1 | // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
2 | // for details. All rights reserved. Use of this source code is governed by a |
3 | // BSD-style license that can be found in the LICENSE file. |
4 | |
5 | #include "vm/globals.h" // Needed here to get TARGET_ARCH_ARM. |
6 | #if defined(TARGET_ARCH_ARM) |
7 | |
8 | #define SHOULD_NOT_INCLUDE_RUNTIME |
9 | |
10 | #include "vm/class_id.h" |
11 | #include "vm/compiler/asm_intrinsifier.h" |
12 | #include "vm/compiler/assembler/assembler.h" |
13 | |
14 | namespace dart { |
15 | namespace compiler { |
16 | |
17 | // When entering intrinsics code: |
18 | // R4: Arguments descriptor |
19 | // LR: Return address |
20 | // The R4 register can be destroyed only if there is no slow-path, i.e. |
21 | // if the intrinsified method always executes a return. |
22 | // The FP register should not be modified, because it is used by the profiler. |
23 | // The PP and THR registers (see constants_arm.h) must be preserved. |
24 | |
25 | #define __ assembler-> |
26 | |
27 | intptr_t AsmIntrinsifier::ParameterSlotFromSp() { |
28 | return -1; |
29 | } |
30 | |
31 | static bool IsABIPreservedRegister(Register reg) { |
32 | return ((1 << reg) & kAbiPreservedCpuRegs) != 0; |
33 | } |
34 | |
35 | void AsmIntrinsifier::IntrinsicCallPrologue(Assembler* assembler) { |
36 | ASSERT(IsABIPreservedRegister(CODE_REG)); |
37 | ASSERT(IsABIPreservedRegister(ARGS_DESC_REG)); |
38 | ASSERT(IsABIPreservedRegister(CALLEE_SAVED_TEMP)); |
39 | |
40 | // Save LR by moving it to a callee saved temporary register. |
41 | assembler->Comment("IntrinsicCallPrologue" ); |
42 | assembler->mov(CALLEE_SAVED_TEMP, Operand(LR)); |
43 | } |
44 | |
45 | void AsmIntrinsifier::IntrinsicCallEpilogue(Assembler* assembler) { |
46 | // Restore LR. |
47 | assembler->Comment("IntrinsicCallEpilogue" ); |
48 | assembler->mov(LR, Operand(CALLEE_SAVED_TEMP)); |
49 | } |
50 | |
51 | // Allocate a GrowableObjectArray:: using the backing array specified. |
52 | // On stack: type argument (+1), data (+0). |
53 | void AsmIntrinsifier::GrowableArray_Allocate(Assembler* assembler, |
54 | Label* normal_ir_body) { |
55 | // The newly allocated object is returned in R0. |
56 | const intptr_t kTypeArgumentsOffset = 1 * target::kWordSize; |
57 | const intptr_t kArrayOffset = 0 * target::kWordSize; |
58 | |
59 | // Try allocating in new space. |
60 | const Class& cls = GrowableObjectArrayClass(); |
61 | __ TryAllocate(cls, normal_ir_body, R0, R1); |
62 | |
63 | // Store backing array object in growable array object. |
64 | __ ldr(R1, Address(SP, kArrayOffset)); // Data argument. |
65 | // R0 is new, no barrier needed. |
66 | __ StoreIntoObjectNoBarrier( |
67 | R0, FieldAddress(R0, target::GrowableObjectArray::data_offset()), R1); |
68 | |
69 | // R0: new growable array object start as a tagged pointer. |
70 | // Store the type argument field in the growable array object. |
71 | __ ldr(R1, Address(SP, kTypeArgumentsOffset)); // Type argument. |
72 | __ StoreIntoObjectNoBarrier( |
73 | R0, |
74 | FieldAddress(R0, target::GrowableObjectArray::type_arguments_offset()), |
75 | R1); |
76 | |
77 | // Set the length field in the growable array object to 0. |
78 | __ LoadImmediate(R1, 0); |
79 | __ StoreIntoObjectNoBarrier( |
80 | R0, FieldAddress(R0, target::GrowableObjectArray::length_offset()), R1); |
81 | __ Ret(); // Returns the newly allocated object in R0. |
82 | |
83 | __ Bind(normal_ir_body); |
84 | } |
85 | |
86 | #define TYPED_ARRAY_ALLOCATION(cid, max_len, scale_shift) \ |
87 | Label fall_through; \ |
88 | const intptr_t kArrayLengthStackOffset = 0 * target::kWordSize; \ |
89 | NOT_IN_PRODUCT(__ LoadAllocationStatsAddress(R2, cid)); \ |
90 | NOT_IN_PRODUCT(__ MaybeTraceAllocation(R2, normal_ir_body)); \ |
91 | __ ldr(R2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \ |
92 | /* Check that length is a positive Smi. */ \ |
93 | /* R2: requested array length argument. */ \ |
94 | __ tst(R2, Operand(kSmiTagMask)); \ |
95 | __ b(normal_ir_body, NE); \ |
96 | __ CompareImmediate(R2, 0); \ |
97 | __ b(normal_ir_body, LT); \ |
98 | __ SmiUntag(R2); \ |
99 | /* Check for maximum allowed length. */ \ |
100 | /* R2: untagged array length. */ \ |
101 | __ CompareImmediate(R2, max_len); \ |
102 | __ b(normal_ir_body, GT); \ |
103 | __ mov(R2, Operand(R2, LSL, scale_shift)); \ |
104 | const intptr_t fixed_size_plus_alignment_padding = \ |
105 | target::TypedData::InstanceSize() + \ |
106 | target::ObjectAlignment::kObjectAlignment - 1; \ |
107 | __ AddImmediate(R2, fixed_size_plus_alignment_padding); \ |
108 | __ bic(R2, R2, Operand(target::ObjectAlignment::kObjectAlignment - 1)); \ |
109 | __ ldr(R0, Address(THR, target::Thread::top_offset())); \ |
110 | \ |
111 | /* R2: allocation size. */ \ |
112 | __ adds(R1, R0, Operand(R2)); \ |
113 | __ b(normal_ir_body, CS); /* Fail on unsigned overflow. */ \ |
114 | \ |
115 | /* Check if the allocation fits into the remaining space. */ \ |
116 | /* R0: potential new object start. */ \ |
117 | /* R1: potential next object start. */ \ |
118 | /* R2: allocation size. */ \ |
119 | __ ldr(IP, Address(THR, target::Thread::end_offset())); \ |
120 | __ cmp(R1, Operand(IP)); \ |
121 | __ b(normal_ir_body, CS); \ |
122 | \ |
123 | __ str(R1, Address(THR, target::Thread::top_offset())); \ |
124 | __ AddImmediate(R0, kHeapObjectTag); \ |
125 | /* Initialize the tags. */ \ |
126 | /* R0: new object start as a tagged pointer. */ \ |
127 | /* R1: new object end address. */ \ |
128 | /* R2: allocation size. */ \ |
129 | { \ |
130 | __ CompareImmediate(R2, target::ObjectLayout::kSizeTagMaxSizeTag); \ |
131 | __ mov(R3, \ |
132 | Operand(R2, LSL, \ |
133 | target::ObjectLayout::kTagBitsSizeTagPos - \ |
134 | target::ObjectAlignment::kObjectAlignmentLog2), \ |
135 | LS); \ |
136 | __ mov(R3, Operand(0), HI); \ |
137 | \ |
138 | /* Get the class index and insert it into the tags. */ \ |
139 | uint32_t tags = \ |
140 | target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); \ |
141 | __ LoadImmediate(TMP, tags); \ |
142 | __ orr(R3, R3, Operand(TMP)); \ |
143 | __ str(R3, FieldAddress(R0, target::Object::tags_offset())); /* Tags. */ \ |
144 | } \ |
145 | /* Set the length field. */ \ |
146 | /* R0: new object start as a tagged pointer. */ \ |
147 | /* R1: new object end address. */ \ |
148 | /* R2: allocation size. */ \ |
149 | __ ldr(R3, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \ |
150 | __ StoreIntoObjectNoBarrier( \ |
151 | R0, FieldAddress(R0, target::TypedDataBase::length_offset()), R3); \ |
152 | /* Initialize all array elements to 0. */ \ |
153 | /* R0: new object start as a tagged pointer. */ \ |
154 | /* R1: new object end address. */ \ |
155 | /* R2: allocation size. */ \ |
156 | /* R3: iterator which initially points to the start of the variable */ \ |
157 | /* R8, R9: zero. */ \ |
158 | /* data area to be initialized. */ \ |
159 | __ LoadImmediate(R8, 0); \ |
160 | __ mov(R9, Operand(R8)); \ |
