1 | /* Copyright (c) 2014, Google Inc. |
2 | * |
3 | * Permission to use, copy, modify, and/or distribute this software for any |
4 | * purpose with or without fee is hereby granted, provided that the above |
5 | * copyright notice and this permission notice appear in all copies. |
6 | * |
7 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
8 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
9 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
10 | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
11 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
12 | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
13 | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
14 | |
15 | #ifndef OPENSSL_HEADER_AEAD_H |
16 | #define |
17 | |
18 | #include <openssl/base.h> |
19 | |
20 | #if defined(__cplusplus) |
21 | extern "C" { |
22 | #endif |
23 | |
24 | |
25 | // Authenticated Encryption with Additional Data. |
26 | // |
27 | // AEAD couples confidentiality and integrity in a single primitive. AEAD |
28 | // algorithms take a key and then can seal and open individual messages. Each |
29 | // message has a unique, per-message nonce and, optionally, additional data |
30 | // which is authenticated but not included in the ciphertext. |
31 | // |
32 | // The |EVP_AEAD_CTX_init| function initialises an |EVP_AEAD_CTX| structure and |
33 | // performs any precomputation needed to use |aead| with |key|. The length of |
34 | // the key, |key_len|, is given in bytes. |
35 | // |
36 | // The |tag_len| argument contains the length of the tags, in bytes, and allows |
37 | // for the processing of truncated authenticators. A zero value indicates that |
38 | // the default tag length should be used and this is defined as |
39 | // |EVP_AEAD_DEFAULT_TAG_LENGTH| in order to make the code clear. Using |
40 | // truncated tags increases an attacker's chance of creating a valid forgery. |
41 | // Be aware that the attacker's chance may increase more than exponentially as |
42 | // would naively be expected. |
43 | // |
44 | // When no longer needed, the initialised |EVP_AEAD_CTX| structure must be |
45 | // passed to |EVP_AEAD_CTX_cleanup|, which will deallocate any memory used. |
46 | // |
47 | // With an |EVP_AEAD_CTX| in hand, one can seal and open messages. These |
48 | // operations are intended to meet the standard notions of privacy and |
49 | // authenticity for authenticated encryption. For formal definitions see |
50 | // Bellare and Namprempre, "Authenticated encryption: relations among notions |
51 | // and analysis of the generic composition paradigm," Lecture Notes in Computer |
52 | // Science B<1976> (2000), 531–545, |
53 | // http://www-cse.ucsd.edu/~mihir/papers/oem.html. |
54 | // |
55 | // When sealing messages, a nonce must be given. The length of the nonce is |
56 | // fixed by the AEAD in use and is returned by |EVP_AEAD_nonce_length|. *The |
57 | // nonce must be unique for all messages with the same key*. This is critically |
58 | // important - nonce reuse may completely undermine the security of the AEAD. |
59 | // Nonces may be predictable and public, so long as they are unique. Uniqueness |
60 | // may be achieved with a simple counter or, if large enough, may be generated |
61 | // randomly. The nonce must be passed into the "open" operation by the receiver |
62 | // so must either be implicit (e.g. a counter), or must be transmitted along |
63 | // with the sealed message. |
64 | // |
65 | // The "seal" and "open" operations are atomic - an entire message must be |
66 | // encrypted or decrypted in a single call. Large messages may have to be split |
67 | // up in order to accommodate this. When doing so, be mindful of the need not to |
68 | // repeat nonces and the possibility that an attacker could duplicate, reorder |
