1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] */ |
56 | |
57 | // Altivec-optimized SHA1 in C. This is tested on ppc64le only. |
58 | // |
59 | // References: |
60 | // https://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1 |
61 | // http://arctic.org/~dean/crypto/sha1.html |
62 | // |
63 | // This code used the generic SHA-1 from OpenSSL as a basis and AltiVec |
64 | // optimisations were added on top. |
65 | |
66 | #include <openssl/sha.h> |
67 | |
68 | #if defined(OPENSSL_PPC64LE) |
69 | |
70 | #include <altivec.h> |
71 | |
72 | void sha1_block_data_order(uint32_t *state, const uint8_t *data, size_t num); |
73 | |
74 | static uint32_t rotate(uint32_t a, int n) { return (a << n) | (a >> (32 - n)); } |
75 | |
76 | typedef vector unsigned int vec_uint32_t; |
77 | typedef vector unsigned char vec_uint8_t; |
78 | |
79 | // Vector constants |
80 | static const vec_uint8_t k_swap_endianness = {3, 2, 1, 0, 7, 6, 5, 4, |
81 | 11, 10, 9, 8, 15, 14, 13, 12}; |
82 | |
83 | // Shift amounts for byte and bit shifts and rotations |
84 | static const vec_uint8_t k_4_bytes = {32, 32, 32, 32, 32, 32, 32, 32, |
85 | 32, 32, 32, 32, 32, 32, 32, 32}; |
86 | static const vec_uint8_t k_12_bytes = {96, 96, 96, 96, 96, 96, 96, 96, |
87 | 96, 96, 96, 96, 96, 96, 96, 96}; |
88 | |
89 | #define K_00_19 0x5a827999UL |
90 | #define K_20_39 0x6ed9eba1UL |
91 | #define K_40_59 0x8f1bbcdcUL |
92 | #define K_60_79 0xca62c1d6UL |
93 | |
94 | // Vector versions of the above. |
95 | static const vec_uint32_t K_00_19_x_4 = {K_00_19, K_00_19, K_00_19, K_00_19}; |
96 | static const vec_uint32_t K_20_39_x_4 = {K_20_39, K_20_39, K_20_39, K_20_39}; |
97 | static const vec_uint32_t K_40_59_x_4 = {K_40_59, K_40_59, K_40_59, K_40_59}; |
98 | static const vec_uint32_t K_60_79_x_4 = {K_60_79, K_60_79, K_60_79, K_60_79}; |
99 | |
100 | // vector message scheduling: compute message schedule for round i..i+3 where i |
101 | // is divisible by 4. We return the schedule w[i..i+3] as a vector. In |
102 | // addition, we also precompute sum w[i..+3] and an additive constant K. This |
103 | // is done to offload some computation of f() in the integer execution units. |
104 | // |
105 | // Byte shifting code below may not be correct for big-endian systems. |
106 | static vec_uint32_t sched_00_15(vec_uint32_t *pre_added, const void *data, |
107 | vec_uint32_t k) { |
108 | const vector unsigned char unaligned_data = |
109 | vec_vsx_ld(0, (const unsigned char*) data); |
110 | const vec_uint32_t v = (vec_uint32_t) unaligned_data; |
111 | const vec_uint32_t w = vec_perm(v, v, k_swap_endianness); |
112 | vec_st(w + k, 0, pre_added); |
113 | return w; |
114 | } |
115 | |
116 | // Compute w[i..i+3] using these steps for i in [16, 20, 24, 28] |
117 | // |
118 | // w'[i ] = (w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16]) <<< 1 |
119 | // w'[i+1] = (w[i-2] ^ w[i-7] ^ w[i-13] ^ w[i-15]) <<< 1 |
120 | // w'[i+2] = (w[i-1] ^ w[i-6] ^ w[i-12] ^ w[i-14]) <<< 1 |
121 | // w'[i+3] = ( 0 ^ w[i-5] ^ w[i-11] ^ w[i-13]) <<< 1 |
122 | // |
123 | // w[ i] = w'[ i] |
124 | // w[i+1] = w'[i+1] |
