1 | // Copyright 2008, Google Inc. |
2 | // All rights reserved. |
3 | // |
4 | // Redistribution and use in source and binary forms, with or without |
5 | // modification, are permitted provided that the following conditions are |
6 | // met: |
7 | // |
8 | // * Redistributions of source code must retain the above copyright |
9 | // notice, this list of conditions and the following disclaimer. |
10 | // * Redistributions in binary form must reproduce the above |
11 | // copyright notice, this list of conditions and the following disclaimer |
12 | // in the documentation and/or other materials provided with the |
13 | // distribution. |
14 | // * Neither the name of Google Inc. nor the names of its |
15 | // contributors may be used to endorse or promote products derived from |
16 | // this software without specific prior written permission. |
17 | // |
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | |
30 | |
31 | #include "gtest/internal/gtest-port.h" |
32 | |
33 | #include <limits.h> |
34 | #include <stdio.h> |
35 | #include <stdlib.h> |
36 | #include <string.h> |
37 | #include <fstream> |
38 | #include <memory> |
39 | |
40 | #if GTEST_OS_WINDOWS |
41 | # include <windows.h> |
42 | # include <io.h> |
43 | # include <sys/stat.h> |
44 | # include <map> // Used in ThreadLocal. |
45 | # ifdef _MSC_VER |
46 | # include <crtdbg.h> |
47 | # endif // _MSC_VER |
48 | #else |
49 | # include <unistd.h> |
50 | #endif // GTEST_OS_WINDOWS |
51 | |
52 | #if GTEST_OS_MAC |
53 | # include <mach/mach_init.h> |
54 | # include <mach/task.h> |
55 | # include <mach/vm_map.h> |
56 | #endif // GTEST_OS_MAC |
57 | |
58 | #if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \ |
59 | GTEST_OS_NETBSD || GTEST_OS_OPENBSD |
60 | # include <sys/sysctl.h> |
61 | # if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD |
62 | # include <sys/user.h> |
63 | # endif |
64 | #endif |
65 | |
66 | #if GTEST_OS_QNX |
67 | # include <devctl.h> |
68 | # include <fcntl.h> |
69 | # include <sys/procfs.h> |
70 | #endif // GTEST_OS_QNX |
71 | |
72 | #if GTEST_OS_AIX |
73 | # include <procinfo.h> |
74 | # include <sys/types.h> |
75 | #endif // GTEST_OS_AIX |
76 | |
77 | #if GTEST_OS_FUCHSIA |
78 | # include <zircon/process.h> |
79 | # include <zircon/syscalls.h> |
80 | #endif // GTEST_OS_FUCHSIA |
81 | |
82 | #include "gtest/gtest-spi.h" |
83 | #include "gtest/gtest-message.h" |
84 | #include "gtest/internal/gtest-internal.h" |
85 | #include "gtest/internal/gtest-string.h" |
86 | #include "src/gtest-internal-inl.h" |
87 | |
88 | namespace testing { |
89 | namespace internal { |
90 | |
91 | #if defined(_MSC_VER) || defined(__BORLANDC__) |
92 | // MSVC and C++Builder do not provide a definition of STDERR_FILENO. |
93 | const int kStdOutFileno = 1; |
94 | const int kStdErrFileno = 2; |
95 | #else |
96 | const int kStdOutFileno = STDOUT_FILENO; |
97 | const int kStdErrFileno = STDERR_FILENO; |
98 | #endif // _MSC_VER |
99 | |
100 | #if GTEST_OS_LINUX |
101 | |
102 | namespace { |
103 | template <typename T> |
104 | T ReadProcFileField(const std::string& filename, int field) { |
105 | std::string dummy; |
106 | std::ifstream file(filename.c_str()); |
107 | while (field-- > 0) { |
108 | file >> dummy; |
109 | } |
110 | T output = 0; |
111 | file >> output; |
112 | return output; |
113 | } |
114 | } // namespace |
115 | |
116 | // Returns the number of active threads, or 0 when there is an error. |
117 | size_t GetThreadCount() { |
118 | const std::string filename = |
119 | (Message() << "/proc/" << getpid() << "/stat" ).GetString(); |
120 | return ReadProcFileField<size_t>(filename, 19); |
121 | } |
122 | |
123 | #elif GTEST_OS_MAC |
124 | |
125 | size_t GetThreadCount() { |
126 | const task_t task = mach_task_self(); |
127 | mach_msg_type_number_t thread_count; |
128 | thread_act_array_t thread_list; |
129 | const kern_return_t status = task_threads(task, &thread_list, &thread_count); |
130 | if (status == KERN_SUCCESS) { |
131 | // task_threads allocates resources in thread_list and we need to free them |
132 | // to avoid leaks. |
133 | vm_deallocate(task, |
134 | reinterpret_cast<vm_address_t>(thread_list), |
135 | sizeof(thread_t) * thread_count); |
136 | return static_cast<size_t>(thread_count); |
137 | } else { |
138 | return 0; |
139 | } |
140 | } |
141 | |
142 | #elif GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \ |
143 | GTEST_OS_NETBSD |
144 | |
145 | #if GTEST_OS_NETBSD |
146 | #undef KERN_PROC |
147 | #define KERN_PROC KERN_PROC2 |
148 | #define kinfo_proc kinfo_proc2 |
149 | #endif |
150 | |
151 | #if GTEST_OS_DRAGONFLY |
152 | #define KP_NLWP(kp) (kp.kp_nthreads) |
153 | #elif GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD |
154 | #define KP_NLWP(kp) (kp.ki_numthreads) |
155 | #elif GTEST_OS_NETBSD |
156 | #define KP_NLWP(kp) (kp.p_nlwps) |
157 | #endif |
158 | |
159 | // Returns the number of threads running in the process, or 0 to indicate that |
160 | // we cannot detect it. |
161 | size_t GetThreadCount() { |
162 | int mib[] = { |
163 | CTL_KERN, |
164 | KERN_PROC, |
165 | KERN_PROC_PID, |
166 | getpid(), |
167 | #if GTEST_OS_NETBSD |
168 | sizeof(struct kinfo_proc), |
169 | 1, |
170 | #endif |
171 | }; |
172 | u_int miblen = sizeof(mib) / sizeof(mib[0]); |
173 | struct kinfo_proc info; |
174 | size_t size = sizeof(info); |
175 | if (sysctl(mib, miblen, &info, &size, NULL, 0)) { |
176 | return 0; |
177 | } |
178 | return static_cast<size_t>(KP_NLWP(info)); |
179 | } |
180 | #elif GTEST_OS_OPENBSD |
181 | |
182 | // Returns the number of threads running in the process, or 0 to indicate that |
183 | // we cannot detect it. |
184 | size_t GetThreadCount() { |
185 | int mib[] = { |
186 | CTL_KERN, |
187 | KERN_PROC, |
188 | KERN_PROC_PID | KERN_PROC_SHOW_THREADS, |
189 | getpid(), |
190 | sizeof(struct kinfo_proc), |
191 | 0, |
192 | }; |
193 | u_int miblen = sizeof(mib) / sizeof(mib[0]); |
194 | |
195 | // get number of structs |
196 | size_t size; |
197 | if (sysctl(mib, miblen, NULL, &size, NULL, 0)) { |
198 | return 0; |
199 | } |
200 | mib[5] = size / mib[4]; |
201 | |
202 | // populate array of structs |
203 | struct kinfo_proc info[mib[5]]; |
204 | if (sysctl(mib, miblen, &info, &size, NULL, 0)) { |
205 | return 0; |
206 | } |
207 | |
208 | // exclude empty members |
209 | int nthreads = 0; |
210 | for (int i = 0; i < size / mib[4]; i++) { |
211 | if (info[i].p_tid != -1) |
212 | nthreads++; |
213 | } |
214 | return nthreads; |
215 | } |
216 | |
217 | #elif GTEST_OS_QNX |
218 | |
219 | // Returns the number of threads running in the process, or 0 to indicate that |
