1/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57/* ====================================================================
58 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com). */
108
109#ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
110#define OPENSSL_HEADER_CRYPTO_INTERNAL_H
111
112#include <openssl/ex_data.h>
113#include <openssl/stack.h>
114#include <openssl/thread.h>
115
116#include <assert.h>
117#include <string.h>
118
119#if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
120#include <valgrind/memcheck.h>
121#endif
122
123#if !defined(__cplusplus)
124#if defined(_MSC_VER)
125#define alignas(x) __declspec(align(x))
126#define alignof __alignof
127#else
128#include <stdalign.h>
129#endif
130#endif
131
132#if defined(OPENSSL_THREADS) && \
133 (!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
134#include <pthread.h>
135#define OPENSSL_PTHREADS
136#endif
137
138#if defined(OPENSSL_THREADS) && !defined(OPENSSL_PTHREADS) && \
139 defined(OPENSSL_WINDOWS)
140#define OPENSSL_WINDOWS_THREADS
141OPENSSL_MSVC_PRAGMA(warning(push, 3))
142#include <windows.h>
143OPENSSL_MSVC_PRAGMA(warning(pop))
144#endif
145
146#if defined(__cplusplus)
147extern "C" {
148#endif
149
150
151#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
152 defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
153// OPENSSL_cpuid_setup initializes the platform-specific feature cache.
154void OPENSSL_cpuid_setup(void);
155#endif
156
157#if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \
158 !defined(OPENSSL_STATIC_ARMCAP)
159// OPENSSL_get_armcap_pointer_for_test returns a pointer to |OPENSSL_armcap_P|
160// for unit tests. Any modifications to the value must be made after
161// |CRYPTO_library_init| but before any other function call in BoringSSL.
162OPENSSL_EXPORT uint32_t *OPENSSL_get_armcap_pointer_for_test(void);
163#endif
164
165
166#if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT)
167#define BORINGSSL_HAS_UINT128
168typedef __int128_t int128_t;
169typedef __uint128_t uint128_t;
170
171// clang-cl supports __uint128_t but modulus and division don't work.
172// https://crbug.com/787617.
173#if !defined(_MSC_VER) || !defined(__clang__)
174#define BORINGSSL_CAN_DIVIDE_UINT128
175#endif
176#endif
177
178#define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
179
180// Have a generic fall-through for different versions of C/C++.
181#if defined(__cplusplus) && __cplusplus >= 201703L
182#define OPENSSL_FALLTHROUGH [[fallthrough]]
183#elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__clang__)
184#define OPENSSL_FALLTHROUGH [[clang::fallthrough]]
185#elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__GNUC__) && \
186 __GNUC__ >= 7
187#define OPENSSL_FALLTHROUGH [[gnu::fallthrough]]
188#elif defined(__GNUC__) && __GNUC__ >= 7 // gcc 7
189#define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
190#else // C++11 on gcc 6, and all other cases
191#define OPENSSL_FALLTHROUGH
192#endif
193
194// buffers_alias returns one if |a| and |b| alias and zero otherwise.
195static inline int buffers_alias(const uint8_t *a, size_t a_len,
196 const uint8_t *b, size_t b_len) {
197 // Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
198 // objects are undefined whereas pointer to integer conversions are merely
199 // implementation-defined. We assume the implementation defined it in a sane
200 // way.
201 uintptr_t a_u = (uintptr_t)a;
202 uintptr_t b_u = (uintptr_t)b;
203 return a_u + a_len > b_u && b_u + b_len > a_u;
204}
205
206
207// Constant-time utility functions.
208//
209// The following methods return a bitmask of all ones (0xff...f) for true and 0
210// for false. This is useful for choosing a value based on the result of a
211// conditional in constant time. For example,
212//
213// if (a < b) {
214// c = a;
215// } else {
216// c = b;
217// }
218//
219// can be written as
220//
221// crypto_word_t lt = constant_time_lt_w(a, b);
222// c = constant_time_select_w(lt, a, b);
223
224// crypto_word_t is the type that most constant-time functions use. Ideally we
225// would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
226// pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
227// bits. Since we want to be able to do constant-time operations on a
228// |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
229// word length.