125 | // w[i+2] = w'[i+2] |
126 | // w[i+3] = w'[i+3] ^ (w'[i] <<< 1) |
127 | static vec_uint32_t sched_16_31(vec_uint32_t *pre_added, vec_uint32_t minus_4, |
128 | vec_uint32_t minus_8, vec_uint32_t minus_12, |
129 | vec_uint32_t minus_16, vec_uint32_t k) { |
130 | const vec_uint32_t minus_3 = vec_sro(minus_4, k_4_bytes); |
131 | const vec_uint32_t minus_14 = vec_sld((minus_12), (minus_16), 8); |
132 | const vec_uint32_t k_1_bit = vec_splat_u32(1); |
133 | const vec_uint32_t w_prime = |
134 | vec_rl(minus_3 ^ minus_8 ^ minus_14 ^ minus_16, k_1_bit); |
135 | const vec_uint32_t w = |
136 | w_prime ^ vec_rl(vec_slo(w_prime, k_12_bytes), k_1_bit); |
137 | vec_st(w + k, 0, pre_added); |
138 | return w; |
139 | } |
140 | |
141 | // Compute w[i..i+3] using this relation for i in [32, 36, 40 ... 76] |
142 | // w[i] = (w[i-6] ^ w[i-16] ^ w[i-28] ^ w[i-32]), 2) <<< 2 |
143 | static vec_uint32_t sched_32_79(vec_uint32_t *pre_added, vec_uint32_t minus_4, |
144 | vec_uint32_t minus_8, vec_uint32_t minus_16, |
145 | vec_uint32_t minus_28, vec_uint32_t minus_32, |
146 | vec_uint32_t k) { |
147 | const vec_uint32_t minus_6 = vec_sld(minus_4, minus_8, 8); |
148 | const vec_uint32_t k_2_bits = vec_splat_u32(2); |
149 | const vec_uint32_t w = |
150 | vec_rl(minus_6 ^ minus_16 ^ minus_28 ^ minus_32, k_2_bits); |
151 | vec_st(w + k, 0, pre_added); |
152 | return w; |
153 | } |
154 | |
155 | // As pointed out by Wei Dai <weidai@eskimo.com>, F() below can be simplified |
156 | // to the code in F_00_19. Wei attributes these optimisations to Peter |
157 | // Gutmann's SHS code, and he attributes it to Rich Schroeppel. #define |
158 | // F(x,y,z) (((x) & (y)) | ((~(x)) & (z))) I've just become aware of another |
159 | // tweak to be made, again from Wei Dai, in F_40_59, (x&a)|(y&a) -> (x|y)&a |
160 | #define F_00_19(b, c, d) ((((c) ^ (d)) & (b)) ^ (d)) |
161 | #define F_20_39(b, c, d) ((b) ^ (c) ^ (d)) |
162 | #define F_40_59(b, c, d) (((b) & (c)) | (((b) | (c)) & (d))) |
163 | #define F_60_79(b, c, d) F_20_39(b, c, d) |
164 | |
165 | // We pre-added the K constants during message scheduling. |
166 | #define BODY_00_19(i, a, b, c, d, e, f) \ |
167 | do { \ |
168 | (f) = w[i] + (e) + rotate((a), 5) + F_00_19((b), (c), (d)); \ |
169 | (b) = rotate((b), 30); \ |
170 | } while (0) |
171 | |
172 | #define BODY_20_39(i, a, b, c, d, e, f) \ |
173 | do { \ |
174 | (f) = w[i] + (e) + rotate((a), 5) + F_20_39((b), (c), (d)); \ |
175 | (b) = rotate((b), 30); \ |
176 | } while (0) |
177 | |
178 | #define BODY_40_59(i, a, b, c, d, e, f) \ |
179 | do { \ |
180 | (f) = w[i] + (e) + rotate((a), 5) + F_40_59((b), (c), (d)); \ |
181 | (b) = rotate((b), 30); \ |
182 | } while (0) |
183 | |
184 | #define BODY_60_79(i, a, b, c, d, e, f) \ |
185 | do { \ |
186 | (f) = w[i] + (e) + rotate((a), 5) + F_60_79((b), (c), (d)); \ |
187 | (b) = rotate((b), 30); \ |
188 | } while (0) |
189 | |
190 | void sha1_block_data_order(uint32_t *state, const uint8_t *data, size_t num) { |
191 | uint32_t A, B, C, D, E, T; |
192 | |
193 | A = state[0]; |
194 | B = state[1]; |
195 | C = state[2]; |