220 | // we cannot detect it. |
221 | size_t GetThreadCount() { |
222 | const int fd = open("/proc/self/as" , O_RDONLY); |
223 | if (fd < 0) { |
224 | return 0; |
225 | } |
226 | procfs_info process_info; |
227 | const int status = |
228 | devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), nullptr); |
229 | close(fd); |
230 | if (status == EOK) { |
231 | return static_cast<size_t>(process_info.num_threads); |
232 | } else { |
233 | return 0; |
234 | } |
235 | } |
236 | |
237 | #elif GTEST_OS_AIX |
238 | |
239 | size_t GetThreadCount() { |
240 | struct procentry64 entry; |
241 | pid_t pid = getpid(); |
242 | int status = getprocs64(&entry, sizeof(entry), nullptr, 0, &pid, 1); |
243 | if (status == 1) { |
244 | return entry.pi_thcount; |
245 | } else { |
246 | return 0; |
247 | } |
248 | } |
249 | |
250 | #elif GTEST_OS_FUCHSIA |
251 | |
252 | size_t GetThreadCount() { |
253 | int dummy_buffer; |
254 | size_t avail; |
255 | zx_status_t status = zx_object_get_info( |
256 | zx_process_self(), |
257 | ZX_INFO_PROCESS_THREADS, |
258 | &dummy_buffer, |
259 | 0, |
260 | nullptr, |
261 | &avail); |
262 | if (status == ZX_OK) { |
263 | return avail; |
264 | } else { |
265 | return 0; |
266 | } |
267 | } |
268 | |
269 | #else |
270 | |
271 | size_t GetThreadCount() { |
272 | // There's no portable way to detect the number of threads, so we just |
273 | // return 0 to indicate that we cannot detect it. |
274 | return 0; |
275 | } |
276 | |
277 | #endif // GTEST_OS_LINUX |
278 | |
279 | #if GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS |
280 | |
281 | void SleepMilliseconds(int n) { |
282 | ::Sleep(static_cast<DWORD>(n)); |
283 | } |
284 | |
285 | AutoHandle::AutoHandle() |
286 | : handle_(INVALID_HANDLE_VALUE) {} |
287 | |
288 | AutoHandle::AutoHandle(Handle handle) |
289 | : handle_(handle) {} |
290 | |
291 | AutoHandle::~AutoHandle() { |
292 | Reset(); |
293 | } |
294 | |
295 | AutoHandle::Handle AutoHandle::Get() const { |
296 | return handle_; |
297 | } |
298 | |
299 | void AutoHandle::Reset() { |
300 | Reset(INVALID_HANDLE_VALUE); |
301 | } |
302 | |
303 | void AutoHandle::Reset(HANDLE handle) { |
304 | // Resetting with the same handle we already own is invalid. |
305 | if (handle_ != handle) { |
306 | if (IsCloseable()) { |
307 | ::CloseHandle(handle_); |
308 | } |
309 | handle_ = handle; |
310 | } else { |
311 | GTEST_CHECK_(!IsCloseable()) |
312 | << "Resetting a valid handle to itself is likely a programmer error " |
313 | "and thus not allowed." ; |
314 | } |
315 | } |
316 | |
317 | bool AutoHandle::IsCloseable() const { |
318 | // Different Windows APIs may use either of these values to represent an |
319 | // invalid handle. |
320 | return handle_ != nullptr && handle_ != INVALID_HANDLE_VALUE; |
321 | } |
322 | |
323 | Notification::Notification() |
324 | : event_(::CreateEvent(nullptr, // Default security attributes. |
325 | TRUE, // Do not reset automatically. |
326 | FALSE, // Initially unset. |
327 | nullptr)) { // Anonymous event. |
328 | GTEST_CHECK_(event_.Get() != nullptr); |
329 | } |
330 | |
331 | void Notification::Notify() { |
332 | GTEST_CHECK_(::SetEvent(event_.Get()) != FALSE); |
333 | } |
334 | |
335 | void Notification::WaitForNotification() { |
336 | GTEST_CHECK_( |
337 | ::WaitForSingleObject(event_.Get(), INFINITE) == WAIT_OBJECT_0); |
338 | } |
339 | |
340 | Mutex::Mutex() |
341 | : owner_thread_id_(0), |
342 | type_(kDynamic), |
343 | critical_section_init_phase_(0), |
344 | critical_section_(new CRITICAL_SECTION) { |
345 | ::InitializeCriticalSection(critical_section_); |
346 | } |
347 | |
348 | Mutex::~Mutex() { |
349 | // Static mutexes are leaked intentionally. It is not thread-safe to try |
350 | // to clean them up. |
351 | if (type_ == kDynamic) { |
352 | ::DeleteCriticalSection(critical_section_); |
353 | delete critical_section_; |
354 | critical_section_ = nullptr; |
355 | } |
356 | } |
357 | |
358 | void Mutex::Lock() { |
359 | ThreadSafeLazyInit(); |
360 | ::EnterCriticalSection(critical_section_); |
361 | owner_thread_id_ = ::GetCurrentThreadId(); |
362 | } |
363 | |
364 | void Mutex::Unlock() { |
365 | ThreadSafeLazyInit(); |
366 | // We don't protect writing to owner_thread_id_ here, as it's the |
367 | // caller's responsibility to ensure that the current thread holds the |
368 | // mutex when this is called. |
369 | owner_thread_id_ = 0; |
370 | ::LeaveCriticalSection(critical_section_); |
371 | } |
372 | |
373 | // Does nothing if the current thread holds the mutex. Otherwise, crashes |
374 | // with high probability. |
375 | void Mutex::AssertHeld() { |
376 | ThreadSafeLazyInit(); |
377 | GTEST_CHECK_(owner_thread_id_ == ::GetCurrentThreadId()) |
378 | << "The current thread is not holding the mutex @" << this; |
379 | } |
380 | |
381 | namespace { |
382 | |
383 | #ifdef _MSC_VER |
384 | // Use the RAII idiom to flag mem allocs that are intentionally never |
385 | // deallocated. The motivation is to silence the false positive mem leaks |
386 | // that are reported by the debug version of MS's CRT which can only detect |
387 | // if an alloc is missing a matching deallocation. |
388 | // Example: |
389 | // MemoryIsNotDeallocated memory_is_not_deallocated; |
390 | // critical_section_ = new CRITICAL_SECTION; |
391 | // |
392 | class MemoryIsNotDeallocated |
393 | { |
394 | public: |
395 | MemoryIsNotDeallocated() : old_crtdbg_flag_(0) { |
396 | old_crtdbg_flag_ = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG); |
397 | // Set heap allocation block type to _IGNORE_BLOCK so that MS debug CRT |
398 | // doesn't report mem leak if there's no matching deallocation. |
399 | _CrtSetDbgFlag(old_crtdbg_flag_ & ~_CRTDBG_ALLOC_MEM_DF); |
400 | } |
401 | |
402 | ~MemoryIsNotDeallocated() { |
403 | // Restore the original _CRTDBG_ALLOC_MEM_DF flag |
404 | _CrtSetDbgFlag(old_crtdbg_flag_); |
405 | } |
406 | |
407 | private: |
408 | int old_crtdbg_flag_; |
409 | |
410 | GTEST_DISALLOW_COPY_AND_ASSIGN_(MemoryIsNotDeallocated); |
411 | }; |
412 | #endif // _MSC_VER |
413 | |
414 | } // namespace |
415 | |
416 | // Initializes owner_thread_id_ and critical_section_ in static mutexes. |
417 | void Mutex::ThreadSafeLazyInit() { |
418 | // Dynamic mutexes are initialized in the constructor. |
419 | if (type_ == kStatic) { |
420 | switch ( |
421 | ::InterlockedCompareExchange(&critical_section_init_phase_, 1L, 0L)) { |
422 | case 0: |
423 | // If critical_section_init_phase_ was 0 before the exchange, we |
424 | // are the first to test it and need to perform the initialization. |
425 | owner_thread_id_ = 0; |
426 | { |
