1 | // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
2 | // for details. All rights reserved. Use of this source code is governed by a |
3 | // BSD-style license that can be found in the LICENSE file. |
4 | |
5 | #ifndef RUNTIME_PLATFORM_GLOBALS_H_ |
6 | #define RUNTIME_PLATFORM_GLOBALS_H_ |
7 | |
8 | #if __cplusplus >= 201703L // C++17 |
9 | #define FALL_THROUGH [[fallthrough]] // NOLINT |
10 | #elif defined(__GNUC__) && __GNUC__ >= 7 |
11 | #define FALL_THROUGH __attribute__((fallthrough)); |
12 | #elif defined(__clang__) |
13 | #define FALL_THROUGH [[clang::fallthrough]] // NOLINT |
14 | #else |
15 | #define FALL_THROUGH ((void)0) |
16 | #endif |
17 | |
18 | #if defined(GOOGLE3) |
19 | // google3 builds use NDEBUG to indicate non-debug builds which is different |
20 | // from the way the Dart project expects it: DEBUG indicating a debug build. |
21 | #if !defined(NDEBUG) && !defined(DEBUG) |
22 | #define DEBUG |
23 | #endif // !NDEBUG && !DEBUG |
24 | #endif // GOOGLE3 |
25 | |
26 | // __STDC_FORMAT_MACROS has to be defined before including <inttypes.h> to |
27 | // enable platform independent printf format specifiers. |
28 | #ifndef __STDC_FORMAT_MACROS |
29 | #define __STDC_FORMAT_MACROS |
30 | #endif |
31 | |
32 | #if defined(_WIN32) |
33 | // Cut down on the amount of stuff that gets included via windows.h. |
34 | #if !defined(WIN32_LEAN_AND_MEAN) |
35 | #define WIN32_LEAN_AND_MEAN |
36 | #endif |
37 | |
38 | #if !defined(NOMINMAX) |
39 | #define NOMINMAX |
40 | #endif |
41 | |
42 | #if !defined(NOKERNEL) |
43 | #define NOKERNEL |
44 | #endif |
45 | |
46 | #if !defined(NOSERVICE) |
47 | #define NOSERVICE |
48 | #endif |
49 | |
50 | #if !defined(NOSOUND) |
51 | #define NOSOUND |
52 | #endif |
53 | |
54 | #if !defined(NOMCX) |
55 | #define NOMCX |
56 | #endif |
57 | |
58 | #if !defined(UNICODE) |
59 | #define _UNICODE |
60 | #define UNICODE |
61 | #endif |
62 | |
63 | #include <Rpc.h> |
64 | #include <VersionHelpers.h> |
65 | #include <intrin.h> |
66 | #include <shellapi.h> |
67 | #include <windows.h> |
68 | #include <winsock2.h> |
69 | #endif // defined(_WIN32) |
70 | |
71 | #if !defined(_WIN32) |
72 | #include <arpa/inet.h> |
73 | #include <unistd.h> |
74 | #endif // !defined(_WIN32) |
75 | |
76 | #include <float.h> |
77 | #include <inttypes.h> |
78 | #include <limits.h> |
79 | #include <math.h> |
80 | #include <stdarg.h> |
81 | #include <stddef.h> |
82 | #include <stdint.h> |
83 | #include <stdio.h> |
84 | #include <stdlib.h> |
85 | #include <string.h> |
86 | #include <sys/types.h> |
87 | |
88 | #if defined(_WIN32) |
89 | #include "platform/floating_point_win.h" |
90 | #endif // defined(_WIN32) |
91 | |
92 | #if !defined(_WIN32) |
93 | #include "platform/floating_point.h" |
94 | #endif // !defined(_WIN32) |
95 | |
96 | // Target OS detection. |
97 | // for more information on predefined macros: |
98 | // - http://msdn.microsoft.com/en-us/library/b0084kay.aspx |
99 | // - with gcc, run: "echo | gcc -E -dM -" |
100 | #if defined(__ANDROID__) |
101 | |
102 | // Check for Android first, to determine its difference from Linux. |
103 | #define HOST_OS_ANDROID 1 |
104 | |
105 | #elif defined(__linux__) || defined(__FreeBSD__) |
106 | |
107 | // Generic Linux. |
108 | #define HOST_OS_LINUX 1 |
109 | |
110 | #elif defined(__APPLE__) |
111 | |