161 | __ AddImmediate(R3, R0, target::TypedData::InstanceSize() - 1); \ |
162 | __ StoreInternalPointer( \ |
163 | R0, FieldAddress(R0, target::TypedDataBase::data_field_offset()), R3); \ |
164 | Label init_loop; \ |
165 | __ Bind(&init_loop); \ |
166 | __ AddImmediate(R3, 2 * target::kWordSize); \ |
167 | __ cmp(R3, Operand(R1)); \ |
168 | __ strd(R8, R9, R3, -2 * target::kWordSize, LS); \ |
169 | __ b(&init_loop, CC); \ |
170 | __ str(R8, Address(R3, -2 * target::kWordSize), HI); \ |
171 | \ |
172 | __ Ret(); \ |
173 | __ Bind(normal_ir_body); |
174 | |
175 | static int GetScaleFactor(intptr_t size) { |
176 | switch (size) { |
177 | case 1: |
178 | return 0; |
179 | case 2: |
180 | return 1; |
181 | case 4: |
182 | return 2; |
183 | case 8: |
184 | return 3; |
185 | case 16: |
186 | return 4; |
187 | } |
188 | UNREACHABLE(); |
189 | return -1; |
190 | } |
191 | |
192 | #define TYPED_DATA_ALLOCATOR(clazz) \ |
193 | void AsmIntrinsifier::TypedData_##clazz##_factory(Assembler* assembler, \ |
194 | Label* normal_ir_body) { \ |
195 | intptr_t size = TypedDataElementSizeInBytes(kTypedData##clazz##Cid); \ |
196 | intptr_t max_len = TypedDataMaxNewSpaceElements(kTypedData##clazz##Cid); \ |
197 | int shift = GetScaleFactor(size); \ |
198 | TYPED_ARRAY_ALLOCATION(kTypedData##clazz##Cid, max_len, shift); \ |
199 | } |
200 | CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR) |
201 | #undef TYPED_DATA_ALLOCATOR |
202 | |
203 | // Loads args from stack into R0 and R1 |
204 | // Tests if they are smis, jumps to label not_smi if not. |
205 | static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) { |
206 | __ ldr(R0, Address(SP, +0 * target::kWordSize)); |
207 | __ ldr(R1, Address(SP, +1 * target::kWordSize)); |
208 | __ orr(TMP, R0, Operand(R1)); |
209 | __ tst(TMP, Operand(kSmiTagMask)); |
210 | __ b(not_smi, NE); |
211 | } |
212 | |
213 | void AsmIntrinsifier::Integer_addFromInteger(Assembler* assembler, |
214 | Label* normal_ir_body) { |
215 | TestBothArgumentsSmis(assembler, normal_ir_body); // Checks two smis. |
216 | __ adds(R0, R0, Operand(R1)); // Adds. |
217 | __ bx(LR, VC); // Return if no overflow. |
218 | // Otherwise fall through. |
219 | __ Bind(normal_ir_body); |
220 | } |
221 | |
222 | void AsmIntrinsifier::Integer_add(Assembler* assembler, Label* normal_ir_body) { |
223 | Integer_addFromInteger(assembler, normal_ir_body); |
224 | } |
225 | |
226 | void AsmIntrinsifier::Integer_subFromInteger(Assembler* assembler, |
227 | Label* normal_ir_body) { |
228 | TestBothArgumentsSmis(assembler, normal_ir_body); |
229 | __ subs(R0, R0, Operand(R1)); // Subtract. |
230 | __ bx(LR, VC); // Return if no overflow. |
231 | // Otherwise fall through. |
232 | __ Bind(normal_ir_body); |
233 | } |
234 | |
235 | void AsmIntrinsifier::Integer_sub(Assembler* assembler, Label* normal_ir_body) { |
236 | TestBothArgumentsSmis(assembler, normal_ir_body); |
237 | __ subs(R0, R1, Operand(R0)); // Subtract. |
238 | __ bx(LR, VC); // Return if no overflow. |
239 | // Otherwise fall through. |
240 | __ Bind(normal_ir_body); |
241 | } |
242 | |
243 | void AsmIntrinsifier::Integer_mulFromInteger(Assembler* assembler, |
244 | Label* normal_ir_body) { |
245 | TestBothArgumentsSmis(assembler, normal_ir_body); // checks two smis |
246 | __ SmiUntag(R0); // Untags R0. We only want result shifted by one. |
247 | __ smull(R0, IP, R0, R1); // IP:R0 <- R0 * R1. |
248 | __ cmp(IP, Operand(R0, ASR, 31)); |
249 | __ bx(LR, EQ); |
250 | __ Bind(normal_ir_body); // Fall through on overflow. |
251 | } |
252 | |
253 | void AsmIntrinsifier::Integer_mul(Assembler* assembler, Label* normal_ir_body) { |
254 | Integer_mulFromInteger(assembler, normal_ir_body); |
255 | } |
256 | |
257 | // Optimizations: |
258 | // - result is 0 if: |
259 | // - left is 0 |
260 | // - left equals right |
261 | // - result is left if |
262 | // - left > 0 && left < right |
263 | // R1: Tagged left (dividend). |
264 | // R0: Tagged right (divisor). |
265 | // Returns: |
266 | // R1: Untagged fallthrough result (remainder to be adjusted), or |
267 | // R0: Tagged return result (remainder). |
268 | static void EmitRemainderOperation(Assembler* assembler) { |
269 | Label modulo; |
270 | const Register left = R1; |
271 | const Register right = R0; |
272 | const Register result = R1; |
273 | const Register tmp = R2; |
274 | ASSERT(left == result); |
275 | |
276 | // Check for quick zero results. |
277 | __ cmp(left, Operand(0)); |
278 | __ mov(R0, Operand(0), EQ); |
279 | __ bx(LR, EQ); // left is 0? Return 0. |
280 | __ cmp(left, Operand(right)); |
281 | __ mov(R0, Operand(0), EQ); |
282 | __ bx(LR, EQ); // left == right? Return 0. |
283 | |
284 | // Check if result should be left. |
285 | __ cmp(left, Operand(0)); |
286 | __ b(&modulo, LT); |
287 | // left is positive. |
288 | __ cmp(left, Operand(right)); |
289 | // left is less than right, result is left. |
290 | __ mov(R0, Operand(left), LT); |
291 | __ bx(LR, LT); |
292 | |
293 | __ Bind(&modulo); |
294 | // result <- left - right * (left / right) |
295 | __ SmiUntag(left); |
296 | __ SmiUntag(right); |
297 | |
298 | __ IntegerDivide(tmp, left, right, D1, D0); |
299 | |
300 | __ mls(result, right, tmp, left); // result <- left - right * TMP |
301 | } |
302 | |
303 | // Implementation: |
304 | // res = left % right; |
305 | // if (res < 0) { |
306 | // if (right < 0) { |
307 | // res = res - right; |
308 | // } else { |
309 | // res = res + right; |
310 | // } |
311 | // } |
312 | void AsmIntrinsifier::Integer_moduloFromInteger(Assembler* assembler, |
313 | Label* normal_ir_body) { |
314 | if (!TargetCPUFeatures::can_divide()) { |
315 | return; |
316 | } |
317 | // Check to see if we have integer division |
318 | __ ldr(R1, Address(SP, +0 * target::kWordSize)); |
319 | __ ldr(R0, Address(SP, +1 * target::kWordSize)); |
320 | __ orr(TMP, R0, Operand(R1)); |
321 | __ tst(TMP, Operand(kSmiTagMask)); |
322 | __ b(normal_ir_body, NE); |
323 | // R1: Tagged left (dividend). |
324 | // R0: Tagged right (divisor). |
325 | // Check if modulo by zero -> exception thrown in main function. |
326 | __ cmp(R0, Operand(0)); |
327 | __ b(normal_ir_body, EQ); |
328 | EmitRemainderOperation(assembler); |
329 | // Untagged right in R0. Untagged remainder result in R1. |
330 | |
331 | __ cmp(R1, Operand(0)); |
332 | __ mov(R0, Operand(R1, LSL, 1), GE); // Tag and move result to R0. |
333 | __ bx(LR, GE); |
334 | |
335 | // Result is negative, adjust it. |
336 | __ cmp(R0, Operand(0)); |
337 | __ sub(R0, R1, Operand(R0), LT); |
338 | __ add(R0, R1, Operand(R0), GE); |
339 | __ SmiTag(R0); |
340 | __ Ret(); |
341 | |
342 | __ Bind(normal_ir_body); |
343 | } |
344 | |
345 | void AsmIntrinsifier::Integer_truncDivide(Assembler* assembler, |
346 | Label* normal_ir_body) { |
347 | if (!TargetCPUFeatures::can_divide()) { |
348 | return; |
349 | } |
350 | // Check to see if we have integer division |
351 | |
352 | TestBothArgumentsSmis(assembler, normal_ir_body); |
353 | __ cmp(R0, Operand(0)); |