427 | // Use RAII to flag that following mem alloc is never deallocated. |
428 | #ifdef _MSC_VER |
429 | MemoryIsNotDeallocated memory_is_not_deallocated; |
430 | #endif // _MSC_VER |
431 | critical_section_ = new CRITICAL_SECTION; |
432 | } |
433 | ::InitializeCriticalSection(critical_section_); |
434 | // Updates the critical_section_init_phase_ to 2 to signal |
435 | // initialization complete. |
436 | GTEST_CHECK_(::InterlockedCompareExchange( |
437 | &critical_section_init_phase_, 2L, 1L) == |
438 | 1L); |
439 | break; |
440 | case 1: |
441 | // Somebody else is already initializing the mutex; spin until they |
442 | // are done. |
443 | while (::InterlockedCompareExchange(&critical_section_init_phase_, |
444 | 2L, |
445 | 2L) != 2L) { |
446 | // Possibly yields the rest of the thread's time slice to other |
447 | // threads. |
448 | ::Sleep(0); |
449 | } |
450 | break; |
451 | |
452 | case 2: |
453 | break; // The mutex is already initialized and ready for use. |
454 | |
455 | default: |
456 | GTEST_CHECK_(false) |
457 | << "Unexpected value of critical_section_init_phase_ " |
458 | << "while initializing a static mutex." ; |
459 | } |
460 | } |
461 | } |
462 | |
463 | namespace { |
464 | |
465 | class ThreadWithParamSupport : public ThreadWithParamBase { |
466 | public: |
467 | static HANDLE CreateThread(Runnable* runnable, |
468 | Notification* thread_can_start) { |
469 | ThreadMainParam* param = new ThreadMainParam(runnable, thread_can_start); |
470 | DWORD thread_id; |
471 | HANDLE thread_handle = ::CreateThread( |
472 | nullptr, // Default security. |
473 | 0, // Default stack size. |
474 | &ThreadWithParamSupport::ThreadMain, |
475 | param, // Parameter to ThreadMainStatic |
476 | 0x0, // Default creation flags. |
477 | &thread_id); // Need a valid pointer for the call to work under Win98. |
478 | GTEST_CHECK_(thread_handle != nullptr) |
479 | << "CreateThread failed with error " << ::GetLastError() << "." ; |
480 | if (thread_handle == nullptr) { |
481 | delete param; |
482 | } |
483 | return thread_handle; |
484 | } |
485 | |
486 | private: |
487 | struct ThreadMainParam { |
488 | ThreadMainParam(Runnable* runnable, Notification* thread_can_start) |
489 | : runnable_(runnable), |
490 | thread_can_start_(thread_can_start) { |
491 | } |
492 | std::unique_ptr<Runnable> runnable_; |
493 | // Does not own. |
494 | Notification* thread_can_start_; |
495 | }; |
496 | |
497 | static DWORD WINAPI ThreadMain(void* ptr) { |
498 | // Transfers ownership. |
499 | std::unique_ptr<ThreadMainParam> param(static_cast<ThreadMainParam*>(ptr)); |
500 | if (param->thread_can_start_ != nullptr) |
501 | param->thread_can_start_->WaitForNotification(); |
502 | param->runnable_->Run(); |
503 | return 0; |
504 | } |
505 | |
506 | // Prohibit instantiation. |
507 | ThreadWithParamSupport(); |
508 | |
509 | GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParamSupport); |
510 | }; |
511 | |
512 | } // namespace |
513 | |
514 | ThreadWithParamBase::ThreadWithParamBase(Runnable *runnable, |
515 | Notification* thread_can_start) |
516 | : thread_(ThreadWithParamSupport::CreateThread(runnable, |
517 | thread_can_start)) { |
518 | } |
519 | |
520 | ThreadWithParamBase::~ThreadWithParamBase() { |
521 | Join(); |
522 | } |
523 | |
524 | void ThreadWithParamBase::Join() { |
525 | GTEST_CHECK_(::WaitForSingleObject(thread_.Get(), INFINITE) == WAIT_OBJECT_0) |
526 | << "Failed to join the thread with error " << ::GetLastError() << "." ; |
527 | } |
528 | |
529 | // Maps a thread to a set of ThreadIdToThreadLocals that have values |
530 | // instantiated on that thread and notifies them when the thread exits. A |
531 | // ThreadLocal instance is expected to persist until all threads it has |
532 | // values on have terminated. |
533 | class ThreadLocalRegistryImpl { |
534 | public: |
535 | // Registers thread_local_instance as having value on the current thread. |
536 | // Returns a value that can be used to identify the thread from other threads. |
537 | static ThreadLocalValueHolderBase* GetValueOnCurrentThread( |
538 | const ThreadLocalBase* thread_local_instance) { |
539 | DWORD current_thread = ::GetCurrentThreadId(); |
540 | MutexLock lock(&mutex_); |
541 | ThreadIdToThreadLocals* const thread_to_thread_locals = |
542 | GetThreadLocalsMapLocked(); |
543 | ThreadIdToThreadLocals::iterator thread_local_pos = |
544 | thread_to_thread_locals->find(current_thread); |
545 | if (thread_local_pos == thread_to_thread_locals->end()) { |
546 | thread_local_pos = thread_to_thread_locals->insert( |
547 | std::make_pair(current_thread, ThreadLocalValues())).first; |
548 | StartWatcherThreadFor(current_thread); |
549 | } |
550 | ThreadLocalValues& thread_local_values = thread_local_pos->second; |
551 | ThreadLocalValues::iterator value_pos = |
552 | thread_local_values.find(thread_local_instance); |
553 | if (value_pos == thread_local_values.end()) { |
554 | value_pos = |
555 | thread_local_values |
556 | .insert(std::make_pair( |
557 | thread_local_instance, |
558 | std::shared_ptr<ThreadLocalValueHolderBase>( |
559 | thread_local_instance->NewValueForCurrentThread()))) |
560 | .first; |
561 | } |
562 | return value_pos->second.get(); |
563 | } |
564 | |
565 | static void OnThreadLocalDestroyed( |
566 | const ThreadLocalBase* thread_local_instance) { |
567 | std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders; |
568 | // Clean up the ThreadLocalValues data structure while holding the lock, but |
569 | // defer the destruction of the ThreadLocalValueHolderBases. |
570 | { |
571 | MutexLock lock(&mutex_); |
572 | ThreadIdToThreadLocals* const thread_to_thread_locals = |
573 | GetThreadLocalsMapLocked(); |
574 | for (ThreadIdToThreadLocals::iterator it = |
575 | thread_to_thread_locals->begin(); |
576 | it != thread_to_thread_locals->end(); |
577 | ++it) { |
578 | ThreadLocalValues& thread_local_values = it->second; |
579 | ThreadLocalValues::iterator value_pos = |
580 | thread_local_values.find(thread_local_instance); |
581 | if (value_pos != thread_local_values.end()) { |
582 | value_holders.push_back(value_pos->second); |
583 | thread_local_values.erase(value_pos); |
584 | // This 'if' can only be successful at most once, so theoretically we |
585 | // could break out of the loop here, but we don't bother doing so. |
586 | } |
587 | } |
588 | } |
589 | // Outside the lock, let the destructor for 'value_holders' deallocate the |
590 | // ThreadLocalValueHolderBases. |
591 | } |
592 | |
593 | static void OnThreadExit(DWORD thread_id) { |
594 | GTEST_CHECK_(thread_id != 0) << ::GetLastError(); |
595 | std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders; |
