * with CPU time since the sparse representation is slower to access: | 
|---|
| 155 | * | 
|---|
| 156 | * The following table shows average cardinality vs bytes used, 100 | 
|---|
| 157 | * samples per cardinality (when the set was not representable because | 
|---|
| 158 | * of registers with too big value, the dense representation size was used | 
|---|
| 159 | * as a sample). | 
|---|
| 160 | * | 
|---|
| 161 | * 100 267 | 
|---|
| 162 | * 200 485 | 
|---|
| 163 | * 300 678 | 
|---|
| 164 | * 400 859 | 
|---|
| 165 | * 500 1033 | 
|---|
| 166 | * 600 1205 | 
|---|
| 167 | * 700 1375 | 
|---|
| 168 | * 800 1544 | 
|---|
| 169 | * 900 1713 | 
|---|
| 170 | * 1000 1882 | 
|---|
| 171 | * 2000 3480 | 
|---|
| 172 | * 3000 4879 | 
|---|
| 173 | * 4000 6089 | 
|---|
| 174 | * 5000 7138 | 
|---|
| 175 | * 6000 8042 | 
|---|
| 176 | * 7000 8823 | 
|---|
| 177 | * 8000 9500 | 
|---|
| 178 | * 9000 10088 | 
|---|
| 179 | * 10000 10591 | 
|---|
| 180 | * | 
|---|
| 181 | * The dense representation uses 12288 bytes, so there is a big win up to | 
|---|
| 182 | * a cardinality of ~2000-3000. For bigger cardinalities the constant times | 
|---|
| 183 | * involved in updating the sparse representation is not justified by the | 
|---|
| 184 | * memory savings. The exact maximum length of the sparse representation | 
|---|
| 185 | * when this implementation switches to the dense representation is | 
|---|
| 186 | * configured via the define server.hll_sparse_max_bytes. | 
|---|
| 187 | */ | 
|---|
| 188 |  | 
|---|
| 189 | struct hllhdr { | 
|---|
| 190 | char magic[4];      /* "HYLL" */ | 
|---|
| 191 | uint8_t encoding;   /* HLL_DENSE or HLL_SPARSE. */ | 
|---|
| 192 | uint8_t notused[3]; /* Reserved for future use, must be zero. */ | 
|---|
| 193 | uint8_t card[8];    /* Cached cardinality, little endian. */ | 
|---|
| 194 | uint8_t registers[]; /* Data bytes. */ | 
|---|
| 195 | }; | 
|---|
| 196 |  | 
|---|
| 197 | /* The cached cardinality MSB is used to signal validity of the cached value. */ | 
|---|
| 198 | #define HLL_INVALIDATE_CACHE(hdr) (hdr)->card[7] |= (1<<7) | 
|---|
| 199 | #define HLL_VALID_CACHE(hdr) (((hdr)->card[7] & (1<<7)) == 0) | 
|---|
| 200 |  | 
|---|
| 201 | #define HLL_P 14 /* The greater is P, the smaller the error. */ | 
|---|
| 202 | #define HLL_Q (64-HLL_P) /* The number of bits of the hash value used for | 
|---|
| 203 | determining the number of leading zeros. */ | 
|---|
| 204 | #define HLL_REGISTERS (1<<HLL_P) /* With P=14, 16384 registers. */ | 
|---|
| 205 | #define HLL_P_MASK (HLL_REGISTERS-1) /* Mask to index register. */ | 
|---|
| 206 | #define HLL_BITS 6 /* Enough to count up to 63 leading zeroes. */ | 
|---|
| 207 | #define HLL_REGISTER_MAX ((1<<HLL_BITS)-1) | 
|---|
| 208 | #define HLL_HDR_SIZE sizeof(struct hllhdr) | 
|---|
| 209 | #define HLL_DENSE_SIZE (HLL_HDR_SIZE+((HLL_REGISTERS*HLL_BITS+7)/8)) | 
|---|
| 210 | #define HLL_DENSE 0 /* Dense encoding. */ | 
|---|
| 211 | #define HLL_SPARSE 1 /* Sparse encoding. */ | 
|---|
| 212 | #define HLL_RAW 255 /* Only used internally, never exposed. */ | 
|---|
| 213 | #define HLL_MAX_ENCODING 1 | 
|---|
| 214 |  | 
|---|
| 215 | /* =========================== Low level bit macros ========================= */ | 
|---|
| 216 |  | 
|---|
| 217 | /* Macros to access the dense representation. | 
|---|
| 218 | * | 
|---|
| 219 | * We need to get and set 6 bit counters in an array of 8 bit bytes. | 
|---|
| 220 | * We use macros to make sure the code is inlined since speed is critical | 
|---|
| 221 | * especially in order to compute the approximated cardinality in | 
|---|
| 222 | * HLLCOUNT where we need to access all the registers at once. | 
|---|
| 223 | * For the same reason we also want to avoid conditionals in this code path. | 
|---|
| 224 | * | 
|---|
| 225 | * +--------+--------+--------+------// | 
|---|
| 226 | * |11000000|22221111|33333322|55444444 | 
|---|
| 227 | * +--------+--------+--------+------// | 
|---|
| 228 | * | 
|---|
| 229 | * Note: in the above representation the most significant bit (MSB) | 
|---|
| 230 | * of every byte is on the left. We start using bits from the LSB to MSB, | 
|---|
| 231 | * and so forth passing to the next byte. | 
|---|
| 232 | * | 
|---|
| 233 | * Example, we want to access to counter at pos = 1 ("111111" in the | 
|---|
| 234 | * illustration above). | 
|---|
| 235 | * | 
|---|
| 236 | * The index of the first byte b0 containing our data is: | 
|---|
| 237 | * | 
|---|
| 238 | *  b0 = 6 * pos / 8 = 0 | 
|---|
| 239 | * | 
|---|
| 240 | *   +--------+ | 
|---|
| 241 | *   |11000000|  <- Our byte at b0 | 
|---|
| 242 | *   +--------+ | 
|---|
| 243 | * | 
|---|
| 244 | * The position of the first bit (counting from the LSB = 0) in the byte | 
|---|
| 245 | * is given by: | 
|---|
| 246 | * | 
|---|
| 247 | *  fb = 6 * pos % 8 -> 6 | 
|---|
| 248 | * | 
|---|
| 249 | * Right shift b0 of 'fb' bits. | 
|---|
| 250 | * | 
|---|
| 251 | *   +--------+ | 
|---|
| 252 | *   |11000000|  <- Initial value of b0 | 
|---|
| 253 | *   |00000011|  <- After right shift of 6 pos. | 
|---|
| 254 | *   +--------+ | 
|---|
| 255 | * | 
|---|
| 256 | * Left shift b1 of bits 8-fb bits (2 bits) | 
|---|
| 257 | * | 
|---|
| 258 | *   +--------+ | 
|---|
| 259 | *   |22221111|  <- Initial value of b1 | 
|---|
| 260 | *   |22111100|  <- After left shift of 2 bits. | 
|---|
| 261 | *   +--------+ | 
|---|
| 262 | * | 
|---|
| 263 | * OR the two bits, and finally AND with 111111 (63 in decimal) to | 
|---|
| 264 | * clean the higher order bits we are not interested in: | 
|---|
| 265 | * | 
|---|
| 266 | *   +--------+ | 
|---|
| 267 | *   |00000011|  <- b0 right shifted | 
|---|
| 268 | *   |22111100|  <- b1 left shifted | 
|---|
| 269 | *   |22111111|  <- b0 OR b1 | 
|---|
| 270 | *   |  111111|  <- (b0 OR b1) AND 63, our value. | 
|---|
| 271 | *   +--------+ | 
|---|
| 272 | * | 
|---|
| 273 | * We can try with a different example, like pos = 0. In this case | 
|---|
| 274 | * the 6-bit counter is actually contained in a single byte. | 
|---|
| 275 | * | 
|---|
| 276 | *  b0 = 6 * pos / 8 = 0 | 
|---|
| 277 | * | 
|---|
| 278 | *   +--------+ | 
|---|
| 279 | *   |11000000|  <- Our byte at b0 | 
|---|
| 280 | *   +--------+ | 
|---|
| 281 | * | 
|---|
| 282 | *  fb = 6 * pos % 8 = 0 | 
|---|
| 283 | * | 
|---|
| 284 | *  So we right shift of 0 bits (no shift in practice) and | 
|---|
