1 | /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] |
56 | */ |
57 | /* ==================================================================== |
58 | * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. |
59 | * |
60 | * Redistribution and use in source and binary forms, with or without |
61 | * modification, are permitted provided that the following conditions |
62 | * are met: |
63 | * |
64 | * 1. Redistributions of source code must retain the above copyright |
65 | * notice, this list of conditions and the following disclaimer. |
66 | * |
67 | * 2. Redistributions in binary form must reproduce the above copyright |
68 | * notice, this list of conditions and the following disclaimer in |
69 | * the documentation and/or other materials provided with the |
70 | * distribution. |
71 | * |
72 | * 3. All advertising materials mentioning features or use of this |
73 | * software must display the following acknowledgment: |
74 | * "This product includes software developed by the OpenSSL Project |
75 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
76 | * |
77 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
78 | * endorse or promote products derived from this software without |
79 | * prior written permission. For written permission, please contact |
80 | * openssl-core@openssl.org. |
81 | * |
82 | * 5. Products derived from this software may not be called "OpenSSL" |
83 | * nor may "OpenSSL" appear in their names without prior written |
84 | * permission of the OpenSSL Project. |
85 | * |
86 | * 6. Redistributions of any form whatsoever must retain the following |
87 | * acknowledgment: |
88 | * "This product includes software developed by the OpenSSL Project |
89 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
90 | * |
91 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
92 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
93 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
94 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
95 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
96 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
97 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
98 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
99 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
100 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
101 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
102 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
103 | * ==================================================================== |
104 | * |
105 | * This product includes cryptographic software written by Eric Young |
106 | * (eay@cryptsoft.com). This product includes software written by Tim |
107 | * Hudson (tjh@cryptsoft.com). |
108 | * |
109 | */ |
110 | /* ==================================================================== |
111 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
112 | * |
113 | * Portions of the attached software ("Contribution") are developed by |
114 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
115 | * |
116 | * The Contribution is licensed pursuant to the Eric Young open source |
117 | * license provided above. |
118 | * |
119 | * The binary polynomial arithmetic software is originally written by |
120 | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
121 | * Laboratories. */ |
122 | |
123 | #ifndef OPENSSL_HEADER_BN_H |
124 | #define |
125 | |
126 | #include <openssl/base.h> |
127 | #include <openssl/thread.h> |
128 | |
129 | #include <inttypes.h> // for PRIu64 and friends |
130 | #include <stdio.h> // for FILE* |
131 | |
132 | #if defined(__cplusplus) |
133 | extern "C" { |
134 | #endif |
135 | |
136 | |
137 | // BN provides support for working with arbitrary sized integers. For example, |
138 | // although the largest integer supported by the compiler might be 64 bits, BN |
139 | // will allow you to work with numbers until you run out of memory. |
140 | |
141 | |
142 | // BN_ULONG is the native word size when working with big integers. |
143 | // |
144 | // Note: on some platforms, inttypes.h does not define print format macros in |
145 | // C++ unless |__STDC_FORMAT_MACROS| defined. This is due to text in C99 which |
146 | // was never adopted in any C++ standard and explicitly overruled in C++11. As |
147 | // this is a public header, bn.h does not define |__STDC_FORMAT_MACROS| itself. |
148 | // Projects which use |BN_*_FMT*| with outdated C headers may need to define it |
149 | // externally. |
150 | #if defined(OPENSSL_64_BIT) |
151 | #define BN_ULONG uint64_t |
152 | #define BN_BITS2 64 |
153 | #define BN_DEC_FMT1 "%" PRIu64 |
154 | #define BN_DEC_FMT2 "%019" PRIu64 |
155 | #define BN_HEX_FMT1 "%" PRIx64 |
156 | #define BN_HEX_FMT2 "%016" PRIx64 |
157 | #elif defined(OPENSSL_32_BIT) |
158 | #define BN_ULONG uint32_t |
159 | #define BN_BITS2 32 |
160 | #define BN_DEC_FMT1 "%" PRIu32 |
161 | #define BN_DEC_FMT2 "%09" PRIu32 |
162 | #define BN_HEX_FMT1 "%" PRIx32 |
163 | #define BN_HEX_FMT2 "%08" PRIx32 |
164 | #else |
165 | #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT" |
166 | #endif |
167 | |
168 | |
169 | // Allocation and freeing. |
170 | |
171 | // BN_new creates a new, allocated BIGNUM and initialises it. |
172 | OPENSSL_EXPORT BIGNUM *BN_new(void); |
173 | |
174 | // BN_init initialises a stack allocated |BIGNUM|. |
175 | OPENSSL_EXPORT void BN_init(BIGNUM *bn); |
176 | |
177 | // BN_free frees the data referenced by |bn| and, if |bn| was originally |
178 | // allocated on the heap, frees |bn| also. |
179 | OPENSSL_EXPORT void BN_free(BIGNUM *bn); |
180 | |
181 | // BN_clear_free erases and frees the data referenced by |bn| and, if |bn| was |
182 | // originally allocated on the heap, frees |bn| also. |
183 | OPENSSL_EXPORT void BN_clear_free(BIGNUM *bn); |
184 | |
185 | // BN_dup allocates a new BIGNUM and sets it equal to |src|. It returns the |
186 | // allocated BIGNUM on success or NULL otherwise. |
187 | OPENSSL_EXPORT BIGNUM *BN_dup(const BIGNUM *src); |
188 | |
189 | // BN_copy sets |dest| equal to |src| and returns |dest| or NULL on allocation |
190 | // failure. |
191 | OPENSSL_EXPORT BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src); |
192 | |