596 | // Clean up the ThreadIdToThreadLocals data structure while holding the |
597 | // lock, but defer the destruction of the ThreadLocalValueHolderBases. |
598 | { |
599 | MutexLock lock(&mutex_); |
600 | ThreadIdToThreadLocals* const thread_to_thread_locals = |
601 | GetThreadLocalsMapLocked(); |
602 | ThreadIdToThreadLocals::iterator thread_local_pos = |
603 | thread_to_thread_locals->find(thread_id); |
604 | if (thread_local_pos != thread_to_thread_locals->end()) { |
605 | ThreadLocalValues& thread_local_values = thread_local_pos->second; |
606 | for (ThreadLocalValues::iterator value_pos = |
607 | thread_local_values.begin(); |
608 | value_pos != thread_local_values.end(); |
609 | ++value_pos) { |
610 | value_holders.push_back(value_pos->second); |
611 | } |
612 | thread_to_thread_locals->erase(thread_local_pos); |
613 | } |
614 | } |
615 | // Outside the lock, let the destructor for 'value_holders' deallocate the |
616 | // ThreadLocalValueHolderBases. |
617 | } |
618 | |
619 | private: |
620 | // In a particular thread, maps a ThreadLocal object to its value. |
621 | typedef std::map<const ThreadLocalBase*, |
622 | std::shared_ptr<ThreadLocalValueHolderBase> > |
623 | ThreadLocalValues; |
624 | // Stores all ThreadIdToThreadLocals having values in a thread, indexed by |
625 | // thread's ID. |
626 | typedef std::map<DWORD, ThreadLocalValues> ThreadIdToThreadLocals; |
627 | |
628 | // Holds the thread id and thread handle that we pass from |
629 | // StartWatcherThreadFor to WatcherThreadFunc. |
630 | typedef std::pair<DWORD, HANDLE> ThreadIdAndHandle; |
631 | |
632 | static void StartWatcherThreadFor(DWORD thread_id) { |
633 | // The returned handle will be kept in thread_map and closed by |
634 | // watcher_thread in WatcherThreadFunc. |
635 | HANDLE thread = ::OpenThread(SYNCHRONIZE | THREAD_QUERY_INFORMATION, |
636 | FALSE, |
637 | thread_id); |
638 | GTEST_CHECK_(thread != nullptr); |
639 | // We need to pass a valid thread ID pointer into CreateThread for it |
640 | // to work correctly under Win98. |
641 | DWORD watcher_thread_id; |
642 | HANDLE watcher_thread = ::CreateThread( |
643 | nullptr, // Default security. |
644 | 0, // Default stack size |
645 | &ThreadLocalRegistryImpl::WatcherThreadFunc, |
646 | reinterpret_cast<LPVOID>(new ThreadIdAndHandle(thread_id, thread)), |
647 | CREATE_SUSPENDED, &watcher_thread_id); |
648 | GTEST_CHECK_(watcher_thread != nullptr); |
649 | // Give the watcher thread the same priority as ours to avoid being |
650 | // blocked by it. |
651 | ::SetThreadPriority(watcher_thread, |
652 | ::GetThreadPriority(::GetCurrentThread())); |
653 | ::ResumeThread(watcher_thread); |
654 | ::CloseHandle(watcher_thread); |
655 | } |
656 | |
657 | // Monitors exit from a given thread and notifies those |
658 | // ThreadIdToThreadLocals about thread termination. |
659 | static DWORD WINAPI WatcherThreadFunc(LPVOID param) { |
660 | const ThreadIdAndHandle* tah = |
661 | reinterpret_cast<const ThreadIdAndHandle*>(param); |
662 | GTEST_CHECK_( |
663 | ::WaitForSingleObject(tah->second, INFINITE) == WAIT_OBJECT_0); |
664 | OnThreadExit(tah->first); |
665 | ::CloseHandle(tah->second); |
666 | delete tah; |
667 | return 0; |
668 | } |
669 | |
670 | // Returns map of thread local instances. |
671 | static ThreadIdToThreadLocals* GetThreadLocalsMapLocked() { |
672 | mutex_.AssertHeld(); |
673 | #ifdef _MSC_VER |
674 | MemoryIsNotDeallocated memory_is_not_deallocated; |
675 | #endif // _MSC_VER |
676 | static ThreadIdToThreadLocals* map = new ThreadIdToThreadLocals(); |
677 | return map; |
678 | } |
679 | |
680 | // Protects access to GetThreadLocalsMapLocked() and its return value. |
681 | static Mutex mutex_; |
682 | // Protects access to GetThreadMapLocked() and its return value. |
683 | static Mutex thread_map_mutex_; |
684 | }; |
685 | |
686 | Mutex ThreadLocalRegistryImpl::mutex_(Mutex::kStaticMutex); |
687 | Mutex ThreadLocalRegistryImpl::thread_map_mutex_(Mutex::kStaticMutex); |
688 | |
689 | ThreadLocalValueHolderBase* ThreadLocalRegistry::GetValueOnCurrentThread( |
690 | const ThreadLocalBase* thread_local_instance) { |
691 | return ThreadLocalRegistryImpl::GetValueOnCurrentThread( |
692 | thread_local_instance); |
693 | } |
694 | |
695 | void ThreadLocalRegistry::OnThreadLocalDestroyed( |
696 | const ThreadLocalBase* thread_local_instance) { |
697 | ThreadLocalRegistryImpl::OnThreadLocalDestroyed(thread_local_instance); |
698 | } |
699 | |
700 | #endif // GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS |
701 | |
702 | #if GTEST_USES_POSIX_RE |
703 | |
704 | // Implements RE. Currently only needed for death tests. |
705 | |
706 | RE::~RE() { |
707 | if (is_valid_) { |
708 | // regfree'ing an invalid regex might crash because the content |
709 | // of the regex is undefined. Since the regex's are essentially |
710 | // the same, one cannot be valid (or invalid) without the other |
711 | // being so too. |
712 | regfree(&partial_regex_); |
713 | regfree(&full_regex_); |
714 | } |
715 | free(const_cast<char*>(pattern_)); |
716 | } |
717 | |
718 | // Returns true iff regular expression re matches the entire str. |
719 | bool RE::FullMatch(const char* str, const RE& re) { |
720 | if (!re.is_valid_) return false; |
721 | |
722 | regmatch_t match; |
723 | return regexec(&re.full_regex_, str, 1, &match, 0) == 0; |
724 | } |
725 | |
726 | // Returns true iff regular expression re matches a substring of str |
727 | // (including str itself). |
728 | bool RE::PartialMatch(const char* str, const RE& re) { |
729 | if (!re.is_valid_) return false; |
730 | |
731 | regmatch_t match; |
732 | return regexec(&re.partial_regex_, str, 1, &match, 0) == 0; |
733 | } |
734 | |
735 | // Initializes an RE from its string representation. |
736 | void RE::Init(const char* regex) { |
737 | pattern_ = posix::StrDup(regex); |
738 | |
739 | // Reserves enough bytes to hold the regular expression used for a |
740 | // full match. |
741 | const size_t full_regex_len = strlen(regex) + 10; |
742 | char* const full_pattern = new char[full_regex_len]; |
743 | |
744 | snprintf(full_pattern, full_regex_len, "^(%s)$" , regex); |
745 | is_valid_ = regcomp(&full_regex_, full_pattern, REG_EXTENDED) == 0; |
746 | // We want to call regcomp(&partial_regex_, ...) even if the |
747 | // previous expression returns false. Otherwise partial_regex_ may |
748 | // not be properly initialized can may cause trouble when it's |
749 | // freed. |
750 | // |
751 | // Some implementation of POSIX regex (e.g. on at least some |
752 | // versions of Cygwin) doesn't accept the empty string as a valid |