| 285 | *  left shift the next byte of 8 bits, even if we don't use it, | 
|---|
| 286 | *  but this has the effect of clearing the bits so the result | 
|---|
| 287 | *  will not be affacted after the OR. | 
|---|
| 288 | * | 
|---|
| 289 | * ------------------------------------------------------------------------- | 
|---|
| 290 | * | 
|---|
| 291 | * Setting the register is a bit more complex, let's assume that 'val' | 
|---|
| 292 | * is the value we want to set, already in the right range. | 
|---|
| 293 | * | 
|---|
| 294 | * We need two steps, in one we need to clear the bits, and in the other | 
|---|
| 295 | * we need to bitwise-OR the new bits. | 
|---|
| 296 | * | 
|---|
| 297 | * Let's try with 'pos' = 1, so our first byte at 'b' is 0, | 
|---|
| 298 | * | 
|---|
| 299 | * "fb" is 6 in this case. | 
|---|
| 300 | * | 
|---|
| 301 | *   +--------+ | 
|---|
| 302 | *   |11000000|  <- Our byte at b0 | 
|---|
| 303 | *   +--------+ | 
|---|
| 304 | * | 
|---|
| 305 | * To create a AND-mask to clear the bits about this position, we just | 
|---|
| 306 | * initialize the mask with the value 63, left shift it of "fs" bits, | 
|---|
| 307 | * and finally invert the result. | 
|---|
| 308 | * | 
|---|
| 309 | *   +--------+ | 
|---|
| 310 | *   |00111111|  <- "mask" starts at 63 | 
|---|
| 311 | *   |11000000|  <- "mask" after left shift of "ls" bits. | 
|---|
| 312 | *   |00111111|  <- "mask" after invert. | 
|---|
| 313 | *   +--------+ | 
|---|
| 314 | * | 
|---|
| 315 | * Now we can bitwise-AND the byte at "b" with the mask, and bitwise-OR | 
|---|
| 316 | * it with "val" left-shifted of "ls" bits to set the new bits. | 
|---|
| 317 | * | 
|---|
| 318 | * Now let's focus on the next byte b1: | 
|---|
| 319 | * | 
|---|
| 320 | *   +--------+ | 
|---|
| 321 | *   |22221111|  <- Initial value of b1 | 
|---|
| 322 | *   +--------+ | 
|---|
| 323 | * | 
|---|
| 324 | * To build the AND mask we start again with the 63 value, right shift | 
|---|
| 325 | * it by 8-fb bits, and invert it. | 
|---|
| 326 | * | 
|---|
| 327 | *   +--------+ | 
|---|
| 328 | *   |00111111|  <- "mask" set at 2&6-1 | 
|---|
| 329 | *   |00001111|  <- "mask" after the right shift by 8-fb = 2 bits | 
|---|
| 330 | *   |11110000|  <- "mask" after bitwise not. | 
|---|
| 331 | *   +--------+ | 
|---|
| 332 | * | 
|---|
| 333 | * Now we can mask it with b+1 to clear the old bits, and bitwise-OR | 
|---|
| 334 | * with "val" left-shifted by "rs" bits to set the new value. | 
|---|
| 335 | */ | 
|---|
| 336 |  | 
|---|
| 337 | /* Note: if we access the last counter, we will also access the b+1 byte | 
|---|
| 338 | * that is out of the array, but sds strings always have an implicit null | 
|---|
| 339 | * term, so the byte exists, and we can skip the conditional (or the need | 
|---|
| 340 | * to allocate 1 byte more explicitly). */ | 
|---|
| 341 |  | 
|---|
| 342 | /* Store the value of the register at position 'regnum' into variable 'target'. | 
|---|
| 343 | * 'p' is an array of unsigned bytes. */ | 
|---|
| 344 | #define HLL_DENSE_GET_REGISTER(target,p,regnum) do { \ | 
|---|
| 345 | uint8_t *_p = (uint8_t*) p; \ | 
|---|
| 346 | unsigned long _byte = regnum*HLL_BITS/8; \ | 
|---|
| 347 | unsigned long _fb = regnum*HLL_BITS&7; \ | 
|---|
| 348 | unsigned long _fb8 = 8 - _fb; \ | 
|---|
| 349 | unsigned long b0 = _p[_byte]; \ | 
|---|
| 350 | unsigned long b1 = _p[_byte+1]; \ | 
|---|
| 351 | target = ((b0 >> _fb) | (b1 << _fb8)) & HLL_REGISTER_MAX; \ | 
|---|
| 352 | } while(0) | 
|---|
| 353 |  | 
|---|
| 354 | /* Set the value of the register at position 'regnum' to 'val'. | 
|---|
| 355 | * 'p' is an array of unsigned bytes. */ | 
|---|
| 356 | #define HLL_DENSE_SET_REGISTER(p,regnum,val) do { \ | 
|---|
| 357 | uint8_t *_p = (uint8_t*) p; \ | 
|---|
| 358 | unsigned long _byte = regnum*HLL_BITS/8; \ | 
|---|
| 359 | unsigned long _fb = regnum*HLL_BITS&7; \ | 
|---|
| 360 | unsigned long _fb8 = 8 - _fb; \ | 
|---|
| 361 | unsigned long _v = val; \ | 
|---|
| 362 | _p[_byte] &= ~(HLL_REGISTER_MAX << _fb); \ | 
|---|
| 363 | _p[_byte] |= _v << _fb; \ | 
|---|
| 364 | _p[_byte+1] &= ~(HLL_REGISTER_MAX >> _fb8); \ | 
|---|
| 365 | _p[_byte+1] |= _v >> _fb8; \ | 
|---|
| 366 | } while(0) | 
|---|
| 367 |  | 
|---|
| 368 | /* Macros to access the sparse representation. | 
|---|
| 369 | * The macros parameter is expected to be an uint8_t pointer. */ | 
|---|
| 370 | #define HLL_SPARSE_XZERO_BIT 0x40 /* 01xxxxxx */ | 
|---|
| 371 | #define HLL_SPARSE_VAL_BIT 0x80 /* 1vvvvvxx */ | 
|---|
| 372 | #define HLL_SPARSE_IS_ZERO(p) (((*(p)) & 0xc0) == 0) /* 00xxxxxx */ | 
|---|
| 373 | #define HLL_SPARSE_IS_XZERO(p) (((*(p)) & 0xc0) == HLL_SPARSE_XZERO_BIT) | 
|---|
| 374 | #define HLL_SPARSE_IS_VAL(p) ((*(p)) & HLL_SPARSE_VAL_BIT) | 
|---|
| 375 | #define HLL_SPARSE_ZERO_LEN(p) (((*(p)) & 0x3f)+1) | 
|---|
| 376 | #define HLL_SPARSE_XZERO_LEN(p) (((((*(p)) & 0x3f) << 8) | (*((p)+1)))+1) | 
|---|
| 377 | #define HLL_SPARSE_VAL_VALUE(p) ((((*(p)) >> 2) & 0x1f)+1) | 
|---|
| 378 | #define HLL_SPARSE_VAL_LEN(p) (((*(p)) & 0x3)+1) | 
|---|
| 379 | #define HLL_SPARSE_VAL_MAX_VALUE 32 | 
|---|
| 380 | #define HLL_SPARSE_VAL_MAX_LEN 4 | 
|---|
| 381 | #define HLL_SPARSE_ZERO_MAX_LEN 64 | 
|---|
| 382 | #define HLL_SPARSE_XZERO_MAX_LEN 16384 | 
|---|
| 383 | #define HLL_SPARSE_VAL_SET(p,val,len) do { \ | 
|---|
| 384 | *(p) = (((val)-1)<<2|((len)-1))|HLL_SPARSE_VAL_BIT; \ | 
|---|
| 385 | } while(0) | 
|---|
| 386 | #define HLL_SPARSE_ZERO_SET(p,len) do { \ | 
|---|
| 387 | *(p) = (len)-1; \ | 
|---|
| 388 | } while(0) | 
|---|
| 389 | #define HLL_SPARSE_XZERO_SET(p,len) do { \ | 
|---|
| 390 | int _l = (len)-1; \ | 
|---|
| 391 | *(p) = (_l>>8) | HLL_SPARSE_XZERO_BIT; \ | 
|---|
| 392 | *((p)+1) = (_l&0xff); \ | 
|---|
| 393 | } while(0) | 
|---|
| 394 | #define HLL_ALPHA_INF 0.721347520444481703680 /* constant for 0.5/ln(2) */ | 
|---|
| 395 |  | 
|---|
| 396 | /* ========================= HyperLogLog algorithm  ========================= */ | 
|---|
| 397 |  | 
|---|
| 398 | /* Our hash function is MurmurHash2, 64 bit version. | 
|---|
| 399 | * It was modified for Redis in order to provide the same result in | 
|---|
| 400 | * big and little endian archs (endian neutral). */ | 
|---|
| 401 | uint64_t MurmurHash64A (const void * key, int len, unsigned int seed) { | 
|---|
| 402 | const uint64_t m = 0xc6a4a7935bd1e995; | 
|---|