193 | // BN_clear sets |bn| to zero and erases the old data. |
194 | OPENSSL_EXPORT void BN_clear(BIGNUM *bn); |
195 | |
196 | // BN_value_one returns a static BIGNUM with value 1. |
197 | OPENSSL_EXPORT const BIGNUM *BN_value_one(void); |
198 | |
199 | |
200 | // Basic functions. |
201 | |
202 | // BN_num_bits returns the minimum number of bits needed to represent the |
203 | // absolute value of |bn|. |
204 | OPENSSL_EXPORT unsigned BN_num_bits(const BIGNUM *bn); |
205 | |
206 | // BN_num_bytes returns the minimum number of bytes needed to represent the |
207 | // absolute value of |bn|. |
208 | OPENSSL_EXPORT unsigned BN_num_bytes(const BIGNUM *bn); |
209 | |
210 | // BN_zero sets |bn| to zero. |
211 | OPENSSL_EXPORT void BN_zero(BIGNUM *bn); |
212 | |
213 | // BN_one sets |bn| to one. It returns one on success or zero on allocation |
214 | // failure. |
215 | OPENSSL_EXPORT int BN_one(BIGNUM *bn); |
216 | |
217 | // BN_set_word sets |bn| to |value|. It returns one on success or zero on |
218 | // allocation failure. |
219 | OPENSSL_EXPORT int BN_set_word(BIGNUM *bn, BN_ULONG value); |
220 | |
221 | // BN_set_u64 sets |bn| to |value|. It returns one on success or zero on |
222 | // allocation failure. |
223 | OPENSSL_EXPORT int BN_set_u64(BIGNUM *bn, uint64_t value); |
224 | |
225 | // BN_set_negative sets the sign of |bn|. |
226 | OPENSSL_EXPORT void BN_set_negative(BIGNUM *bn, int sign); |
227 | |
228 | // BN_is_negative returns one if |bn| is negative and zero otherwise. |
229 | OPENSSL_EXPORT int BN_is_negative(const BIGNUM *bn); |
230 | |
231 | |
232 | // Conversion functions. |
233 | |
234 | // BN_bin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as |
235 | // a big-endian number, and returns |ret|. If |ret| is NULL then a fresh |
236 | // |BIGNUM| is allocated and returned. It returns NULL on allocation |
237 | // failure. |
238 | OPENSSL_EXPORT BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret); |
239 | |
240 | // BN_bn2bin serialises the absolute value of |in| to |out| as a big-endian |
241 | // integer, which must have |BN_num_bytes| of space available. It returns the |
242 | // number of bytes written. Note this function leaks the magnitude of |in|. If |
243 | // |in| is secret, use |BN_bn2bin_padded| instead. |
244 | OPENSSL_EXPORT size_t BN_bn2bin(const BIGNUM *in, uint8_t *out); |
245 | |
246 | // BN_le2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as |
247 | // a little-endian number, and returns |ret|. If |ret| is NULL then a fresh |
248 | // |BIGNUM| is allocated and returned. It returns NULL on allocation |
249 | // failure. |
250 | OPENSSL_EXPORT BIGNUM *BN_le2bn(const uint8_t *in, size_t len, BIGNUM *ret); |
251 | |
252 | // BN_bn2le_padded serialises the absolute value of |in| to |out| as a |
253 | // little-endian integer, which must have |len| of space available, padding |
254 | // out the remainder of out with zeros. If |len| is smaller than |BN_num_bytes|, |
255 | // the function fails and returns 0. Otherwise, it returns 1. |
256 | OPENSSL_EXPORT int BN_bn2le_padded(uint8_t *out, size_t len, const BIGNUM *in); |
257 | |
258 | // BN_bn2bin_padded serialises the absolute value of |in| to |out| as a |
259 | // big-endian integer. The integer is padded with leading zeros up to size |
260 | // |len|. If |len| is smaller than |BN_num_bytes|, the function fails and |
261 | // returns 0. Otherwise, it returns 1. |
262 | OPENSSL_EXPORT int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in); |
263 | |
264 | // BN_bn2cbb_padded behaves like |BN_bn2bin_padded| but writes to a |CBB|. |
265 | OPENSSL_EXPORT int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in); |
266 | |
267 | // BN_bn2hex returns an allocated string that contains a NUL-terminated, hex |
268 | // representation of |bn|. If |bn| is negative, the first char in the resulting |
269 | // string will be '-'. Returns NULL on allocation failure. |
270 | OPENSSL_EXPORT char *BN_bn2hex(const BIGNUM *bn); |
271 | |
272 | // BN_hex2bn parses the leading hex number from |in|, which may be proceeded by |
273 | // a '-' to indicate a negative number and may contain trailing, non-hex data. |
274 | // If |outp| is not NULL, it constructs a BIGNUM equal to the hex number and |
275 | // stores it in |*outp|. If |*outp| is NULL then it allocates a new BIGNUM and |
276 | // updates |*outp|. It returns the number of bytes of |in| processed or zero on |
277 | // error. |
278 | OPENSSL_EXPORT int BN_hex2bn(BIGNUM **outp, const char *in); |
279 | |
280 | // BN_bn2dec returns an allocated string that contains a NUL-terminated, |
281 | // decimal representation of |bn|. If |bn| is negative, the first char in the |
282 | // resulting string will be '-'. Returns NULL on allocation failure. |
283 | OPENSSL_EXPORT char *BN_bn2dec(const BIGNUM *a); |
284 | |
285 | // BN_dec2bn parses the leading decimal number from |in|, which may be |
286 | // proceeded by a '-' to indicate a negative number and may contain trailing, |
287 | // non-decimal data. If |outp| is not NULL, it constructs a BIGNUM equal to the |
288 | // decimal number and stores it in |*outp|. If |*outp| is NULL then it |
289 | // allocates a new BIGNUM and updates |*outp|. It returns the number of bytes |
290 | // of |in| processed or zero on error. |
291 | OPENSSL_EXPORT int BN_dec2bn(BIGNUM **outp, const char *in); |
292 | |
293 | // BN_asc2bn acts like |BN_dec2bn| or |BN_hex2bn| depending on whether |in| |
294 | // begins with "0X" or "0x" (indicating hex) or not (indicating decimal). A |
295 | // leading '-' is still permitted and comes before the optional 0X/0x. It |
296 | // returns one on success or zero on error. |
297 | OPENSSL_EXPORT int BN_asc2bn(BIGNUM **outp, const char *in); |
298 | |
299 | // BN_print writes a hex encoding of |a| to |bio|. It returns one on success |
300 | // and zero on error. |
301 | OPENSSL_EXPORT int BN_print(BIO *bio, const BIGNUM *a); |
302 | |
303 | // BN_print_fp acts like |BIO_print|, but wraps |fp| in a |BIO| first. |
304 | OPENSSL_EXPORT int BN_print_fp(FILE *fp, const BIGNUM *a); |
305 | |
306 | // BN_get_word returns the absolute value of |bn| as a single word. If |bn| is |
307 | // too large to be represented as a single word, the maximum possible value |