753 | // regex. We change it to an equivalent form "()" to be safe. |
754 | if (is_valid_) { |
755 | const char* const partial_regex = (*regex == '\0') ? "()" : regex; |
756 | is_valid_ = regcomp(&partial_regex_, partial_regex, REG_EXTENDED) == 0; |
757 | } |
758 | EXPECT_TRUE(is_valid_) |
759 | << "Regular expression \"" << regex |
760 | << "\" is not a valid POSIX Extended regular expression." ; |
761 | |
762 | delete[] full_pattern; |
763 | } |
764 | |
765 | #elif GTEST_USES_SIMPLE_RE |
766 | |
767 | // Returns true iff ch appears anywhere in str (excluding the |
768 | // terminating '\0' character). |
769 | bool IsInSet(char ch, const char* str) { |
770 | return ch != '\0' && strchr(str, ch) != nullptr; |
771 | } |
772 | |
773 | // Returns true iff ch belongs to the given classification. Unlike |
774 | // similar functions in <ctype.h>, these aren't affected by the |
775 | // current locale. |
776 | bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; } |
777 | bool IsAsciiPunct(char ch) { |
778 | return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~" ); |
779 | } |
780 | bool IsRepeat(char ch) { return IsInSet(ch, "?*+" ); } |
781 | bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v" ); } |
782 | bool IsAsciiWordChar(char ch) { |
783 | return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') || |
784 | ('0' <= ch && ch <= '9') || ch == '_'; |
785 | } |
786 | |
787 | // Returns true iff "\\c" is a supported escape sequence. |
788 | bool IsValidEscape(char c) { |
789 | return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW" )); |
790 | } |
791 | |
792 | // Returns true iff the given atom (specified by escaped and pattern) |
793 | // matches ch. The result is undefined if the atom is invalid. |
794 | bool AtomMatchesChar(bool escaped, char pattern_char, char ch) { |
795 | if (escaped) { // "\\p" where p is pattern_char. |
796 | switch (pattern_char) { |
797 | case 'd': return IsAsciiDigit(ch); |
798 | case 'D': return !IsAsciiDigit(ch); |
799 | case 'f': return ch == '\f'; |
800 | case 'n': return ch == '\n'; |
801 | case 'r': return ch == '\r'; |
802 | case 's': return IsAsciiWhiteSpace(ch); |
803 | case 'S': return !IsAsciiWhiteSpace(ch); |
804 | case 't': return ch == '\t'; |
805 | case 'v': return ch == '\v'; |
806 | case 'w': return IsAsciiWordChar(ch); |
807 | case 'W': return !IsAsciiWordChar(ch); |
808 | } |
809 | return IsAsciiPunct(pattern_char) && pattern_char == ch; |
810 | } |
811 | |
812 | return (pattern_char == '.' && ch != '\n') || pattern_char == ch; |
813 | } |
814 | |
815 | // Helper function used by ValidateRegex() to format error messages. |
816 | static std::string FormatRegexSyntaxError(const char* regex, int index) { |
817 | return (Message() << "Syntax error at index " << index |
818 | << " in simple regular expression \"" << regex << "\": " ).GetString(); |
819 | } |
820 | |
821 | // Generates non-fatal failures and returns false if regex is invalid; |
822 | // otherwise returns true. |
823 | bool ValidateRegex(const char* regex) { |
824 | if (regex == nullptr) { |
825 | ADD_FAILURE() << "NULL is not a valid simple regular expression." ; |
826 | return false; |
827 | } |
828 | |
829 | bool is_valid = true; |
830 | |
831 | // True iff ?, *, or + can follow the previous atom. |
832 | bool prev_repeatable = false; |
833 | for (int i = 0; regex[i]; i++) { |
834 | if (regex[i] == '\\') { // An escape sequence |
835 | i++; |
836 | if (regex[i] == '\0') { |
837 | ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1) |
838 | << "'\\' cannot appear at the end." ; |
839 | return false; |
840 | } |
841 | |
842 | if (!IsValidEscape(regex[i])) { |
843 | ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1) |
844 | << "invalid escape sequence \"\\" << regex[i] << "\"." ; |
845 | is_valid = false; |
846 | } |
847 | prev_repeatable = true; |
848 | } else { // Not an escape sequence. |
849 | const char ch = regex[i]; |
850 | |
851 | if (ch == '^' && i > 0) { |
852 | ADD_FAILURE() << FormatRegexSyntaxError(regex, i) |
853 | << "'^' can only appear at the beginning." ; |
854 | is_valid = false; |
855 | } else if (ch == '$' && regex[i + 1] != '\0') { |
856 | ADD_FAILURE() << FormatRegexSyntaxError(regex, i) |
857 | << "'$' can only appear at the end." ; |
858 | is_valid = false; |
859 | } else if (IsInSet(ch, "()[]{}|" )) { |
860 | ADD_FAILURE() << FormatRegexSyntaxError(regex, i) |
861 | << "'" << ch << "' is unsupported." ; |
862 | is_valid = false; |
863 | } else if (IsRepeat(ch) && !prev_repeatable) { |
864 | ADD_FAILURE() << FormatRegexSyntaxError(regex, i) |
865 | << "'" << ch << "' can only follow a repeatable token." ; |
866 | is_valid = false; |
867 | } |
868 | |
869 | prev_repeatable = !IsInSet(ch, "^$?*+" ); |
870 | } |
871 | } |
872 | |
873 | return is_valid; |
874 | } |
875 | |
876 | // Matches a repeated regex atom followed by a valid simple regular |
877 | // expression. The regex atom is defined as c if escaped is false, |
878 | // or \c otherwise. repeat is the repetition meta character (?, *, |
879 | // or +). The behavior is undefined if str contains too many |
880 | // characters to be indexable by size_t, in which case the test will |
881 | // probably time out anyway. We are fine with this limitation as |
882 | // std::string has it too. |
883 | bool MatchRepetitionAndRegexAtHead( |
884 | bool escaped, char c, char repeat, const char* regex, |
885 | const char* str) { |
886 | const size_t min_count = (repeat == '+') ? 1 : 0; |
887 | const size_t max_count = (repeat == '?') ? 1 : |
888 | static_cast<size_t>(-1) - 1; |
889 | // We cannot call numeric_limits::max() as it conflicts with the |
890 | // max() macro on Windows. |
891 | |
892 | for (size_t i = 0; i <= max_count; ++i) { |
893 | // We know that the atom matches each of the first i characters in str. |
894 | if (i >= min_count && MatchRegexAtHead(regex, str + i)) { |
895 | // We have enough matches at the head, and the tail matches too. |
896 | // Since we only care about *whether* the pattern matches str |
897 | // (as opposed to *how* it matches), there is no need to find a |
898 | // greedy match. |
899 | return true; |
900 | } |
901 | if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i])) |
902 | return false; |
903 | } |
904 | return false; |
905 | } |
906 | |
907 | // Returns true iff regex matches a prefix of str. regex must be a |
908 | // valid simple regular expression and not start with "^", or the |
909 | // result is undefined. |
910 | bool MatchRegexAtHead(const char* regex, const char* str) { |