69 | // or drop message chunks. For example, using a single key for a given (large) |
70 | // message and sealing chunks with nonces counting from zero would be secure as |
71 | // long as the number of chunks was securely transmitted. (Otherwise an |
72 | // attacker could truncate the message by dropping chunks from the end.) |
73 | // |
74 | // The number of chunks could be transmitted by prefixing it to the plaintext, |
75 | // for example. This also assumes that no other message would ever use the same |
76 | // key otherwise the rule that nonces must be unique for a given key would be |
77 | // violated. |
78 | // |
79 | // The "seal" and "open" operations also permit additional data to be |
80 | // authenticated via the |ad| parameter. This data is not included in the |
81 | // ciphertext and must be identical for both the "seal" and "open" call. This |
82 | // permits implicit context to be authenticated but may be empty if not needed. |
83 | // |
84 | // The "seal" and "open" operations may work in-place if the |out| and |in| |
85 | // arguments are equal. Otherwise, if |out| and |in| alias, input data may be |
86 | // overwritten before it is read. This situation will cause an error. |
87 | // |
88 | // The "seal" and "open" operations return one on success and zero on error. |
89 | |
90 | |
91 | // AEAD algorithms. |
92 | |
93 | // EVP_aead_aes_128_gcm is AES-128 in Galois Counter Mode. |
94 | // |
95 | // Note: AES-GCM should only be used with 12-byte (96-bit) nonces. Although it |
96 | // is specified to take a variable-length nonce, nonces with other lengths are |
97 | // effectively randomized, which means one must consider collisions. Unless |
98 | // implementing an existing protocol which has already specified incorrect |
99 | // parameters, only use 12-byte nonces. |
100 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm(void); |
101 | |
102 | // EVP_aead_aes_256_gcm is AES-256 in Galois Counter Mode. |
103 | // |
104 | // Note: AES-GCM should only be used with 12-byte (96-bit) nonces. Although it |
105 | // is specified to take a variable-length nonce, nonces with other lengths are |
106 | // effectively randomized, which means one must consider collisions. Unless |
107 | // implementing an existing protocol which has already specified incorrect |
108 | // parameters, only use 12-byte nonces. |
109 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm(void); |
110 | |
111 | // EVP_aead_chacha20_poly1305 is the AEAD built from ChaCha20 and |
112 | // Poly1305 as described in RFC 7539. |
113 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_chacha20_poly1305(void); |
114 | |
115 | // EVP_aead_xchacha20_poly1305 is ChaCha20-Poly1305 with an extended nonce that |
116 | // makes random generation of nonces safe. |
117 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_xchacha20_poly1305(void); |
118 | |
119 | // EVP_aead_aes_128_ctr_hmac_sha256 is AES-128 in CTR mode with HMAC-SHA256 for |
120 | // authentication. The nonce is 12 bytes; the bottom 32-bits are used as the |
121 | // block counter, thus the maximum plaintext size is 64GB. |
122 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ctr_hmac_sha256(void); |
123 | |
124 | // EVP_aead_aes_256_ctr_hmac_sha256 is AES-256 in CTR mode with HMAC-SHA256 for |
125 | // authentication. See |EVP_aead_aes_128_ctr_hmac_sha256| for details. |
126 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_ctr_hmac_sha256(void); |
127 | |
128 | // EVP_aead_aes_128_gcm_siv is AES-128 in GCM-SIV mode. See |
129 | // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02 |
130 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void); |
131 | |
132 | // EVP_aead_aes_256_gcm_siv is AES-256 in GCM-SIV mode. See |