112 | // Define the flavor of Mac OS we are running on. |
113 | #include <TargetConditionals.h> |
114 | // TODO(iposva): Rename HOST_OS_MACOS to HOST_OS_MAC to inherit |
115 | // the value defined in TargetConditionals.h |
116 | #define HOST_OS_MACOS 1 |
117 | #if TARGET_OS_IPHONE |
118 | #define HOST_OS_IOS 1 |
119 | #endif |
120 | |
121 | #elif defined(_WIN32) |
122 | |
123 | // Windows, both 32- and 64-bit, regardless of the check for _WIN32. |
124 | #define HOST_OS_WINDOWS 1 |
125 | |
126 | #elif defined(__Fuchsia__) |
127 | #define HOST_OS_FUCHSIA |
128 | |
129 | #elif !defined(HOST_OS_FUCHSIA) |
130 | #error Automatic target os detection failed. |
131 | #endif |
132 | |
133 | #if defined(DEBUG) |
134 | #define DEBUG_ONLY(code) code |
135 | #else // defined(DEBUG) |
136 | #define DEBUG_ONLY(code) |
137 | #endif // defined(DEBUG) |
138 | |
139 | #if defined(DEBUG) |
140 | #define UNLESS_DEBUG(code) |
141 | #else // defined(DEBUG) |
142 | #define UNLESS_DEBUG(code) code |
143 | #endif // defined(DEBUG) |
144 | |
145 | namespace dart { |
146 | |
147 | struct simd128_value_t { |
148 | union { |
149 | int32_t int_storage[4]; |
150 | float float_storage[4]; |
151 | double double_storage[2]; |
152 | }; |
153 | simd128_value_t& readFrom(const float* v) { |
154 | float_storage[0] = v[0]; |
155 | float_storage[1] = v[1]; |
156 | float_storage[2] = v[2]; |
157 | float_storage[3] = v[3]; |
158 | return *this; |
159 | } |
160 | simd128_value_t& readFrom(const int32_t* v) { |
161 | int_storage[0] = v[0]; |
162 | int_storage[1] = v[1]; |
163 | int_storage[2] = v[2]; |
164 | int_storage[3] = v[3]; |
165 | return *this; |
166 | } |
167 | simd128_value_t& readFrom(const double* v) { |
168 | double_storage[0] = v[0]; |
169 | double_storage[1] = v[1]; |
170 | return *this; |
171 | } |
172 | simd128_value_t& readFrom(const simd128_value_t* v) { |
173 | *this = *v; |
174 | return *this; |
175 | } |
176 | void writeTo(float* v) { |
177 | v[0] = float_storage[0]; |
178 | v[1] = float_storage[1]; |
179 | v[2] = float_storage[2]; |
180 | v[3] = float_storage[3]; |
181 | } |
182 | void writeTo(int32_t* v) { |
183 | v[0] = int_storage[0]; |
184 | v[1] = int_storage[1]; |
185 | v[2] = int_storage[2]; |
186 | v[3] = int_storage[3]; |
187 | } |
188 | void writeTo(double* v) { |
189 | v[0] = double_storage[0]; |
190 | v[1] = double_storage[1]; |
191 | } |
192 | void writeTo(simd128_value_t* v) { *v = *this; } |
193 | }; |
194 | |
195 | // Processor architecture detection. For more info on what's defined, see: |
196 | // http://msdn.microsoft.com/en-us/library/b0084kay.aspx |
197 | // http://www.agner.org/optimize/calling_conventions.pdf |
198 | // or with gcc, run: "echo | gcc -E -dM -" |
199 | #if defined(_M_X64) || defined(__x86_64__) |
200 | #define HOST_ARCH_X64 1 |
201 | #define ARCH_IS_64_BIT 1 |
202 | #define kFpuRegisterSize 16 |
203 | typedef simd128_value_t fpu_register_t; |
204 | #elif defined(_M_IX86) || defined(__i386__) |
205 | #define HOST_ARCH_IA32 1 |
206 | #define ARCH_IS_32_BIT 1 |
207 | #define kFpuRegisterSize 16 |
208 | typedef simd128_value_t fpu_register_t; |
209 | #elif defined(__ARMEL__) |
210 | #define HOST_ARCH_ARM 1 |
211 | #define ARCH_IS_32_BIT 1 |
212 | #define kFpuRegisterSize 16 |
213 | // Mark the fact that we have defined simd_value_t. |
214 | #define SIMD_VALUE_T_ |