230#if defined(OPENSSL_64_BIT)
231typedef uint64_t crypto_word_t;
232#elif defined(OPENSSL_32_BIT)
233typedef uint32_t crypto_word_t;
234#else
235#error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
236#endif
237
238#define CONSTTIME_TRUE_W ~((crypto_word_t)0)
239#define CONSTTIME_FALSE_W ((crypto_word_t)0)
240#define CONSTTIME_TRUE_8 ((uint8_t)0xff)
241#define CONSTTIME_FALSE_8 ((uint8_t)0)
242
243// value_barrier_w returns |a|, but prevents GCC and Clang from reasoning about
244// the returned value. This is used to mitigate compilers undoing constant-time
245// code, until we can express our requirements directly in the language.
246//
247// Note the compiler is aware that |value_barrier_w| has no side effects and
248// always has the same output for a given input. This allows it to eliminate
249// dead code, move computations across loops, and vectorize.
250static inline crypto_word_t value_barrier_w(crypto_word_t a) {
251#if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
252 __asm__("" : "+r"(a) : /* no inputs */);
253#endif
254 return a;
255}
256
257// value_barrier_u32 behaves like |value_barrier_w| but takes a |uint32_t|.
258static inline uint32_t value_barrier_u32(uint32_t a) {
259#if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
260 __asm__("" : "+r"(a) : /* no inputs */);
261#endif
262 return a;
263}
264
265// value_barrier_u64 behaves like |value_barrier_w| but takes a |uint64_t|.
266static inline uint64_t value_barrier_u64(uint64_t a) {
267#if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
268 __asm__("" : "+r"(a) : /* no inputs */);
269#endif
270 return a;
271}
272
273// constant_time_msb_w returns the given value with the MSB copied to all the
274// other bits.
275static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
276 return 0u - (a >> (sizeof(a) * 8 - 1));
277}
278
279// constant_time_lt_w returns 0xff..f if a < b and 0 otherwise.
280static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
281 crypto_word_t b) {
282 // Consider the two cases of the problem:
283 // msb(a) == msb(b): a < b iff the MSB of a - b is set.
284 // msb(a) != msb(b): a < b iff the MSB of b is set.
285 //
286 // If msb(a) == msb(b) then the following evaluates as:
287 // msb(a^((a^b)|((a-b)^a))) ==
288 // msb(a^((a-b) ^ a)) == (because msb(a^b) == 0)
289 // msb(a^a^(a-b)) == (rearranging)
290 // msb(a-b) (because ∀x. x^x == 0)
291 //
292 // Else, if msb(a) != msb(b) then the following evaluates as:
293 // msb(a^((a^b)|((a-b)^a))) ==
294 // msb(a^(𝟙 | ((a-b)^a))) == (because msb(a^b) == 1 and 𝟙
295 // represents a value s.t. msb(𝟙) = 1)
296 // msb(a^𝟙) == (because ORing with 1 results in 1)
297 // msb(b)
298 //
299 //
300 // Here is an SMT-LIB verification of this formula:
301 //
302 // (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
303 // (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
304 // )
305 //
306 // (declare-fun a () (_ BitVec 32))
307 // (declare-fun b () (_ BitVec 32))
308 //
309 // (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
310 // (check-sat)
311 // (get-model)
312 return constant_time_msb_w(a^((a^b)|((a-b)^a)));
313}
314
315// constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
316// mask.
317static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
318 return (uint8_t)(constant_time_lt_w(a, b));
319}
320
321// constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise.
322static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
323 crypto_word_t b) {
324 return ~constant_time_lt_w(a, b);
325}
326
327// constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
328// mask.
329static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
330 return (uint8_t)(constant_time_ge_w(a, b));
331}
332
333// constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise.
334static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
335 // Here is an SMT-LIB verification of this formula:
336 //
337 // (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
338 // (bvand (bvnot a) (bvsub a #x00000001))
339 // )
340 //
341 // (declare-fun a () (_ BitVec 32))
342 //
343 // (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
344 // (check-sat)
345 // (get-model)
346 return constant_time_msb_w(~a & (a - 1));
347}
348
349// constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
350// 8-bit mask.
351static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
352 return (uint8_t)(constant_time_is_zero_w(a));
353}
354
355// constant_time_eq_w returns 0xff..f if a == b and 0 otherwise.
356static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
357 crypto_word_t b) {
358 return constant_time_is_zero_w(a ^ b);
359}
360
361// constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
362// mask.
363static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
364 return (uint8_t)(constant_time_eq_w(a, b));
365}
366
367// constant_time_eq_int acts like |constant_time_eq_w| but works on int
368// values.
