| 1 | /* crypto/pem/pem_info.c */ |
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * This package is an SSL implementation written |
| 6 | * by Eric Young (eay@cryptsoft.com). |
| 7 | * The implementation was written so as to conform with Netscapes SSL. |
| 8 | * |
| 9 | * This library is free for commercial and non-commercial use as long as |
| 10 | * the following conditions are aheared to. The following conditions |
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 13 | * included with this distribution is covered by the same copyright terms |
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 15 | * |
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 17 | * the code are not to be removed. |
| 18 | * If this package is used in a product, Eric Young should be given attribution |
| 19 | * as the author of the parts of the library used. |
| 20 | * This can be in the form of a textual message at program startup or |
| 21 | * in documentation (online or textual) provided with the package. |
| 22 | * |
| 23 | * Redistribution and use in source and binary forms, with or without |
| 24 | * modification, are permitted provided that the following conditions |
| 25 | * are met: |
| 26 | * 1. Redistributions of source code must retain the copyright |
| 27 | * notice, this list of conditions and the following disclaimer. |
| 28 | * 2. Redistributions in binary form must reproduce the above copyright |
| 29 | * notice, this list of conditions and the following disclaimer in the |
| 30 | * documentation and/or other materials provided with the distribution. |
| 31 | * 3. All advertising materials mentioning features or use of this software |
| 32 | * must display the following acknowledgement: |
| 33 | * "This product includes cryptographic software written by |
| 34 | * Eric Young (eay@cryptsoft.com)" |
| 35 | * The word 'cryptographic' can be left out if the rouines from the library |
| 36 | * being used are not cryptographic related :-). |
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 38 | * the apps directory (application code) you must include an acknowledgement: |
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 40 | * |
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 51 | * SUCH DAMAGE. |
| 52 | * |
| 53 | * The licence and distribution terms for any publically available version or |
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 55 | * copied and put under another distribution licence |
| 56 | * [including the GNU Public Licence.] |
| 57 | */ |
| 58 | |
| 59 | #include <openssl/pem.h> |
| 60 | |
| 61 | #include <assert.h> |
| 62 | #include <stdio.h> |
| 63 | #include <string.h> |
| 64 | |
| 65 | #include <openssl/buf.h> |
| 66 | #include <openssl/dsa.h> |
| 67 | #include <openssl/err.h> |
| 68 | #include <openssl/evp.h> |
| 69 | #include <openssl/mem.h> |
| 70 | #include <openssl/obj.h> |
| 71 | #include <openssl/rsa.h> |
| 72 | #include <openssl/x509.h> |
| 73 | |
| 74 | #ifndef OPENSSL_NO_FP_API |
| 75 | STACK_OF(X509_INFO) *PEM_X509_INFO_read(FILE *fp, STACK_OF(X509_INFO) *sk, |
| 76 | pem_password_cb *cb, void *u) |
| 77 | { |
| 78 | BIO *b = BIO_new_fp(fp, BIO_NOCLOSE); |