215 | typedef struct { |
216 | union { |
217 | uint32_t u; |
218 | float f; |
219 | } data_[4]; |
220 | } simd_value_t; |
221 | typedef simd_value_t fpu_register_t; |
222 | #define simd_value_safe_load(addr) (*reinterpret_cast<simd_value_t*>(addr)) |
223 | #define simd_value_safe_store(addr, value) \ |
224 | do { \ |
225 | reinterpret_cast<simd_value_t*>(addr)->data_[0] = value.data_[0]; \ |
226 | reinterpret_cast<simd_value_t*>(addr)->data_[1] = value.data_[1]; \ |
227 | reinterpret_cast<simd_value_t*>(addr)->data_[2] = value.data_[2]; \ |
228 | reinterpret_cast<simd_value_t*>(addr)->data_[3] = value.data_[3]; \ |
229 | } while (0) |
230 | |
231 | #elif defined(__aarch64__) |
232 | #define HOST_ARCH_ARM64 1 |
233 | #define ARCH_IS_64_BIT 1 |
234 | #define kFpuRegisterSize 16 |
235 | typedef simd128_value_t fpu_register_t; |
236 | #else |
237 | #error Architecture was not detected as supported by Dart. |
238 | #endif |
239 | |
240 | // DART_FORCE_INLINE strongly hints to the compiler that a function should |
241 | // be inlined. Your function is not guaranteed to be inlined but this is |
242 | // stronger than just using "inline". |
243 | // See: http://msdn.microsoft.com/en-us/library/z8y1yy88.aspx for an |
244 | // explanation of some the cases when a function can never be inlined. |
245 | #ifdef _MSC_VER |
246 | #define DART_FORCE_INLINE __forceinline |
247 | #elif __GNUC__ |
248 | #define DART_FORCE_INLINE inline __attribute__((always_inline)) |
249 | #else |
250 | #error Automatic compiler detection failed. |
251 | #endif |
252 | |
253 | // DART_NOINLINE tells compiler to never inline a particular function. |
254 | #ifdef _MSC_VER |
255 | #define DART_NOINLINE __declspec(noinline) |
256 | #elif __GNUC__ |
257 | #define DART_NOINLINE __attribute__((noinline)) |
258 | #else |
259 | #error Automatic compiler detection failed. |
260 | #endif |
261 | |
262 | #ifdef _MSC_VER |
263 | #elif __GNUC__ |
264 | #define DART_HAS_COMPUTED_GOTO 1 |
265 | #else |
266 | #error Automatic compiler detection failed. |
267 | #endif |
268 | |
269 | // LIKELY/UNLIKELY give the compiler branch preditions that may affect block |
270 | // scheduling. |
271 | #ifdef __GNUC__ |
272 | #define LIKELY(cond) __builtin_expect((cond), 1) |
273 | #define UNLIKELY(cond) __builtin_expect((cond), 0) |
274 | #else |
275 | #define LIKELY(cond) cond |
276 | #define UNLIKELY(cond) cond |
277 | #endif |
278 | |
279 | // DART_UNUSED indicates to the compiler that a variable or typedef is expected |
280 | // to be unused and disables the related warning. |
281 | #ifdef __GNUC__ |
282 | #define DART_UNUSED __attribute__((unused)) |
283 | #else |
284 | #define DART_UNUSED |
285 | #endif |
286 | |
287 | // DART_USED indicates to the compiler that a global variable or typedef is used |
288 | // disables e.g. the gcc warning "unused-variable" |
289 | #ifdef __GNUC__ |
290 | #define DART_USED __attribute__((used)) |
291 | #else |
292 | #define DART_USED |
293 | #endif |
294 | |
295 | // DART_NORETURN indicates to the compiler that a function does not return. |
296 | // It should be used on functions that unconditionally call functions like |
297 | // exit(), which end the program. We use it to avoid compiler warnings in |
298 | // callers of DART_NORETURN functions. |
299 | #ifdef _MSC_VER |