354 | __ b(normal_ir_body, EQ); // If b is 0, fall through. |
355 | |
356 | __ SmiUntag(R0); |
357 | __ SmiUntag(R1); |
358 | |
359 | __ IntegerDivide(R0, R1, R0, D1, D0); |
360 | |
361 | // Check the corner case of dividing the 'MIN_SMI' with -1, in which case we |
362 | // cannot tag the result. |
363 | __ CompareImmediate(R0, 0x40000000); |
364 | __ SmiTag(R0, NE); // Not equal. Okay to tag and return. |
365 | __ bx(LR, NE); // Return. |
366 | __ Bind(normal_ir_body); |
367 | } |
368 | |
369 | void AsmIntrinsifier::Integer_negate(Assembler* assembler, |
370 | Label* normal_ir_body) { |
371 | __ ldr(R0, Address(SP, +0 * target::kWordSize)); // Grab first argument. |
372 | __ tst(R0, Operand(kSmiTagMask)); // Test for Smi. |
373 | __ b(normal_ir_body, NE); |
374 | __ rsbs(R0, R0, Operand(0)); // R0 is a Smi. R0 <- 0 - R0. |
375 | __ bx(LR, VC); // Return if there wasn't overflow, fall through otherwise. |
376 | // R0 is not a Smi. Fall through. |
377 | __ Bind(normal_ir_body); |
378 | } |
379 | |
380 | void AsmIntrinsifier::Integer_bitAndFromInteger(Assembler* assembler, |
381 | Label* normal_ir_body) { |
382 | TestBothArgumentsSmis(assembler, normal_ir_body); // checks two smis |
383 | __ and_(R0, R0, Operand(R1)); |
384 | |
385 | __ Ret(); |
386 | __ Bind(normal_ir_body); |
387 | } |
388 | |
389 | void AsmIntrinsifier::Integer_bitAnd(Assembler* assembler, |
390 | Label* normal_ir_body) { |
391 | Integer_bitAndFromInteger(assembler, normal_ir_body); |
392 | } |
393 | |
394 | void AsmIntrinsifier::Integer_bitOrFromInteger(Assembler* assembler, |
395 | Label* normal_ir_body) { |
396 | TestBothArgumentsSmis(assembler, normal_ir_body); // checks two smis |
397 | __ orr(R0, R0, Operand(R1)); |
398 | |
399 | __ Ret(); |
400 | __ Bind(normal_ir_body); |
401 | } |
402 | |
403 | void AsmIntrinsifier::Integer_bitOr(Assembler* assembler, |
404 | Label* normal_ir_body) { |
405 | Integer_bitOrFromInteger(assembler, normal_ir_body); |
406 | } |
407 | |
408 | void AsmIntrinsifier::Integer_bitXorFromInteger(Assembler* assembler, |
409 | Label* normal_ir_body) { |
410 | TestBothArgumentsSmis(assembler, normal_ir_body); // checks two smis |
411 | __ eor(R0, R0, Operand(R1)); |
412 | |
413 | __ Ret(); |
414 | __ Bind(normal_ir_body); |
415 | } |
416 | |
417 | void AsmIntrinsifier::Integer_bitXor(Assembler* assembler, |
418 | Label* normal_ir_body) { |
419 | Integer_bitXorFromInteger(assembler, normal_ir_body); |
420 | } |
421 | |
422 | void AsmIntrinsifier::Integer_shl(Assembler* assembler, Label* normal_ir_body) { |
423 | ASSERT(kSmiTagShift == 1); |
424 | ASSERT(kSmiTag == 0); |
425 | TestBothArgumentsSmis(assembler, normal_ir_body); |
426 | __ CompareImmediate(R0, target::ToRawSmi(target::kSmiBits)); |
427 | __ b(normal_ir_body, HI); |
428 | |
429 | __ SmiUntag(R0); |
430 | |
431 | // Check for overflow by shifting left and shifting back arithmetically. |
432 | // If the result is different from the original, there was overflow. |
433 | __ mov(IP, Operand(R1, LSL, R0)); |
434 | __ cmp(R1, Operand(IP, ASR, R0)); |
435 | |
436 | // No overflow, result in R0. |
437 | __ mov(R0, Operand(R1, LSL, R0), EQ); |
438 | __ bx(LR, EQ); |
439 | |
440 | // Arguments are Smi but the shift produced an overflow to Mint. |
441 | __ CompareImmediate(R1, 0); |
442 | __ b(normal_ir_body, LT); |
443 | __ SmiUntag(R1); |
444 | |
445 | // Pull off high bits that will be shifted off of R1 by making a mask |
446 | // ((1 << R0) - 1), shifting it to the left, masking R1, then shifting back. |
447 | // high bits = (((1 << R0) - 1) << (32 - R0)) & R1) >> (32 - R0) |
448 | // lo bits = R1 << R0 |
449 | __ LoadImmediate(R8, 1); |
450 | __ mov(R8, Operand(R8, LSL, R0)); // R8 <- 1 << R0 |
451 | __ sub(R8, R8, Operand(1)); // R8 <- R8 - 1 |
452 | __ rsb(R3, R0, Operand(32)); // R3 <- 32 - R0 |
453 | __ mov(R8, Operand(R8, LSL, R3)); // R8 <- R8 << R3 |
454 | __ and_(R8, R1, Operand(R8)); // R8 <- R8 & R1 |
455 | __ mov(R8, Operand(R8, LSR, R3)); // R8 <- R8 >> R3 |
456 | // Now R8 has the bits that fall off of R1 on a left shift. |
457 | __ mov(R1, Operand(R1, LSL, R0)); // R1 gets the low bits. |
458 | |
459 | const Class& mint_class = MintClass(); |
460 | __ TryAllocate(mint_class, normal_ir_body, R0, R2); |
461 | |
462 | __ str(R1, FieldAddress(R0, target::Mint::value_offset())); |
463 | __ str(R8, |
464 | FieldAddress(R0, target::Mint::value_offset() + target::kWordSize)); |
465 | __ Ret(); |
466 | __ Bind(normal_ir_body); |
467 | } |
468 | |
469 | static void Get64SmiOrMint(Assembler* assembler, |
470 | Register res_hi, |
471 | Register res_lo, |
472 | Register reg, |
473 | Label* not_smi_or_mint) { |
474 | Label not_smi, done; |
475 | __ tst(reg, Operand(kSmiTagMask)); |
476 | __ b(¬_smi, NE); |
477 | __ SmiUntag(reg); |
478 | |
479 | // Sign extend to 64 bit |
480 | __ mov(res_lo, Operand(reg)); |
481 | __ mov(res_hi, Operand(res_lo, ASR, 31)); |
482 | __ b(&done); |
483 | |
484 | __ Bind(¬_smi); |
485 | __ CompareClassId(reg, kMintCid, res_lo); |
486 | __ b(not_smi_or_mint, NE); |
487 | |
488 | // Mint. |
489 | __ ldr(res_lo, FieldAddress(reg, target::Mint::value_offset())); |
490 | __ ldr(res_hi, |
491 | FieldAddress(reg, target::Mint::value_offset() + target::kWordSize)); |
492 | __ Bind(&done); |
493 | } |
494 | |
495 | static void CompareIntegers(Assembler* assembler, |
496 | Label* normal_ir_body, |
497 | Condition true_condition) { |
498 | Label try_mint_smi, is_true, is_false, drop_two_fall_through, fall_through; |
499 | TestBothArgumentsSmis(assembler, &try_mint_smi); |
500 | // R0 contains the right argument. R1 contains left argument |
501 | |
502 | __ cmp(R1, Operand(R0)); |
503 | __ b(&is_true, true_condition); |
504 | __ Bind(&is_false); |
505 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
506 | __ Ret(); |
507 | __ Bind(&is_true); |
508 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
509 | __ Ret(); |
510 | |
511 | // 64-bit comparison |
512 | Condition hi_true_cond, hi_false_cond, lo_false_cond; |
513 | switch (true_condition) { |
514 | case LT: |
515 | case LE: |
516 | hi_true_cond = LT; |
517 | hi_false_cond = GT; |
518 | lo_false_cond = (true_condition == LT) ? CS : HI; |
519 | break; |
520 | case GT: |
521 | case GE: |
522 | hi_true_cond = GT; |
523 | hi_false_cond = LT; |
524 | lo_false_cond = (true_condition == GT) ? LS : CC; |
525 | break; |
526 | default: |
527 | UNREACHABLE(); |
528 | hi_true_cond = hi_false_cond = lo_false_cond = VS; |
529 | } |
530 | |
531 | __ Bind(&try_mint_smi); |
532 | // Get left as 64 bit integer. |
533 | Get64SmiOrMint(assembler, R3, R2, R1, normal_ir_body); |
534 | // Get right as 64 bit integer. |
535 | Get64SmiOrMint(assembler, R1, R8, R0, normal_ir_body); |
536 | // R3: left high. |
537 | // R2: left low. |
538 | // R1: right high. |
539 | // R8: right low. |
540 | |
541 | __ cmp(R3, Operand(R1)); // Compare left hi, right high. |
542 | __ b(&is_false, hi_false_cond); |
543 | __ b(&is_true, hi_true_cond); |