308 | // will be returned. |
309 | OPENSSL_EXPORT BN_ULONG BN_get_word(const BIGNUM *bn); |
310 | |
311 | // BN_get_u64 sets |*out| to the absolute value of |bn| as a |uint64_t| and |
312 | // returns one. If |bn| is too large to be represented as a |uint64_t|, it |
313 | // returns zero. |
314 | OPENSSL_EXPORT int BN_get_u64(const BIGNUM *bn, uint64_t *out); |
315 | |
316 | |
317 | // ASN.1 functions. |
318 | |
319 | // BN_parse_asn1_unsigned parses a non-negative DER INTEGER from |cbs| writes |
320 | // the result to |ret|. It returns one on success and zero on failure. |
321 | OPENSSL_EXPORT int BN_parse_asn1_unsigned(CBS *cbs, BIGNUM *ret); |
322 | |
323 | // BN_marshal_asn1 marshals |bn| as a non-negative DER INTEGER and appends the |
324 | // result to |cbb|. It returns one on success and zero on failure. |
325 | OPENSSL_EXPORT int BN_marshal_asn1(CBB *cbb, const BIGNUM *bn); |
326 | |
327 | |
328 | // BIGNUM pools. |
329 | // |
330 | // Certain BIGNUM operations need to use many temporary variables and |
331 | // allocating and freeing them can be quite slow. Thus such operations typically |
332 | // take a |BN_CTX| parameter, which contains a pool of |BIGNUMs|. The |ctx| |
333 | // argument to a public function may be NULL, in which case a local |BN_CTX| |
334 | // will be created just for the lifetime of that call. |
335 | // |
336 | // A function must call |BN_CTX_start| first. Then, |BN_CTX_get| may be called |
337 | // repeatedly to obtain temporary |BIGNUM|s. All |BN_CTX_get| calls must be made |
338 | // before calling any other functions that use the |ctx| as an argument. |
339 | // |
340 | // Finally, |BN_CTX_end| must be called before returning from the function. |
341 | // When |BN_CTX_end| is called, the |BIGNUM| pointers obtained from |
342 | // |BN_CTX_get| become invalid. |
343 | |
344 | // BN_CTX_new returns a new, empty BN_CTX or NULL on allocation failure. |
345 | OPENSSL_EXPORT BN_CTX *BN_CTX_new(void); |
346 | |
347 | // BN_CTX_free frees all BIGNUMs contained in |ctx| and then frees |ctx| |
348 | // itself. |
349 | OPENSSL_EXPORT void BN_CTX_free(BN_CTX *ctx); |
350 | |
351 | // BN_CTX_start "pushes" a new entry onto the |ctx| stack and allows future |
352 | // calls to |BN_CTX_get|. |
353 | OPENSSL_EXPORT void BN_CTX_start(BN_CTX *ctx); |
354 | |
355 | // BN_CTX_get returns a new |BIGNUM|, or NULL on allocation failure. Once |
356 | // |BN_CTX_get| has returned NULL, all future calls will also return NULL until |
357 | // |BN_CTX_end| is called. |
358 | OPENSSL_EXPORT BIGNUM *BN_CTX_get(BN_CTX *ctx); |
359 | |
360 | // BN_CTX_end invalidates all |BIGNUM|s returned from |BN_CTX_get| since the |
361 | // matching |BN_CTX_start| call. |
362 | OPENSSL_EXPORT void BN_CTX_end(BN_CTX *ctx); |
363 | |
364 | |
365 | // Simple arithmetic |
366 | |
367 | // BN_add sets |r| = |a| + |b|, where |r| may be the same pointer as either |a| |
368 | // or |b|. It returns one on success and zero on allocation failure. |
369 | OPENSSL_EXPORT int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
370 | |
371 | // BN_uadd sets |r| = |a| + |b|, where |a| and |b| are non-negative and |r| may |
372 | // be the same pointer as either |a| or |b|. It returns one on success and zero |
373 | // on allocation failure. |
374 | OPENSSL_EXPORT int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
375 | |
376 | // BN_add_word adds |w| to |a|. It returns one on success and zero otherwise. |
377 | OPENSSL_EXPORT int BN_add_word(BIGNUM *a, BN_ULONG w); |
378 | |
379 | // BN_sub sets |r| = |a| - |b|, where |r| may be the same pointer as either |a| |
380 | // or |b|. It returns one on success and zero on allocation failure. |
381 | OPENSSL_EXPORT int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
382 | |
383 | // BN_usub sets |r| = |a| - |b|, where |a| and |b| are non-negative integers, |
384 | // |b| < |a| and |r| may be the same pointer as either |a| or |b|. It returns |
385 | // one on success and zero on allocation failure. |
386 | OPENSSL_EXPORT int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
387 | |
388 | // BN_sub_word subtracts |w| from |a|. It returns one on success and zero on |
389 | // allocation failure. |
390 | OPENSSL_EXPORT int BN_sub_word(BIGNUM *a, BN_ULONG w); |
391 | |
392 | // BN_mul sets |r| = |a| * |b|, where |r| may be the same pointer as |a| or |
393 | // |b|. Returns one on success and zero otherwise. |
394 | OPENSSL_EXPORT int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
395 | BN_CTX *ctx); |
396 | |
397 | // BN_mul_word sets |bn| = |bn| * |w|. It returns one on success or zero on |
398 | // allocation failure. |
399 | OPENSSL_EXPORT int BN_mul_word(BIGNUM *bn, BN_ULONG w); |
400 | |
401 | // BN_sqr sets |r| = |a|^2 (i.e. squares), where |r| may be the same pointer as |
402 | // |a|. Returns one on success and zero otherwise. This is more efficient than |
403 | // BN_mul(r, a, a, ctx). |
404 | OPENSSL_EXPORT int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); |
405 | |
406 | // BN_div divides |numerator| by |divisor| and places the result in |quotient| |
407 | // and the remainder in |rem|. Either of |quotient| or |rem| may be NULL, in |
408 | // which case the respective value is not returned. The result is rounded |
409 | // towards zero; thus if |numerator| is negative, the remainder will be zero or |
410 | // negative. It returns one on success or zero on error. |
411 | OPENSSL_EXPORT int BN_div(BIGNUM *quotient, BIGNUM *rem, |
412 | const BIGNUM *numerator, const BIGNUM *divisor, |
413 | BN_CTX *ctx); |
414 | |
415 | // BN_div_word sets |numerator| = |numerator|/|divisor| and returns the |
416 | // remainder or (BN_ULONG)-1 on error. |
417 | OPENSSL_EXPORT BN_ULONG BN_div_word(BIGNUM *numerator, BN_ULONG divisor); |
418 | |
419 | // BN_sqrt sets |*out_sqrt| (which may be the same |BIGNUM| as |in|) to the |
420 | // square root of |in|, using |ctx|. It returns one on success or zero on |
421 | // error. Negative numbers and non-square numbers will result in an error with |
422 | // appropriate errors on the error queue. |
423 | OPENSSL_EXPORT int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx); |
424 | |