133 | // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02 |
134 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void); |
135 | |
136 | // EVP_aead_aes_128_ccm_bluetooth is AES-128-CCM with M=4 and L=2 (4-byte tags |
137 | // and 13-byte nonces), as decribed in the Bluetooth Core Specification v5.0, |
138 | // Volume 6, Part E, Section 1. |
139 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth(void); |
140 | |
141 | // EVP_aead_aes_128_ccm_bluetooth_8 is AES-128-CCM with M=8 and L=2 (8-byte tags |
142 | // and 13-byte nonces), as used in the Bluetooth Mesh Networking Specification |
143 | // v1.0. |
144 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth_8(void); |
145 | |
146 | // EVP_has_aes_hardware returns one if we enable hardware support for fast and |
147 | // constant-time AES-GCM. |
148 | OPENSSL_EXPORT int EVP_has_aes_hardware(void); |
149 | |
150 | |
151 | // Utility functions. |
152 | |
153 | // EVP_AEAD_key_length returns the length, in bytes, of the keys used by |
154 | // |aead|. |
155 | OPENSSL_EXPORT size_t EVP_AEAD_key_length(const EVP_AEAD *aead); |
156 | |
157 | // EVP_AEAD_nonce_length returns the length, in bytes, of the per-message nonce |
158 | // for |aead|. |
159 | OPENSSL_EXPORT size_t EVP_AEAD_nonce_length(const EVP_AEAD *aead); |
160 | |
161 | // EVP_AEAD_max_overhead returns the maximum number of additional bytes added |
162 | // by the act of sealing data with |aead|. |
163 | OPENSSL_EXPORT size_t EVP_AEAD_max_overhead(const EVP_AEAD *aead); |
164 | |
165 | // EVP_AEAD_max_tag_len returns the maximum tag length when using |aead|. This |
166 | // is the largest value that can be passed as |tag_len| to |
167 | // |EVP_AEAD_CTX_init|. |
168 | OPENSSL_EXPORT size_t EVP_AEAD_max_tag_len(const EVP_AEAD *aead); |
169 | |
170 | |
171 | // AEAD operations. |
172 | |
173 | union evp_aead_ctx_st_state { |
174 | uint8_t opaque[580]; |
175 | uint64_t alignment; |
176 | }; |
177 | |
178 | // An EVP_AEAD_CTX represents an AEAD algorithm configured with a specific key |
179 | // and message-independent IV. |
180 | typedef struct evp_aead_ctx_st { |
181 | const EVP_AEAD *aead; |
182 | union evp_aead_ctx_st_state state; |
183 | // tag_len may contain the actual length of the authentication tag if it is |
184 | // known at initialization time. |
185 | uint8_t tag_len; |
186 | } EVP_AEAD_CTX; |
187 | |
188 | // EVP_AEAD_MAX_KEY_LENGTH contains the maximum key length used by |
189 | // any AEAD defined in this header. |
190 | #define EVP_AEAD_MAX_KEY_LENGTH 80 |
191 | |
192 | // EVP_AEAD_MAX_NONCE_LENGTH contains the maximum nonce length used by |
193 | // any AEAD defined in this header. |
194 | #define EVP_AEAD_MAX_NONCE_LENGTH 24 |
195 | |
196 | // EVP_AEAD_MAX_OVERHEAD contains the maximum overhead used by any AEAD |
197 | // defined in this header. |
198 | #define EVP_AEAD_MAX_OVERHEAD 64 |
199 | |
200 | // EVP_AEAD_DEFAULT_TAG_LENGTH is a magic value that can be passed to |
201 | // EVP_AEAD_CTX_init to indicate that the default tag length for an AEAD should |
202 | // be used. |
203 | #define EVP_AEAD_DEFAULT_TAG_LENGTH 0 |
204 | |
205 | // EVP_AEAD_CTX_zero sets an uninitialized |ctx| to the zero state. It must be |
206 | // initialized with |EVP_AEAD_CTX_init| before use. It is safe, but not |
207 | // necessary, to call |EVP_AEAD_CTX_cleanup| in this state. This may be used for |
208 | // more uniform cleanup of |EVP_AEAD_CTX|. |
209 | OPENSSL_EXPORT void EVP_AEAD_CTX_zero(EVP_AEAD_CTX *ctx); |
210 | |
211 | // EVP_AEAD_CTX_new allocates an |EVP_AEAD_CTX|, calls |EVP_AEAD_CTX_init| and |
212 | // returns the |EVP_AEAD_CTX|, or NULL on error. |
213 | OPENSSL_EXPORT EVP_AEAD_CTX *EVP_AEAD_CTX_new(const EVP_AEAD *aead, |
214 | const uint8_t *key, |
215 | size_t key_len, size_t tag_len); |
216 | |