544 | __ cmp(R2, Operand(R8)); // Compare left lo, right lo. |
545 | __ b(&is_false, lo_false_cond); |
546 | // Else is true. |
547 | __ b(&is_true); |
548 | |
549 | __ Bind(normal_ir_body); |
550 | } |
551 | |
552 | void AsmIntrinsifier::Integer_greaterThanFromInt(Assembler* assembler, |
553 | Label* normal_ir_body) { |
554 | CompareIntegers(assembler, normal_ir_body, LT); |
555 | } |
556 | |
557 | void AsmIntrinsifier::Integer_lessThan(Assembler* assembler, |
558 | Label* normal_ir_body) { |
559 | Integer_greaterThanFromInt(assembler, normal_ir_body); |
560 | } |
561 | |
562 | void AsmIntrinsifier::Integer_greaterThan(Assembler* assembler, |
563 | Label* normal_ir_body) { |
564 | CompareIntegers(assembler, normal_ir_body, GT); |
565 | } |
566 | |
567 | void AsmIntrinsifier::Integer_lessEqualThan(Assembler* assembler, |
568 | Label* normal_ir_body) { |
569 | CompareIntegers(assembler, normal_ir_body, LE); |
570 | } |
571 | |
572 | void AsmIntrinsifier::Integer_greaterEqualThan(Assembler* assembler, |
573 | Label* normal_ir_body) { |
574 | CompareIntegers(assembler, normal_ir_body, GE); |
575 | } |
576 | |
577 | // This is called for Smi and Mint receivers. The right argument |
578 | // can be Smi, Mint or double. |
579 | void AsmIntrinsifier::Integer_equalToInteger(Assembler* assembler, |
580 | Label* normal_ir_body) { |
581 | Label true_label, check_for_mint; |
582 | // For integer receiver '===' check first. |
583 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
584 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); |
585 | __ cmp(R0, Operand(R1)); |
586 | __ b(&true_label, EQ); |
587 | |
588 | __ orr(R2, R0, Operand(R1)); |
589 | __ tst(R2, Operand(kSmiTagMask)); |
590 | __ b(&check_for_mint, NE); // If R0 or R1 is not a smi do Mint checks. |
591 | |
592 | // Both arguments are smi, '===' is good enough. |
593 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
594 | __ Ret(); |
595 | __ Bind(&true_label); |
596 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
597 | __ Ret(); |
598 | |
599 | // At least one of the arguments was not Smi. |
600 | Label receiver_not_smi; |
601 | __ Bind(&check_for_mint); |
602 | |
603 | __ tst(R1, Operand(kSmiTagMask)); // Check receiver. |
604 | __ b(&receiver_not_smi, NE); |
605 | |
606 | // Left (receiver) is Smi, return false if right is not Double. |
607 | // Note that an instance of Mint never contains a value that can be |
608 | // represented by Smi. |
609 | |
610 | __ CompareClassId(R0, kDoubleCid, R2); |
611 | __ b(normal_ir_body, EQ); |
612 | __ LoadObject(R0, |
613 | CastHandle<Object>(FalseObject())); // Smi == Mint -> false. |
614 | __ Ret(); |
615 | |
616 | __ Bind(&receiver_not_smi); |
617 | // R1:: receiver. |
618 | |
619 | __ CompareClassId(R1, kMintCid, R2); |
620 | __ b(normal_ir_body, NE); |
621 | // Receiver is Mint, return false if right is Smi. |
622 | __ tst(R0, Operand(kSmiTagMask)); |
623 | __ LoadObject(R0, CastHandle<Object>(FalseObject()), EQ); |
624 | __ bx(LR, EQ); |
625 | // TODO(srdjan): Implement Mint == Mint comparison. |
626 | |
627 | __ Bind(normal_ir_body); |
628 | } |
629 | |
630 | void AsmIntrinsifier::Integer_equal(Assembler* assembler, |
631 | Label* normal_ir_body) { |
632 | Integer_equalToInteger(assembler, normal_ir_body); |
633 | } |
634 | |
635 | void AsmIntrinsifier::Integer_sar(Assembler* assembler, Label* normal_ir_body) { |
636 | TestBothArgumentsSmis(assembler, normal_ir_body); |
637 | // Shift amount in R0. Value to shift in R1. |
638 | |
639 | // Fall through if shift amount is negative. |
640 | __ SmiUntag(R0); |
641 | __ CompareImmediate(R0, 0); |
642 | __ b(normal_ir_body, LT); |
643 | |
644 | // If shift amount is bigger than 31, set to 31. |
645 | __ CompareImmediate(R0, 0x1F); |
646 | __ LoadImmediate(R0, 0x1F, GT); |
647 | __ SmiUntag(R1); |
648 | __ mov(R0, Operand(R1, ASR, R0)); |
649 | __ SmiTag(R0); |
650 | __ Ret(); |
651 | __ Bind(normal_ir_body); |
652 | } |
653 | |
654 | void AsmIntrinsifier::Smi_bitNegate(Assembler* assembler, |
655 | Label* normal_ir_body) { |
656 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
657 | __ mvn(R0, Operand(R0)); |
658 | __ bic(R0, R0, Operand(kSmiTagMask)); // Remove inverted smi-tag. |
659 | __ Ret(); |
660 | } |
661 | |
662 | void AsmIntrinsifier::Smi_bitLength(Assembler* assembler, |
663 | Label* normal_ir_body) { |
664 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
665 | __ SmiUntag(R0); |
666 | // XOR with sign bit to complement bits if value is negative. |
667 | __ eor(R0, R0, Operand(R0, ASR, 31)); |
668 | __ clz(R0, R0); |
669 | __ rsb(R0, R0, Operand(32)); |
670 | __ SmiTag(R0); |
671 | __ Ret(); |
672 | } |
673 | |
674 | void AsmIntrinsifier::Smi_bitAndFromSmi(Assembler* assembler, |
675 | Label* normal_ir_body) { |
676 | Integer_bitAndFromInteger(assembler, normal_ir_body); |
677 | } |
678 | |
679 | void AsmIntrinsifier::Bigint_lsh(Assembler* assembler, Label* normal_ir_body) { |
680 | // static void _lsh(Uint32List x_digits, int x_used, int n, |
681 | // Uint32List r_digits) |
682 | |
683 | // R0 = x_used, R1 = x_digits, x_used > 0, x_used is Smi. |
684 | __ ldrd(R0, R1, SP, 2 * target::kWordSize); |
685 | // R2 = r_digits, R3 = n, n is Smi, n % _DIGIT_BITS != 0. |
686 | __ ldrd(R2, R3, SP, 0 * target::kWordSize); |
687 | __ SmiUntag(R3); |
688 | // R4 = n ~/ _DIGIT_BITS |
689 | __ Asr(R4, R3, Operand(5)); |
690 | // R8 = &x_digits[0] |
691 | __ add(R8, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
692 | // R6 = &r_digits[1] |
693 | __ add(R6, R2, |
694 | Operand(target::TypedData::data_offset() - kHeapObjectTag + |
695 | kBytesPerBigIntDigit)); |
696 | // R2 = &x_digits[x_used] |
697 | __ add(R2, R8, Operand(R0, LSL, 1)); |
698 | // R6 = &r_digits[x_used + n ~/ _DIGIT_BITS + 1] |
699 | __ add(R4, R4, Operand(R0, ASR, 1)); |
700 | __ add(R6, R6, Operand(R4, LSL, 2)); |
701 | // R1 = n % _DIGIT_BITS |
702 | __ and_(R1, R3, Operand(31)); |
703 | // R0 = 32 - R1 |
704 | __ rsb(R0, R1, Operand(32)); |
705 | __ mov(R9, Operand(0)); |
706 | Label loop; |
707 | __ Bind(&loop); |
708 | __ ldr(R4, Address(R2, -kBytesPerBigIntDigit, Address::PreIndex)); |
709 | __ orr(R9, R9, Operand(R4, LSR, R0)); |
710 | __ str(R9, Address(R6, -kBytesPerBigIntDigit, Address::PreIndex)); |
711 | __ mov(R9, Operand(R4, LSL, R1)); |
712 | __ teq(R2, Operand(R8)); |
713 | __ b(&loop, NE); |
714 | __ str(R9, Address(R6, -kBytesPerBigIntDigit, Address::PreIndex)); |
715 | __ LoadObject(R0, NullObject()); |
716 | __ Ret(); |
717 | } |
718 | |
719 | void AsmIntrinsifier::Bigint_rsh(Assembler* assembler, Label* normal_ir_body) { |
720 | // static void _lsh(Uint32List x_digits, int x_used, int n, |
721 | // Uint32List r_digits) |
722 | |
723 | // R0 = x_used, R1 = x_digits, x_used > 0, x_used is Smi. |
724 | __ ldrd(R0, R1, SP, 2 * target::kWordSize); |
725 | // R2 = r_digits, R3 = n, n is Smi, n % _DIGIT_BITS != 0. |
726 | __ ldrd(R2, R3, SP, 0 * target::kWordSize); |
727 | __ SmiUntag(R3); |