425 | |
426 | // Comparison functions |
427 | |
428 | // BN_cmp returns a value less than, equal to or greater than zero if |a| is |
429 | // less than, equal to or greater than |b|, respectively. |
430 | OPENSSL_EXPORT int BN_cmp(const BIGNUM *a, const BIGNUM *b); |
431 | |
432 | // BN_cmp_word is like |BN_cmp| except it takes its second argument as a |
433 | // |BN_ULONG| instead of a |BIGNUM|. |
434 | OPENSSL_EXPORT int BN_cmp_word(const BIGNUM *a, BN_ULONG b); |
435 | |
436 | // BN_ucmp returns a value less than, equal to or greater than zero if the |
437 | // absolute value of |a| is less than, equal to or greater than the absolute |
438 | // value of |b|, respectively. |
439 | OPENSSL_EXPORT int BN_ucmp(const BIGNUM *a, const BIGNUM *b); |
440 | |
441 | // BN_equal_consttime returns one if |a| is equal to |b|, and zero otherwise. |
442 | // It takes an amount of time dependent on the sizes of |a| and |b|, but |
443 | // independent of the contents (including the signs) of |a| and |b|. |
444 | OPENSSL_EXPORT int BN_equal_consttime(const BIGNUM *a, const BIGNUM *b); |
445 | |
446 | // BN_abs_is_word returns one if the absolute value of |bn| equals |w| and zero |
447 | // otherwise. |
448 | OPENSSL_EXPORT int BN_abs_is_word(const BIGNUM *bn, BN_ULONG w); |
449 | |
450 | // BN_is_zero returns one if |bn| is zero and zero otherwise. |
451 | OPENSSL_EXPORT int BN_is_zero(const BIGNUM *bn); |
452 | |
453 | // BN_is_one returns one if |bn| equals one and zero otherwise. |
454 | OPENSSL_EXPORT int BN_is_one(const BIGNUM *bn); |
455 | |
456 | // BN_is_word returns one if |bn| is exactly |w| and zero otherwise. |
457 | OPENSSL_EXPORT int BN_is_word(const BIGNUM *bn, BN_ULONG w); |
458 | |
459 | // BN_is_odd returns one if |bn| is odd and zero otherwise. |
460 | OPENSSL_EXPORT int BN_is_odd(const BIGNUM *bn); |
461 | |
462 | // BN_is_pow2 returns 1 if |a| is a power of two, and 0 otherwise. |
463 | OPENSSL_EXPORT int BN_is_pow2(const BIGNUM *a); |
464 | |
465 | |
466 | // Bitwise operations. |
467 | |
468 | // BN_lshift sets |r| equal to |a| << n. The |a| and |r| arguments may be the |
469 | // same |BIGNUM|. It returns one on success and zero on allocation failure. |
470 | OPENSSL_EXPORT int BN_lshift(BIGNUM *r, const BIGNUM *a, int n); |
471 | |
472 | // BN_lshift1 sets |r| equal to |a| << 1, where |r| and |a| may be the same |
473 | // pointer. It returns one on success and zero on allocation failure. |
474 | OPENSSL_EXPORT int BN_lshift1(BIGNUM *r, const BIGNUM *a); |
475 | |
476 | // BN_rshift sets |r| equal to |a| >> n, where |r| and |a| may be the same |
477 | // pointer. It returns one on success and zero on allocation failure. |
478 | OPENSSL_EXPORT int BN_rshift(BIGNUM *r, const BIGNUM *a, int n); |
479 | |
480 | // BN_rshift1 sets |r| equal to |a| >> 1, where |r| and |a| may be the same |
481 | // pointer. It returns one on success and zero on allocation failure. |
482 | OPENSSL_EXPORT int BN_rshift1(BIGNUM *r, const BIGNUM *a); |
483 | |
484 | // BN_set_bit sets the |n|th, least-significant bit in |a|. For example, if |a| |
485 | // is 2 then setting bit zero will make it 3. It returns one on success or zero |
486 | // on allocation failure. |
487 | OPENSSL_EXPORT int BN_set_bit(BIGNUM *a, int n); |
488 | |
489 | // BN_clear_bit clears the |n|th, least-significant bit in |a|. For example, if |
490 | // |a| is 3, clearing bit zero will make it two. It returns one on success or |
491 | // zero on allocation failure. |
492 | OPENSSL_EXPORT int BN_clear_bit(BIGNUM *a, int n); |
493 | |
494 | // BN_is_bit_set returns one if the |n|th least-significant bit in |a| exists |
495 | // and is set. Otherwise, it returns zero. |
496 | OPENSSL_EXPORT int BN_is_bit_set(const BIGNUM *a, int n); |
497 | |
498 | // BN_mask_bits truncates |a| so that it is only |n| bits long. It returns one |
499 | // on success or zero if |n| is negative. |
500 | // |
501 | // This differs from OpenSSL which additionally returns zero if |a|'s word |
502 | // length is less than or equal to |n|, rounded down to a number of words. Note |
503 | // word size is platform-dependent, so this behavior is also difficult to rely |
504 | // on in OpenSSL and not very useful. |
505 | OPENSSL_EXPORT int BN_mask_bits(BIGNUM *a, int n); |
506 | |
507 | // BN_count_low_zero_bits returns the number of low-order zero bits in |bn|, or |
508 | // the number of factors of two which divide it. It returns zero if |bn| is |
509 | // zero. |
510 | OPENSSL_EXPORT int BN_count_low_zero_bits(const BIGNUM *bn); |
511 | |
512 | |
513 | // Modulo arithmetic. |
514 | |
515 | // BN_mod_word returns |a| mod |w| or (BN_ULONG)-1 on error. |
516 | OPENSSL_EXPORT BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w); |
517 | |
518 | // BN_mod_pow2 sets |r| = |a| mod 2^|e|. It returns 1 on success and |
519 | // 0 on error. |
520 | OPENSSL_EXPORT int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e); |
521 | |
522 | // BN_nnmod_pow2 sets |r| = |a| mod 2^|e| where |r| is always positive. |
523 | // It returns 1 on success and 0 on error. |
524 | OPENSSL_EXPORT int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e); |
525 | |
526 | // BN_mod is a helper macro that calls |BN_div| and discards the quotient. |
527 | #define BN_mod(rem, numerator, divisor, ctx) \ |
528 | BN_div(NULL, (rem), (numerator), (divisor), (ctx)) |
529 | |
530 | // BN_nnmod is a non-negative modulo function. It acts like |BN_mod|, but 0 <= |
531 | // |rem| < |divisor| is always true. It returns one on success and zero on |
532 | // error. |
533 | OPENSSL_EXPORT int BN_nnmod(BIGNUM *rem, const BIGNUM *numerator, |
534 | const BIGNUM *divisor, BN_CTX *ctx); |
535 | |
536 | // BN_mod_add sets |r| = |a| + |b| mod |m|. It returns one on success and zero |
537 | // on error. |
538 | OPENSSL_EXPORT int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
539 | const BIGNUM *m, BN_CTX *ctx); |
540 | |
541 | // BN_mod_add_quick acts like |BN_mod_add| but requires that |a| and |b| be |
542 | // non-negative and less than |m|. |
543 | OPENSSL_EXPORT int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
544 | const BIGNUM *m); |
545 | |
546 | // BN_mod_sub sets |r| = |a| - |b| mod |m|. It returns one on success and zero |