300 | #define DART_NORETURN __declspec(noreturn) |
301 | #elif __GNUC__ |
302 | #define DART_NORETURN __attribute__((noreturn)) |
303 | #else |
304 | #error Automatic compiler detection failed. |
305 | #endif |
306 | |
307 | #ifdef _MSC_VER |
308 | #define DART_PRETTY_FUNCTION __FUNCSIG__ |
309 | #elif __GNUC__ |
310 | #define DART_PRETTY_FUNCTION __PRETTY_FUNCTION__ |
311 | #else |
312 | #error Automatic compiler detection failed. |
313 | #endif |
314 | |
315 | #if !defined(TARGET_ARCH_ARM) && !defined(TARGET_ARCH_X64) && \ |
316 | !defined(TARGET_ARCH_IA32) && !defined(TARGET_ARCH_ARM64) |
317 | // No target architecture specified pick the one matching the host architecture. |
318 | #if defined(HOST_ARCH_ARM) |
319 | #define TARGET_ARCH_ARM 1 |
320 | #elif defined(HOST_ARCH_X64) |
321 | #define TARGET_ARCH_X64 1 |
322 | #elif defined(HOST_ARCH_IA32) |
323 | #define TARGET_ARCH_IA32 1 |
324 | #elif defined(HOST_ARCH_ARM64) |
325 | #define TARGET_ARCH_ARM64 1 |
326 | #else |
327 | #error Automatic target architecture detection failed. |
328 | #endif |
329 | #endif |
330 | |
331 | #if defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_ARM) |
332 | #define TARGET_ARCH_IS_32_BIT 1 |
333 | #elif defined(TARGET_ARCH_X64) || defined(TARGET_ARCH_ARM64) |
334 | #define TARGET_ARCH_IS_64_BIT 1 |
335 | #else |
336 | #error Automatic target architecture detection failed. |
337 | #endif |
338 | |
339 | // Verify that host and target architectures match, we cannot |
340 | // have a 64 bit Dart VM generating 32 bit code or vice-versa. |
341 | #if defined(TARGET_ARCH_X64) || defined(TARGET_ARCH_ARM64) |
342 | #if !defined(ARCH_IS_64_BIT) |
343 | #error Mismatched Host/Target architectures. |
344 | #endif // !defined(ARCH_IS_64_BIT) |
345 | #elif defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_ARM) |
346 | #if defined(HOST_ARCH_X64) && defined(TARGET_ARCH_ARM) |
347 | // This is simarm_x64, which is the only case where host/target architecture |
348 | // mismatch is allowed. |
349 | #define IS_SIMARM_X64 1 |
350 | #elif !defined(ARCH_IS_32_BIT) |
351 | #error Mismatched Host/Target architectures. |
352 | #endif // !defined(ARCH_IS_32_BIT) |
353 | #endif // defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_ARM) |
354 | |
355 | // Determine whether we will be using the simulator. |
356 | #if defined(TARGET_ARCH_IA32) |
357 | // No simulator used. |
358 | #elif defined(TARGET_ARCH_X64) |
359 | // No simulator used. |
360 | #elif defined(TARGET_ARCH_ARM) |
361 | #if !defined(HOST_ARCH_ARM) |
362 | #define TARGET_HOST_MISMATCH 1 |
363 | #if !defined(IS_SIMARM_X64) |
364 | #define USING_SIMULATOR 1 |
365 | #endif |
366 | #endif |
367 | |
368 | #elif defined(TARGET_ARCH_ARM64) |
369 | #if !defined(HOST_ARCH_ARM64) |
370 | #define USING_SIMULATOR 1 |
371 | #endif |
372 | |
373 | #else |
374 | #error Unknown architecture. |
375 | #endif |
376 | |
377 | #if defined(ARCH_IS_32_BIT) || defined(IS_SIMARM_X64) |
378 | #define TARGET_ARCH_IS_32_BIT 1 |
379 | #elif defined(ARCH_IS_64_BIT) |
380 | #define TARGET_ARCH_IS_64_BIT 1 |
381 | #endif |
382 | |
383 | #if !defined(TARGET_OS_ANDROID) && !defined(TARGET_OS_FUCHSIA) && \ |
384 | !defined(TARGET_OS_MACOS_IOS) && !defined(TARGET_OS_LINUX) && \ |
385 | !defined(TARGET_OS_MACOS) && !defined(TARGET_OS_WINDOWS) |