728 | // R4 = n ~/ _DIGIT_BITS |
729 | __ Asr(R4, R3, Operand(5)); |
730 | // R6 = &r_digits[0] |
731 | __ add(R6, R2, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
732 | // R2 = &x_digits[n ~/ _DIGIT_BITS] |
733 | __ add(R2, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
734 | __ add(R2, R2, Operand(R4, LSL, 2)); |
735 | // R8 = &r_digits[x_used - n ~/ _DIGIT_BITS - 1] |
736 | __ add(R4, R4, Operand(1)); |
737 | __ rsb(R4, R4, Operand(R0, ASR, 1)); |
738 | __ add(R8, R6, Operand(R4, LSL, 2)); |
739 | // R1 = n % _DIGIT_BITS |
740 | __ and_(R1, R3, Operand(31)); |
741 | // R0 = 32 - R1 |
742 | __ rsb(R0, R1, Operand(32)); |
743 | // R9 = x_digits[n ~/ _DIGIT_BITS] >> (n % _DIGIT_BITS) |
744 | __ ldr(R9, Address(R2, kBytesPerBigIntDigit, Address::PostIndex)); |
745 | __ mov(R9, Operand(R9, LSR, R1)); |
746 | Label loop_entry; |
747 | __ b(&loop_entry); |
748 | Label loop; |
749 | __ Bind(&loop); |
750 | __ ldr(R4, Address(R2, kBytesPerBigIntDigit, Address::PostIndex)); |
751 | __ orr(R9, R9, Operand(R4, LSL, R0)); |
752 | __ str(R9, Address(R6, kBytesPerBigIntDigit, Address::PostIndex)); |
753 | __ mov(R9, Operand(R4, LSR, R1)); |
754 | __ Bind(&loop_entry); |
755 | __ teq(R6, Operand(R8)); |
756 | __ b(&loop, NE); |
757 | __ str(R9, Address(R6, 0)); |
758 | __ LoadObject(R0, NullObject()); |
759 | __ Ret(); |
760 | } |
761 | |
762 | void AsmIntrinsifier::Bigint_absAdd(Assembler* assembler, |
763 | Label* normal_ir_body) { |
764 | // static void _absAdd(Uint32List digits, int used, |
765 | // Uint32List a_digits, int a_used, |
766 | // Uint32List r_digits) |
767 | |
768 | // R0 = used, R1 = digits |
769 | __ ldrd(R0, R1, SP, 3 * target::kWordSize); |
770 | // R1 = &digits[0] |
771 | __ add(R1, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
772 | |
773 | // R2 = a_used, R3 = a_digits |
774 | __ ldrd(R2, R3, SP, 1 * target::kWordSize); |
775 | // R3 = &a_digits[0] |
776 | __ add(R3, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
777 | |
778 | // R8 = r_digits |
779 | __ ldr(R8, Address(SP, 0 * target::kWordSize)); |
780 | // R8 = &r_digits[0] |
781 | __ add(R8, R8, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
782 | |
783 | // R2 = &digits[a_used >> 1], a_used is Smi. |
784 | __ add(R2, R1, Operand(R2, LSL, 1)); |
785 | |
786 | // R6 = &digits[used >> 1], used is Smi. |
787 | __ add(R6, R1, Operand(R0, LSL, 1)); |
788 | |
789 | __ adds(R4, R4, Operand(0)); // carry flag = 0 |
790 | Label add_loop; |
791 | __ Bind(&add_loop); |
792 | // Loop a_used times, a_used > 0. |
793 | __ ldr(R4, Address(R1, kBytesPerBigIntDigit, Address::PostIndex)); |
794 | __ ldr(R9, Address(R3, kBytesPerBigIntDigit, Address::PostIndex)); |
795 | __ adcs(R4, R4, Operand(R9)); |
796 | __ teq(R1, Operand(R2)); // Does not affect carry flag. |
797 | __ str(R4, Address(R8, kBytesPerBigIntDigit, Address::PostIndex)); |
798 | __ b(&add_loop, NE); |
799 | |
800 | Label last_carry; |
801 | __ teq(R1, Operand(R6)); // Does not affect carry flag. |
802 | __ b(&last_carry, EQ); // If used - a_used == 0. |
803 | |
804 | Label carry_loop; |
805 | __ Bind(&carry_loop); |
806 | // Loop used - a_used times, used - a_used > 0. |
807 | __ ldr(R4, Address(R1, kBytesPerBigIntDigit, Address::PostIndex)); |
808 | __ adcs(R4, R4, Operand(0)); |
809 | __ teq(R1, Operand(R6)); // Does not affect carry flag. |
810 | __ str(R4, Address(R8, kBytesPerBigIntDigit, Address::PostIndex)); |
811 | __ b(&carry_loop, NE); |
812 | |
813 | __ Bind(&last_carry); |
814 | __ mov(R4, Operand(0)); |
815 | __ adc(R4, R4, Operand(0)); |
816 | __ str(R4, Address(R8, 0)); |
817 | |
818 | __ LoadObject(R0, NullObject()); |
819 | __ Ret(); |
820 | } |
821 | |
822 | void AsmIntrinsifier::Bigint_absSub(Assembler* assembler, |
823 | Label* normal_ir_body) { |
824 | // static void _absSub(Uint32List digits, int used, |
825 | // Uint32List a_digits, int a_used, |
826 | // Uint32List r_digits) |
827 | |
828 | // R0 = used, R1 = digits |
829 | __ ldrd(R0, R1, SP, 3 * target::kWordSize); |
830 | // R1 = &digits[0] |
831 | __ add(R1, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
832 | |
833 | // R2 = a_used, R3 = a_digits |
834 | __ ldrd(R2, R3, SP, 1 * target::kWordSize); |
835 | // R3 = &a_digits[0] |
836 | __ add(R3, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
837 | |
838 | // R8 = r_digits |
839 | __ ldr(R8, Address(SP, 0 * target::kWordSize)); |
840 | // R8 = &r_digits[0] |
841 | __ add(R8, R8, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
842 | |
843 | // R2 = &digits[a_used >> 1], a_used is Smi. |
844 | __ add(R2, R1, Operand(R2, LSL, 1)); |
845 | |
846 | // R6 = &digits[used >> 1], used is Smi. |
847 | __ add(R6, R1, Operand(R0, LSL, 1)); |
848 | |
849 | __ subs(R4, R4, Operand(0)); // carry flag = 1 |
850 | Label sub_loop; |
851 | __ Bind(&sub_loop); |
852 | // Loop a_used times, a_used > 0. |
853 | __ ldr(R4, Address(R1, kBytesPerBigIntDigit, Address::PostIndex)); |
854 | __ ldr(R9, Address(R3, kBytesPerBigIntDigit, Address::PostIndex)); |
855 | __ sbcs(R4, R4, Operand(R9)); |
856 | __ teq(R1, Operand(R2)); // Does not affect carry flag. |
857 | __ str(R4, Address(R8, kBytesPerBigIntDigit, Address::PostIndex)); |
858 | __ b(&sub_loop, NE); |
859 | |
860 | Label done; |
861 | __ teq(R1, Operand(R6)); // Does not affect carry flag. |
862 | __ b(&done, EQ); // If used - a_used == 0. |
863 | |
864 | Label carry_loop; |
865 | __ Bind(&carry_loop); |
866 | // Loop used - a_used times, used - a_used > 0. |
867 | __ ldr(R4, Address(R1, kBytesPerBigIntDigit, Address::PostIndex)); |
868 | __ sbcs(R4, R4, Operand(0)); |
869 | __ teq(R1, Operand(R6)); // Does not affect carry flag. |
870 | __ str(R4, Address(R8, kBytesPerBigIntDigit, Address::PostIndex)); |
871 | __ b(&carry_loop, NE); |
872 | |
873 | __ Bind(&done); |
874 | __ LoadObject(R0, NullObject()); |
875 | __ Ret(); |
876 | } |
877 | |
878 | void AsmIntrinsifier::Bigint_mulAdd(Assembler* assembler, |
879 | Label* normal_ir_body) { |
880 | // Pseudo code: |
881 | // static int _mulAdd(Uint32List x_digits, int xi, |
882 | // Uint32List m_digits, int i, |
883 | // Uint32List a_digits, int j, int n) { |
884 | // uint32_t x = x_digits[xi >> 1]; // xi is Smi. |
885 | // if (x == 0 || n == 0) { |
886 | // return 1; |
887 | // } |
888 | // uint32_t* mip = &m_digits[i >> 1]; // i is Smi. |
889 | // uint32_t* ajp = &a_digits[j >> 1]; // j is Smi. |
890 | // uint32_t c = 0; |
891 | // SmiUntag(n); |
892 | // do { |
893 | // uint32_t mi = *mip++; |
894 | // uint32_t aj = *ajp; |
895 | // uint64_t t = x*mi + aj + c; // 32-bit * 32-bit -> 64-bit. |
896 | // *ajp++ = low32(t); |
897 | // c = high32(t); |
898 | // } while (--n > 0); |
899 | // while (c != 0) { |
900 | // uint64_t t = *ajp + c; |
901 | // *ajp++ = low32(t); |
902 | // c = high32(t); // c == 0 or 1. |
903 | // } |
904 | // return 1; |
905 | // } |
906 | |
907 | Label done; |
908 | // R3 = x, no_op if x == 0 |
909 | __ ldrd(R0, R1, SP, 5 * target::kWordSize); // R0 = xi as Smi, R1 = x_digits. |