547 | // on error. |
548 | OPENSSL_EXPORT int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
549 | const BIGNUM *m, BN_CTX *ctx); |
550 | |
551 | // BN_mod_sub_quick acts like |BN_mod_sub| but requires that |a| and |b| be |
552 | // non-negative and less than |m|. |
553 | OPENSSL_EXPORT int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
554 | const BIGNUM *m); |
555 | |
556 | // BN_mod_mul sets |r| = |a|*|b| mod |m|. It returns one on success and zero |
557 | // on error. |
558 | OPENSSL_EXPORT int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
559 | const BIGNUM *m, BN_CTX *ctx); |
560 | |
561 | // BN_mod_sqr sets |r| = |a|^2 mod |m|. It returns one on success and zero |
562 | // on error. |
563 | OPENSSL_EXPORT int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, |
564 | BN_CTX *ctx); |
565 | |
566 | // BN_mod_lshift sets |r| = (|a| << n) mod |m|, where |r| and |a| may be the |
567 | // same pointer. It returns one on success and zero on error. |
568 | OPENSSL_EXPORT int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, |
569 | const BIGNUM *m, BN_CTX *ctx); |
570 | |
571 | // BN_mod_lshift_quick acts like |BN_mod_lshift| but requires that |a| be |
572 | // non-negative and less than |m|. |
573 | OPENSSL_EXPORT int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, |
574 | const BIGNUM *m); |
575 | |
576 | // BN_mod_lshift1 sets |r| = (|a| << 1) mod |m|, where |r| and |a| may be the |
577 | // same pointer. It returns one on success and zero on error. |
578 | OPENSSL_EXPORT int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, |
579 | BN_CTX *ctx); |
580 | |
581 | // BN_mod_lshift1_quick acts like |BN_mod_lshift1| but requires that |a| be |
582 | // non-negative and less than |m|. |
583 | OPENSSL_EXPORT int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, |
584 | const BIGNUM *m); |
585 | |
586 | // BN_mod_sqrt returns a newly-allocated |BIGNUM|, r, such that |
587 | // r^2 == a (mod p). |p| must be a prime. It returns NULL on error or if |a| is |
588 | // not a square mod |p|. In the latter case, it will add |BN_R_NOT_A_SQUARE| to |
589 | // the error queue. |
590 | OPENSSL_EXPORT BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, |
591 | BN_CTX *ctx); |
592 | |
593 | |
594 | // Random and prime number generation. |
595 | |
596 | // The following are values for the |top| parameter of |BN_rand|. |
597 | #define BN_RAND_TOP_ANY (-1) |
598 | #define BN_RAND_TOP_ONE 0 |
599 | #define BN_RAND_TOP_TWO 1 |
600 | |
601 | // The following are values for the |bottom| parameter of |BN_rand|. |
602 | #define BN_RAND_BOTTOM_ANY 0 |
603 | #define BN_RAND_BOTTOM_ODD 1 |
604 | |
605 | // BN_rand sets |rnd| to a random number of length |bits|. It returns one on |
606 | // success and zero otherwise. |
607 | // |
608 | // |top| must be one of the |BN_RAND_TOP_*| values. If |BN_RAND_TOP_ONE|, the |
609 | // most-significant bit, if any, will be set. If |BN_RAND_TOP_TWO|, the two |
610 | // most significant bits, if any, will be set. If |BN_RAND_TOP_ANY|, no extra |
611 | // action will be taken and |BN_num_bits(rnd)| may not equal |bits| if the most |
612 | // significant bits randomly ended up as zeros. |
613 | // |
614 | // |bottom| must be one of the |BN_RAND_BOTTOM_*| values. If |
615 | // |BN_RAND_BOTTOM_ODD|, the least-significant bit, if any, will be set. If |
616 | // |BN_RAND_BOTTOM_ANY|, no extra action will be taken. |
617 | OPENSSL_EXPORT int BN_rand(BIGNUM *rnd, int bits, int top, int bottom); |
618 | |
619 | // BN_pseudo_rand is an alias for |BN_rand|. |
620 | OPENSSL_EXPORT int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom); |
621 | |
622 | // BN_rand_range is equivalent to |BN_rand_range_ex| with |min_inclusive| set |
623 | // to zero and |max_exclusive| set to |range|. |
624 | OPENSSL_EXPORT int BN_rand_range(BIGNUM *rnd, const BIGNUM *range); |
625 | |
626 | // BN_rand_range_ex sets |rnd| to a random value in |
627 | // [min_inclusive..max_exclusive). It returns one on success and zero |
628 | // otherwise. |
629 | OPENSSL_EXPORT int BN_rand_range_ex(BIGNUM *r, BN_ULONG min_inclusive, |
630 | const BIGNUM *max_exclusive); |
631 | |
632 | // BN_pseudo_rand_range is an alias for BN_rand_range. |
633 | OPENSSL_EXPORT int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range); |
634 | |
635 | #define BN_GENCB_GENERATED 0 |
636 | #define BN_GENCB_PRIME_TEST 1 |
637 | |
638 | // bn_gencb_st, or |BN_GENCB|, holds a callback function that is used by |
639 | // generation functions that can take a very long time to complete. Use |
640 | // |BN_GENCB_set| to initialise a |BN_GENCB| structure. |
641 | // |
642 | // The callback receives the address of that |BN_GENCB| structure as its last |
643 | // argument and the user is free to put an arbitrary pointer in |arg|. The other |
644 | // arguments are set as follows: |
645 | // event=BN_GENCB_GENERATED, n=i: after generating the i'th possible prime |
646 | // number. |
647 | // event=BN_GENCB_PRIME_TEST, n=-1: when finished trial division primality |
648 | // checks. |
649 | // event=BN_GENCB_PRIME_TEST, n=i: when the i'th primality test has finished. |
650 | // |
651 | // The callback can return zero to abort the generation progress or one to |
652 | // allow it to continue. |
653 | // |
654 | // When other code needs to call a BN generation function it will often take a |
655 | // BN_GENCB argument and may call the function with other argument values. |
656 | struct bn_gencb_st { |
657 | void *arg; // callback-specific data |
658 | int (*callback)(int event, int n, struct bn_gencb_st *); |
659 | }; |
660 | |
661 | // BN_GENCB_set configures |callback| to call |f| and sets |callout->arg| to |
662 | // |arg|. |
663 | OPENSSL_EXPORT void BN_GENCB_set(BN_GENCB *callback, |
664 | int (*f)(int event, int n, BN_GENCB *), |
665 | void *arg); |
666 | |
667 | // BN_GENCB_call calls |callback|, if not NULL, and returns the return value of |
668 | // the callback, or 1 if |callback| is NULL. |
669 | OPENSSL_EXPORT int BN_GENCB_call(BN_GENCB *callback, int event, int n); |
670 | |
671 | // BN_generate_prime_ex sets |ret| to a prime number of |bits| length. If safe |