| 403 | const int r = 47; | 
|---|
| 404 | uint64_t h = seed ^ (len * m); | 
|---|
| 405 | const uint8_t *data = (const uint8_t *)key; | 
|---|
| 406 | const uint8_t *end = data + (len-(len&7)); | 
|---|
| 407 |  | 
|---|
| 408 | while(data != end) { | 
|---|
| 409 | uint64_t k; | 
|---|
| 410 |  | 
|---|
| 411 | #if (BYTE_ORDER == LITTLE_ENDIAN) | 
|---|
| 412 | #ifdef USE_ALIGNED_ACCESS | 
|---|
| 413 | memcpy(&k,data,sizeof(uint64_t)); | 
|---|
| 414 | #else | 
|---|
| 415 | k = *((uint64_t*)data); | 
|---|
| 416 | #endif | 
|---|
| 417 | #else | 
|---|
| 418 | k = (uint64_t) data[0]; | 
|---|
| 419 | k |= (uint64_t) data[1] << 8; | 
|---|
| 420 | k |= (uint64_t) data[2] << 16; | 
|---|
| 421 | k |= (uint64_t) data[3] << 24; | 
|---|
| 422 | k |= (uint64_t) data[4] << 32; | 
|---|
| 423 | k |= (uint64_t) data[5] << 40; | 
|---|
| 424 | k |= (uint64_t) data[6] << 48; | 
|---|
| 425 | k |= (uint64_t) data[7] << 56; | 
|---|
| 426 | #endif | 
|---|
| 427 |  | 
|---|
| 428 | k *= m; | 
|---|
| 429 | k ^= k >> r; | 
|---|
| 430 | k *= m; | 
|---|
| 431 | h ^= k; | 
|---|
| 432 | h *= m; | 
|---|
| 433 | data += 8; | 
|---|
| 434 | } | 
|---|
| 435 |  | 
|---|
| 436 | switch(len & 7) { | 
|---|
| 437 | case 7: h ^= (uint64_t)data[6] << 48; /* fall-thru */ | 
|---|
| 438 | case 6: h ^= (uint64_t)data[5] << 40; /* fall-thru */ | 
|---|
| 439 | case 5: h ^= (uint64_t)data[4] << 32; /* fall-thru */ | 
|---|
| 440 | case 4: h ^= (uint64_t)data[3] << 24; /* fall-thru */ | 
|---|
| 441 | case 3: h ^= (uint64_t)data[2] << 16; /* fall-thru */ | 
|---|
| 442 | case 2: h ^= (uint64_t)data[1] << 8; /* fall-thru */ | 
|---|
| 443 | case 1: h ^= (uint64_t)data[0]; | 
|---|
| 444 | h *= m; /* fall-thru */ | 
|---|
| 445 | }; | 
|---|
| 446 |  | 
|---|
| 447 | h ^= h >> r; | 
|---|
| 448 | h *= m; | 
|---|
| 449 | h ^= h >> r; | 
|---|
| 450 | return h; | 
|---|
| 451 | } | 
|---|
| 452 |  | 
|---|
| 453 | /* Given a string element to add to the HyperLogLog, returns the length | 
|---|
| 454 | * of the pattern 000..1 of the element hash. As a side effect 'regp' is | 
|---|
| 455 | * set to the register index this element hashes to. */ | 
|---|
| 456 | int hllPatLen(unsigned char *ele, size_t elesize, long *regp) { | 
|---|
| 457 | uint64_t hash, bit, index; | 
|---|
| 458 | int count; | 
|---|
| 459 |  | 
|---|
| 460 | /* Count the number of zeroes starting from bit HLL_REGISTERS | 
|---|
| 461 | * (that is a power of two corresponding to the first bit we don't use | 
|---|
| 462 | * as index). The max run can be 64-P+1 = Q+1 bits. | 
|---|
| 463 | * | 
|---|
| 464 | * Note that the final "1" ending the sequence of zeroes must be | 
|---|
| 465 | * included in the count, so if we find "001" the count is 3, and | 
|---|
| 466 | * the smallest count possible is no zeroes at all, just a 1 bit | 
|---|
| 467 | * at the first position, that is a count of 1. | 
|---|
| 468 | * | 
|---|
| 469 | * This may sound like inefficient, but actually in the average case | 
|---|
| 470 | * there are high probabilities to find a 1 after a few iterations. */ | 
|---|
| 471 | hash = MurmurHash64A(ele,elesize,0xadc83b19ULL); | 
|---|
| 472 | index = hash & HLL_P_MASK; /* Register index. */ | 
|---|
| 473 | hash >>= HLL_P; /* Remove bits used to address the register. */ | 
|---|
| 474 | hash |= ((uint64_t)1<<HLL_Q); /* Make sure the loop terminates | 
|---|
| 475 | and count will be <= Q+1. */ | 
|---|
| 476 | bit = 1; | 
|---|
| 477 | count = 1; /* Initialized to 1 since we count the "00000...1" pattern. */ | 
|---|
| 478 | while((hash & bit) == 0) { | 
|---|
| 479 | count++; | 
|---|
| 480 | bit <<= 1; | 
|---|
| 481 | } | 
|---|
| 482 | *regp = (int) index; | 
|---|
| 483 | return count; | 
|---|
| 484 | } | 
|---|
| 485 |  | 
|---|
| 486 | /* ================== Dense representation implementation  ================== */ | 
|---|
| 487 |  | 
|---|
| 488 | /* Low level function to set the dense HLL register at 'index' to the | 
|---|
| 489 | * specified value if the current value is smaller than 'count'. | 
|---|
| 490 | * | 
|---|
| 491 | * 'registers' is expected to have room for HLL_REGISTERS plus an | 
|---|
| 492 | * additional byte on the right. This requirement is met by sds strings | 
|---|
| 493 | * automatically since they are implicitly null terminated. | 
|---|
| 494 | * | 
|---|
| 495 | * The function always succeed, however if as a result of the operation | 
|---|
| 496 | * the approximated cardinality changed, 1 is returned. Otherwise 0 | 
|---|
| 497 | * is returned. */ | 
|---|
| 498 | int hllDenseSet(uint8_t *registers, long index, uint8_t count) { | 
|---|
| 499 | uint8_t oldcount; | 
|---|
| 500 |  | 
|---|
| 501 | HLL_DENSE_GET_REGISTER(oldcount,registers,index); | 
|---|
| 502 | if (count > oldcount) { | 
|---|
| 503 | HLL_DENSE_SET_REGISTER(registers,index,count); | 
|---|
| 504 | return 1; | 
|---|
| 505 | } else { | 
|---|
| 506 | return 0; | 
|---|
| 507 | } | 
|---|
| 508 | } | 
|---|
| 509 |  | 
|---|
| 510 | /* "Add" the element in the dense hyperloglog data structure. | 
|---|
| 511 | * Actually nothing is added, but the max 0 pattern counter of the subset | 
|---|
| 512 | * the element belongs to is incremented if needed. | 
|---|
| 513 | * | 
|---|
| 514 | * This is just a wrapper to hllDenseSet(), performing the hashing of the | 
|---|
| 515 | * element in order to retrieve the index and zero-run count. */ | 
|---|
| 516 | int hllDenseAdd(uint8_t *registers, unsigned char *ele, size_t elesize) { | 
|---|
| 517 | long index; | 
|---|
| 518 | uint8_t count = hllPatLen(ele,elesize,&index); | 
|---|
| 519 | /* Update the register if this element produced a longer run of zeroes. */ | 
|---|
| 520 | return hllDenseSet(registers,index,count); | 
|---|
| 521 | } | 
|---|
| 522 |  | 
|---|
| 523 | /* Compute the register histogram in the dense representation. */ | 
|---|
| 524 | void hllDenseRegHisto(uint8_t *registers, int* reghisto) { | 
|---|
| 525 | int j; | 
|---|
| 526 |  | 
|---|
| 527 | /* Redis default is to use 16384 registers 6 bits each. The code works | 
|---|
| 528 | * with other values by modifying the defines, but for our target value | 
|---|
| 529 | * we take a faster path with unrolled loops. */ | 
|---|
| 530 | if (HLL_REGISTERS == 16384 && HLL_BITS == 6) { | 
|---|
| 531 | uint8_t *r = registers; | 
|---|
| 532 | unsigned long r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, | 