217 | // EVP_AEAD_CTX_free calls |EVP_AEAD_CTX_cleanup| and |OPENSSL_free| on |
218 | // |ctx|. |
219 | OPENSSL_EXPORT void EVP_AEAD_CTX_free(EVP_AEAD_CTX *ctx); |
220 | |
221 | // EVP_AEAD_CTX_init initializes |ctx| for the given AEAD algorithm. The |impl| |
222 | // argument is ignored and should be NULL. Authentication tags may be truncated |
223 | // by passing a size as |tag_len|. A |tag_len| of zero indicates the default |
224 | // tag length and this is defined as EVP_AEAD_DEFAULT_TAG_LENGTH for |
225 | // readability. |
226 | // |
227 | // Returns 1 on success. Otherwise returns 0 and pushes to the error stack. In |
228 | // the error case, you do not need to call |EVP_AEAD_CTX_cleanup|, but it's |
229 | // harmless to do so. |
230 | OPENSSL_EXPORT int EVP_AEAD_CTX_init(EVP_AEAD_CTX *ctx, const EVP_AEAD *aead, |
231 | const uint8_t *key, size_t key_len, |
232 | size_t tag_len, ENGINE *impl); |
233 | |
234 | // EVP_AEAD_CTX_cleanup frees any data allocated by |ctx|. It is a no-op to |
235 | // call |EVP_AEAD_CTX_cleanup| on a |EVP_AEAD_CTX| that has been |memset| to |
236 | // all zeros. |
237 | OPENSSL_EXPORT void EVP_AEAD_CTX_cleanup(EVP_AEAD_CTX *ctx); |
238 | |
239 | // EVP_AEAD_CTX_seal encrypts and authenticates |in_len| bytes from |in| and |
240 | // authenticates |ad_len| bytes from |ad| and writes the result to |out|. It |
241 | // returns one on success and zero otherwise. |
242 | // |
243 | // This function may be called concurrently with itself or any other seal/open |
244 | // function on the same |EVP_AEAD_CTX|. |
245 | // |
246 | // At most |max_out_len| bytes are written to |out| and, in order to ensure |
247 | // success, |max_out_len| should be |in_len| plus the result of |
248 | // |EVP_AEAD_max_overhead|. On successful return, |*out_len| is set to the |
249 | // actual number of bytes written. |
250 | // |
251 | // The length of |nonce|, |nonce_len|, must be equal to the result of |
252 | // |EVP_AEAD_nonce_length| for this AEAD. |
253 | // |
254 | // |EVP_AEAD_CTX_seal| never results in a partial output. If |max_out_len| is |
255 | // insufficient, zero will be returned. If any error occurs, |out| will be |
256 | // filled with zero bytes and |*out_len| set to zero. |
257 | // |
258 | // If |in| and |out| alias then |out| must be == |in|. |
259 | OPENSSL_EXPORT int EVP_AEAD_CTX_seal(const EVP_AEAD_CTX *ctx, uint8_t *out, |
260 | size_t *out_len, size_t max_out_len, |
261 | const uint8_t *nonce, size_t nonce_len, |
262 | const uint8_t *in, size_t in_len, |
263 | const uint8_t *ad, size_t ad_len); |
264 | |
265 | // EVP_AEAD_CTX_open authenticates |in_len| bytes from |in| and |ad_len| bytes |
266 | // from |ad| and decrypts at most |in_len| bytes into |out|. It returns one on |
267 | // success and zero otherwise. |
268 | // |
269 | // This function may be called concurrently with itself or any other seal/open |
270 | // function on the same |EVP_AEAD_CTX|. |
271 | // |
272 | // At most |in_len| bytes are written to |out|. In order to ensure success, |
273 | // |max_out_len| should be at least |in_len|. On successful return, |*out_len| |
274 | // is set to the the actual number of bytes written. |
275 | // |
276 | // The length of |nonce|, |nonce_len|, must be equal to the result of |
277 | // |EVP_AEAD_nonce_length| for this AEAD. |
278 | // |
279 | // |EVP_AEAD_CTX_open| never results in a partial output. If |max_out_len| is |
280 | // insufficient, zero will be returned. If any error occurs, |out| will be |
281 | // filled with zero bytes and |*out_len| set to zero. |
282 | // |
283 | // If |in| and |out| alias then |out| must be == |in|. |
284 | OPENSSL_EXPORT int EVP_AEAD_CTX_open(const EVP_AEAD_CTX *ctx, uint8_t *out, |
285 | size_t *out_len, size_t max_out_len, |
286 | const uint8_t *nonce, size_t nonce_len, |