672 | // is non-zero then the prime will be such that (ret-1)/2 is also a prime. |
673 | // (This is needed for Diffie-Hellman groups to ensure that the only subgroups |
674 | // are of size 2 and (p-1)/2.). |
675 | // |
676 | // If |add| is not NULL, the prime will fulfill the condition |ret| % |add| == |
677 | // |rem| in order to suit a given generator. (If |rem| is NULL then |ret| % |
678 | // |add| == 1.) |
679 | // |
680 | // If |cb| is not NULL, it will be called during processing to give an |
681 | // indication of progress. See the comments for |BN_GENCB|. It returns one on |
682 | // success and zero otherwise. |
683 | OPENSSL_EXPORT int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, |
684 | const BIGNUM *add, const BIGNUM *rem, |
685 | BN_GENCB *cb); |
686 | |
687 | // BN_prime_checks is magic value that can be used as the |checks| argument to |
688 | // the primality testing functions in order to automatically select a number of |
689 | // Miller-Rabin checks that gives a false positive rate of ~2^{-80}. |
690 | #define BN_prime_checks 0 |
691 | |
692 | // bn_primality_result_t enumerates the outcomes of primality-testing. |
693 | enum bn_primality_result_t { |
694 | bn_probably_prime, |
695 | bn_composite, |
696 | bn_non_prime_power_composite, |
697 | }; |
698 | |
699 | // BN_enhanced_miller_rabin_primality_test tests whether |w| is probably a prime |
700 | // number using the Enhanced Miller-Rabin Test (FIPS 186-4 C.3.2) with |
701 | // |iterations| iterations and returns the result in |out_result|. Enhanced |
702 | // Miller-Rabin tests primality for odd integers greater than 3, returning |
703 | // |bn_probably_prime| if the number is probably prime, |
704 | // |bn_non_prime_power_composite| if the number is a composite that is not the |
705 | // power of a single prime, and |bn_composite| otherwise. It returns one on |
706 | // success and zero on failure. If |cb| is not NULL, then it is called during |
707 | // each iteration of the primality test. |
708 | // |
709 | // If |iterations| is |BN_prime_checks|, then a value that results in a false |
710 | // positive rate lower than the number-field sieve security level of |w| is |
711 | // used, provided |w| was generated randomly. |BN_prime_checks| is not suitable |
712 | // for inputs potentially crafted by an adversary. |
713 | OPENSSL_EXPORT int BN_enhanced_miller_rabin_primality_test( |
714 | enum bn_primality_result_t *out_result, const BIGNUM *w, int iterations, |
715 | BN_CTX *ctx, BN_GENCB *cb); |
716 | |
717 | // BN_primality_test sets |*is_probably_prime| to one if |candidate| is |
718 | // probably a prime number by the Miller-Rabin test or zero if it's certainly |
719 | // not. |
720 | // |
721 | // If |do_trial_division| is non-zero then |candidate| will be tested against a |
722 | // list of small primes before Miller-Rabin tests. The probability of this |
723 | // function returning a false positive is 2^{2*checks}. If |checks| is |
724 | // |BN_prime_checks| then a value that results in a false positive rate lower |
725 | // than the number-field sieve security level of |candidate| is used, provided |
726 | // |candidate| was generated randomly. |BN_prime_checks| is not suitable for |
727 | // inputs potentially crafted by an adversary. |
728 | // |
729 | // If |cb| is not NULL then it is called during the checking process. See the |
730 | // comment above |BN_GENCB|. |
731 | // |
732 | // The function returns one on success and zero on error. |
733 | OPENSSL_EXPORT int BN_primality_test(int *is_probably_prime, |
734 | const BIGNUM *candidate, int checks, |
735 | BN_CTX *ctx, int do_trial_division, |
736 | BN_GENCB *cb); |
737 | |
738 | // BN_is_prime_fasttest_ex returns one if |candidate| is probably a prime |
739 | // number by the Miller-Rabin test, zero if it's certainly not and -1 on error. |
740 | // |
741 | // If |do_trial_division| is non-zero then |candidate| will be tested against a |
742 | // list of small primes before Miller-Rabin tests. The probability of this |
743 | // function returning one when |candidate| is composite is 2^{2*checks}. If |
744 | // |checks| is |BN_prime_checks| then a value that results in a false positive |
745 | // rate lower than the number-field sieve security level of |candidate| is used, |
746 | // provided |candidate| was generated randomly. |BN_prime_checks| is not |
747 | // suitable for inputs potentially crafted by an adversary. |
748 | // |
749 | // If |cb| is not NULL then it is called during the checking process. See the |
750 | // comment above |BN_GENCB|. |
751 | // |
752 | // WARNING: deprecated. Use |BN_primality_test|. |
753 | OPENSSL_EXPORT int BN_is_prime_fasttest_ex(const BIGNUM *candidate, int checks, |
754 | BN_CTX *ctx, int do_trial_division, |
755 | BN_GENCB *cb); |
756 | |
757 | // BN_is_prime_ex acts the same as |BN_is_prime_fasttest_ex| with |
758 | // |do_trial_division| set to zero. |
759 | // |
760 | // WARNING: deprecated: Use |BN_primality_test|. |
761 | OPENSSL_EXPORT int BN_is_prime_ex(const BIGNUM *candidate, int checks, |
762 | BN_CTX *ctx, BN_GENCB *cb); |
763 | |
764 | |
765 | // Number theory functions |
766 | |
767 | // BN_gcd sets |r| = gcd(|a|, |b|). It returns one on success and zero |
768 | // otherwise. |
769 | OPENSSL_EXPORT int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
770 | BN_CTX *ctx); |
771 | |
772 | // BN_mod_inverse sets |out| equal to |a|^-1, mod |n|. If |out| is NULL, a |
773 | // fresh BIGNUM is allocated. It returns the result or NULL on error. |
774 | // |
775 | // If |n| is even then the operation is performed using an algorithm that avoids |
776 | // some branches but which isn't constant-time. This function shouldn't be used |
777 | // for secret values; use |BN_mod_inverse_blinded| instead. Or, if |n| is |
778 | // guaranteed to be prime, use |
779 | // |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking |
780 | // advantage of Fermat's Little Theorem. |
781 | OPENSSL_EXPORT BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a, |
782 | const BIGNUM *n, BN_CTX *ctx); |
783 | |
784 | // BN_mod_inverse_blinded sets |out| equal to |a|^-1, mod |n|, where |n| is the |
785 | // Montgomery modulus for |mont|. |a| must be non-negative and must be less |