|---|
| 533 | r10, r11, r12, r13, r14, r15; | 
|---|
| 534 | for (j = 0; j < 1024; j++) { | 
|---|
| 535 | /* Handle 16 registers per iteration. */ | 
|---|
| 536 | r0 = r[0] & 63; | 
|---|
| 537 | r1 = (r[0] >> 6 | r[1] << 2) & 63; | 
|---|
| 538 | r2 = (r[1] >> 4 | r[2] << 4) & 63; | 
|---|
| 539 | r3 = (r[2] >> 2) & 63; | 
|---|
| 540 | r4 = r[3] & 63; | 
|---|
| 541 | r5 = (r[3] >> 6 | r[4] << 2) & 63; | 
|---|
| 542 | r6 = (r[4] >> 4 | r[5] << 4) & 63; | 
|---|
| 543 | r7 = (r[5] >> 2) & 63; | 
|---|
| 544 | r8 = r[6] & 63; | 
|---|
| 545 | r9 = (r[6] >> 6 | r[7] << 2) & 63; | 
|---|
| 546 | r10 = (r[7] >> 4 | r[8] << 4) & 63; | 
|---|
| 547 | r11 = (r[8] >> 2) & 63; | 
|---|
| 548 | r12 = r[9] & 63; | 
|---|
| 549 | r13 = (r[9] >> 6 | r[10] << 2) & 63; | 
|---|
| 550 | r14 = (r[10] >> 4 | r[11] << 4) & 63; | 
|---|
| 551 | r15 = (r[11] >> 2) & 63; | 
|---|
| 552 |  | 
|---|
| 553 | reghisto[r0]++; | 
|---|
| 554 | reghisto[r1]++; | 
|---|
| 555 | reghisto[r2]++; | 
|---|
| 556 | reghisto[r3]++; | 
|---|
| 557 | reghisto[r4]++; | 
|---|
| 558 | reghisto[r5]++; | 
|---|
| 559 | reghisto[r6]++; | 
|---|
| 560 | reghisto[r7]++; | 
|---|
| 561 | reghisto[r8]++; | 
|---|
| 562 | reghisto[r9]++; | 
|---|
| 563 | reghisto[r10]++; | 
|---|
| 564 | reghisto[r11]++; | 
|---|
| 565 | reghisto[r12]++; | 
|---|
| 566 | reghisto[r13]++; | 
|---|
| 567 | reghisto[r14]++; | 
|---|
| 568 | reghisto[r15]++; | 
|---|
| 569 |  | 
|---|
| 570 | r += 12; | 
|---|
| 571 | } | 
|---|
| 572 | } else { | 
|---|
| 573 | for(j = 0; j < HLL_REGISTERS; j++) { | 
|---|
| 574 | unsigned long reg; | 
|---|
| 575 | HLL_DENSE_GET_REGISTER(reg,registers,j); | 
|---|
| 576 | reghisto[reg]++; | 
|---|
| 577 | } | 
|---|
| 578 | } | 
|---|
| 579 | } | 
|---|
| 580 |  | 
|---|
| 581 | /* ================== Sparse representation implementation  ================= */ | 
|---|
| 582 |  | 
|---|
| 583 | /* Convert the HLL with sparse representation given as input in its dense | 
|---|
| 584 | * representation. Both representations are represented by SDS strings, and | 
|---|
| 585 | * the input representation is freed as a side effect. | 
|---|
| 586 | * | 
|---|
| 587 | * The function returns C_OK if the sparse representation was valid, | 
|---|
| 588 | * otherwise C_ERR is returned if the representation was corrupted. */ | 
|---|
| 589 | int hllSparseToDense(robj *o) { | 
|---|
| 590 | sds sparse = (sds) o->ptr, dense; | 
|---|
| 591 | struct hllhdr *hdr, *oldhdr = (struct hllhdr*)sparse; | 
|---|
| 592 | int idx = 0, runlen, regval; | 
|---|
| 593 | uint8_t *p = (uint8_t*)sparse, *end = p+sdslen(sparse); | 
|---|
| 594 |  | 
|---|
| 595 | /* If the representation is already the right one return ASAP. */ | 
|---|
| 596 | hdr = (struct hllhdr*) sparse; | 
|---|
| 597 | if (hdr->encoding == HLL_DENSE) return C_OK; | 
|---|
| 598 |  | 
|---|
| 599 | /* Create a string of the right size filled with zero bytes. | 
|---|
| 600 | * Note that the cached cardinality is set to 0 as a side effect | 
|---|
| 601 | * that is exactly the cardinality of an empty HLL. */ | 
|---|
| 602 | dense = sdsnewlen(NULL,HLL_DENSE_SIZE); | 
|---|
| 603 | hdr = (struct hllhdr*) dense; | 
|---|
| 604 | *hdr = *oldhdr; /* This will copy the magic and cached cardinality. */ | 
|---|
| 605 | hdr->encoding = HLL_DENSE; | 
|---|
| 606 |  | 
|---|
| 607 | /* Now read the sparse representation and set non-zero registers | 
|---|
| 608 | * accordingly. */ | 
|---|
| 609 | p += HLL_HDR_SIZE; | 
|---|
| 610 | while(p < end) { | 
|---|
| 611 | if (HLL_SPARSE_IS_ZERO(p)) { | 
|---|
| 612 | runlen = HLL_SPARSE_ZERO_LEN(p); | 
|---|
| 613 | idx += runlen; | 
|---|
| 614 | p++; | 
|---|
| 615 | } else if (HLL_SPARSE_IS_XZERO(p)) { | 
|---|
| 616 | runlen = HLL_SPARSE_XZERO_LEN(p); | 
|---|
| 617 | idx += runlen; | 
|---|
| 618 | p += 2; | 
|---|
| 619 | } else { | 
|---|
| 620 | runlen = HLL_SPARSE_VAL_LEN(p); | 
|---|
| 621 | regval = HLL_SPARSE_VAL_VALUE(p); | 
|---|
| 622 | while(runlen--) { | 
|---|
| 623 | HLL_DENSE_SET_REGISTER(hdr->registers,idx,regval); | 
|---|
| 624 | idx++; | 
|---|
| 625 | } | 
|---|
| 626 | p++; | 
|---|
| 627 | } | 
|---|
| 628 | } | 
|---|
| 629 |  | 
|---|
| 630 | /* If the sparse representation was valid, we expect to find idx | 
|---|
| 631 | * set to HLL_REGISTERS. */ | 
|---|
| 632 | if (idx != HLL_REGISTERS) { | 
|---|
| 633 | sdsfree(dense); | 
|---|
| 634 | return C_ERR; | 
|---|
| 635 | } | 
|---|
| 636 |  | 
|---|
| 637 | /* Free the old representation and set the new one. */ | 
|---|
| 638 | sdsfree((sds) o->ptr); | 
|---|
| 639 | o->ptr = dense; | 
|---|
| 640 | return C_OK; | 
|---|
| 641 | } | 
|---|
| 642 |  | 
|---|
| 643 | /* Low level function to set the sparse HLL register at 'index' to the | 
|---|
| 644 | * specified value if the current value is smaller than 'count'. | 
|---|
| 645 | * | 
|---|
| 646 | * The object 'o' is the String object holding the HLL. The function requires | 
|---|
| 647 | * a reference to the object in order to be able to enlarge the string if | 
|---|
| 648 | * needed. | 
|---|
| 649 | * | 
|---|
| 650 | * On success, the function returns 1 if the cardinality changed, or 0 | 
|---|
| 651 | * if the register for this element was not updated. | 
|---|
| 652 | * On error (if the representation is invalid) -1 is returned. | 
|---|
| 653 | * | 
|---|
| 654 | * As a side effect the function may promote the HLL representation from | 
|---|
| 655 | * sparse to dense: this happens when a register requires to be set to a value | 
|---|
| 656 | * not representable with the sparse representation, or when the resulting | 
|---|
| 657 | * size would be greater than server.hll_sparse_max_bytes. */ | 
|---|
| 658 | int hllSparseSet(robj *o, long index, uint8_t count) { | 
|---|
| 659 | struct hllhdr *hdr; | 
|---|
| 660 | uint8_t oldcount, *sparse, *end, *p, *prev, *next; | 
|---|
| 661 | long first, span; | 
|---|
| 662 | long is_zero = 0, is_xzero = 0, is_val = 0, runlen = 0; | 
|---|
| 663 | uint8_t seq[5], *n; | 
|---|
| 664 | int last; | 
|---|
| 665 | int len; | 
|---|
| 666 | int seqlen; | 
|---|
| 667 | int oldlen; | 
|---|
| 668 | int deltalen; | 
|---|
| 669 |  | 
|---|
| 670 | /* If the count is too big to be representable by the sparse representation | 
|---|
| 671 | * switch to dense representation. */ | 
|---|
| 672 | if (count > HLL_SPARSE_VAL_MAX_VALUE) goto promote; | 
|---|
| 673 |  | 