911 | if (*regex == '\0') // An empty regex matches a prefix of anything. |
912 | return true; |
913 | |
914 | // "$" only matches the end of a string. Note that regex being |
915 | // valid guarantees that there's nothing after "$" in it. |
916 | if (*regex == '$') |
917 | return *str == '\0'; |
918 | |
919 | // Is the first thing in regex an escape sequence? |
920 | const bool escaped = *regex == '\\'; |
921 | if (escaped) |
922 | ++regex; |
923 | if (IsRepeat(regex[1])) { |
924 | // MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so |
925 | // here's an indirect recursion. It terminates as the regex gets |
926 | // shorter in each recursion. |
927 | return MatchRepetitionAndRegexAtHead( |
928 | escaped, regex[0], regex[1], regex + 2, str); |
929 | } else { |
930 | // regex isn't empty, isn't "$", and doesn't start with a |
931 | // repetition. We match the first atom of regex with the first |
932 | // character of str and recurse. |
933 | return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) && |
934 | MatchRegexAtHead(regex + 1, str + 1); |
935 | } |
936 | } |
937 | |
938 | // Returns true iff regex matches any substring of str. regex must be |
939 | // a valid simple regular expression, or the result is undefined. |
940 | // |
941 | // The algorithm is recursive, but the recursion depth doesn't exceed |
942 | // the regex length, so we won't need to worry about running out of |
943 | // stack space normally. In rare cases the time complexity can be |
944 | // exponential with respect to the regex length + the string length, |
945 | // but usually it's must faster (often close to linear). |
946 | bool MatchRegexAnywhere(const char* regex, const char* str) { |
947 | if (regex == nullptr || str == nullptr) return false; |
948 | |
949 | if (*regex == '^') |
950 | return MatchRegexAtHead(regex + 1, str); |
951 | |
952 | // A successful match can be anywhere in str. |
953 | do { |
954 | if (MatchRegexAtHead(regex, str)) |
955 | return true; |
956 | } while (*str++ != '\0'); |
957 | return false; |
958 | } |
959 | |
960 | // Implements the RE class. |
961 | |
962 | RE::~RE() { |
963 | free(const_cast<char*>(pattern_)); |
964 | free(const_cast<char*>(full_pattern_)); |
965 | } |
966 | |
967 | // Returns true iff regular expression re matches the entire str. |
968 | bool RE::FullMatch(const char* str, const RE& re) { |
969 | return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_, str); |
970 | } |
971 | |
972 | // Returns true iff regular expression re matches a substring of str |
973 | // (including str itself). |
974 | bool RE::PartialMatch(const char* str, const RE& re) { |
975 | return re.is_valid_ && MatchRegexAnywhere(re.pattern_, str); |
976 | } |
977 | |
978 | // Initializes an RE from its string representation. |
979 | void RE::Init(const char* regex) { |
980 | pattern_ = full_pattern_ = nullptr; |
981 | if (regex != nullptr) { |
982 | pattern_ = posix::StrDup(regex); |
983 | } |
984 | |
985 | is_valid_ = ValidateRegex(regex); |
986 | if (!is_valid_) { |
987 | // No need to calculate the full pattern when the regex is invalid. |
988 | return; |
989 | } |
990 | |
991 | const size_t len = strlen(regex); |
992 | // Reserves enough bytes to hold the regular expression used for a |
993 | // full match: we need space to prepend a '^', append a '$', and |
994 | // terminate the string with '\0'. |
995 | char* buffer = static_cast<char*>(malloc(len + 3)); |
996 | full_pattern_ = buffer; |
997 | |
998 | if (*regex != '^') |
999 | *buffer++ = '^'; // Makes sure full_pattern_ starts with '^'. |
1000 | |
1001 | // We don't use snprintf or strncpy, as they trigger a warning when |
1002 | // compiled with VC++ 8.0. |
1003 | memcpy(buffer, regex, len); |
1004 | buffer += len; |
1005 | |
1006 | if (len == 0 || regex[len - 1] != '$') |
1007 | *buffer++ = '$'; // Makes sure full_pattern_ ends with '$'. |
1008 | |
1009 | *buffer = '\0'; |
1010 | } |
1011 | |
1012 | #endif // GTEST_USES_POSIX_RE |
1013 | |
1014 | const char kUnknownFile[] = "unknown file" ; |
1015 | |
1016 | // Formats a source file path and a line number as they would appear |
1017 | // in an error message from the compiler used to compile this code. |
1018 | GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) { |
1019 | const std::string file_name(file == nullptr ? kUnknownFile : file); |
1020 | |
1021 | if (line < 0) { |
1022 | return file_name + ":" ; |
1023 | } |
1024 | #ifdef _MSC_VER |
1025 | return file_name + "(" + StreamableToString(line) + "):" ; |
1026 | #else |
1027 | return file_name + ":" + StreamableToString(line) + ":" ; |
1028 | #endif // _MSC_VER |
1029 | } |
1030 | |
1031 | // Formats a file location for compiler-independent XML output. |
1032 | // Although this function is not platform dependent, we put it next to |
1033 | // FormatFileLocation in order to contrast the two functions. |
1034 | // Note that FormatCompilerIndependentFileLocation() does NOT append colon |
1035 | // to the file location it produces, unlike FormatFileLocation(). |
1036 | GTEST_API_ ::std::string FormatCompilerIndependentFileLocation( |
1037 | const char* file, int line) { |
1038 | const std::string file_name(file == nullptr ? kUnknownFile : file); |
1039 | |
1040 | if (line < 0) |
1041 | return file_name; |
1042 | else |
1043 | return file_name + ":" + StreamableToString(line); |
1044 | } |
1045 | |
1046 | GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line) |
1047 | : severity_(severity) { |
1048 | const char* const marker = |
1049 | severity == GTEST_INFO ? "[ INFO ]" : |
1050 | severity == GTEST_WARNING ? "[WARNING]" : |
1051 | severity == GTEST_ERROR ? "[ ERROR ]" : "[ FATAL ]" ; |
1052 | GetStream() << ::std::endl << marker << " " |
1053 | << FormatFileLocation(file, line).c_str() << ": " ; |
1054 | } |
1055 | |
1056 | // Flushes the buffers and, if severity is GTEST_FATAL, aborts the program. |
1057 | GTestLog::~GTestLog() { |
1058 | GetStream() << ::std::endl; |
1059 | if (severity_ == GTEST_FATAL) { |
1060 | fflush(stderr); |
1061 | posix::Abort(); |
1062 | } |
1063 | } |
1064 | |
1065 | // Disable Microsoft deprecation warnings for POSIX functions called from |
1066 | // this class (creat, dup, dup2, and close) |
1067 | GTEST_DISABLE_MSC_DEPRECATED_PUSH_() |
1068 | |
1069 | #if GTEST_HAS_STREAM_REDIRECTION |
1070 | |
1071 | // Object that captures an output stream (stdout/stderr). |
1072 | class CapturedStream { |
1073 | public: |
1074 | // The ctor redirects the stream to a temporary file. |
1075 | explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) { |
1076 | # if GTEST_OS_WINDOWS |