910 | __ add(R1, R1, Operand(R0, LSL, 1)); |
911 | __ ldr(R3, FieldAddress(R1, target::TypedData::data_offset())); |
912 | __ tst(R3, Operand(R3)); |
913 | __ b(&done, EQ); |
914 | |
915 | // R8 = SmiUntag(n), no_op if n == 0 |
916 | __ ldr(R8, Address(SP, 0 * target::kWordSize)); |
917 | __ Asrs(R8, R8, Operand(kSmiTagSize)); |
918 | __ b(&done, EQ); |
919 | |
920 | // R4 = mip = &m_digits[i >> 1] |
921 | __ ldrd(R0, R1, SP, 3 * target::kWordSize); // R0 = i as Smi, R1 = m_digits. |
922 | __ add(R1, R1, Operand(R0, LSL, 1)); |
923 | __ add(R4, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
924 | |
925 | // R9 = ajp = &a_digits[j >> 1] |
926 | __ ldrd(R0, R1, SP, 1 * target::kWordSize); // R0 = j as Smi, R1 = a_digits. |
927 | __ add(R1, R1, Operand(R0, LSL, 1)); |
928 | __ add(R9, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
929 | |
930 | // R1 = c = 0 |
931 | __ mov(R1, Operand(0)); |
932 | |
933 | Label muladd_loop; |
934 | __ Bind(&muladd_loop); |
935 | // x: R3 |
936 | // mip: R4 |
937 | // ajp: R9 |
938 | // c: R1 |
939 | // n: R8 |
940 | |
941 | // uint32_t mi = *mip++ |
942 | __ ldr(R2, Address(R4, kBytesPerBigIntDigit, Address::PostIndex)); |
943 | |
944 | // uint32_t aj = *ajp |
945 | __ ldr(R0, Address(R9, 0)); |
946 | |
947 | // uint64_t t = x*mi + aj + c |
948 | __ umaal(R0, R1, R2, R3); // R1:R0 = R2*R3 + R1 + R0. |
949 | |
950 | // *ajp++ = low32(t) = R0 |
951 | __ str(R0, Address(R9, kBytesPerBigIntDigit, Address::PostIndex)); |
952 | |
953 | // c = high32(t) = R1 |
954 | |
955 | // while (--n > 0) |
956 | __ subs(R8, R8, Operand(1)); // --n |
957 | __ b(&muladd_loop, NE); |
958 | |
959 | __ tst(R1, Operand(R1)); |
960 | __ b(&done, EQ); |
961 | |
962 | // *ajp++ += c |
963 | __ ldr(R0, Address(R9, 0)); |
964 | __ adds(R0, R0, Operand(R1)); |
965 | __ str(R0, Address(R9, kBytesPerBigIntDigit, Address::PostIndex)); |
966 | __ b(&done, CC); |
967 | |
968 | Label propagate_carry_loop; |
969 | __ Bind(&propagate_carry_loop); |
970 | __ ldr(R0, Address(R9, 0)); |
971 | __ adds(R0, R0, Operand(1)); |
972 | __ str(R0, Address(R9, kBytesPerBigIntDigit, Address::PostIndex)); |
973 | __ b(&propagate_carry_loop, CS); |
974 | |
975 | __ Bind(&done); |
976 | __ mov(R0, Operand(target::ToRawSmi(1))); // One digit processed. |
977 | __ Ret(); |
978 | } |
979 | |
980 | void AsmIntrinsifier::Bigint_sqrAdd(Assembler* assembler, |
981 | Label* normal_ir_body) { |
982 | // Pseudo code: |
983 | // static int _sqrAdd(Uint32List x_digits, int i, |
984 | // Uint32List a_digits, int used) { |
985 | // uint32_t* xip = &x_digits[i >> 1]; // i is Smi. |
986 | // uint32_t x = *xip++; |
987 | // if (x == 0) return 1; |
988 | // uint32_t* ajp = &a_digits[i]; // j == 2*i, i is Smi. |
989 | // uint32_t aj = *ajp; |
990 | // uint64_t t = x*x + aj; |
991 | // *ajp++ = low32(t); |
992 | // uint64_t c = high32(t); |
993 | // int n = ((used - i) >> 1) - 1; // used and i are Smi. |
994 | // while (--n >= 0) { |
995 | // uint32_t xi = *xip++; |
996 | // uint32_t aj = *ajp; |
997 | // uint96_t t = 2*x*xi + aj + c; // 2-bit * 32-bit * 32-bit -> 65-bit. |
998 | // *ajp++ = low32(t); |
999 | // c = high64(t); // 33-bit. |
1000 | // } |
1001 | // uint32_t aj = *ajp; |
1002 | // uint64_t t = aj + c; // 32-bit + 33-bit -> 34-bit. |
1003 | // *ajp++ = low32(t); |
1004 | // *ajp = high32(t); |
1005 | // return 1; |
1006 | // } |
1007 | |
1008 | // The code has no bailout path, so we can use R6 (CODE_REG) freely. |
1009 | |
1010 | // R4 = xip = &x_digits[i >> 1] |
1011 | __ ldrd(R2, R3, SP, 2 * target::kWordSize); // R2 = i as Smi, R3 = x_digits |
1012 | __ add(R3, R3, Operand(R2, LSL, 1)); |
1013 | __ add(R4, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
1014 | |
1015 | // R3 = x = *xip++, return if x == 0 |
1016 | Label x_zero; |
1017 | __ ldr(R3, Address(R4, kBytesPerBigIntDigit, Address::PostIndex)); |
1018 | __ tst(R3, Operand(R3)); |
1019 | __ b(&x_zero, EQ); |
1020 | |
1021 | // R6 = ajp = &a_digits[i] |
1022 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); // a_digits |
1023 | __ add(R1, R1, Operand(R2, LSL, 2)); // j == 2*i, i is Smi. |
1024 | __ add(R6, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
1025 | |
1026 | // R8:R0 = t = x*x + *ajp |
1027 | __ ldr(R0, Address(R6, 0)); |
1028 | __ mov(R8, Operand(0)); |
1029 | __ umaal(R0, R8, R3, R3); // R8:R0 = R3*R3 + R8 + R0. |
1030 | |
1031 | // *ajp++ = low32(t) = R0 |
1032 | __ str(R0, Address(R6, kBytesPerBigIntDigit, Address::PostIndex)); |
1033 | |
1034 | // R8 = low32(c) = high32(t) |
1035 | // R9 = high32(c) = 0 |
1036 | __ mov(R9, Operand(0)); |
1037 | |
1038 | // int n = used - i - 1; while (--n >= 0) ... |
1039 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); // used is Smi |
1040 | __ sub(TMP, R0, Operand(R2)); |
1041 | __ mov(R0, Operand(2)); // n = used - i - 2; if (n >= 0) ... while (--n >= 0) |
1042 | __ rsbs(TMP, R0, Operand(TMP, ASR, kSmiTagSize)); |
1043 | |
1044 | Label loop, done; |
1045 | __ b(&done, MI); |
1046 | |
1047 | __ Bind(&loop); |
1048 | // x: R3 |
1049 | // xip: R4 |
1050 | // ajp: R6 |
1051 | // c: R9:R8 |
1052 | // t: R2:R1:R0 (not live at loop entry) |
1053 | // n: TMP |
1054 | |
1055 | // uint32_t xi = *xip++ |
1056 | __ ldr(R2, Address(R4, kBytesPerBigIntDigit, Address::PostIndex)); |
1057 | |
1058 | // uint96_t t = R9:R8:R0 = 2*x*xi + aj + c |
1059 | __ umull(R0, R1, R2, R3); // R1:R0 = R2*R3. |
1060 | __ adds(R0, R0, Operand(R0)); |
1061 | __ adcs(R1, R1, Operand(R1)); |
1062 | __ mov(R2, Operand(0)); |
1063 | __ adc(R2, R2, Operand(0)); // R2:R1:R0 = 2*x*xi. |
1064 | __ adds(R0, R0, Operand(R8)); |
1065 | __ adcs(R1, R1, Operand(R9)); |
1066 | __ adc(R2, R2, Operand(0)); // R2:R1:R0 = 2*x*xi + c. |
1067 | __ ldr(R8, Address(R6, 0)); // R8 = aj = *ajp. |
1068 | __ adds(R0, R0, Operand(R8)); |
1069 | __ adcs(R8, R1, Operand(0)); |
1070 | __ adc(R9, R2, Operand(0)); // R9:R8:R0 = 2*x*xi + c + aj. |
1071 | |
1072 | // *ajp++ = low32(t) = R0 |
1073 | __ str(R0, Address(R6, kBytesPerBigIntDigit, Address::PostIndex)); |
1074 | |
1075 | // while (--n >= 0) |
1076 | __ subs(TMP, TMP, Operand(1)); // --n |
1077 | __ b(&loop, PL); |
1078 | |
1079 | __ Bind(&done); |
1080 | // uint32_t aj = *ajp |
1081 | __ ldr(R0, Address(R6, 0)); |
1082 | |
1083 | // uint64_t t = aj + c |
1084 | __ adds(R8, R8, Operand(R0)); |
1085 | __ adc(R9, R9, Operand(0)); |
1086 | |
1087 | // *ajp = low32(t) = R8 |
1088 | // *(ajp + 1) = high32(t) = R9 |
1089 | __ strd(R8, R9, R6, 0); |
1090 | |
1091 | __ Bind(&x_zero); |
1092 | __ mov(R0, Operand(target::ToRawSmi(1))); // One digit processed. |
1093 | __ Ret(); |
1094 | } |
1095 | |
1096 | void AsmIntrinsifier::Bigint_estimateQuotientDigit(Assembler* assembler, |
1097 | Label* normal_ir_body) { |
1098 | // No unsigned 64-bit / 32-bit divide instruction. |
1099 | } |
1100 | |
1101 | void AsmIntrinsifier::Montgomery_mulMod(Assembler* assembler, |
1102 | Label* normal_ir_body) { |
1103 | // Pseudo code: |