|---|
| 674 | /* When updating a sparse representation, sometimes we may need to | 
|---|
| 675 | * enlarge the buffer for up to 3 bytes in the worst case (XZERO split | 
|---|
| 676 | * into XZERO-VAL-XZERO). Make sure there is enough space right now | 
|---|
| 677 | * so that the pointers we take during the execution of the function | 
|---|
| 678 | * will be valid all the time. */ | 
|---|
| 679 | o->ptr = (sds) sdsMakeRoomFor((sds) o->ptr,3); | 
|---|
| 680 |  | 
|---|
| 681 | /* Step 1: we need to locate the opcode we need to modify to check | 
|---|
| 682 | * if a value update is actually needed. */ | 
|---|
| 683 | sparse = p = ((uint8_t*)o->ptr) + HLL_HDR_SIZE; | 
|---|
| 684 | end = p + sdslen((sds) o->ptr) - HLL_HDR_SIZE; | 
|---|
| 685 |  | 
|---|
| 686 | first = 0; | 
|---|
| 687 | prev = NULL; /* Points to previous opcode at the end of the loop. */ | 
|---|
| 688 | next = NULL; /* Points to the next opcode at the end of the loop. */ | 
|---|
| 689 | span = 0; | 
|---|
| 690 | while(p < end) { | 
|---|
| 691 | long oplen; | 
|---|
| 692 |  | 
|---|
| 693 | /* Set span to the number of registers covered by this opcode. | 
|---|
| 694 | * | 
|---|
| 695 | * This is the most performance critical loop of the sparse | 
|---|
| 696 | * representation. Sorting the conditionals from the most to the | 
|---|
| 697 | * least frequent opcode in many-bytes sparse HLLs is faster. */ | 
|---|
| 698 | oplen = 1; | 
|---|
| 699 | if (HLL_SPARSE_IS_ZERO(p)) { | 
|---|
| 700 | span = HLL_SPARSE_ZERO_LEN(p); | 
|---|
| 701 | } else if (HLL_SPARSE_IS_VAL(p)) { | 
|---|
| 702 | span = HLL_SPARSE_VAL_LEN(p); | 
|---|
| 703 | } else { /* XZERO. */ | 
|---|
| 704 | span = HLL_SPARSE_XZERO_LEN(p); | 
|---|
| 705 | oplen = 2; | 
|---|
| 706 | } | 
|---|
| 707 | /* Break if this opcode covers the register as 'index'. */ | 
|---|
| 708 | if (index <= first+span-1) break; | 
|---|
| 709 | prev = p; | 
|---|
| 710 | p += oplen; | 
|---|
| 711 | first += span; | 
|---|
| 712 | } | 
|---|
| 713 | if (span == 0) return -1; /* Invalid format. */ | 
|---|
| 714 |  | 
|---|
| 715 | next = HLL_SPARSE_IS_XZERO(p) ? p+2 : p+1; | 
|---|
| 716 | if (next >= end) next = NULL; | 
|---|
| 717 |  | 
|---|
| 718 | /* Cache current opcode type to avoid using the macro again and | 
|---|
| 719 | * again for something that will not change. | 
|---|
| 720 | * Also cache the run-length of the opcode. */ | 
|---|
| 721 | if (HLL_SPARSE_IS_ZERO(p)) { | 
|---|
| 722 | is_zero = 1; | 
|---|
| 723 | runlen = HLL_SPARSE_ZERO_LEN(p); | 
|---|
| 724 | } else if (HLL_SPARSE_IS_XZERO(p)) { | 
|---|
| 725 | is_xzero = 1; | 
|---|
| 726 | runlen = HLL_SPARSE_XZERO_LEN(p); | 
|---|
| 727 | } else { | 
|---|
| 728 | is_val = 1; | 
|---|
| 729 | runlen = HLL_SPARSE_VAL_LEN(p); | 
|---|
| 730 | } | 
|---|
| 731 |  | 
|---|
| 732 | /* Step 2: After the loop: | 
|---|
| 733 | * | 
|---|
| 734 | * 'first' stores to the index of the first register covered | 
|---|
| 735 | *  by the current opcode, which is pointed by 'p'. | 
|---|
| 736 | * | 
|---|
| 737 | * 'next' ad 'prev' store respectively the next and previous opcode, | 
|---|
| 738 | *  or NULL if the opcode at 'p' is respectively the last or first. | 
|---|
| 739 | * | 
|---|
| 740 | * 'span' is set to the number of registers covered by the current | 
|---|
| 741 | *  opcode. | 
|---|
| 742 | * | 
|---|
| 743 | * There are different cases in order to update the data structure | 
|---|
| 744 | * in place without generating it from scratch: | 
|---|
| 745 | * | 
|---|
| 746 | * A) If it is a VAL opcode already set to a value >= our 'count' | 
|---|
| 747 | *    no update is needed, regardless of the VAL run-length field. | 
|---|
| 748 | *    In this case PFADD returns 0 since no changes are performed. | 
|---|
| 749 | * | 
|---|
| 750 | * B) If it is a VAL opcode with len = 1 (representing only our | 
|---|
| 751 | *    register) and the value is less than 'count', we just update it | 
|---|
| 752 | *    since this is a trivial case. */ | 
|---|
| 753 | if (is_val) { | 
|---|
| 754 | oldcount = HLL_SPARSE_VAL_VALUE(p); | 
|---|
| 755 | /* Case A. */ | 
|---|
| 756 | if (oldcount >= count) return 0; | 
|---|
| 757 |  | 
|---|
| 758 | /* Case B. */ | 
|---|
| 759 | if (runlen == 1) { | 
|---|
| 760 | HLL_SPARSE_VAL_SET(p,count,1); | 
|---|
| 761 | goto updated; | 
|---|
| 762 | } | 
|---|
| 763 | } | 
|---|
| 764 |  | 
|---|
| 765 | /* C) Another trivial to handle case is a ZERO opcode with a len of 1. | 
|---|
| 766 | * We can just replace it with a VAL opcode with our value and len of 1. */ | 
|---|
| 767 | if (is_zero && runlen == 1) { | 
|---|
| 768 | HLL_SPARSE_VAL_SET(p,count,1); | 
|---|
| 769 | goto updated; | 
|---|
| 770 | } | 
|---|
| 771 |  | 
|---|
| 772 | /* D) General case. | 
|---|
| 773 | * | 
|---|
| 774 | * The other cases are more complex: our register requires to be updated | 
|---|
| 775 | * and is either currently represented by a VAL opcode with len > 1, | 
|---|
| 776 | * by a ZERO opcode with len > 1, or by an XZERO opcode. | 
|---|
| 777 | * | 
|---|
| 778 | * In those cases the original opcode must be split into multiple | 
|---|
| 779 | * opcodes. The worst case is an XZERO split in the middle resuling into | 
|---|
| 780 | * XZERO - VAL - XZERO, so the resulting sequence max length is | 
|---|
| 781 | * 5 bytes. | 
|---|
| 782 | * | 
|---|
| 783 | * We perform the split writing the new sequence into the 'new' buffer | 
|---|
| 784 | * with 'newlen' as length. Later the new sequence is inserted in place | 
|---|
| 785 | * of the old one, possibly moving what is on the right a few bytes | 
|---|
| 786 | * if the new sequence is longer than the older one. */ | 
|---|
| 787 | n = seq; | 
|---|
| 788 | last = first+span-1; /* Last register covered by the sequence. */ | 
|---|
| 789 |  | 
|---|
| 790 | if (is_zero || is_xzero) { | 
|---|
| 791 | /* Handle splitting of ZERO / XZERO. */ | 
|---|
| 792 | if (index != first) { | 
|---|
| 793 | len = index-first; | 
|---|
| 794 | if (len > HLL_SPARSE_ZERO_MAX_LEN) { | 
|---|
| 795 | HLL_SPARSE_XZERO_SET(n,len); | 
|---|
| 796 | n += 2; | 
|---|
| 797 | } else { | 
|---|
| 798 | HLL_SPARSE_ZERO_SET(n,len); | 
|---|
| 799 | n++; | 
|---|
| 800 | } | 
|---|
| 801 | } | 
|---|
| 802 | HLL_SPARSE_VAL_SET(n,count,1); | 
|---|
| 803 | n++; | 
|---|
| 804 | if (index != last) { | 
|---|
| 805 | len = last-index; | 
|---|