1077 | char temp_dir_path[MAX_PATH + 1] = { '\0' }; // NOLINT |
1078 | char temp_file_path[MAX_PATH + 1] = { '\0' }; // NOLINT |
1079 | |
1080 | ::GetTempPathA(sizeof(temp_dir_path), temp_dir_path); |
1081 | const UINT success = ::GetTempFileNameA(temp_dir_path, |
1082 | "gtest_redir" , |
1083 | 0, // Generate unique file name. |
1084 | temp_file_path); |
1085 | GTEST_CHECK_(success != 0) |
1086 | << "Unable to create a temporary file in " << temp_dir_path; |
1087 | const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE); |
1088 | GTEST_CHECK_(captured_fd != -1) << "Unable to open temporary file " |
1089 | << temp_file_path; |
1090 | filename_ = temp_file_path; |
1091 | # else |
1092 | // There's no guarantee that a test has write access to the current |
1093 | // directory, so we create the temporary file in the /tmp directory |
1094 | // instead. We use /tmp on most systems, and /sdcard on Android. |
1095 | // That's because Android doesn't have /tmp. |
1096 | # if GTEST_OS_LINUX_ANDROID |
1097 | // Note: Android applications are expected to call the framework's |
1098 | // Context.getExternalStorageDirectory() method through JNI to get |
1099 | // the location of the world-writable SD Card directory. However, |
1100 | // this requires a Context handle, which cannot be retrieved |
1101 | // globally from native code. Doing so also precludes running the |
1102 | // code as part of a regular standalone executable, which doesn't |
1103 | // run in a Dalvik process (e.g. when running it through 'adb shell'). |
1104 | // |
1105 | // The location /sdcard is directly accessible from native code |
1106 | // and is the only location (unofficially) supported by the Android |
1107 | // team. It's generally a symlink to the real SD Card mount point |
1108 | // which can be /mnt/sdcard, /mnt/sdcard0, /system/media/sdcard, or |
1109 | // other OEM-customized locations. Never rely on these, and always |
1110 | // use /sdcard. |
1111 | char name_template[] = "/sdcard/gtest_captured_stream.XXXXXX" ; |
1112 | # else |
1113 | char name_template[] = "/tmp/captured_stream.XXXXXX" ; |
1114 | # endif // GTEST_OS_LINUX_ANDROID |
1115 | const int captured_fd = mkstemp(name_template); |
1116 | if (captured_fd == -1) { |
1117 | GTEST_LOG_(WARNING) |
1118 | << "Failed to create tmp file " << name_template |
1119 | << " for test; does the test have access to the /tmp directory?" ; |
1120 | } |
1121 | filename_ = name_template; |
1122 | # endif // GTEST_OS_WINDOWS |
1123 | fflush(nullptr); |
1124 | dup2(captured_fd, fd_); |
1125 | close(captured_fd); |
1126 | } |
1127 | |
1128 | ~CapturedStream() { |
1129 | remove(filename_.c_str()); |
1130 | } |
1131 | |
1132 | std::string GetCapturedString() { |
1133 | if (uncaptured_fd_ != -1) { |
1134 | // Restores the original stream. |
1135 | fflush(nullptr); |
1136 | dup2(uncaptured_fd_, fd_); |
1137 | close(uncaptured_fd_); |
1138 | uncaptured_fd_ = -1; |
1139 | } |
1140 | |
1141 | FILE* const file = posix::FOpen(filename_.c_str(), "r" ); |
1142 | if (file == nullptr) { |
1143 | GTEST_LOG_(FATAL) << "Failed to open tmp file " << filename_ |
1144 | << " for capturing stream." ; |
1145 | } |
1146 | const std::string content = ReadEntireFile(file); |
1147 | posix::FClose(file); |
1148 | return content; |
1149 | } |
1150 | |
1151 | private: |
1152 | const int fd_; // A stream to capture. |
1153 | int uncaptured_fd_; |
1154 | // Name of the temporary file holding the stderr output. |
1155 | ::std::string filename_; |
1156 | |
1157 | GTEST_DISALLOW_COPY_AND_ASSIGN_(CapturedStream); |
1158 | }; |
1159 | |
1160 | GTEST_DISABLE_MSC_DEPRECATED_POP_() |
1161 | |
1162 | static CapturedStream* g_captured_stderr = nullptr; |
1163 | static CapturedStream* g_captured_stdout = nullptr; |
1164 | |
1165 | // Starts capturing an output stream (stdout/stderr). |
1166 | static void CaptureStream(int fd, const char* stream_name, |
1167 | CapturedStream** stream) { |
1168 | if (*stream != nullptr) { |
1169 | GTEST_LOG_(FATAL) << "Only one " << stream_name |
1170 | << " capturer can exist at a time." ; |
1171 | } |
1172 | *stream = new CapturedStream(fd); |
1173 | } |
1174 | |
1175 | // Stops capturing the output stream and returns the captured string. |
1176 | static std::string GetCapturedStream(CapturedStream** captured_stream) { |
1177 | const std::string content = (*captured_stream)->GetCapturedString(); |
1178 | |
1179 | delete *captured_stream; |
1180 | *captured_stream = nullptr; |
1181 | |
1182 | return content; |
1183 | } |
1184 | |
1185 | // Starts capturing stdout. |
1186 | void CaptureStdout() { |
1187 | CaptureStream(kStdOutFileno, "stdout" , &g_captured_stdout); |
1188 | } |
1189 | |
1190 | // Starts capturing stderr. |
1191 | void CaptureStderr() { |
1192 | CaptureStream(kStdErrFileno, "stderr" , &g_captured_stderr); |
1193 | } |
1194 | |
1195 | // Stops capturing stdout and returns the captured string. |
1196 | std::string GetCapturedStdout() { |
1197 | return GetCapturedStream(&g_captured_stdout); |
1198 | } |
1199 | |
1200 | // Stops capturing stderr and returns the captured string. |
1201 | std::string GetCapturedStderr() { |
1202 | return GetCapturedStream(&g_captured_stderr); |
1203 | } |
1204 | |
1205 | #endif // GTEST_HAS_STREAM_REDIRECTION |
1206 | |
1207 | |
1208 | |
1209 | |
1210 | |
1211 | size_t GetFileSize(FILE* file) { |
1212 | fseek(file, 0, SEEK_END); |
1213 | return static_cast<size_t>(ftell(file)); |
1214 | } |
1215 | |
1216 | std::string ReadEntireFile(FILE* file) { |
1217 | const size_t file_size = GetFileSize(file); |
1218 | char* const buffer = new char[file_size]; |
1219 | |
1220 | size_t bytes_last_read = 0; // # of bytes read in the last fread() |
1221 | size_t bytes_read = 0; // # of bytes read so far |
1222 | |
1223 | fseek(file, 0, SEEK_SET); |
1224 | |
1225 | // Keeps reading the file until we cannot read further or the |
1226 | // pre-determined file size is reached. |
1227 | do { |
1228 | bytes_last_read = fread(buffer+bytes_read, 1, file_size-bytes_read, file); |
1229 | bytes_read += bytes_last_read; |
1230 | } while (bytes_last_read > 0 && bytes_read < file_size); |
1231 | |
1232 | const std::string content(buffer, bytes_read); |
1233 | delete[] buffer; |
1234 | |
1235 | return content; |
1236 | } |
1237 | |
1238 | #if GTEST_HAS_DEATH_TEST |
1239 | static const std::vector<std::string>* g_injected_test_argvs = |
1240 | nullptr; // Owned. |
1241 | |
1242 | std::vector<std::string> GetInjectableArgvs() { |
1243 | if (g_injected_test_argvs != nullptr) { |
1244 | return *g_injected_test_argvs; |
1245 | } |
1246 | return GetArgvs(); |
1247 | } |
1248 | |