| 79 | if (b == NULL) { |
| 80 | OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB); |
| 81 | return 0; |
| 82 | } |
| 83 | STACK_OF(X509_INFO) *ret = PEM_X509_INFO_read_bio(b, sk, cb, u); |
| 84 | BIO_free(b); |
| 85 | return ret; |
| 86 | } |
| 87 | #endif |
| 88 | |
| 89 | enum parse_result_t { |
| 90 | parse_ok, |
| 91 | parse_error, |
| 92 | parse_new_entry, |
| 93 | }; |
| 94 | |
| 95 | static enum parse_result_t parse_x509(X509_INFO *info, const uint8_t *data, |
| 96 | size_t len, int key_type) |
| 97 | { |
| 98 | if (info->x509 != NULL) { |
| 99 | return parse_new_entry; |
| 100 | } |
| 101 | info->x509 = d2i_X509(NULL, &data, len); |
| 102 | return info->x509 != NULL ? parse_ok : parse_error; |
| 103 | } |
| 104 | |
| 105 | static enum parse_result_t parse_x509_aux(X509_INFO *info, const uint8_t *data, |
| 106 | size_t len, int key_type) |
| 107 | { |
| 108 | if (info->x509 != NULL) { |
| 109 | return parse_new_entry; |
| 110 | } |
| 111 | info->x509 = d2i_X509_AUX(NULL, &data, len); |
| 112 | return info->x509 != NULL ? parse_ok : parse_error; |
| 113 | } |
| 114 | |
| 115 | static enum parse_result_t parse_crl(X509_INFO *info, const uint8_t *data, |
| 116 | size_t len, int key_type) |
| 117 | { |
| 118 | if (info->crl != NULL) { |
| 119 | return parse_new_entry; |
| 120 | } |
| 121 | info->crl = d2i_X509_CRL(NULL, &data, len); |
| 122 | return info->crl != NULL ? parse_ok : parse_error; |
| 123 | } |
| 124 | |
| 125 | static enum parse_result_t parse_key(X509_INFO *info, const uint8_t *data, |
| 126 | size_t len, int key_type) |
| 127 | { |
| 128 | if (info->x_pkey != NULL) { |
| 129 | return parse_new_entry; |
| 130 | } |
| 131 | info->x_pkey = X509_PKEY_new(); |
| 132 | if (info->x_pkey == NULL) { |
| 133 | return parse_error; |
| 134 | } |
| 135 | info->x_pkey->dec_pkey = d2i_PrivateKey(key_type, NULL, &data, len); |
| 136 | return info->x_pkey->dec_pkey != NULL ? parse_ok : parse_error; |
| 137 | } |
| 138 | |
| 139 | STACK_OF(X509_INFO) *PEM_X509_INFO_read_bio(BIO *bp, STACK_OF(X509_INFO) *sk, |
| 140 | pem_password_cb *cb, void *u) |
| 141 | { |
| 142 | X509_INFO *info = NULL; |
| 143 | char *name = NULL, * = NULL; |
| 144 | unsigned char *data = NULL; |
| 145 | long len; |
| 146 | int ok = 0; |
| 147 | STACK_OF(X509_INFO) *ret = NULL; |
| 148 | |
| 149 | if (sk == NULL) { |
| 150 | ret = sk_X509_INFO_new_null(); |
| 151 | if (ret == NULL) { |
| 152 | OPENSSL_PUT_ERROR(PEM, ERR_R_MALLOC_FAILURE); |
| 153 | return NULL; |
| 154 | } |
| 155 | } else { |
| 156 | ret = sk; |
| 157 | } |
| 158 | size_t orig_num = sk_X509_INFO_num(ret); |
| 159 | |
| 160 | info = X509_INFO_new(); |
| 161 | if (info == NULL) { |
| 162 | goto err; |
| 163 | } |
| 164 | |
| 165 | for (;;) { |
| 166 | if (!PEM_read_bio(bp, &name, &header, &data, &len)) { |
| 167 | uint32_t error = ERR_peek_last_error(); |
| 168 | if (ERR_GET_LIB(error) == ERR_LIB_PEM && |
| 169 | ERR_GET_REASON(error) == PEM_R_NO_START_LINE) { |
| 170 | ERR_clear_error(); |
| 171 | break; |
| 172 | } |
| 173 | goto err; |
| 174 | } |
| 175 | |
| 176 | enum parse_result_t (*parse_function)(X509_INFO *, const uint8_t *, |
| 177 | size_t, int) = NULL; |