386 | // No target OS specified; pick the one matching the host OS. |
387 | #if defined(HOST_OS_ANDROID) |
388 | #define TARGET_OS_ANDROID 1 |
389 | #elif defined(HOST_OS_FUCHSIA) |
390 | #define TARGET_OS_FUCHSIA 1 |
391 | #elif defined(HOST_OS_IOS) |
392 | #define TARGET_OS_MACOS 1 |
393 | #define TARGET_OS_MACOS_IOS 1 |
394 | #elif defined(HOST_OS_LINUX) |
395 | #define TARGET_OS_LINUX 1 |
396 | #elif defined(HOST_OS_MACOS) |
397 | #define TARGET_OS_MACOS 1 |
398 | #elif defined(HOST_OS_WINDOWS) |
399 | #define TARGET_OS_WINDOWS 1 |
400 | #else |
401 | #error Automatic target OS detection failed. |
402 | #endif |
403 | #endif |
404 | |
405 | // Determine whether dual mapping of code pages is supported. |
406 | // We test dual mapping on linux x64 and deploy it on fuchsia. |
407 | #if !defined(DART_PRECOMPILED_RUNTIME) && \ |
408 | (defined(TARGET_OS_LINUX) && defined(TARGET_ARCH_X64) || \ |
409 | defined(TARGET_OS_FUCHSIA)) |
410 | #define DUAL_MAPPING_SUPPORTED 1 |
411 | #endif |
412 | |
413 | #if defined(DART_PRECOMPILED_RUNTIME) || defined(DART_PRECOMPILER) |
414 | #define SUPPORT_UNBOXED_INSTANCE_FIELDS |
415 | #endif |
416 | |
417 | // Short form printf format specifiers |
418 | #define Pd PRIdPTR |
419 | #define Pu PRIuPTR |
420 | #define Px PRIxPTR |
421 | #define PX PRIXPTR |
422 | #define Pd32 PRId32 |
423 | #define Pu32 PRIu32 |
424 | #define Px32 PRIx32 |
425 | #define PX32 PRIX32 |
426 | #define Pd64 PRId64 |
427 | #define Pu64 PRIu64 |
428 | #define Px64 PRIx64 |
429 | #define PX64 PRIX64 |
430 | |
431 | // Zero-padded pointer |
432 | #if defined(ARCH_IS_32_BIT) |
433 | #define Pp "08" PRIxPTR |
434 | #else |
435 | #define Pp "016" PRIxPTR |
436 | #endif |
437 | |
438 | // Suffixes for 64-bit integer literals. |
439 | #ifdef _MSC_VER |
440 | #define DART_INT64_C(x) x##I64 |
441 | #define DART_UINT64_C(x) x##UI64 |
442 | #else |
443 | #define DART_INT64_C(x) x##LL |
444 | #define DART_UINT64_C(x) x##ULL |
445 | #endif |
446 | |
447 | // Replace calls to strtoll with _strtoi64 on Windows. |
448 | #ifdef _MSC_VER |
449 | #define strtoll _strtoi64 |
450 | #endif |
451 | |
452 | // The following macro works on both 32 and 64-bit platforms. |
453 | // Usage: instead of writing 0x1234567890123456ULL |
454 | // write DART_2PART_UINT64_C(0x12345678,90123456); |
455 | #define DART_2PART_UINT64_C(a, b) \ |
456 | (((static_cast<uint64_t>(a) << 32) + 0x##b##u)) |
457 | |
458 | // Integer constants. |
459 | const int8_t kMinInt8 = 0x80; |
460 | const int8_t kMaxInt8 = 0x7F; |
461 | const uint8_t kMaxUint8 = 0xFF; |
462 | const int16_t kMinInt16 = 0x8000; |
463 | const int16_t kMaxInt16 = 0x7FFF; |
464 | const uint16_t kMaxUint16 = 0xFFFF; |
465 | const int32_t kMinInt32 = 0x80000000; |
466 | const int32_t kMaxInt32 = 0x7FFFFFFF; |
467 | const uint32_t kMaxUint32 = 0xFFFFFFFF; |
468 | const int64_t kMinInt64 = DART_INT64_C(0x8000000000000000); |
469 | const int64_t kMaxInt64 = DART_INT64_C(0x7FFFFFFFFFFFFFFF); |
470 | const int kMinInt = INT_MIN; |
471 | const int kMaxInt = INT_MAX; |
472 | const int64_t kMinInt64RepresentableAsDouble = kMinInt64; |
473 | const int64_t kMaxInt64RepresentableAsDouble = DART_INT64_C(0x7FFFFFFFFFFFFC00); |
474 | const uint64_t kMaxUint64 = DART_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF); |
475 | const int64_t kSignBitDouble = DART_INT64_C(0x8000000000000000); |