1104 | // static int _mulMod(Uint32List args, Uint32List digits, int i) { |
1105 | // uint32_t rho = args[_RHO]; // _RHO == 2. |
1106 | // uint32_t d = digits[i >> 1]; // i is Smi. |
1107 | // uint64_t t = rho*d; |
1108 | // args[_MU] = t mod DIGIT_BASE; // _MU == 4. |
1109 | // return 1; |
1110 | // } |
1111 | |
1112 | // R4 = args |
1113 | __ ldr(R4, Address(SP, 2 * target::kWordSize)); // args |
1114 | |
1115 | // R3 = rho = args[2] |
1116 | __ ldr(R3, FieldAddress(R4, target::TypedData::data_offset() + |
1117 | 2 * kBytesPerBigIntDigit)); |
1118 | |
1119 | // R2 = digits[i >> 1] |
1120 | __ ldrd(R0, R1, SP, 0 * target::kWordSize); // R0 = i as Smi, R1 = digits |
1121 | __ add(R1, R1, Operand(R0, LSL, 1)); |
1122 | __ ldr(R2, FieldAddress(R1, target::TypedData::data_offset())); |
1123 | |
1124 | // R1:R0 = t = rho*d |
1125 | __ umull(R0, R1, R2, R3); |
1126 | |
1127 | // args[4] = t mod DIGIT_BASE = low32(t) |
1128 | __ str(R0, FieldAddress(R4, target::TypedData::data_offset() + |
1129 | 4 * kBytesPerBigIntDigit)); |
1130 | |
1131 | __ mov(R0, Operand(target::ToRawSmi(1))); // One digit processed. |
1132 | __ Ret(); |
1133 | } |
1134 | |
1135 | // Check if the last argument is a double, jump to label 'is_smi' if smi |
1136 | // (easy to convert to double), otherwise jump to label 'not_double_smi', |
1137 | // Returns the last argument in R0. |
1138 | static void TestLastArgumentIsDouble(Assembler* assembler, |
1139 | Label* is_smi, |
1140 | Label* not_double_smi) { |
1141 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1142 | __ tst(R0, Operand(kSmiTagMask)); |
1143 | __ b(is_smi, EQ); |
1144 | __ CompareClassId(R0, kDoubleCid, R1); |
1145 | __ b(not_double_smi, NE); |
1146 | // Fall through with Double in R0. |
1147 | } |
1148 | |
1149 | // Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown |
1150 | // type. Return true or false object in the register R0. Any NaN argument |
1151 | // returns false. Any non-double arg1 causes control flow to fall through to the |
1152 | // slow case (compiled method body). |
1153 | static void CompareDoubles(Assembler* assembler, |
1154 | Label* normal_ir_body, |
1155 | Condition true_condition) { |
1156 | if (TargetCPUFeatures::vfp_supported()) { |
1157 | Label is_smi, double_op; |
1158 | |
1159 | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
1160 | // Both arguments are double, right operand is in R0. |
1161 | |
1162 | __ LoadDFromOffset(D1, R0, target::Double::value_offset() - kHeapObjectTag); |
1163 | __ Bind(&double_op); |
1164 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // Left argument. |
1165 | __ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
1166 | |
1167 | __ vcmpd(D0, D1); |
1168 | __ vmstat(); |
1169 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
1170 | // Return false if D0 or D1 was NaN before checking true condition. |
1171 | __ bx(LR, VS); |
1172 | __ LoadObject(R0, CastHandle<Object>(TrueObject()), true_condition); |
1173 | __ Ret(); |
1174 | |
1175 | __ Bind(&is_smi); // Convert R0 to a double. |
1176 | __ SmiUntag(R0); |
1177 | __ vmovsr(S0, R0); |
1178 | __ vcvtdi(D1, S0); |
1179 | __ b(&double_op); // Then do the comparison. |
1180 | __ Bind(normal_ir_body); |
1181 | } |
1182 | } |
1183 | |
1184 | void AsmIntrinsifier::Double_greaterThan(Assembler* assembler, |
1185 | Label* normal_ir_body) { |
1186 | CompareDoubles(assembler, normal_ir_body, HI); |
1187 | } |
1188 | |
1189 | void AsmIntrinsifier::Double_greaterEqualThan(Assembler* assembler, |
1190 | Label* normal_ir_body) { |
1191 | CompareDoubles(assembler, normal_ir_body, CS); |
1192 | } |
1193 | |
1194 | void AsmIntrinsifier::Double_lessThan(Assembler* assembler, |
1195 | Label* normal_ir_body) { |
1196 | CompareDoubles(assembler, normal_ir_body, CC); |
1197 | } |
1198 | |
1199 | void AsmIntrinsifier::Double_equal(Assembler* assembler, |
1200 | Label* normal_ir_body) { |
1201 | CompareDoubles(assembler, normal_ir_body, EQ); |
1202 | } |
1203 | |
1204 | void AsmIntrinsifier::Double_lessEqualThan(Assembler* assembler, |
1205 | Label* normal_ir_body) { |
1206 | CompareDoubles(assembler, normal_ir_body, LS); |
1207 | } |
1208 | |
1209 | // Expects left argument to be double (receiver). Right argument is unknown. |
1210 | // Both arguments are on stack. |
1211 | static void DoubleArithmeticOperations(Assembler* assembler, |
1212 | Label* normal_ir_body, |
1213 | Token::Kind kind) { |
1214 | if (TargetCPUFeatures::vfp_supported()) { |
1215 | Label is_smi, double_op; |
1216 | |
1217 | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
1218 | // Both arguments are double, right operand is in R0. |
1219 | __ LoadDFromOffset(D1, R0, target::Double::value_offset() - kHeapObjectTag); |
1220 | __ Bind(&double_op); |
1221 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // Left argument. |
1222 | __ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
1223 | switch (kind) { |
1224 | case Token::kADD: |
1225 | __ vaddd(D0, D0, D1); |
1226 | break; |
1227 | case Token::kSUB: |
1228 | __ vsubd(D0, D0, D1); |
1229 | break; |
1230 | case Token::kMUL: |
1231 | __ vmuld(D0, D0, D1); |
1232 | break; |
1233 | case Token::kDIV: |
1234 | __ vdivd(D0, D0, D1); |
1235 | break; |
1236 | default: |
1237 | UNREACHABLE(); |
1238 | } |
1239 | const Class& double_class = DoubleClass(); |
1240 | __ TryAllocate(double_class, normal_ir_body, R0, |
1241 | R1); // Result register. |
1242 | __ StoreDToOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
1243 | __ Ret(); |
1244 | __ Bind(&is_smi); // Convert R0 to a double. |
1245 | __ SmiUntag(R0); |
1246 | __ vmovsr(S0, R0); |
1247 | __ vcvtdi(D1, S0); |
1248 | __ b(&double_op); |
1249 | __ Bind(normal_ir_body); |
1250 | } |
1251 | } |
1252 | |
1253 | void AsmIntrinsifier::Double_add(Assembler* assembler, Label* normal_ir_body) { |
1254 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kADD); |
1255 | } |
1256 | |
1257 | void AsmIntrinsifier::Double_mul(Assembler* assembler, Label* normal_ir_body) { |
1258 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kMUL); |
1259 | } |
1260 | |
1261 | void AsmIntrinsifier::Double_sub(Assembler* assembler, Label* normal_ir_body) { |
1262 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kSUB); |
1263 | } |
1264 | |
1265 | void AsmIntrinsifier::Double_div(Assembler* assembler, Label* normal_ir_body) { |
1266 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kDIV); |
1267 | } |
1268 | |
1269 | // Left is double, right is integer (Mint or Smi) |
1270 | void AsmIntrinsifier::Double_mulFromInteger(Assembler* assembler, |
1271 | Label* normal_ir_body) { |
1272 | if (TargetCPUFeatures::vfp_supported()) { |
1273 | Label fall_through; |
1274 | // Only smis allowed. |
1275 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1276 | __ tst(R0, Operand(kSmiTagMask)); |
1277 | __ b(normal_ir_body, NE); |
1278 | // Is Smi. |
1279 | __ SmiUntag(R0); |
1280 | __ vmovsr(S0, R0); |
1281 | __ vcvtdi(D1, S0); |
1282 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); |