| 806 | if (len > HLL_SPARSE_ZERO_MAX_LEN) { | 
|---|
| 807 | HLL_SPARSE_XZERO_SET(n,len); | 
|---|
| 808 | n += 2; | 
|---|
| 809 | } else { | 
|---|
| 810 | HLL_SPARSE_ZERO_SET(n,len); | 
|---|
| 811 | n++; | 
|---|
| 812 | } | 
|---|
| 813 | } | 
|---|
| 814 | } else { | 
|---|
| 815 | /* Handle splitting of VAL. */ | 
|---|
| 816 | int curval = HLL_SPARSE_VAL_VALUE(p); | 
|---|
| 817 |  | 
|---|
| 818 | if (index != first) { | 
|---|
| 819 | len = index-first; | 
|---|
| 820 | HLL_SPARSE_VAL_SET(n,curval,len); | 
|---|
| 821 | n++; | 
|---|
| 822 | } | 
|---|
| 823 | HLL_SPARSE_VAL_SET(n,count,1); | 
|---|
| 824 | n++; | 
|---|
| 825 | if (index != last) { | 
|---|
| 826 | len = last-index; | 
|---|
| 827 | HLL_SPARSE_VAL_SET(n,curval,len); | 
|---|
| 828 | n++; | 
|---|
| 829 | } | 
|---|
| 830 | } | 
|---|
| 831 |  | 
|---|
| 832 | /* Step 3: substitute the new sequence with the old one. | 
|---|
| 833 | * | 
|---|
| 834 | * Note that we already allocated space on the sds string | 
|---|
| 835 | * calling sdsMakeRoomFor(). */ | 
|---|
| 836 | seqlen = n-seq; | 
|---|
| 837 | oldlen = is_xzero ? 2 : 1; | 
|---|
| 838 | deltalen = seqlen-oldlen; | 
|---|
| 839 |  | 
|---|
| 840 | if (deltalen > 0 && | 
|---|
| 841 | sdslen((sds) o->ptr)+deltalen > HLL_SPARSE_MAX_BYTES) goto promote; | 
|---|
| 842 | if (deltalen && next) memmove(next+deltalen,next,end-next); | 
|---|
| 843 | sdsIncrLen((sds) o->ptr,deltalen); | 
|---|
| 844 | memcpy(p,seq,seqlen); | 
|---|
| 845 | end += deltalen; | 
|---|
| 846 |  | 
|---|
| 847 | updated: { | 
|---|
| 848 | /* Step 4: Merge adjacent values if possible. | 
|---|
| 849 | * | 
|---|
| 850 | * The representation was updated, however the resulting representation | 
|---|
| 851 | * may not be optimal: adjacent VAL opcodes can sometimes be merged into | 
|---|
| 852 | * a single one. */ | 
|---|
| 853 | p = prev ? prev : sparse; | 
|---|
| 854 | int scanlen = 5; /* Scan up to 5 upcodes starting from prev. */ | 
|---|
| 855 | while (p < end && scanlen--) { | 
|---|
| 856 | if (HLL_SPARSE_IS_XZERO(p)) { | 
|---|
| 857 | p += 2; | 
|---|
| 858 | continue; | 
|---|
| 859 | } else if (HLL_SPARSE_IS_ZERO(p)) { | 
|---|
| 860 | p++; | 
|---|
| 861 | continue; | 
|---|
| 862 | } | 
|---|
| 863 | /* We need two adjacent VAL opcodes to try a merge, having | 
|---|
| 864 | * the same value, and a len that fits the VAL opcode max len. */ | 
|---|
| 865 | if (p+1 < end && HLL_SPARSE_IS_VAL(p+1)) { | 
|---|
| 866 | int v1 = HLL_SPARSE_VAL_VALUE(p); | 
|---|
| 867 | int v2 = HLL_SPARSE_VAL_VALUE(p+1); | 
|---|
| 868 | if (v1 == v2) { | 
|---|
| 869 | int len = HLL_SPARSE_VAL_LEN(p)+HLL_SPARSE_VAL_LEN(p+1); | 
|---|
| 870 | if (len <= HLL_SPARSE_VAL_MAX_LEN) { | 
|---|
| 871 | HLL_SPARSE_VAL_SET(p+1,v1,len); | 
|---|
| 872 | memmove(p,p+1,end-p); | 
|---|
| 873 | sdsIncrLen((sds) o->ptr,-1); | 
|---|
| 874 | end--; | 
|---|
| 875 | /* After a merge we reiterate without incrementing 'p' | 
|---|
| 876 | * in order to try to merge the just merged value with | 
|---|
| 877 | * a value on its right. */ | 
|---|
| 878 | continue; | 
|---|
| 879 | } | 
|---|
| 880 | } | 
|---|
| 881 | } | 
|---|
| 882 | p++; | 
|---|
| 883 | } | 
|---|
| 884 |  | 
|---|
| 885 | /* Invalidate the cached cardinality. */ | 
|---|
| 886 | hdr = (struct hllhdr *) o->ptr; | 
|---|
| 887 | HLL_INVALIDATE_CACHE(hdr); | 
|---|
| 888 | return 1; | 
|---|
| 889 | } | 
|---|
| 890 | promote: /* Promote to dense representation. */ | 
|---|
| 891 | if (hllSparseToDense(o) == C_ERR) return -1; /* Corrupted HLL. */ | 
|---|
| 892 | hdr = (struct hllhdr *) o->ptr; | 
|---|
| 893 |  | 
|---|
| 894 | /* We need to call hllDenseAdd() to perform the operation after the | 
|---|
| 895 | * conversion. However the result must be 1, since if we need to | 
|---|
| 896 | * convert from sparse to dense a register requires to be updated. | 
|---|
| 897 | * | 
|---|
| 898 | * Note that this in turn means that PFADD will make sure the command | 
|---|
| 899 | * is propagated to slaves / AOF, so if there is a sparse -> dense | 
|---|
| 900 | * conversion, it will be performed in all the slaves as well. */ | 
|---|
| 901 | int dense_retval = hllDenseSet(hdr->registers,index,count); | 
|---|
| 902 | assert(dense_retval == 1); | 
|---|
| 903 | return dense_retval; | 
|---|
| 904 | } | 
|---|
| 905 |  | 
|---|
| 906 | /* "Add" the element in the sparse hyperloglog data structure. | 
|---|
| 907 | * Actually nothing is added, but the max 0 pattern counter of the subset | 
|---|
| 908 | * the element belongs to is incremented if needed. | 
|---|
| 909 | * | 
|---|
| 910 | * This function is actually a wrapper for hllSparseSet(), it only performs | 
|---|
| 911 | * the hashshing of the elmenet to obtain the index and zeros run length. */ | 
|---|
| 912 | int hllSparseAdd(robj *o, unsigned char *ele, size_t elesize) { | 
|---|
| 913 | long index; | 
|---|
| 914 | uint8_t count = hllPatLen(ele,elesize,&index); | 
|---|
| 915 | /* Update the register if this element produced a longer run of zeroes. */ | 
|---|
| 916 | return hllSparseSet(o,index,count); | 
|---|
| 917 | } | 
|---|
| 918 |  | 
|---|
| 919 | /* Compute the register histogram in the sparse representation. */ | 
|---|
| 920 | void hllSparseRegHisto(uint8_t *sparse, int sparselen, int *invalid, int* reghisto) { | 
|---|
| 921 | int idx = 0, runlen, regval; | 
|---|
| 922 | uint8_t *end = sparse+sparselen, *p = sparse; | 
|---|
| 923 |  | 
|---|
| 924 | while(p < end) { | 
|---|
| 925 | if (HLL_SPARSE_IS_ZERO(p)) { | 
|---|
| 926 | runlen = HLL_SPARSE_ZERO_LEN(p); | 
|---|
| 927 | idx += runlen; | 
|---|
| 928 | reghisto[0] += runlen; | 
|---|
| 929 | p++; | 
|---|
| 930 | } else if (HLL_SPARSE_IS_XZERO(p)) { | 
|---|
| 931 | runlen = HLL_SPARSE_XZERO_LEN(p); | 
|---|
| 932 | idx += runlen; | 
|---|
| 933 | reghisto[0] += runlen; | 
|---|
| 934 | p += 2; | 
|---|
| 935 | } else { | 
|---|
| 936 | runlen = HLL_SPARSE_VAL_LEN(p); | 
|---|
| 937 | regval = HLL_SPARSE_VAL_VALUE(p); | 
|---|
| 938 | idx += runlen; | 
|---|
| 939 | reghisto[regval] += runlen; | 
|---|
| 940 | p++; | 
|---|
| 941 | } | 
|---|
| 942 | } | 
|---|
| 943 | if (idx != HLL_REGISTERS && invalid) *invalid = 1; | 
|---|
| 944 | } | 
|---|
| 945 |  | 
|---|
| 946 | /* ========================= HyperLogLog Count ============================== | 
|---|
| 947 | * This is the core of the algorithm where the approximated count is computed. | 