786 | // than |n|. |n| must be greater than 1. |a| is blinded (masked by a random |
787 | // value) to protect it against side-channel attacks. On failure, if the failure |
788 | // was caused by |a| having no inverse mod |n| then |*out_no_inverse| will be |
789 | // set to one; otherwise it will be set to zero. |
790 | // |
791 | // Note this function may incorrectly report |a| has no inverse if the random |
792 | // blinding value has no inverse. It should only be used when |n| has few |
793 | // non-invertible elements, such as an RSA modulus. |
794 | int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, |
795 | const BN_MONT_CTX *mont, BN_CTX *ctx); |
796 | |
797 | // BN_mod_inverse_odd sets |out| equal to |a|^-1, mod |n|. |a| must be |
798 | // non-negative and must be less than |n|. |n| must be odd. This function |
799 | // shouldn't be used for secret values; use |BN_mod_inverse_blinded| instead. |
800 | // Or, if |n| is guaranteed to be prime, use |
801 | // |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking |
802 | // advantage of Fermat's Little Theorem. It returns one on success or zero on |
803 | // failure. On failure, if the failure was caused by |a| having no inverse mod |
804 | // |n| then |*out_no_inverse| will be set to one; otherwise it will be set to |
805 | // zero. |
806 | int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, |
807 | const BIGNUM *n, BN_CTX *ctx); |
808 | |
809 | |
810 | // Montgomery arithmetic. |
811 | |
812 | // BN_MONT_CTX contains the precomputed values needed to work in a specific |
813 | // Montgomery domain. |
814 | |
815 | // BN_MONT_CTX_new_for_modulus returns a fresh |BN_MONT_CTX| given the modulus, |
816 | // |mod| or NULL on error. Note this function assumes |mod| is public. |
817 | OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new_for_modulus(const BIGNUM *mod, |
818 | BN_CTX *ctx); |
819 | |
820 | // BN_MONT_CTX_new_consttime behaves like |BN_MONT_CTX_new_for_modulus| but |
821 | // treats |mod| as secret. |
822 | OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new_consttime(const BIGNUM *mod, |
823 | BN_CTX *ctx); |
824 | |
825 | // BN_MONT_CTX_free frees memory associated with |mont|. |
826 | OPENSSL_EXPORT void BN_MONT_CTX_free(BN_MONT_CTX *mont); |
827 | |
828 | // BN_MONT_CTX_copy sets |to| equal to |from|. It returns |to| on success or |
829 | // NULL on error. |
830 | OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, |
831 | const BN_MONT_CTX *from); |
832 | |
833 | // BN_MONT_CTX_set_locked takes |lock| and checks whether |*pmont| is NULL. If |
834 | // so, it creates a new |BN_MONT_CTX| and sets the modulus for it to |mod|. It |
835 | // then stores it as |*pmont|. It returns one on success and zero on error. Note |
836 | // this function assumes |mod| is public. |
837 | // |
838 | // If |*pmont| is already non-NULL then it does nothing and returns one. |
839 | int BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_MUTEX *lock, |
840 | const BIGNUM *mod, BN_CTX *bn_ctx); |
841 | |
842 | // BN_to_montgomery sets |ret| equal to |a| in the Montgomery domain. |a| is |
843 | // assumed to be in the range [0, n), where |n| is the Montgomery modulus. It |
844 | // returns one on success or zero on error. |
845 | OPENSSL_EXPORT int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a, |
846 | const BN_MONT_CTX *mont, BN_CTX *ctx); |
847 | |
848 | // BN_from_montgomery sets |ret| equal to |a| * R^-1, i.e. translates values out |
849 | // of the Montgomery domain. |a| is assumed to be in the range [0, n), where |n| |
850 | // is the Montgomery modulus. It returns one on success or zero on error. |
851 | OPENSSL_EXPORT int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, |
852 | const BN_MONT_CTX *mont, BN_CTX *ctx); |
853 | |
854 | // BN_mod_mul_montgomery set |r| equal to |a| * |b|, in the Montgomery domain. |
855 | // Both |a| and |b| must already be in the Montgomery domain (by |
856 | // |BN_to_montgomery|). In particular, |a| and |b| are assumed to be in the |
857 | // range [0, n), where |n| is the Montgomery modulus. It returns one on success |
858 | // or zero on error. |
859 | OPENSSL_EXPORT int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, |
860 | const BIGNUM *b, |
861 | const BN_MONT_CTX *mont, BN_CTX *ctx); |
862 | |
863 | |
864 | // Exponentiation. |
865 | |
866 | // BN_exp sets |r| equal to |a|^{|p|}. It does so with a square-and-multiply |
867 | // algorithm that leaks side-channel information. It returns one on success or |
868 | // zero otherwise. |
869 | OPENSSL_EXPORT int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
870 | BN_CTX *ctx); |
871 | |
872 | // BN_mod_exp sets |r| equal to |a|^{|p|} mod |m|. It does so with the best |
873 | // algorithm for the values provided. It returns one on success or zero |
874 | // otherwise. The |BN_mod_exp_mont_consttime| variant must be used if the |
875 | // exponent is secret. |
876 | OPENSSL_EXPORT int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
877 | const BIGNUM *m, BN_CTX *ctx); |
878 | |
879 | // BN_mod_exp_mont behaves like |BN_mod_exp| but treats |a| as secret and |
880 | // requires 0 <= |a| < |m|. |
881 | OPENSSL_EXPORT int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
882 | const BIGNUM *m, BN_CTX *ctx, |
883 | const BN_MONT_CTX *mont); |
884 | |
885 | // BN_mod_exp_mont_consttime behaves like |BN_mod_exp| but treats |a|, |p|, and |
886 | // |m| as secret and requires 0 <= |a| < |m|. |
887 | OPENSSL_EXPORT int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, |
888 | const BIGNUM *p, const BIGNUM *m, |
889 | BN_CTX *ctx, |
890 | const BN_MONT_CTX *mont); |
891 | |
892 | |
893 | // Deprecated functions |
894 | |
895 | // BN_bn2mpi serialises the value of |in| to |out|, using a format that consists |
896 | // of the number's length in bytes represented as a 4-byte big-endian number, |
897 | // and the number itself in big-endian format, where the most significant bit |
898 | // signals a negative number. (The representation of numbers with the MSB set is |
899 | // prefixed with null byte). |out| must have sufficient space available; to |