369static inline crypto_word_t constant_time_eq_int(int a, int b) {
370 return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
371}
372
373// constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
374// mask.
375static inline uint8_t constant_time_eq_int_8(int a, int b) {
376 return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
377}
378
379// constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
380// 1s or all 0s (as returned by the methods above), the select methods return
381// either |a| (if |mask| is nonzero) or |b| (if |mask| is zero).
382static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
383 crypto_word_t a,
384 crypto_word_t b) {
385 // Clang recognizes this pattern as a select. While it usually transforms it
386 // to a cmov, it sometimes further transforms it into a branch, which we do
387 // not want.
388 //
389 // Adding barriers to both |mask| and |~mask| breaks the relationship between
390 // the two, which makes the compiler stick with bitmasks.
391 return (value_barrier_w(mask) & a) | (value_barrier_w(~mask) & b);
392}
393
394// constant_time_select_8 acts like |constant_time_select| but operates on
395// 8-bit values.
396static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
397 uint8_t b) {
398 return (uint8_t)(constant_time_select_w(mask, a, b));
399}
400
401// constant_time_select_int acts like |constant_time_select| but operates on
402// ints.
403static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
404 return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
405 (crypto_word_t)(b)));
406}
407
408#if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
409
410// CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region
411// of memory as secret. Secret data is tracked as it flows to registers and
412// other parts of a memory. If secret data is used as a condition for a branch,
413// or as a memory index, it will trigger warnings in valgrind.
414#define CONSTTIME_SECRET(x, y) VALGRIND_MAKE_MEM_UNDEFINED(x, y)
415
416// CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that
417// region of memory as public. Public data is not subject to constant-time
418// rules.
419#define CONSTTIME_DECLASSIFY(x, y) VALGRIND_MAKE_MEM_DEFINED(x, y)
420
421#else
422
423#define CONSTTIME_SECRET(x, y)
424#define CONSTTIME_DECLASSIFY(x, y)
425
426#endif // BORINGSSL_CONSTANT_TIME_VALIDATION
427
428
429// Thread-safe initialisation.
430
431#if !defined(OPENSSL_THREADS)
432typedef uint32_t CRYPTO_once_t;
433#define CRYPTO_ONCE_INIT 0
434#elif defined(OPENSSL_WINDOWS_THREADS)
435typedef INIT_ONCE CRYPTO_once_t;
436#define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
437#elif defined(OPENSSL_PTHREADS)
438typedef pthread_once_t CRYPTO_once_t;
439#define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
440#else
441#error "Unknown threading library"
442#endif
443
444// CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
445// concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
446// then they will block until |init| completes, but |init| will have only been
447// called once.
448//
449// The |once| argument must be a |CRYPTO_once_t| that has been initialised with
450// the value |CRYPTO_ONCE_INIT|.
451OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
452
453
454// Reference counting.
455
456// CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates.
457#define CRYPTO_REFCOUNT_MAX 0xffffffff
458
459// CRYPTO_refcount_inc atomically increments the value at |*count| unless the
460// value would overflow. It's safe for multiple threads to concurrently call
461// this or |CRYPTO_refcount_dec_and_test_zero| on the same
462// |CRYPTO_refcount_t|.
463OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
464
465// CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
466// if it's zero, it crashes the address space.
467// if it's the maximum value, it returns zero.
468// otherwise, it atomically decrements it and returns one iff the resulting
469// value is zero.
470//
471// It's safe for multiple threads to concurrently call this or
472// |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|.
473OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
474
475
476// Locks.
477//
478// Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
479// structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
480// a global lock. A global lock must be initialised to the value
481// |CRYPTO_STATIC_MUTEX_INIT|.
482//
483// |CRYPTO_MUTEX| can appear in public structures and so is defined in
484// thread.h as a structure large enough to fit the real type. The global lock is
485// a different type so it may be initialized with platform initializer macros.
486
487#if !defined(OPENSSL_THREADS)
488struct CRYPTO_STATIC_MUTEX {
489 char padding; // Empty structs have different sizes in C and C++.