| 178 | int key_type = EVP_PKEY_NONE; |
| 179 | if (strcmp(name, PEM_STRING_X509) == 0 || |
| 180 | strcmp(name, PEM_STRING_X509_OLD) == 0) { |
| 181 | parse_function = parse_x509; |
| 182 | } else if (strcmp(name, PEM_STRING_X509_TRUSTED) == 0) { |
| 183 | parse_function = parse_x509_aux; |
| 184 | } else if (strcmp(name, PEM_STRING_X509_CRL) == 0) { |
| 185 | parse_function = parse_crl; |
| 186 | } else if (strcmp(name, PEM_STRING_RSA) == 0) { |
| 187 | parse_function = parse_key; |
| 188 | key_type = EVP_PKEY_RSA; |
| 189 | } else if (strcmp(name, PEM_STRING_DSA) == 0) { |
| 190 | parse_function = parse_key; |
| 191 | key_type = EVP_PKEY_DSA; |
| 192 | } else if (strcmp(name, PEM_STRING_ECPRIVATEKEY) == 0) { |
| 193 | parse_function = parse_key; |
| 194 | key_type = EVP_PKEY_EC; |
| 195 | } |
| 196 | |
| 197 | /* If a private key has a header, assume it is encrypted. */ |
| 198 | if (key_type != EVP_PKEY_NONE && strlen(header) > 10) { |
| 199 | if (info->x_pkey != NULL) { |
| 200 | if (!sk_X509_INFO_push(ret, info)) { |
| 201 | goto err; |
| 202 | } |
| 203 | info = X509_INFO_new(); |
| 204 | if (info == NULL) { |
| 205 | goto err; |
| 206 | } |
| 207 | } |
| 208 | /* Historically, raw entries pushed an empty key. */ |
| 209 | info->x_pkey = X509_PKEY_new(); |
| 210 | if (info->x_pkey == NULL || |
| 211 | !PEM_get_EVP_CIPHER_INFO(header, &info->enc_cipher)) { |
| 212 | goto err; |
| 213 | } |
| 214 | info->enc_data = (char *)data; |
| 215 | info->enc_len = (int)len; |
| 216 | data = NULL; |
| 217 | } else if (parse_function != NULL) { |
| 218 | EVP_CIPHER_INFO cipher; |
| 219 | if (!PEM_get_EVP_CIPHER_INFO(header, &cipher) || |
| 220 | !PEM_do_header(&cipher, data, &len, cb, u)) { |
| 221 | goto err; |
| 222 | } |
| 223 | enum parse_result_t result = |
| 224 | parse_function(info, data, len, key_type); |
| 225 | if (result == parse_new_entry) { |
| 226 | if (!sk_X509_INFO_push(ret, info)) { |
| 227 | goto err; |
| 228 | } |
| 229 | info = X509_INFO_new(); |
| 230 | if (info == NULL) { |
| 231 | goto err; |
| 232 | } |
| 233 | result = parse_function(info, data, len, key_type); |
| 234 | } |
| 235 | if (result != parse_ok) { |
| 236 | OPENSSL_PUT_ERROR(PEM, ERR_R_ASN1_LIB); |
| 237 | goto err; |
| 238 | } |
| 239 | } |
| 240 | OPENSSL_free(name); |
| 241 | OPENSSL_free(header); |
| 242 | OPENSSL_free(data); |
| 243 | name = NULL; |
| 244 | header = NULL; |
| 245 | data = NULL; |
| 246 | } |
| 247 | |
| 248 | /* Push the last entry on the stack if not empty. */ |
| 249 | if (info->x509 != NULL || info->crl != NULL || |
| 250 | info->x_pkey != NULL || info->enc_data != NULL) { |
| 251 | if (!sk_X509_INFO_push(ret, info)) { |
| 252 | goto err; |
| 253 | } |
| 254 | info = NULL; |
| 255 | } |
| 256 | |
| 257 | ok = 1; |
| 258 | |
| 259 | err: |
| 260 | X509_INFO_free(info); |
| 261 | if (!ok) { |
| 262 | while (sk_X509_INFO_num(ret) > orig_num) { |
| 263 | X509_INFO_free(sk_X509_INFO_pop(ret)); |
| 264 | } |
| 265 | if (ret != sk) { |
| 266 | sk_X509_INFO_free(ret); |
| 267 | } |
| 268 | ret = NULL; |
| 269 | } |
| 270 | |
| 271 | OPENSSL_free(name); |
| 272 | OPENSSL_free(header); |