287 | const uint8_t *in, size_t in_len, |
288 | const uint8_t *ad, size_t ad_len); |
289 | |
290 | // EVP_AEAD_CTX_seal_scatter encrypts and authenticates |in_len| bytes from |in| |
291 | // and authenticates |ad_len| bytes from |ad|. It writes |in_len| bytes of |
292 | // ciphertext to |out| and the authentication tag to |out_tag|. It returns one |
293 | // on success and zero otherwise. |
294 | // |
295 | // This function may be called concurrently with itself or any other seal/open |
296 | // function on the same |EVP_AEAD_CTX|. |
297 | // |
298 | // Exactly |in_len| bytes are written to |out|, and up to |
299 | // |EVP_AEAD_max_overhead+extra_in_len| bytes to |out_tag|. On successful |
300 | // return, |*out_tag_len| is set to the actual number of bytes written to |
301 | // |out_tag|. |
302 | // |
303 | // |extra_in| may point to an additional plaintext input buffer if the cipher |
304 | // supports it. If present, |extra_in_len| additional bytes of plaintext are |
305 | // encrypted and authenticated, and the ciphertext is written (before the tag) |
306 | // to |out_tag|. |max_out_tag_len| must be sized to allow for the additional |
307 | // |extra_in_len| bytes. |
308 | // |
309 | // The length of |nonce|, |nonce_len|, must be equal to the result of |
310 | // |EVP_AEAD_nonce_length| for this AEAD. |
311 | // |
312 | // |EVP_AEAD_CTX_seal_scatter| never results in a partial output. If |
313 | // |max_out_tag_len| is insufficient, zero will be returned. If any error |
314 | // occurs, |out| and |out_tag| will be filled with zero bytes and |*out_tag_len| |
315 | // set to zero. |
316 | // |
317 | // If |in| and |out| alias then |out| must be == |in|. |out_tag| may not alias |
318 | // any other argument. |
319 | OPENSSL_EXPORT int EVP_AEAD_CTX_seal_scatter( |
320 | const EVP_AEAD_CTX *ctx, uint8_t *out, |
321 | uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len, |
322 | const uint8_t *nonce, size_t nonce_len, |
323 | const uint8_t *in, size_t in_len, |
324 | const uint8_t *, size_t , |
325 | const uint8_t *ad, size_t ad_len); |
326 | |
327 | // EVP_AEAD_CTX_open_gather decrypts and authenticates |in_len| bytes from |in| |
328 | // and authenticates |ad_len| bytes from |ad| using |in_tag_len| bytes of |
329 | // authentication tag from |in_tag|. If successful, it writes |in_len| bytes of |
330 | // plaintext to |out|. It returns one on success and zero otherwise. |
331 | // |
332 | // This function may be called concurrently with itself or any other seal/open |
333 | // function on the same |EVP_AEAD_CTX|. |
334 | // |
335 | // The length of |nonce|, |nonce_len|, must be equal to the result of |
336 | // |EVP_AEAD_nonce_length| for this AEAD. |
337 | // |
338 | // |EVP_AEAD_CTX_open_gather| never results in a partial output. If any error |
339 | // occurs, |out| will be filled with zero bytes. |
340 | // |
341 | // If |in| and |out| alias then |out| must be == |in|. |
342 | OPENSSL_EXPORT int EVP_AEAD_CTX_open_gather( |
343 | const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *nonce, |
344 | size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *in_tag, |
345 | size_t in_tag_len, const uint8_t *ad, size_t ad_len); |
346 | |
347 | // EVP_AEAD_CTX_aead returns the underlying AEAD for |ctx|, or NULL if one has |
348 | // not been set. |
349 | OPENSSL_EXPORT const EVP_AEAD *EVP_AEAD_CTX_aead(const EVP_AEAD_CTX *ctx); |
350 | |
351 | |
352 | // TLS-specific AEAD algorithms. |
353 | // |
354 | // These AEAD primitives do not meet the definition of generic AEADs. They are |
355 | // all specific to TLS and should not be used outside of that context. They must |
356 | // be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful, and may |
357 | // not be used concurrently. Any nonces are used as IVs, so they must be |