196 | D = state[3]; |
197 | E = state[4]; |
198 | |
199 | for (;;) { |
200 | vec_uint32_t vw[20]; |
201 | const uint32_t *w = (const uint32_t *)&vw; |
202 | |
203 | vec_uint32_t k = K_00_19_x_4; |
204 | const vec_uint32_t w0 = sched_00_15(vw + 0, data + 0, k); |
205 | BODY_00_19(0, A, B, C, D, E, T); |
206 | BODY_00_19(1, T, A, B, C, D, E); |
207 | BODY_00_19(2, E, T, A, B, C, D); |
208 | BODY_00_19(3, D, E, T, A, B, C); |
209 | |
210 | const vec_uint32_t w4 = sched_00_15(vw + 1, data + 16, k); |
211 | BODY_00_19(4, C, D, E, T, A, B); |
212 | BODY_00_19(5, B, C, D, E, T, A); |
213 | BODY_00_19(6, A, B, C, D, E, T); |
214 | BODY_00_19(7, T, A, B, C, D, E); |
215 | |
216 | const vec_uint32_t w8 = sched_00_15(vw + 2, data + 32, k); |
217 | BODY_00_19(8, E, T, A, B, C, D); |
218 | BODY_00_19(9, D, E, T, A, B, C); |
219 | BODY_00_19(10, C, D, E, T, A, B); |
220 | BODY_00_19(11, B, C, D, E, T, A); |
221 | |
222 | const vec_uint32_t w12 = sched_00_15(vw + 3, data + 48, k); |
223 | BODY_00_19(12, A, B, C, D, E, T); |
224 | BODY_00_19(13, T, A, B, C, D, E); |
225 | BODY_00_19(14, E, T, A, B, C, D); |
226 | BODY_00_19(15, D, E, T, A, B, C); |
227 | |
228 | const vec_uint32_t w16 = sched_16_31(vw + 4, w12, w8, w4, w0, k); |
229 | BODY_00_19(16, C, D, E, T, A, B); |
230 | BODY_00_19(17, B, C, D, E, T, A); |
231 | BODY_00_19(18, A, B, C, D, E, T); |
232 | BODY_00_19(19, T, A, B, C, D, E); |
233 | |
234 | k = K_20_39_x_4; |
235 | const vec_uint32_t w20 = sched_16_31(vw + 5, w16, w12, w8, w4, k); |
236 | BODY_20_39(20, E, T, A, B, C, D); |
237 | BODY_20_39(21, D, E, T, A, B, C); |
238 | BODY_20_39(22, C, D, E, T, A, B); |
239 | BODY_20_39(23, B, C, D, E, T, A); |
240 | |
241 | const vec_uint32_t w24 = sched_16_31(vw + 6, w20, w16, w12, w8, k); |
242 | BODY_20_39(24, A, B, C, D, E, T); |
243 | BODY_20_39(25, T, A, B, C, D, E); |
244 | BODY_20_39(26, E, T, A, B, C, D); |
245 | BODY_20_39(27, D, E, T, A, B, C); |
246 | |
247 | const vec_uint32_t w28 = sched_16_31(vw + 7, w24, w20, w16, w12, k); |
248 | BODY_20_39(28, C, D, E, T, A, B); |
249 | BODY_20_39(29, B, C, D, E, T, A); |
250 | BODY_20_39(30, A, B, C, D, E, T); |
251 | BODY_20_39(31, T, A, B, C, D, E); |
252 | |
253 | const vec_uint32_t w32 = sched_32_79(vw + 8, w28, w24, w16, w4, w0, k); |
254 | BODY_20_39(32, E, T, A, B, C, D); |
255 | BODY_20_39(33, D, E, T, A, B, C); |
256 | BODY_20_39(34, C, D, E, T, A, B); |
257 | BODY_20_39(35, B, C, D, E, T, A); |
258 | |
259 | const vec_uint32_t w36 = sched_32_79(vw + 9, w32, w28, w20, w8, w4, k); |
260 | BODY_20_39(36, A, B, C, D, E, T); |
261 | BODY_20_39(37, T, A, B, C, D, E); |
262 | BODY_20_39(38, E, T, A, B, C, D); |
263 | BODY_20_39(39, D, E, T, A, B, C); |
264 | |
265 | k = K_40_59_x_4; |
266 | const vec_uint32_t w40 = sched_32_79(vw + 10, w36, w32, w24, w12, w8, k); |
267 | BODY_40_59(40, C, D, E, T, A, B); |
268 | BODY_40_59(41, B, C, D, E, T, A); |
269 | BODY_40_59(42, A, B, C, D, E, T); |
270 | BODY_40_59(43, T, A, B, C, D, E); |
271 | |
272 | const vec_uint32_t w44 = sched_32_79(vw + 11, w40, w36, w28, w16, w12, k); |