| 273 | OPENSSL_free(data); |
| 274 | return ret; |
| 275 | } |
| 276 | |
| 277 | /* A TJH addition */ |
| 278 | int PEM_X509_INFO_write_bio(BIO *bp, X509_INFO *xi, EVP_CIPHER *enc, |
| 279 | unsigned char *kstr, int klen, |
| 280 | pem_password_cb *cb, void *u) |
| 281 | { |
| 282 | int i, ret = 0; |
| 283 | unsigned char *data = NULL; |
| 284 | const char *objstr = NULL; |
| 285 | char buf[PEM_BUFSIZE]; |
| 286 | unsigned char *iv = NULL; |
| 287 | unsigned iv_len = 0; |
| 288 | |
| 289 | if (enc != NULL) { |
| 290 | iv_len = EVP_CIPHER_iv_length(enc); |
| 291 | objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc)); |
| 292 | if (objstr == NULL) { |
| 293 | OPENSSL_PUT_ERROR(PEM, PEM_R_UNSUPPORTED_CIPHER); |
| 294 | goto err; |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * now for the fun part ... if we have a private key then we have to be |
| 300 | * able to handle a not-yet-decrypted key being written out correctly ... |
| 301 | * if it is decrypted or it is non-encrypted then we use the base code |
| 302 | */ |
| 303 | if (xi->x_pkey != NULL) { |
| 304 | if ((xi->enc_data != NULL) && (xi->enc_len > 0)) { |
| 305 | if (enc == NULL) { |
| 306 | OPENSSL_PUT_ERROR(PEM, PEM_R_CIPHER_IS_NULL); |
| 307 | goto err; |
| 308 | } |
| 309 | |
| 310 | /* copy from weirdo names into more normal things */ |
| 311 | iv = xi->enc_cipher.iv; |
| 312 | data = (unsigned char *)xi->enc_data; |
| 313 | i = xi->enc_len; |
| 314 | |
| 315 | /* |
| 316 | * we take the encryption data from the internal stuff rather |
| 317 | * than what the user has passed us ... as we have to match |
| 318 | * exactly for some strange reason |
| 319 | */ |
| 320 | objstr = OBJ_nid2sn(EVP_CIPHER_nid(xi->enc_cipher.cipher)); |
| 321 | if (objstr == NULL) { |
| 322 | OPENSSL_PUT_ERROR(PEM, PEM_R_UNSUPPORTED_CIPHER); |
| 323 | goto err; |
| 324 | } |
| 325 | |
| 326 | /* create the right magic header stuff */ |
| 327 | assert(strlen(objstr) + 23 + 2 * iv_len + 13 <= sizeof buf); |
| 328 | buf[0] = '\0'; |
| 329 | PEM_proc_type(buf, PEM_TYPE_ENCRYPTED); |
| 330 | PEM_dek_info(buf, objstr, iv_len, (char *)iv); |
| 331 | |
| 332 | /* use the normal code to write things out */ |
| 333 | i = PEM_write_bio(bp, PEM_STRING_RSA, buf, data, i); |
| 334 | if (i <= 0) |
| 335 | goto err; |
| 336 | } else { |
| 337 | /* Add DSA/DH */ |
| 338 | /* normal optionally encrypted stuff */ |
| 339 | if (PEM_write_bio_RSAPrivateKey(bp, |
| 340 | xi->x_pkey->dec_pkey->pkey.rsa, |
| 341 | enc, kstr, klen, cb, u) <= 0) |
| 342 | goto err; |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | /* if we have a certificate then write it out now */ |
| 347 | if ((xi->x509 != NULL) && (PEM_write_bio_X509(bp, xi->x509) <= 0)) |
| 348 | goto err; |
| 349 | |
| 350 | /* |
| 351 | * we are ignoring anything else that is loaded into the X509_INFO |
| 352 | * structure for the moment ... as I don't need it so I'm not coding it |
| 353 | * here and Eric can do it when this makes it into the base library --tjh |
| 354 | */ |
| 355 | |
| 356 | ret = 1; |
| 357 | |
| 358 | err: |
| 359 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
| 360 | return ret; |
| 361 | } |
| 362 | |