476 | |
477 | // Types for native machine words. Guaranteed to be able to hold pointers and |
478 | // integers. |
479 | typedef intptr_t word; |
480 | typedef uintptr_t uword; |
481 | |
482 | // Size of a class id assigned to concrete, abstract and top-level classes. |
483 | // |
484 | // We use a signed integer type here to make it comparable with intptr_t. |
485 | typedef int32_t classid_t; |
486 | |
487 | // Byte sizes. |
488 | const int kWordSize = sizeof(word); |
489 | const int kDoubleSize = sizeof(double); // NOLINT |
490 | const int kFloatSize = sizeof(float); // NOLINT |
491 | const int kQuadSize = 4 * kFloatSize; |
492 | const int kSimd128Size = sizeof(simd128_value_t); // NOLINT |
493 | const int kInt64Size = sizeof(int64_t); // NOLINT |
494 | const int kInt32Size = sizeof(int32_t); // NOLINT |
495 | const int kInt16Size = sizeof(int16_t); // NOLINT |
496 | #ifdef ARCH_IS_32_BIT |
497 | const int kWordSizeLog2 = 2; |
498 | const uword kUwordMax = kMaxUint32; |
499 | #else |
500 | const int kWordSizeLog2 = 3; |
501 | const uword kUwordMax = kMaxUint64; |
502 | #endif |
503 | |
504 | // Bit sizes. |
505 | const int kBitsPerByte = 8; |
506 | const int kBitsPerByteLog2 = 3; |
507 | const int kBitsPerInt32 = kInt32Size * kBitsPerByte; |
508 | const int kBitsPerInt64 = kInt64Size * kBitsPerByte; |
509 | const int kBitsPerWord = kWordSize * kBitsPerByte; |
510 | const int kBitsPerWordLog2 = kWordSizeLog2 + kBitsPerByteLog2; |
511 | |
512 | // System-wide named constants. |
513 | const intptr_t KB = 1024; |
514 | const intptr_t KBLog2 = 10; |
515 | const intptr_t MB = KB * KB; |
516 | const intptr_t MBLog2 = KBLog2 + KBLog2; |
517 | const intptr_t GB = MB * KB; |
518 | const intptr_t GBLog2 = MBLog2 + KBLog2; |
519 | |
520 | const intptr_t KBInWords = KB >> kWordSizeLog2; |
521 | const intptr_t KBInWordsLog2 = KBLog2 - kWordSizeLog2; |
522 | const intptr_t MBInWords = KB * KBInWords; |
523 | const intptr_t MBInWordsLog2 = KBLog2 + KBInWordsLog2; |
524 | const intptr_t GBInWords = MB * KBInWords; |
525 | const intptr_t GBInWordsLog2 = MBLog2 + KBInWordsLog2; |
526 | |
527 | // Helpers to round memory sizes to human readable values. |
528 | inline intptr_t RoundWordsToKB(intptr_t size_in_words) { |
529 | return (size_in_words + (KBInWords >> 1)) >> KBInWordsLog2; |
530 | } |
531 | inline intptr_t RoundWordsToMB(intptr_t size_in_words) { |
532 | return (size_in_words + (MBInWords >> 1)) >> MBInWordsLog2; |
533 | } |
534 | inline intptr_t RoundWordsToGB(intptr_t size_in_words) { |
535 | return (size_in_words + (GBInWords >> 1)) >> GBInWordsLog2; |
536 | } |
537 | |
538 | const intptr_t kIntptrOne = 1; |
539 | const intptr_t kIntptrMin = (kIntptrOne << (kBitsPerWord - 1)); |
540 | const intptr_t kIntptrMax = ~kIntptrMin; |
541 | |
542 | // Time constants. |
543 | const int kMillisecondsPerSecond = 1000; |
544 | const int kMicrosecondsPerMillisecond = 1000; |
545 | const int kMicrosecondsPerSecond = |
546 | (kMicrosecondsPerMillisecond * kMillisecondsPerSecond); |
547 | const int kNanosecondsPerMicrosecond = 1000; |
548 | const int kNanosecondsPerMillisecond = |
549 | (kNanosecondsPerMicrosecond * kMicrosecondsPerMillisecond); |
550 | const int kNanosecondsPerSecond = |
551 | (kNanosecondsPerMicrosecond * kMicrosecondsPerSecond); |
552 | |
