1 | /* |
2 | * Legal Notice |
3 | * |
4 | * This document and associated source code (the "Work") is a part of a |
5 | * benchmark specification maintained by the TPC. |
6 | * |
7 | * The TPC reserves all right, title, and interest to the Work as provided |
8 | * under U.S. and international laws, including without limitation all patent |
9 | * and trademark rights therein. |
10 | * |
11 | * No Warranty |
12 | * |
13 | * 1.1 TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE INFORMATION |
14 | * CONTAINED HEREIN IS PROVIDED "AS IS" AND WITH ALL FAULTS, AND THE |
15 | * AUTHORS AND DEVELOPERS OF THE WORK HEREBY DISCLAIM ALL OTHER |
16 | * WARRANTIES AND CONDITIONS, EITHER EXPRESS, IMPLIED OR STATUTORY, |
17 | * INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED WARRANTIES, |
18 | * DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FITNESS FOR A PARTICULAR |
19 | * PURPOSE, OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF |
20 | * WORKMANLIKE EFFORT, OF LACK OF VIRUSES, AND OF LACK OF NEGLIGENCE. |
21 | * ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, |
22 | * QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT |
23 | * WITH REGARD TO THE WORK. |
24 | * 1.2 IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THE WORK BE LIABLE TO |
25 | * ANY OTHER PARTY FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO THE |
26 | * COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS |
27 | * OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, |
28 | * INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, |
29 | * OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT |
30 | * RELATING TO THE WORK, WHETHER OR NOT SUCH AUTHOR OR DEVELOPER HAD |
31 | * ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. |
32 | * |
33 | * Contributors |
34 | * - Charles Levine, Philip Durr, Doug Johnson, Cecil Reames, Matt Emmerton |
35 | */ |
36 | |
37 | #include "utilities/Random.h" |
38 | |
39 | #include <cmath> |
40 | #include <time.h> |
41 | |
42 | #include "utilities/BigMath.h" |
43 | #include "utilities/MiscConsts.h" |
44 | |
45 | using namespace TPCE; |
46 | |
47 | inline RNGSEED CRandom::UInt64Rand(void) { |
48 | |
49 | UINT64 a = (UINT64)UInt64Rand_A_MULTIPLIER; |
50 | UINT64 c = (UINT64)UInt64Rand_C_INCREMENT; |
51 | m_seed = (m_seed * a + c); // implicitly truncated to 64bits |
52 | |
53 | return (m_seed); |
54 | } |
55 | |
56 | RNGSEED CRandom::RndNthElement(RNGSEED nSeed, RNGSEED nCount) { |
57 | UINT64 a = UInt64Rand_A_MULTIPLIER; |
58 | UINT64 c = UInt64Rand_C_INCREMENT; |
59 | int nBit; |
60 | UINT64 Apow = a; |
61 | UINT64 Dsum = UInt64Rand_ONE; |
62 | |
63 | // if nothing to do, do nothing ! |
64 | if (nCount == 0) { |
65 | return nSeed; |
66 | } |
67 | |
68 | // Recursively compute X(n) = A * X(n-1) + C |
69 | // |
70 | // explicitly: |
71 | // X(n) = A^n * X(0) + { A^(n-1) + A^(n-2) + ... A + 1 } * C |
72 | // |
73 | // we write this as: |
74 | // X(n) = Apow(n) * X(0) + Dsum(n) * C |
75 | // |
76 | // we use the following relations: |
77 | // Apow(n) = A^(n%2)*Apow(n/2)*Apow(n/2) |
78 | // Dsum(n) = (n%2)*Apow(n/2)*Apow(n/2) + (Apow(n/2) + 1) * Dsum(n/2) |
79 | // |
80 | |
81 | // first get the highest non-zero bit |
82 | for (nBit = 0; (nCount >> nBit) != UInt64Rand_ONE; nBit++) { |
83 | } |
84 | |
85 | // go 1 bit at the time |
86 | while (--nBit >= 0) { |
87 | Dsum *= (Apow + 1); |
88 | Apow = Apow * Apow; |
89 | if (((nCount >> nBit) % 2) == 1) { // odd value |
90 | Dsum += Apow; |
91 | Apow *= a; |
92 | } |
93 | } |
94 | nSeed = nSeed * Apow + Dsum * c; |
95 | return nSeed; |
96 | } |
97 | |
98 | CRandom::CRandom(void) { |
99 | do { |
100 | // use portable way to get the seed |
101 | m_seed = (RNGSEED)time(NULL); |
102 | } while (m_seed == 0); |
103 | } |
104 | |
105 | CRandom::CRandom(RNGSEED seed) { |
106 | SetSeed(seed); |
107 | } |
108 | |
109 | void CRandom::SetSeed(RNGSEED seed) { |
110 | m_seed = seed; |
111 | } |
112 | |
113 | #ifdef EGEN_USE_DEPRECATED_CODE |
114 | |
115 | // returns a random value in the range [0 .. 0.99999999999999999994578989137572] |
116 | // care should be taken in casting the result as a float because of the |
117 | // potential loss of precision. |
118 | double CRandom::RndDouble(void) { |
119 | return ((double)UInt64Rand()) * (double)UInt64Rand_RECIPROCAL_2_POWER_64; |
120 | } |
121 | |
122 | #endif // EGEN_USE_DEPRECATED_CODE |
123 | |
124 | int CRandom::RndIntRange(int min, int max) { |
125 | if (max <= min) |
126 | return min; // max <= min |
127 | |
128 | UINT range = (max - min + 1); |
129 | |
130 | if (range <= 1) |
131 | return min; // overflow happened |
132 | |
133 | UInt64Rand(); // generate next seed value |