490};
491#define CRYPTO_STATIC_MUTEX_INIT { 0 }
492#elif defined(OPENSSL_WINDOWS_THREADS)
493struct CRYPTO_STATIC_MUTEX {
494 SRWLOCK lock;
495};
496#define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
497#elif defined(OPENSSL_PTHREADS)
498struct CRYPTO_STATIC_MUTEX {
499 pthread_rwlock_t lock;
500};
501#define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
502#else
503#error "Unknown threading library"
504#endif
505
506// CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
507// |CRYPTO_STATIC_MUTEX|.
508OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
509
510// CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
511// read lock, but none may have a write lock.
512OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
513
514// CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
515// of lock on it.
516OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
517
518// CRYPTO_MUTEX_unlock_read unlocks |lock| for reading.
519OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
520
521// CRYPTO_MUTEX_unlock_write unlocks |lock| for writing.
522OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
523
524// CRYPTO_MUTEX_cleanup releases all resources held by |lock|.
525OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
526
527// CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
528// have a read lock, but none may have a write lock. The |lock| variable does
529// not need to be initialised by any function, but must have been statically
530// initialised with |CRYPTO_STATIC_MUTEX_INIT|.
531OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
532 struct CRYPTO_STATIC_MUTEX *lock);
533
534// CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
535// any type of lock on it. The |lock| variable does not need to be initialised
536// by any function, but must have been statically initialised with
537// |CRYPTO_STATIC_MUTEX_INIT|.
538OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
539 struct CRYPTO_STATIC_MUTEX *lock);
540
541// CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading.
542OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
543 struct CRYPTO_STATIC_MUTEX *lock);
544
545// CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing.
546OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
547 struct CRYPTO_STATIC_MUTEX *lock);
548
549#if defined(__cplusplus)
550extern "C++" {
551
552BSSL_NAMESPACE_BEGIN
553
554namespace internal {
555
556// MutexLockBase is a RAII helper for CRYPTO_MUTEX locking.
557template <void (*LockFunc)(CRYPTO_MUTEX *), void (*ReleaseFunc)(CRYPTO_MUTEX *)>
558class MutexLockBase {
559 public:
560 explicit MutexLockBase(CRYPTO_MUTEX *mu) : mu_(mu) {
561 assert(mu_ != nullptr);
562 LockFunc(mu_);
563 }
564 ~MutexLockBase() { ReleaseFunc(mu_); }
565 MutexLockBase(const MutexLockBase<LockFunc, ReleaseFunc> &) = delete;
566 MutexLockBase &operator=(const MutexLockBase<LockFunc, ReleaseFunc> &) =
567 delete;
568
569 private:
570 CRYPTO_MUTEX *const mu_;
571};
572
573} // namespace internal
574
575using MutexWriteLock =
576 internal::MutexLockBase<CRYPTO_MUTEX_lock_write, CRYPTO_MUTEX_unlock_write>;
577using MutexReadLock =
578 internal::MutexLockBase<CRYPTO_MUTEX_lock_read, CRYPTO_MUTEX_unlock_read>;
579
580BSSL_NAMESPACE_END
581
582} // extern "C++"
583#endif // defined(__cplusplus)
584
585
586// Thread local storage.
587
588// thread_local_data_t enumerates the types of thread-local data that can be
589// stored.
590typedef enum {
591 OPENSSL_THREAD_LOCAL_ERR = 0,
592 OPENSSL_THREAD_LOCAL_RAND,
593 OPENSSL_THREAD_LOCAL_TEST,
594 NUM_OPENSSL_THREAD_LOCALS,
595} thread_local_data_t;
596
597// thread_local_destructor_t is the type of a destructor function that will be
598// called when a thread exits and its thread-local storage needs to be freed.
599typedef void (*thread_local_destructor_t)(void *);
600
601// CRYPTO_get_thread_local gets the pointer value that is stored for the
602// current thread for the given index, or NULL if none has been set.
603OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
604
605// CRYPTO_set_thread_local sets a pointer value for the current thread at the
606// given index. This function should only be called once per thread for a given
607// |index|: rather than update the pointer value itself, update the data that
608// is pointed to.
609//
610// The destructor function will be called when a thread exits to free this
611// thread-local data. All calls to |CRYPTO_set_thread_local| with the same
612// |index| should have the same |destructor| argument. The destructor may be
613// called with a NULL argument if a thread that never set a thread-local
614// pointer for |index|, exits. The destructor may be called concurrently with
615// different arguments.
616//
617// This function returns one on success or zero on error. If it returns zero
618// then |destructor| has been called with |value| already.