1249 | void SetInjectableArgvs(const std::vector<std::string>* new_argvs) { |
1250 | if (g_injected_test_argvs != new_argvs) delete g_injected_test_argvs; |
1251 | g_injected_test_argvs = new_argvs; |
1252 | } |
1253 | |
1254 | void SetInjectableArgvs(const std::vector<std::string>& new_argvs) { |
1255 | SetInjectableArgvs( |
1256 | new std::vector<std::string>(new_argvs.begin(), new_argvs.end())); |
1257 | } |
1258 | |
1259 | void ClearInjectableArgvs() { |
1260 | delete g_injected_test_argvs; |
1261 | g_injected_test_argvs = nullptr; |
1262 | } |
1263 | #endif // GTEST_HAS_DEATH_TEST |
1264 | |
1265 | #if GTEST_OS_WINDOWS_MOBILE |
1266 | namespace posix { |
1267 | void Abort() { |
1268 | DebugBreak(); |
1269 | TerminateProcess(GetCurrentProcess(), 1); |
1270 | } |
1271 | } // namespace posix |
1272 | #endif // GTEST_OS_WINDOWS_MOBILE |
1273 | |
1274 | // Returns the name of the environment variable corresponding to the |
1275 | // given flag. For example, FlagToEnvVar("foo") will return |
1276 | // "GTEST_FOO" in the open-source version. |
1277 | static std::string FlagToEnvVar(const char* flag) { |
1278 | const std::string full_flag = |
1279 | (Message() << GTEST_FLAG_PREFIX_ << flag).GetString(); |
1280 | |
1281 | Message env_var; |
1282 | for (size_t i = 0; i != full_flag.length(); i++) { |
1283 | env_var << ToUpper(full_flag.c_str()[i]); |
1284 | } |
1285 | |
1286 | return env_var.GetString(); |
1287 | } |
1288 | |
1289 | // Parses 'str' for a 32-bit signed integer. If successful, writes |
1290 | // the result to *value and returns true; otherwise leaves *value |
1291 | // unchanged and returns false. |
1292 | bool ParseInt32(const Message& src_text, const char* str, Int32* value) { |
1293 | // Parses the environment variable as a decimal integer. |
1294 | char* end = nullptr; |
1295 | const long long_value = strtol(str, &end, 10); // NOLINT |
1296 | |
1297 | // Has strtol() consumed all characters in the string? |
1298 | if (*end != '\0') { |
1299 | // No - an invalid character was encountered. |
1300 | Message msg; |
1301 | msg << "WARNING: " << src_text |
1302 | << " is expected to be a 32-bit integer, but actually" |
1303 | << " has value \"" << str << "\".\n" ; |
1304 | printf("%s" , msg.GetString().c_str()); |
1305 | fflush(stdout); |
1306 | return false; |
1307 | } |
1308 | |
1309 | // Is the parsed value in the range of an Int32? |
1310 | const Int32 result = static_cast<Int32>(long_value); |
1311 | if (long_value == LONG_MAX || long_value == LONG_MIN || |
1312 | // The parsed value overflows as a long. (strtol() returns |
1313 | // LONG_MAX or LONG_MIN when the input overflows.) |
1314 | result != long_value |
1315 | // The parsed value overflows as an Int32. |
1316 | ) { |
1317 | Message msg; |
1318 | msg << "WARNING: " << src_text |
1319 | << " is expected to be a 32-bit integer, but actually" |
1320 | << " has value " << str << ", which overflows.\n" ; |
1321 | printf("%s" , msg.GetString().c_str()); |
1322 | fflush(stdout); |
1323 | return false; |
1324 | } |
1325 | |
1326 | *value = result; |
1327 | return true; |
1328 | } |
1329 | |
1330 | // Reads and returns the Boolean environment variable corresponding to |
1331 | // the given flag; if it's not set, returns default_value. |
1332 | // |
1333 | // The value is considered true iff it's not "0". |
1334 | bool BoolFromGTestEnv(const char* flag, bool default_value) { |
1335 | #if defined(GTEST_GET_BOOL_FROM_ENV_) |
1336 | return GTEST_GET_BOOL_FROM_ENV_(flag, default_value); |
1337 | #else |
1338 | const std::string env_var = FlagToEnvVar(flag); |
1339 | const char* const string_value = posix::GetEnv(env_var.c_str()); |
1340 | return string_value == nullptr ? default_value |
1341 | : strcmp(string_value, "0" ) != 0; |
1342 | #endif // defined(GTEST_GET_BOOL_FROM_ENV_) |
1343 | } |
1344 | |
1345 | // Reads and returns a 32-bit integer stored in the environment |
1346 | // variable corresponding to the given flag; if it isn't set or |
1347 | // doesn't represent a valid 32-bit integer, returns default_value. |
1348 | Int32 Int32FromGTestEnv(const char* flag, Int32 default_value) { |
1349 | #if defined(GTEST_GET_INT32_FROM_ENV_) |
1350 | return GTEST_GET_INT32_FROM_ENV_(flag, default_value); |
1351 | #else |
1352 | const std::string env_var = FlagToEnvVar(flag); |
1353 | const char* const string_value = posix::GetEnv(env_var.c_str()); |
1354 | if (string_value == nullptr) { |
1355 | // The environment variable is not set. |
1356 | return default_value; |
1357 | } |
1358 | |
1359 | Int32 result = default_value; |
1360 | if (!ParseInt32(Message() << "Environment variable " << env_var, |
1361 | string_value, &result)) { |
1362 | printf("The default value %s is used.\n" , |
1363 | (Message() << default_value).GetString().c_str()); |
1364 | fflush(stdout); |
1365 | return default_value; |
1366 | } |
1367 | |
1368 | return result; |
1369 | #endif // defined(GTEST_GET_INT32_FROM_ENV_) |
1370 | } |
1371 | |
1372 | // As a special case for the 'output' flag, if GTEST_OUTPUT is not |
1373 | // set, we look for XML_OUTPUT_FILE, which is set by the Bazel build |
1374 | // system. The value of XML_OUTPUT_FILE is a filename without the |
1375 | // "xml:" prefix of GTEST_OUTPUT. |
1376 | // Note that this is meant to be called at the call site so it does |
1377 | // not check that the flag is 'output' |
1378 | // In essence this checks an env variable called XML_OUTPUT_FILE |
1379 | // and if it is set we prepend "xml:" to its value, if it not set we return "" |
1380 | std::string OutputFlagAlsoCheckEnvVar(){ |
1381 | std::string default_value_for_output_flag = "" ; |
1382 | const char* xml_output_file_env = posix::GetEnv("XML_OUTPUT_FILE" ); |
1383 | if (nullptr != xml_output_file_env) { |
1384 | default_value_for_output_flag = std::string("xml:" ) + xml_output_file_env; |
1385 | } |
1386 | return default_value_for_output_flag; |
1387 | } |
1388 | |
1389 | // Reads and returns the string environment variable corresponding to |
1390 | // the given flag; if it's not set, returns default_value. |
1391 | const char* StringFromGTestEnv(const char* flag, const char* default_value) { |
1392 | #if defined(GTEST_GET_STRING_FROM_ENV_) |
1393 | return GTEST_GET_STRING_FROM_ENV_(flag, default_value); |
1394 | #else |
1395 | const std::string env_var = FlagToEnvVar(flag); |
1396 | const char* const value = posix::GetEnv(env_var.c_str()); |
1397 | return value == nullptr ? default_value : value; |
1398 | #endif // defined(GTEST_GET_STRING_FROM_ENV_) |
1399 | } |
1400 | |
1401 | } // namespace internal |
1402 | } // namespace testing |
1403 | |