|---|
| 948 | * The function uses the lower level hllDenseRegHisto() and hllSparseRegHisto() | 
|---|
| 949 | * functions as helpers to compute histogram of register values part of the | 
|---|
| 950 | * computation, which is representation-specific, while all the rest is common. */ | 
|---|
| 951 |  | 
|---|
| 952 | /* Implements the register histogram calculation for uint8_t data type | 
|---|
| 953 | * which is only used internally as speedup for PFCOUNT with multiple keys. */ | 
|---|
| 954 | void hllRawRegHisto(uint8_t *registers, int* reghisto) { | 
|---|
| 955 | uint64_t *word = (uint64_t*) registers; | 
|---|
| 956 | uint8_t *bytes; | 
|---|
| 957 | int j; | 
|---|
| 958 |  | 
|---|
| 959 | for (j = 0; j < HLL_REGISTERS/8; j++) { | 
|---|
| 960 | if (*word == 0) { | 
|---|
| 961 | reghisto[0] += 8; | 
|---|
| 962 | } else { | 
|---|
| 963 | bytes = (uint8_t*) word; | 
|---|
| 964 | reghisto[bytes[0]]++; | 
|---|
| 965 | reghisto[bytes[1]]++; | 
|---|
| 966 | reghisto[bytes[2]]++; | 
|---|
| 967 | reghisto[bytes[3]]++; | 
|---|
| 968 | reghisto[bytes[4]]++; | 
|---|
| 969 | reghisto[bytes[5]]++; | 
|---|
| 970 | reghisto[bytes[6]]++; | 
|---|
| 971 | reghisto[bytes[7]]++; | 
|---|
| 972 | } | 
|---|
| 973 | word++; | 
|---|
| 974 | } | 
|---|
| 975 | } | 
|---|
| 976 |  | 
|---|
| 977 | // somehow this is missing on some platforms | 
|---|
| 978 | #ifndef INFINITY | 
|---|
| 979 | // from math.h | 
|---|
| 980 | #define INFINITY 1e50f | 
|---|
| 981 | #endif | 
|---|
| 982 |  | 
|---|
| 983 |  | 
|---|
| 984 | /* Helper function sigma as defined in | 
|---|
| 985 | * "New cardinality estimation algorithms for HyperLogLog sketches" | 
|---|
| 986 | * Otmar Ertl, arXiv:1702.01284 */ | 
|---|
| 987 | double hllSigma(double x) { | 
|---|
| 988 | if (x == 1.) return INFINITY; | 
|---|
| 989 | double zPrime; | 
|---|
| 990 | double y = 1; | 
|---|
| 991 | double z = x; | 
|---|
| 992 | do { | 
|---|
| 993 | x *= x; | 
|---|
| 994 | zPrime = z; | 
|---|
| 995 | z += x * y; | 
|---|
| 996 | y += y; | 
|---|
| 997 | } while(zPrime != z); | 
|---|
| 998 | return z; | 
|---|
| 999 | } | 
|---|
| 1000 |  | 
|---|
| 1001 | /* Helper function tau as defined in | 
|---|
| 1002 | * "New cardinality estimation algorithms for HyperLogLog sketches" | 
|---|
| 1003 | * Otmar Ertl, arXiv:1702.01284 */ | 
|---|
| 1004 | double hllTau(double x) { | 
|---|
| 1005 | if (x == 0. || x == 1.) return 0.; | 
|---|
| 1006 | double zPrime; | 
|---|
| 1007 | double y = 1.0; | 
|---|
| 1008 | double z = 1 - x; | 
|---|
| 1009 | do { | 
|---|
| 1010 | x = sqrt(x); | 
|---|
| 1011 | zPrime = z; | 
|---|
| 1012 | y *= 0.5; | 
|---|
| 1013 | z -= pow(1 - x, 2)*y; | 
|---|
| 1014 | } while(zPrime != z); | 
|---|
| 1015 | return z / 3; | 
|---|
| 1016 | } | 
|---|
| 1017 |  | 
|---|
| 1018 | /* Return the approximated cardinality of the set based on the harmonic | 
|---|
| 1019 | * mean of the registers values. 'hdr' points to the start of the SDS | 
|---|
| 1020 | * representing the String object holding the HLL representation. | 
|---|
| 1021 | * | 
|---|
| 1022 | * If the sparse representation of the HLL object is not valid, the integer | 
|---|
| 1023 | * pointed by 'invalid' is set to non-zero, otherwise it is left untouched. | 
|---|
| 1024 | * | 
|---|
| 1025 | * hllCount() supports a special internal-only encoding of HLL_RAW, that | 
|---|
| 1026 | * is, hdr->registers will point to an uint8_t array of HLL_REGISTERS element. | 
|---|
| 1027 | * This is useful in order to speedup PFCOUNT when called against multiple | 
|---|
| 1028 | * keys (no need to work with 6-bit integers encoding). */ | 
|---|
| 1029 | uint64_t hllCount(struct hllhdr *hdr, int *invalid) { | 
|---|
| 1030 | double m = HLL_REGISTERS; | 
|---|
| 1031 | double E; | 
|---|
| 1032 | int j; | 
|---|
| 1033 | int reghisto[HLL_Q+2] = {0}; | 
|---|
| 1034 |  | 
|---|
| 1035 | /* Compute register histogram */ | 
|---|
| 1036 | if (hdr->encoding == HLL_DENSE) { | 
|---|
| 1037 | hllDenseRegHisto(hdr->registers,reghisto); | 
|---|
| 1038 | } else if (hdr->encoding == HLL_SPARSE) { | 
|---|
| 1039 | hllSparseRegHisto(hdr->registers, | 
|---|
| 1040 | sdslen((sds)hdr)-HLL_HDR_SIZE,invalid,reghisto); | 
|---|
| 1041 | } else if (hdr->encoding == HLL_RAW) { | 
|---|
| 1042 | hllRawRegHisto(hdr->registers,reghisto); | 
|---|
| 1043 | } else { | 
|---|
| 1044 | *invalid = 1; | 
|---|
| 1045 | return 0; | 
|---|
| 1046 | //serverPanic("Unknown HyperLogLog encoding in hllCount()"); | 
|---|
| 1047 | } | 
|---|
| 1048 |  | 
|---|
| 1049 | /* Estimate cardinality form register histogram. See: | 
|---|
| 1050 | * "New cardinality estimation algorithms for HyperLogLog sketches" | 
|---|
| 1051 | * Otmar Ertl, arXiv:1702.01284 */ | 
|---|
| 1052 | double z = m * hllTau((m-reghisto[HLL_Q+1])/(double)m); | 
|---|
| 1053 | for (j = HLL_Q; j >= 1; --j) { | 
|---|
| 1054 | z += reghisto[j]; | 
|---|
| 1055 | z *= 0.5; | 
|---|
| 1056 | } | 
|---|
| 1057 | z += m * hllSigma(reghisto[0]/(double)m); | 
|---|
| 1058 | E = llroundl(HLL_ALPHA_INF*m*m/z); | 
|---|
| 1059 |  | 
|---|
| 1060 | return (uint64_t) E; | 
|---|
| 1061 | } | 
|---|
| 1062 |  | 
|---|
| 1063 | /* Call hllDenseAdd() or hllSparseAdd() according to the HLL encoding. */ | 
|---|
| 1064 | int hll_add(robj *o, unsigned char *ele, size_t elesize) { | 
|---|
| 1065 | struct hllhdr *hdr = (struct hllhdr *) o->ptr; | 
|---|
| 1066 | switch(hdr->encoding) { | 
|---|
| 1067 | case HLL_DENSE: return hllDenseAdd(hdr->registers,ele,elesize); | 
|---|
| 1068 | case HLL_SPARSE: return hllSparseAdd(o,ele,elesize); | 
|---|
| 1069 | default: return -1; /* Invalid representation. */ | 
|---|
| 1070 | } | 
|---|
| 1071 | } | 
|---|
| 1072 |  | 
|---|
| 1073 | /* Merge by computing MAX(registers[i],hll[i]) the HyperLogLog 'hll' | 
|---|
| 1074 | * with an array of uint8_t HLL_REGISTERS registers pointed by 'max'. | 
|---|
| 1075 | * | 
|---|
| 1076 | * The hll object must be already validated via isHLLObjectOrReply() | 
|---|
| 1077 | * or in some other way. | 
|---|
| 1078 | * | 
|---|
| 1079 | * If the HyperLogLog is sparse and is found to be invalid, C_ERR | 
|---|
| 1080 | * is returned, otherwise the function always succeeds. */ | 
|---|
| 1081 | int hllMerge(uint8_t *max, robj *hll) { | 
|---|
| 1082 | struct hllhdr *hdr = (struct hllhdr *) hll->ptr; | 
|---|
| 1083 | int i; | 
|---|
| 1084 |  | 