358 | // unpredictable. They only accept an |ad| parameter of length 11 (the standard |
359 | // TLS one with length omitted). |
360 | |
361 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void); |
362 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void); |
363 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void); |
364 | |
365 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void); |
366 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void); |
367 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha256_tls(void); |
368 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha384_tls(void); |
369 | |
370 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void); |
371 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void); |
372 | |
373 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_null_sha1_tls(void); |
374 | |
375 | // EVP_aead_aes_128_gcm_tls12 is AES-128 in Galois Counter Mode using the TLS |
376 | // 1.2 nonce construction. |
377 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_tls12(void); |
378 | |
379 | // EVP_aead_aes_256_gcm_tls12 is AES-256 in Galois Counter Mode using the TLS |
380 | // 1.2 nonce construction. |
381 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_tls12(void); |
382 | |
383 | // EVP_aead_aes_128_gcm_tls13 is AES-128 in Galois Counter Mode using the TLS |
384 | // 1.3 nonce construction. |
385 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_tls13(void); |
386 | |
387 | // EVP_aead_aes_256_gcm_tls13 is AES-256 in Galois Counter Mode using the TLS |
388 | // 1.3 nonce construction. |
389 | OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_tls13(void); |
390 | |
391 | |
392 | // Obscure functions. |
393 | |
394 | // evp_aead_direction_t denotes the direction of an AEAD operation. |
395 | enum evp_aead_direction_t { |
396 | evp_aead_open, |
397 | evp_aead_seal, |
398 | }; |
399 | |
400 | // EVP_AEAD_CTX_init_with_direction calls |EVP_AEAD_CTX_init| for normal |
401 | // AEADs. For TLS-specific and SSL3-specific AEADs, it initializes |ctx| for a |
402 | // given direction. |
403 | OPENSSL_EXPORT int EVP_AEAD_CTX_init_with_direction( |
404 | EVP_AEAD_CTX *ctx, const EVP_AEAD *aead, const uint8_t *key, size_t key_len, |
405 | size_t tag_len, enum evp_aead_direction_t dir); |
406 | |
407 | // EVP_AEAD_CTX_get_iv sets |*out_len| to the length of the IV for |ctx| and |
408 | // sets |*out_iv| to point to that many bytes of the current IV. This is only |
409 | // meaningful for AEADs with implicit IVs (i.e. CBC mode in TLS 1.0). |
410 | // |
411 | // It returns one on success or zero on error. |
412 | OPENSSL_EXPORT int EVP_AEAD_CTX_get_iv(const EVP_AEAD_CTX *ctx, |
413 | const uint8_t **out_iv, size_t *out_len); |
414 | |
415 | // EVP_AEAD_CTX_tag_len computes the exact byte length of the tag written by |
416 | // |EVP_AEAD_CTX_seal_scatter| and writes it to |*out_tag_len|. It returns one |
417 | // on success or zero on error. |in_len| and |extra_in_len| must equal the |
418 | // arguments of the same names passed to |EVP_AEAD_CTX_seal_scatter|. |
419 | OPENSSL_EXPORT int EVP_AEAD_CTX_tag_len(const EVP_AEAD_CTX *ctx, |
420 | size_t *out_tag_len, |
421 | const size_t in_len, |
422 | const size_t ); |
423 | |
424 | |
425 | #if defined(__cplusplus) |
426 | } // extern C |
427 | |
428 | #if !defined(BORINGSSL_NO_CXX) |
429 | extern "C++" { |
430 | |
431 | BSSL_NAMESPACE_BEGIN |
432 | |
433 | using ScopedEVP_AEAD_CTX = |
434 | internal::StackAllocated<EVP_AEAD_CTX, void, EVP_AEAD_CTX_zero, |
435 | EVP_AEAD_CTX_cleanup>; |
436 | |
437 | BORINGSSL_MAKE_DELETER(EVP_AEAD_CTX, EVP_AEAD_CTX_free) |
438 | |
439 | BSSL_NAMESPACE_END |
440 | |
441 | } // extern C++ |
442 | #endif |
443 | |
444 | #endif |
445 | |
446 | #endif // OPENSSL_HEADER_AEAD_H |
447 | |