553 | // Helpers to scale micro second times to human understandable values. |
554 | inline double MicrosecondsToSeconds(int64_t micros) { |
555 | return static_cast<double>(micros) / kMicrosecondsPerSecond; |
556 | } |
557 | inline double MicrosecondsToMilliseconds(int64_t micros) { |
558 | return static_cast<double>(micros) / kMicrosecondsPerMillisecond; |
559 | } |
560 | |
561 | // A macro to disallow the copy constructor and operator= functions. |
562 | // This should be used in the private: declarations for a class. |
563 | #if !defined(DISALLOW_COPY_AND_ASSIGN) |
564 | #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ |
565 | private: \ |
566 | TypeName(const TypeName&) = delete; \ |
567 | void operator=(const TypeName&) = delete |
568 | #endif // !defined(DISALLOW_COPY_AND_ASSIGN) |
569 | |
570 | // A macro to disallow all the implicit constructors, namely the default |
571 | // constructor, copy constructor and operator= functions. This should be |
572 | // used in the private: declarations for a class that wants to prevent |
573 | // anyone from instantiating it. This is especially useful for classes |
574 | // containing only static methods. |
575 | #if !defined(DISALLOW_IMPLICIT_CONSTRUCTORS) |
576 | #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ |
577 | private: \ |
578 | TypeName() = delete; \ |
579 | DISALLOW_COPY_AND_ASSIGN(TypeName) |
580 | #endif // !defined(DISALLOW_IMPLICIT_CONSTRUCTORS) |
581 | |
582 | // Macro to disallow allocation in the C++ heap. This should be used |
583 | // in the private section for a class. Don't use UNREACHABLE here to |
584 | // avoid circular dependencies between platform/globals.h and |
585 | // platform/assert.h. |
586 | #if !defined(DISALLOW_ALLOCATION) |
587 | #define DISALLOW_ALLOCATION() \ |
588 | public: \ |
589 | void operator delete(void* pointer) { \ |
590 | fprintf(stderr, "unreachable code\n"); \ |
591 | abort(); \ |
592 | } \ |
593 | \ |
594 | private: \ |
595 | void* operator new(size_t size); |
596 | #endif // !defined(DISALLOW_ALLOCATION) |
597 | |
598 | // The USE(x) template is used to silence C++ compiler warnings issued |
599 | // for unused variables. |
600 | template <typename T> |
601 | static inline void USE(T) {} |
602 | |
603 | // The type-based aliasing rule allows the compiler to assume that |
604 | // pointers of different types (for some definition of different) |
605 | // never alias each other. Thus the following code does not work: |
606 | // |
607 | // float f = foo(); |
608 | // int fbits = *(int*)(&f); |
609 | // |
610 | // The compiler 'knows' that the int pointer can't refer to f since |
611 | // the types don't match, so the compiler may cache f in a register, |
612 | // leaving random data in fbits. Using C++ style casts makes no |
613 | // difference, however a pointer to char data is assumed to alias any |
614 | // other pointer. This is the 'memcpy exception'. |
615 | // |
616 | // The bit_cast function uses the memcpy exception to move the bits |
617 | // from a variable of one type to a variable of another type. Of |
618 | // course the end result is likely to be implementation dependent. |
619 | // Most compilers (gcc-4.2 and MSVC 2005) will completely optimize |
620 | // bit_cast away. |
621 | // |
622 | // There is an additional use for bit_cast. Recent gccs will warn when |