134 | |
135 | return (min + (int)Mul6432WithShiftRight64(m_seed, range)); |
136 | } |
137 | |
138 | INT64 CRandom::RndInt64Range(INT64 min, INT64 max) { |
139 | if (max <= min) |
140 | return min; |
141 | |
142 | UINT64 range = (max - min + 1); |
143 | |
144 | if (range <= 1) |
145 | return min; // overflow happened |
146 | |
147 | UInt64Rand(); // generate next seed value |
148 | |
149 | return (min + (INT64)Mul6464WithShiftRight64(m_seed, range)); |
150 | } |
151 | |
152 | int CRandom::RndNthIntRange(RNGSEED Seed, RNGSEED N, int min, int max) { |
153 | if (max <= min) |
154 | return min; // max <= min |
155 | |
156 | UINT range = (max - min + 1); |
157 | |
158 | if (range <= 1) |
159 | return min; // overflow happened |
160 | |
161 | RNGSEED nseed = RndNthElement(Seed, N); // generate next seed value |
162 | |
163 | return (min + (int)Mul6432WithShiftRight64(nseed, range)); |
164 | } |
165 | |
166 | // return Nth element in the sequence over the integer range |
167 | INT64 CRandom::RndNthInt64Range(RNGSEED Seed, RNGSEED N, INT64 min, INT64 max) { |
168 | if (max <= min) |
169 | return min; |
170 | |
171 | UINT64 range = (max - min + 1); |
172 | |
173 | if (range <= 1) |
174 | return min; // overflow happened |
175 | |
176 | RNGSEED nseed = RndNthElement(Seed, N); // generate next seed value |
177 | |
178 | return (min + (INT64)Mul6464WithShiftRight64(nseed, range)); |
179 | } |
180 | |
181 | int CRandom::RndIntRangeExclude(int low, int high, int exclude) { |
182 | int temp; |
183 | |
184 | temp = RndIntRange(low, high - 1); |
185 | if (temp >= exclude) |
186 | temp += 1; |
187 | |
188 | return temp; |
189 | } |
190 | |
191 | INT64 CRandom::RndInt64RangeExclude(INT64 low, INT64 high, INT64 exclude) { |
192 | INT64 temp; |
193 | |
194 | temp = RndInt64Range(low, high - 1); |
195 | if (temp >= exclude) |
196 | temp += 1; |
197 | |
198 | return temp; |
199 | } |
200 | |
201 | #ifdef EGEN_USE_DEPRECATED_CODE |
202 | |
203 | double CRandom::RndDoubleRange(double min, double max) { |
204 | return min + RndDouble() * (max - min); |
205 | } |
206 | |
207 | #endif // EGEN_USE_DEPRECATED_CODE |
208 | |
209 | double CRandom::RndDoubleIncrRange(double min, double max, double incr) { |
210 | INT64 width = (INT64)((max - min) / incr); // need [0..width], so no +1 |
211 | return min + ((double)RndInt64Range(0, width) * incr); |
212 | } |
213 | |
214 | // returns a random double value from a negative exponential distribution with |
215 | // the given mean |
216 | double CRandom::RndDoubleNegExp(double mean) { |
217 | return ((-1.0 * std::log(RndDoubleIncrRange(0.0, 1.0, 0.000000000001))) * mean); |
218 | } |
219 | |
220 | /* Returns a non-uniform random 64-bit integer in range of [P .. Q]. |
221 | * |
222 | * NURnd is used to create a skewed data access pattern. The function is |
223 | * similar to NURand in TPC-C. (The two functions are identical when C=0 |
224 | * and s=0.) |
225 | * |
226 | * The parameter A must be of the form 2^k - 1, so that Rnd[0..A] will |
227 | * produce a k-bit field with all bits having 50/50 probability of being 0 |
228 | * or 1. |
229 | * |
230 | * With a k-bit A value, the weights range from 3^k down to 1 with the |
231 | * number of equal probability values given by C(k,i) = k! /(i!(k-i)!) for |
232 | * 0 <= i <= k. So a bigger A value from a larger k has much more skew. |
233 | * |
234 | * Left shifting of Rnd[0..A] by "s" bits gets a larger interval without |
235 | * getting huge amounts of skew. For example, when applied to elapsed time |
236 | * in milliseconds, s=10 effectively ignores the milliseconds, while s=16 |
237 | * effectively ignores seconds and milliseconds, giving a granularity of |
238 | * just over 1 minute (65.536 seconds). A smaller A value can then give |
239 | * the desired amount of skew at effectively one-minute resolution. |
240 | */ |
241 | INT64 CRandom::NURnd(INT64 P, INT64 Q, INT32 A, INT32 s) { |
242 | return (((RndInt64Range(P, Q) | (RndInt64Range(0, A) << s)) % (Q - P + 1)) + P); |
243 | } |
244 | |
245 | /* |
246 | * Returns an alphanumeric string in a specified format; |
247 | */ |
248 | |
249 | void CRandom::RndAlphaNumFormatted(char *szReturnString, const char *szFormat) { |
250 | while (szFormat && *szFormat) { |
251 | switch (*szFormat) { |
252 | case 'a': |
253 | *szReturnString = UpperCaseLetters[RndIntRange(0, 25)]; // only uppercase |
254 | break; |
255 | case 'n': |
256 | *szReturnString = Numerals[RndIntRange(0, 9)]; |
257 | break; |
258 | default: |
259 | *szReturnString = *szFormat; |
260 | } |
261 | |
262 | ++szFormat; |
263 | ++szReturnString; |
264 | } |
265 | *szReturnString = '\0'; |
266 | } |
267 | |