1 | #include "string_util.h" |
2 | |
3 | #include <array> |
4 | #include <cmath> |
5 | #include <cstdarg> |
6 | #include <cstdio> |
7 | #include <memory> |
8 | #include <sstream> |
9 | |
10 | #include "arraysize.h" |
11 | |
12 | namespace benchmark { |
13 | namespace { |
14 | |
15 | // kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta. |
16 | const char kBigSIUnits[] = "kMGTPEZY" ; |
17 | // Kibi, Mebi, Gibi, Tebi, Pebi, Exbi, Zebi, Yobi. |
18 | const char kBigIECUnits[] = "KMGTPEZY" ; |
19 | // milli, micro, nano, pico, femto, atto, zepto, yocto. |
20 | const char kSmallSIUnits[] = "munpfazy" ; |
21 | |
22 | // We require that all three arrays have the same size. |
23 | static_assert(arraysize(kBigSIUnits) == arraysize(kBigIECUnits), |
24 | "SI and IEC unit arrays must be the same size" ); |
25 | static_assert(arraysize(kSmallSIUnits) == arraysize(kBigSIUnits), |
26 | "Small SI and Big SI unit arrays must be the same size" ); |
27 | |
28 | static const int64_t kUnitsSize = arraysize(kBigSIUnits); |
29 | |
30 | } // end anonymous namespace |
31 | |
32 | void ToExponentAndMantissa(double val, double thresh, int precision, |
33 | double one_k, std::string* mantissa, |
34 | int64_t* exponent) { |
35 | std::stringstream mantissa_stream; |
36 | |
37 | if (val < 0) { |
38 | mantissa_stream << "-" ; |
39 | val = -val; |
40 | } |
41 | |
42 | // Adjust threshold so that it never excludes things which can't be rendered |
43 | // in 'precision' digits. |
44 | const double adjusted_threshold = |
45 | std::max(thresh, 1.0 / std::pow(10.0, precision)); |
46 | const double big_threshold = adjusted_threshold * one_k; |
47 | const double small_threshold = adjusted_threshold; |
48 | |
49 | if (val > big_threshold) { |
50 | // Positive powers |
51 | double scaled = val; |
52 | for (size_t i = 0; i < arraysize(kBigSIUnits); ++i) { |
53 | scaled /= one_k; |
54 | if (scaled <= big_threshold) { |
55 | mantissa_stream << scaled; |
56 | *exponent = i + 1; |
57 | *mantissa = mantissa_stream.str(); |
58 | return; |
59 | } |
60 | } |
61 | mantissa_stream << val; |
62 | *exponent = 0; |
63 | } else if (val < small_threshold) { |
64 | // Negative powers |
65 | double scaled = val; |
66 | for (size_t i = 0; i < arraysize(kSmallSIUnits); ++i) { |
67 | scaled *= one_k; |
68 | if (scaled >= small_threshold) { |
69 | mantissa_stream << scaled; |
70 | *exponent = -static_cast<int64_t>(i + 1); |
71 | *mantissa = mantissa_stream.str(); |
72 | return; |
73 | } |
74 | } |
75 | mantissa_stream << val; |
76 | *exponent = 0; |
77 | } else { |
78 | mantissa_stream << val; |
79 | *exponent = 0; |
80 | } |
81 | *mantissa = mantissa_stream.str(); |
82 | } |
83 | |
84 | std::string ExponentToPrefix(int64_t exponent, bool iec) { |
85 | if (exponent == 0) return "" ; |
86 | |
87 | const int64_t index = (exponent > 0 ? exponent - 1 : -exponent - 1); |
88 | if (index >= kUnitsSize) return "" ; |
89 | |
90 | const char* array = |
91 | (exponent > 0 ? (iec ? kBigIECUnits : kBigSIUnits) : kSmallSIUnits); |
92 | if (iec) |
93 | return array[index] + std::string("i" ); |
94 | else |
95 | return std::string(1, array[index]); |
96 | } |
97 | |
98 | std::string ToBinaryStringFullySpecified(double value, double threshold, |
99 | int precision) { |
100 | std::string mantissa; |
101 | int64_t exponent; |
102 | ToExponentAndMantissa(value, threshold, precision, 1024.0, &mantissa, |
103 | &exponent); |
104 | return mantissa + ExponentToPrefix(exponent, false); |
105 | } |
106 | |
107 | void AppendHumanReadable(int n, std::string* str) { |
108 | std::stringstream ss; |
109 | // Round down to the nearest SI prefix. |
110 | ss << ToBinaryStringFullySpecified(n, 1.0, 0); |
111 | *str += ss.str(); |
112 | } |
113 | |
114 | std::string HumanReadableNumber(double n) { |
115 | // 1.1 means that figures up to 1.1k should be shown with the next unit down; |
116 | // this softens edge effects. |
117 | // 1 means that we should show one decimal place of precision. |
118 | return ToBinaryStringFullySpecified(n, 1.1, 1); |
119 | } |
120 | |
121 | std::string StringPrintFImp(const char* msg, va_list args) { |
122 | // we might need a second shot at this, so pre-emptivly make a copy |
123 | va_list args_cp; |
124 | va_copy(args_cp, args); |
125 | |
126 | // TODO(ericwf): use std::array for first attempt to avoid one memory |
127 | // allocation guess what the size might be |
128 | std::array<char, 256> local_buff; |
129 | std::size_t size = local_buff.size(); |
130 | // 2015-10-08: vsnprintf is used instead of snd::vsnprintf due to a limitation |
131 | // in the android-ndk |
132 | auto ret = vsnprintf(local_buff.data(), size, msg, args_cp); |
133 | |
134 | va_end(args_cp); |
135 | |
136 | // handle empty expansion |
137 | if (ret == 0) return std::string{}; |
138 | if (static_cast<std::size_t>(ret) < size) |
139 | return std::string(local_buff.data()); |
140 | |
141 | // we did not provide a long enough buffer on our first attempt. |
142 | // add 1 to size to account for null-byte in size cast to prevent overflow |
143 | size = static_cast<std::size_t>(ret) + 1; |
144 | auto buff_ptr = std::unique_ptr<char[]>(new char[size]); |
145 | // 2015-10-08: vsnprintf is used instead of snd::vsnprintf due to a limitation |
146 | // in the android-ndk |
147 | ret = vsnprintf(buff_ptr.get(), size, msg, args); |
148 | return std::string(buff_ptr.get()); |
149 | } |
150 | |
151 | std::string StringPrintF(const char* format, ...) { |
152 | va_list args; |
153 | va_start(args, format); |
154 | std::string tmp = StringPrintFImp(format, args); |
155 | va_end(args); |
156 | return tmp; |
157 | } |
158 | |
159 | void ReplaceAll(std::string* str, const std::string& from, |
160 | const std::string& to) { |
161 | std::size_t start = 0; |
162 | while ((start = str->find(from, start)) != std::string::npos) { |
163 | str->replace(start, from.length(), to); |
164 | start += to.length(); |
165 | } |
166 | } |
167 | |
168 | } // end namespace benchmark |
169 | |