900 | // find the needed amount of space, call the function with |out| set to NULL. |
901 | OPENSSL_EXPORT size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out); |
902 | |
903 | // BN_mpi2bn parses |len| bytes from |in| and returns the resulting value. The |
904 | // bytes at |in| are expected to be in the format emitted by |BN_bn2mpi|. |
905 | // |
906 | // If |out| is NULL then a fresh |BIGNUM| is allocated and returned, otherwise |
907 | // |out| is reused and returned. On error, NULL is returned and the error queue |
908 | // is updated. |
909 | OPENSSL_EXPORT BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out); |
910 | |
911 | // BN_mod_exp_mont_word is like |BN_mod_exp_mont| except that the base |a| is |
912 | // given as a |BN_ULONG| instead of a |BIGNUM *|. It returns one on success |
913 | // or zero otherwise. |
914 | OPENSSL_EXPORT int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p, |
915 | const BIGNUM *m, BN_CTX *ctx, |
916 | const BN_MONT_CTX *mont); |
917 | |
918 | // BN_mod_exp2_mont calculates (a1^p1) * (a2^p2) mod m. It returns 1 on success |
919 | // or zero otherwise. |
920 | OPENSSL_EXPORT int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, |
921 | const BIGNUM *p1, const BIGNUM *a2, |
922 | const BIGNUM *p2, const BIGNUM *m, |
923 | BN_CTX *ctx, const BN_MONT_CTX *mont); |
924 | |
925 | // BN_MONT_CTX_new returns a fresh |BN_MONT_CTX| or NULL on allocation failure. |
926 | // Use |BN_MONT_CTX_new_for_modulus| instead. |
927 | OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new(void); |
928 | |
929 | // BN_MONT_CTX_set sets up a Montgomery context given the modulus, |mod|. It |
930 | // returns one on success and zero on error. Use |BN_MONT_CTX_new_for_modulus| |
931 | // instead. |
932 | OPENSSL_EXPORT int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, |
933 | BN_CTX *ctx); |
934 | |
935 | // BN_bn2binpad behaves like |BN_bn2bin_padded|, but it returns |len| on success |
936 | // and -1 on error. |
937 | // |
938 | // Use |BN_bn2bin_padded| instead. It is |size_t|-clean. |
939 | OPENSSL_EXPORT int BN_bn2binpad(const BIGNUM *in, uint8_t *out, int len); |
940 | |
941 | |
942 | // Private functions |
943 | |
944 | struct bignum_st { |
945 | // d is a pointer to an array of |width| |BN_BITS2|-bit chunks in |
946 | // little-endian order. This stores the absolute value of the number. |
947 | BN_ULONG *d; |
948 | // width is the number of elements of |d| which are valid. This value is not |
949 | // necessarily minimal; the most-significant words of |d| may be zero. |
950 | // |width| determines a potentially loose upper-bound on the absolute value |
951 | // of the |BIGNUM|. |
952 | // |
953 | // Functions taking |BIGNUM| inputs must compute the same answer for all |
954 | // possible widths. |bn_minimal_width|, |bn_set_minimal_width|, and other |
955 | // helpers may be used to recover the minimal width, provided it is not |
956 | // secret. If it is secret, use a different algorithm. Functions may output |
957 | // minimal or non-minimal |BIGNUM|s depending on secrecy requirements, but |
958 | // those which cause widths to unboundedly grow beyond the minimal value |
959 | // should be documented such. |
960 | // |
961 | // Note this is different from historical |BIGNUM| semantics. |
962 | int width; |
963 | // dmax is number of elements of |d| which are allocated. |
964 | int dmax; |
965 | // neg is one if the number if negative and zero otherwise. |
966 | int neg; |
967 | // flags is a bitmask of |BN_FLG_*| values |
968 | int flags; |
969 | }; |
970 | |
971 | struct bn_mont_ctx_st { |
972 | // RR is R^2, reduced modulo |N|. It is used to convert to Montgomery form. It |
973 | // is guaranteed to have the same width as |N|. |
974 | BIGNUM RR; |
975 | // N is the modulus. It is always stored in minimal form, so |N.width| |
976 | // determines R. |
977 | BIGNUM N; |
978 | BN_ULONG n0[2]; // least significant words of (R*Ri-1)/N |
979 | }; |
980 | |
981 | OPENSSL_EXPORT unsigned BN_num_bits_word(BN_ULONG l); |
982 | |
983 | #define BN_FLG_MALLOCED 0x01 |
984 | #define BN_FLG_STATIC_DATA 0x02 |
985 | // |BN_FLG_CONSTTIME| has been removed and intentionally omitted so code relying |
986 | // on it will not compile. Consumers outside BoringSSL should use the |
987 | // higher-level cryptographic algorithms exposed by other modules. Consumers |
988 | // within the library should call the appropriate timing-sensitive algorithm |
989 | // directly. |
990 | |
991 | |
992 | #if defined(__cplusplus) |
993 | } // extern C |
994 | |
995 | #if !defined(BORINGSSL_NO_CXX) |
996 | extern "C++" { |
997 | |
998 | BSSL_NAMESPACE_BEGIN |
999 | |
1000 | BORINGSSL_MAKE_DELETER(BIGNUM, BN_free) |
1001 | BORINGSSL_MAKE_DELETER(BN_CTX, BN_CTX_free) |
1002 | BORINGSSL_MAKE_DELETER(BN_MONT_CTX, BN_MONT_CTX_free) |
1003 | |
1004 | class BN_CTXScope { |
1005 | public: |
1006 | BN_CTXScope(BN_CTX *ctx) : ctx_(ctx) { BN_CTX_start(ctx_); } |
1007 | ~BN_CTXScope() { BN_CTX_end(ctx_); } |
1008 | |
1009 | private: |
1010 | BN_CTX *ctx_; |
1011 | |
1012 | BN_CTXScope(BN_CTXScope &) = delete; |
1013 | BN_CTXScope &operator=(BN_CTXScope &) = delete; |
1014 | }; |
1015 | |
1016 | BSSL_NAMESPACE_END |
1017 | |
1018 | } // extern C++ |
1019 | #endif |
1020 | |
1021 | #endif |
1022 | |
1023 | #define BN_R_ARG2_LT_ARG3 100 |
1024 | #define BN_R_BAD_RECIPROCAL 101 |
1025 | #define BN_R_BIGNUM_TOO_LONG 102 |
1026 | #define BN_R_BITS_TOO_SMALL 103 |
1027 | #define BN_R_CALLED_WITH_EVEN_MODULUS 104 |
1028 | #define BN_R_DIV_BY_ZERO 105 |
1029 | #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 106 |
1030 | #define BN_R_INPUT_NOT_REDUCED 107 |
1031 | #define BN_R_INVALID_RANGE 108 |
1032 | #define BN_R_NEGATIVE_NUMBER 109 |
1033 | #define BN_R_NOT_A_SQUARE 110 |
1034 | #define BN_R_NOT_INITIALIZED 111 |
1035 | #define BN_R_NO_INVERSE 112 |
1036 | #define BN_R_PRIVATE_KEY_TOO_LARGE 113 |
1037 | #define BN_R_P_IS_NOT_PRIME 114 |
1038 | #define BN_R_TOO_MANY_ITERATIONS 115 |
1039 | #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 116 |
1040 | #define BN_R_BAD_ENCODING 117 |
1041 | #define BN_R_ENCODE_ERROR 118 |
1042 | #define BN_R_INVALID_INPUT 119 |
1043 | |
1044 | #endif // OPENSSL_HEADER_BN_H |
1045 | |