273 | BODY_40_59(44, E, T, A, B, C, D); |
274 | BODY_40_59(45, D, E, T, A, B, C); |
275 | BODY_40_59(46, C, D, E, T, A, B); |
276 | BODY_40_59(47, B, C, D, E, T, A); |
277 | |
278 | const vec_uint32_t w48 = sched_32_79(vw + 12, w44, w40, w32, w20, w16, k); |
279 | BODY_40_59(48, A, B, C, D, E, T); |
280 | BODY_40_59(49, T, A, B, C, D, E); |
281 | BODY_40_59(50, E, T, A, B, C, D); |
282 | BODY_40_59(51, D, E, T, A, B, C); |
283 | |
284 | const vec_uint32_t w52 = sched_32_79(vw + 13, w48, w44, w36, w24, w20, k); |
285 | BODY_40_59(52, C, D, E, T, A, B); |
286 | BODY_40_59(53, B, C, D, E, T, A); |
287 | BODY_40_59(54, A, B, C, D, E, T); |
288 | BODY_40_59(55, T, A, B, C, D, E); |
289 | |
290 | const vec_uint32_t w56 = sched_32_79(vw + 14, w52, w48, w40, w28, w24, k); |
291 | BODY_40_59(56, E, T, A, B, C, D); |
292 | BODY_40_59(57, D, E, T, A, B, C); |
293 | BODY_40_59(58, C, D, E, T, A, B); |
294 | BODY_40_59(59, B, C, D, E, T, A); |
295 | |
296 | k = K_60_79_x_4; |
297 | const vec_uint32_t w60 = sched_32_79(vw + 15, w56, w52, w44, w32, w28, k); |
298 | BODY_60_79(60, A, B, C, D, E, T); |
299 | BODY_60_79(61, T, A, B, C, D, E); |
300 | BODY_60_79(62, E, T, A, B, C, D); |
301 | BODY_60_79(63, D, E, T, A, B, C); |
302 | |
303 | const vec_uint32_t w64 = sched_32_79(vw + 16, w60, w56, w48, w36, w32, k); |
304 | BODY_60_79(64, C, D, E, T, A, B); |
305 | BODY_60_79(65, B, C, D, E, T, A); |
306 | BODY_60_79(66, A, B, C, D, E, T); |
307 | BODY_60_79(67, T, A, B, C, D, E); |
308 | |
309 | const vec_uint32_t w68 = sched_32_79(vw + 17, w64, w60, w52, w40, w36, k); |
310 | BODY_60_79(68, E, T, A, B, C, D); |
311 | BODY_60_79(69, D, E, T, A, B, C); |
312 | BODY_60_79(70, C, D, E, T, A, B); |
313 | BODY_60_79(71, B, C, D, E, T, A); |
314 | |
315 | const vec_uint32_t w72 = sched_32_79(vw + 18, w68, w64, w56, w44, w40, k); |
316 | BODY_60_79(72, A, B, C, D, E, T); |
317 | BODY_60_79(73, T, A, B, C, D, E); |
318 | BODY_60_79(74, E, T, A, B, C, D); |
319 | BODY_60_79(75, D, E, T, A, B, C); |
320 | |
321 | // We don't use the last value |
322 | (void)sched_32_79(vw + 19, w72, w68, w60, w48, w44, k); |
323 | BODY_60_79(76, C, D, E, T, A, B); |
324 | BODY_60_79(77, B, C, D, E, T, A); |
325 | BODY_60_79(78, A, B, C, D, E, T); |
326 | BODY_60_79(79, T, A, B, C, D, E); |
327 | |
328 | const uint32_t mask = 0xffffffffUL; |
329 | state[0] = (state[0] + E) & mask; |
330 | state[1] = (state[1] + T) & mask; |
331 | state[2] = (state[2] + A) & mask; |
332 | state[3] = (state[3] + B) & mask; |
333 | state[4] = (state[4] + C) & mask; |
334 | |
335 | data += 64; |
336 | if (--num == 0) { |
337 | break; |
338 | } |
339 | |
340 | A = state[0]; |
341 | B = state[1]; |
342 | C = state[2]; |
343 | D = state[3]; |
344 | E = state[4]; |
345 | } |
346 | } |
347 | |
348 | #endif // OPENSSL_PPC64LE |
349 | |
350 | #undef K_00_19 |
351 | #undef K_20_39 |
352 | #undef K_40_59 |
353 | #undef K_60_79 |
354 | #undef F_00_19 |
355 | #undef F_20_39 |
356 | #undef F_40_59 |
357 | #undef F_60_79 |
358 | #undef BODY_00_19 |
359 | #undef BODY_20_39 |
360 | #undef BODY_40_59 |
361 | #undef BODY_60_79 |
362 | |