623 | // they see casts that may result in breakage due to the type-based |
624 | // aliasing rule. If you have checked that there is no breakage you |
625 | // can use bit_cast to cast one pointer type to another. This confuses |
626 | // gcc enough that it can no longer see that you have cast one pointer |
627 | // type to another thus avoiding the warning. |
628 | template <class D, class S> |
629 | inline D bit_cast(const S& source) { |
630 | static_assert(sizeof(D) == sizeof(S), |
631 | "Source and destination must have the same size" ); |
632 | |
633 | D destination; |
634 | // This use of memcpy is safe: source and destination cannot overlap. |
635 | memcpy(&destination, &source, sizeof(destination)); |
636 | return destination; |
637 | } |
638 | |
639 | // Similar to bit_cast, but allows copying from types of unrelated |
640 | // sizes. This method was introduced to enable the strict aliasing |
641 | // optimizations of GCC 4.4. Basically, GCC mindlessly relies on |
642 | // obscure details in the C++ standard that make reinterpret_cast |
643 | // virtually useless. |
644 | template <class D, class S> |
645 | inline D bit_copy(const S& source) { |
646 | D destination; |
647 | // This use of memcpy is safe: source and destination cannot overlap. |
648 | memcpy(&destination, reinterpret_cast<const void*>(&source), |
649 | sizeof(destination)); |
650 | return destination; |
651 | } |
652 | |
653 | // On Windows the reentrent version of strtok is called |
654 | // strtok_s. Unify on the posix name strtok_r. |
655 | #if defined(HOST_OS_WINDOWS) |
656 | #define snprintf _sprintf_p |
657 | #define strtok_r strtok_s |
658 | #endif |
659 | |
660 | #if !defined(HOST_OS_WINDOWS) |
661 | #if defined(TEMP_FAILURE_RETRY) |
662 | // TEMP_FAILURE_RETRY is defined in unistd.h on some platforms. We should |
663 | // not use that version, but instead the one in signal_blocker.h, to ensure |
664 | // we disable signal interrupts. |
665 | #undef TEMP_FAILURE_RETRY |
666 | #endif // defined(TEMP_FAILURE_RETRY) |
667 | #endif // !defined(HOST_OS_WINDOWS) |
668 | |
669 | #if __GNUC__ |
670 | // Tell the compiler to do printf format string checking if the |
671 | // compiler supports it; see the 'format' attribute in |
672 | // <http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Function-Attributes.html>. |
673 | // |
674 | // N.B.: As the GCC manual states, "[s]ince non-static C++ methods |
675 | // have an implicit 'this' argument, the arguments of such methods |
676 | // should be counted from two, not one." |
677 | #define PRINTF_ATTRIBUTE(string_index, first_to_check) \ |
678 | __attribute__((__format__(__printf__, string_index, first_to_check))) |
679 | #else |
680 | #define PRINTF_ATTRIBUTE(string_index, first_to_check) |
681 | #endif |
682 | |
683 | #if defined(_WIN32) |
684 | #define STDIN_FILENO 0 |
685 | #define STDOUT_FILENO 1 |
686 | #define STDERR_FILENO 2 |
687 | #endif |
688 | |
689 | #ifndef PATH_MAX |
690 | // Most platforms use PATH_MAX, but in Windows it's called MAX_PATH. |
691 | #define PATH_MAX MAX_PATH |
692 | #endif |
693 | |
694 | // Undefine math.h definition which clashes with our condition names. |
695 | #undef OVERFLOW |
696 | |
697 | } // namespace dart |
698 | |
699 | #endif // RUNTIME_PLATFORM_GLOBALS_H_ |
700 | |