619OPENSSL_EXPORT int CRYPTO_set_thread_local(
620 thread_local_data_t index, void *value,
621 thread_local_destructor_t destructor);
622
623
624// ex_data
625
626typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
627
628DECLARE_STACK_OF(CRYPTO_EX_DATA_FUNCS)
629
630// CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
631// supports ex_data. It should defined as a static global within the module
632// which defines that type.
633typedef struct {
634 struct CRYPTO_STATIC_MUTEX lock;
635 STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
636 // num_reserved is one if the ex_data index zero is reserved for legacy
637 // |TYPE_get_app_data| functions.
638 uint8_t num_reserved;
639} CRYPTO_EX_DATA_CLASS;
640
641#define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
642#define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
643 {CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
644
645// CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
646// it to |*out_index|. Each class of object should provide a wrapper function
647// that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
648// zero otherwise.
649OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
650 int *out_index, long argl,
651 void *argp,
652 CRYPTO_EX_free *free_func);
653
654// CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
655// of object should provide a wrapper function.
656OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
657
658// CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
659// if no such index exists. Each class of object should provide a wrapper
660// function.
661OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
662
663// CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|.
664OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
665
666// CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
667// object of the given class.
668OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
669 void *obj, CRYPTO_EX_DATA *ad);
670
671
672// Endianness conversions.
673
674#if defined(__GNUC__) && __GNUC__ >= 2
675static inline uint32_t CRYPTO_bswap4(uint32_t x) {
676 return __builtin_bswap32(x);
677}
678
679static inline uint64_t CRYPTO_bswap8(uint64_t x) {
680 return __builtin_bswap64(x);
681}
682#elif defined(_MSC_VER)
683OPENSSL_MSVC_PRAGMA(warning(push, 3))
684#include <stdlib.h>
685OPENSSL_MSVC_PRAGMA(warning(pop))
686#pragma intrinsic(_byteswap_uint64, _byteswap_ulong)
687static inline uint32_t CRYPTO_bswap4(uint32_t x) {
688 return _byteswap_ulong(x);
689}
690
691static inline uint64_t CRYPTO_bswap8(uint64_t x) {
692 return _byteswap_uint64(x);
693}
694#else
695static inline uint32_t CRYPTO_bswap4(uint32_t x) {
696 x = (x >> 16) | (x << 16);
697 x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
698 return x;
699}
700
701static inline uint64_t CRYPTO_bswap8(uint64_t x) {
702 return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32);
703}
704#endif
705
706
707// Language bug workarounds.
708//
709// Most C standard library functions are undefined if passed NULL, even when the
710// corresponding length is zero. This gives them (and, in turn, all functions
711// which call them) surprising behavior on empty arrays. Some compilers will
712// miscompile code due to this rule. See also
713// https://www.imperialviolet.org/2016/06/26/nonnull.html
714//
715// These wrapper functions behave the same as the corresponding C standard
716// functions, but behave as expected when passed NULL if the length is zero.
717//
718// Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|.
719
720// C++ defines |memchr| as a const-correct overload.
721#if defined(__cplusplus)
722extern "C++" {
723
724static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
725 if (n == 0) {
726 return NULL;
727 }
728
729 return memchr(s, c, n);
730}
731
732static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
733 if (n == 0) {
734 return NULL;
735 }
736
737 return memchr(s, c, n);
738}
739
740} // extern "C++"
741#else // __cplusplus
742
743static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
744 if (n == 0) {
745 return NULL;
746 }
747
748 return memchr(s, c, n);
749}
750
751#endif // __cplusplus
752
753static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
754 if (n == 0) {
755 return 0;
756 }
757
758 return memcmp(s1, s2, n);
759}
760
761static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
762 if (n == 0) {
763 return dst;
764 }
765
766 return memcpy(dst, src, n);
767}
768
769static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
770 if (n == 0) {
771 return dst;
772 }
773
774 return memmove(dst, src, n);
775}
776
777static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
778 if (n == 0) {
779 return dst;
780 }
781
782 return memset(dst, c, n);
783}
784
785#if defined(BORINGSSL_FIPS)
786// BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
787// fails. It prevents any further cryptographic operations by the current
788// process.
789void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));
790#endif
791
792#if defined(__cplusplus)
793} // extern C
794#endif
795
796#endif // OPENSSL_HEADER_CRYPTO_INTERNAL_H
797