|---|
| 1085 | if (hdr->encoding == HLL_DENSE) { | 
|---|
| 1086 | uint8_t val; | 
|---|
| 1087 |  | 
|---|
| 1088 | for (i = 0; i < HLL_REGISTERS; i++) { | 
|---|
| 1089 | HLL_DENSE_GET_REGISTER(val,hdr->registers,i); | 
|---|
| 1090 | if (val > max[i]) max[i] = val; | 
|---|
| 1091 | } | 
|---|
| 1092 | } else { | 
|---|
| 1093 | uint8_t *p = (uint8_t *) hll->ptr, *end = p + sdslen((sds) hll->ptr); | 
|---|
| 1094 | long runlen, regval; | 
|---|
| 1095 |  | 
|---|
| 1096 | p += HLL_HDR_SIZE; | 
|---|
| 1097 | i = 0; | 
|---|
| 1098 | while(p < end) { | 
|---|
| 1099 | if (HLL_SPARSE_IS_ZERO(p)) { | 
|---|
| 1100 | runlen = HLL_SPARSE_ZERO_LEN(p); | 
|---|
| 1101 | i += runlen; | 
|---|
| 1102 | p++; | 
|---|
| 1103 | } else if (HLL_SPARSE_IS_XZERO(p)) { | 
|---|
| 1104 | runlen = HLL_SPARSE_XZERO_LEN(p); | 
|---|
| 1105 | i += runlen; | 
|---|
| 1106 | p += 2; | 
|---|
| 1107 | } else { | 
|---|
| 1108 | runlen = HLL_SPARSE_VAL_LEN(p); | 
|---|
| 1109 | regval = HLL_SPARSE_VAL_VALUE(p); | 
|---|
| 1110 | while(runlen--) { | 
|---|
| 1111 | if (regval > max[i]) max[i] = regval; | 
|---|
| 1112 | i++; | 
|---|
| 1113 | } | 
|---|
| 1114 | p++; | 
|---|
| 1115 | } | 
|---|
| 1116 | } | 
|---|
| 1117 | if (i != HLL_REGISTERS) return C_ERR; | 
|---|
| 1118 | } | 
|---|
| 1119 | return C_OK; | 
|---|
| 1120 | } | 
|---|
| 1121 |  | 
|---|
| 1122 | /* ========================== robj creation ========================== */ | 
|---|
| 1123 | robj *createObject(void *ptr) { | 
|---|
| 1124 | robj *result = (robj*) malloc(sizeof(robj)); | 
|---|
| 1125 | result->ptr = ptr; | 
|---|
| 1126 | return result; | 
|---|
| 1127 | } | 
|---|
| 1128 |  | 
|---|
| 1129 | void destroyObject(robj *obj) { | 
|---|
| 1130 | free(obj); | 
|---|
| 1131 | } | 
|---|
| 1132 |  | 
|---|
| 1133 | /* ========================== HyperLogLog commands ========================== */ | 
|---|
| 1134 |  | 
|---|
| 1135 | /* Create an HLL object. We always create the HLL using sparse encoding. | 
|---|
| 1136 | * This will be upgraded to the dense representation as needed. */ | 
|---|
| 1137 | robj *hll_create(void) { | 
|---|
| 1138 | robj *o; | 
|---|
| 1139 | struct hllhdr *hdr; | 
|---|
| 1140 | sds s; | 
|---|
| 1141 | uint8_t *p; | 
|---|
| 1142 | int sparselen = HLL_HDR_SIZE + | 
|---|
| 1143 | (((HLL_REGISTERS+(HLL_SPARSE_XZERO_MAX_LEN-1)) / | 
|---|
| 1144 | HLL_SPARSE_XZERO_MAX_LEN)*2); | 
|---|
| 1145 | int aux; | 
|---|
| 1146 |  | 
|---|
| 1147 | /* Populate the sparse representation with as many XZERO opcodes as | 
|---|
| 1148 | * needed to represent all the registers. */ | 
|---|
| 1149 | aux = HLL_REGISTERS; | 
|---|
| 1150 | s = sdsnewlen(NULL,sparselen); | 
|---|
| 1151 | p = (uint8_t*)s + HLL_HDR_SIZE; | 
|---|
| 1152 | while(aux) { | 
|---|
| 1153 | int xzero = HLL_SPARSE_XZERO_MAX_LEN; | 
|---|
| 1154 | if (xzero > aux) xzero = aux; | 
|---|
| 1155 | HLL_SPARSE_XZERO_SET(p,xzero); | 
|---|
| 1156 | p += 2; | 
|---|
| 1157 | aux -= xzero; | 
|---|
| 1158 | } | 
|---|
| 1159 | assert((p-(uint8_t*)s) == sparselen); | 
|---|
| 1160 |  | 
|---|
| 1161 | /* Create the actual object. */ | 
|---|
| 1162 | o = createObject(s); | 
|---|
| 1163 | hdr = (struct hllhdr *) o->ptr; | 
|---|
| 1164 | memcpy(hdr->magic, "HYLL",4); | 
|---|
| 1165 | hdr->encoding = HLL_SPARSE; | 
|---|
| 1166 | return o; | 
|---|
| 1167 | } | 
|---|
| 1168 |  | 
|---|
| 1169 | void hll_destroy(robj *obj) { | 
|---|
| 1170 | if (!obj) { | 
|---|
| 1171 | return; | 
|---|
| 1172 | } | 
|---|
| 1173 | sdsfree((sds) obj->ptr); | 
|---|
| 1174 | destroyObject(obj); | 
|---|
| 1175 | } | 
|---|
| 1176 |  | 
|---|
| 1177 |  | 
|---|
| 1178 |  | 
|---|
| 1179 | int hll_count(robj *o, size_t *result) { | 
|---|
| 1180 | int invalid = 0; | 
|---|
| 1181 | *result = hllCount((struct hllhdr*) o->ptr, &invalid); | 
|---|
| 1182 | return invalid == 0 ? C_OK : C_ERR; | 
|---|
| 1183 | } | 
|---|
| 1184 |  | 
|---|
| 1185 | robj *hll_merge(robj **hlls, size_t hll_count) { | 
|---|
| 1186 | uint8_t max[HLL_REGISTERS]; | 
|---|
| 1187 | struct hllhdr *hdr; | 
|---|
| 1188 | size_t j; | 
|---|
| 1189 | /* Use dense representation as target? */ | 
|---|
| 1190 | int use_dense = 0; | 
|---|
| 1191 |  | 
|---|
| 1192 | /* Compute an HLL with M[i] = MAX(M[i]_j). | 
|---|
| 1193 | * We store the maximum into the max array of registers. We'll write | 
|---|
| 1194 | * it to the target variable later. */ | 
|---|
| 1195 | memset(max, 0, sizeof(max)); | 
|---|
| 1196 | for (j = 0; j < hll_count; j++) { | 
|---|
| 1197 | /* Check type and size. */ | 
|---|
| 1198 | robj *o = hlls[j]; | 
|---|
| 1199 | if (o == NULL) continue; /* Assume empty HLL for non existing var. */ | 
|---|
| 1200 |  | 
|---|
| 1201 | /* If at least one involved HLL is dense, use the dense representation | 
|---|
| 1202 | * as target ASAP to save time and avoid the conversion step. */ | 
|---|
| 1203 | hdr = (struct hllhdr *) o->ptr; | 
|---|
| 1204 | if (hdr->encoding == HLL_DENSE) use_dense = 1; | 
|---|
| 1205 |  | 
|---|
| 1206 | /* Merge with this HLL with our 'max' HHL by setting max[i] | 
|---|
| 1207 | * to MAX(max[i],hll[i]). */ | 
|---|
| 1208 | if (hllMerge(max, o) == C_ERR) { | 
|---|
| 1209 | return NULL; | 
|---|
| 1210 | } | 
|---|
| 1211 | } | 
|---|
| 1212 |  | 
|---|
| 1213 | /* Create the destination key's value. */ | 
|---|
| 1214 | robj *result = hll_create(); | 
|---|
| 1215 | if (!result) { | 
|---|
| 1216 | return NULL; | 
|---|
| 1217 | } | 
|---|
| 1218 |  | 
|---|
| 1219 | /* Convert the destination object to dense representation if at least | 
|---|
| 1220 | * one of the inputs was dense. */ | 
|---|
| 1221 | if (use_dense && hllSparseToDense(result) == C_ERR) { | 
|---|
| 1222 | hll_destroy(result); | 
|---|
| 1223 | return NULL; | 
|---|
| 1224 | } | 
|---|
| 1225 |  | 
|---|
| 1226 | /* Write the resulting HLL to the destination HLL registers and | 
|---|
| 1227 | * invalidate the cached value. */ | 
|---|
| 1228 | for (j = 0; j < HLL_REGISTERS; j++) { | 
|---|
| 1229 | if (max[j] == 0) continue; | 
|---|
| 1230 | hdr = (struct hllhdr *) result->ptr; | 
|---|
| 1231 | switch(hdr->encoding) { | 
|---|
| 1232 | case HLL_DENSE: hllDenseSet(hdr->registers,j,max[j]); break; | 
|---|
| 1233 | case HLL_SPARSE: hllSparseSet(result,j,max[j]); break; | 
|---|
| 1234 | } | 
|---|
| 1235 | } | 
|---|
| 1236 | return result; | 
|---|
| 1237 | } | 
|---|
| 1238 |  | 
|---|