1283 | __ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
1284 | __ vmuld(D0, D0, D1); |
1285 | const Class& double_class = DoubleClass(); |
1286 | __ TryAllocate(double_class, normal_ir_body, R0, |
1287 | R1); // Result register. |
1288 | __ StoreDToOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
1289 | __ Ret(); |
1290 | __ Bind(normal_ir_body); |
1291 | } |
1292 | } |
1293 | |
1294 | void AsmIntrinsifier::DoubleFromInteger(Assembler* assembler, |
1295 | Label* normal_ir_body) { |
1296 | if (TargetCPUFeatures::vfp_supported()) { |
1297 | Label fall_through; |
1298 | |
1299 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1300 | __ tst(R0, Operand(kSmiTagMask)); |
1301 | __ b(normal_ir_body, NE); |
1302 | // Is Smi. |
1303 | __ SmiUntag(R0); |
1304 | __ vmovsr(S0, R0); |
1305 | __ vcvtdi(D0, S0); |
1306 | const Class& double_class = DoubleClass(); |
1307 | __ TryAllocate(double_class, normal_ir_body, R0, |
1308 | R1); // Result register. |
1309 | __ StoreDToOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
1310 | __ Ret(); |
1311 | __ Bind(normal_ir_body); |
1312 | } |
1313 | } |
1314 | |
1315 | void AsmIntrinsifier::Double_getIsNaN(Assembler* assembler, |
1316 | Label* normal_ir_body) { |
1317 | if (TargetCPUFeatures::vfp_supported()) { |
1318 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1319 | __ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
1320 | __ vcmpd(D0, D0); |
1321 | __ vmstat(); |
1322 | __ LoadObject(R0, CastHandle<Object>(FalseObject()), VC); |
1323 | __ LoadObject(R0, CastHandle<Object>(TrueObject()), VS); |
1324 | __ Ret(); |
1325 | } |
1326 | } |
1327 | |
1328 | void AsmIntrinsifier::Double_getIsInfinite(Assembler* assembler, |
1329 | Label* normal_ir_body) { |
1330 | if (TargetCPUFeatures::vfp_supported()) { |
1331 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1332 | // R1 <- value[0:31], R2 <- value[32:63] |
1333 | __ LoadFieldFromOffset(kWord, R1, R0, target::Double::value_offset()); |
1334 | __ LoadFieldFromOffset(kWord, R2, R0, |
1335 | target::Double::value_offset() + target::kWordSize); |
1336 | |
1337 | // If the low word isn't 0, then it isn't infinity. |
1338 | __ cmp(R1, Operand(0)); |
1339 | __ LoadObject(R0, CastHandle<Object>(FalseObject()), NE); |
1340 | __ bx(LR, NE); // Return if NE. |
1341 | |
1342 | // Mask off the sign bit. |
1343 | __ AndImmediate(R2, R2, 0x7FFFFFFF); |
1344 | // Compare with +infinity. |
1345 | __ CompareImmediate(R2, 0x7FF00000); |
1346 | __ LoadObject(R0, CastHandle<Object>(FalseObject()), NE); |
1347 | __ bx(LR, NE); |
1348 | |
1349 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
1350 | __ Ret(); |
1351 | } |
1352 | } |
1353 | |
1354 | void AsmIntrinsifier::Double_getIsNegative(Assembler* assembler, |
1355 | Label* normal_ir_body) { |
1356 | if (TargetCPUFeatures::vfp_supported()) { |
1357 | Label is_false, is_true, is_zero; |
1358 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1359 | __ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
1360 | __ vcmpdz(D0); |
1361 | __ vmstat(); |
1362 | __ b(&is_false, VS); // NaN -> false. |
1363 | __ b(&is_zero, EQ); // Check for negative zero. |
1364 | __ b(&is_false, CS); // >= 0 -> false. |
1365 | |
1366 | __ Bind(&is_true); |
1367 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
1368 | __ Ret(); |
1369 | |
1370 | __ Bind(&is_false); |
1371 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
1372 | __ Ret(); |
1373 | |
1374 | __ Bind(&is_zero); |
1375 | // Check for negative zero by looking at the sign bit. |
1376 | __ vmovrrd(R0, R1, D0); // R1:R0 <- D0, so sign bit is in bit 31 of R1. |
1377 | __ mov(R1, Operand(R1, LSR, 31)); |
1378 | __ tst(R1, Operand(1)); |
1379 | __ b(&is_true, NE); // Sign bit set. |
1380 | __ b(&is_false); |
1381 | } |
1382 | } |
1383 | |
1384 | void AsmIntrinsifier::DoubleToInteger(Assembler* assembler, |
1385 | Label* normal_ir_body) { |
1386 | if (TargetCPUFeatures::vfp_supported()) { |
1387 | Label fall_through; |
1388 | |
1389 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1390 | __ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
1391 | |
1392 | // Explicit NaN check, since ARM gives an FPU exception if you try to |
1393 | // convert NaN to an int. |
1394 | __ vcmpd(D0, D0); |
1395 | __ vmstat(); |
1396 | __ b(normal_ir_body, VS); |
1397 | |
1398 | __ vcvtid(S0, D0); |
1399 | __ vmovrs(R0, S0); |
1400 | // Overflow is signaled with minint. |
1401 | // Check for overflow and that it fits into Smi. |
1402 | __ CompareImmediate(R0, 0xC0000000); |
1403 | __ SmiTag(R0, PL); |
1404 | __ bx(LR, PL); |
1405 | __ Bind(normal_ir_body); |
1406 | } |
1407 | } |
1408 | |
1409 | void AsmIntrinsifier::Double_hashCode(Assembler* assembler, |
1410 | Label* normal_ir_body) { |
1411 | // TODO(dartbug.com/31174): Convert this to a graph intrinsic. |
1412 | |
1413 | if (!TargetCPUFeatures::vfp_supported()) return; |
1414 | |
1415 | // Load double value and check that it isn't NaN, since ARM gives an |
1416 | // FPU exception if you try to convert NaN to an int. |
1417 | Label double_hash; |
1418 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); |
1419 | __ LoadDFromOffset(D0, R1, target::Double::value_offset() - kHeapObjectTag); |
1420 | __ vcmpd(D0, D0); |
1421 | __ vmstat(); |
1422 | __ b(&double_hash, VS); |
1423 | |
1424 | // Convert double value to signed 32-bit int in R0. |
1425 | __ vcvtid(S2, D0); |
1426 | __ vmovrs(R0, S2); |
1427 | |
1428 | // Tag the int as a Smi, making sure that it fits; this checks for |
1429 | // overflow in the conversion from double to int. Conversion |
1430 | // overflow is signalled by vcvt through clamping R0 to either |
1431 | // INT32_MAX or INT32_MIN (saturation). |
1432 | ASSERT(kSmiTag == 0 && kSmiTagShift == 1); |
1433 | __ adds(R0, R0, Operand(R0)); |
1434 | __ b(normal_ir_body, VS); |
1435 | |
1436 | // Compare the two double values. If they are equal, we return the |
1437 | // Smi tagged result immediately as the hash code. |
1438 | __ vcvtdi(D1, S2); |
1439 | __ vcmpd(D0, D1); |
1440 | __ vmstat(); |
1441 | __ bx(LR, EQ); |
1442 | |
1443 | // Convert the double bits to a hash code that fits in a Smi. |
1444 | __ Bind(&double_hash); |
1445 | __ ldr(R0, FieldAddress(R1, target::Double::value_offset())); |
1446 | __ ldr(R1, FieldAddress(R1, target::Double::value_offset() + 4)); |
1447 | __ eor(R0, R0, Operand(R1)); |
1448 | __ AndImmediate(R0, R0, target::kSmiMax); |
1449 | __ SmiTag(R0); |
1450 | __ Ret(); |
1451 | |
1452 | // Fall into the native C++ implementation. |
1453 | __ Bind(normal_ir_body); |
1454 | } |
1455 | |
1456 | void AsmIntrinsifier::MathSqrt(Assembler* assembler, Label* normal_ir_body) { |
1457 | if (TargetCPUFeatures::vfp_supported()) { |
1458 | Label is_smi, double_op; |
1459 | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
1460 | // Argument is double and is in R0. |
1461 | __ LoadDFromOffset(D1, R0, target::Double::value_offset() - kHeapObjectTag); |
1462 | __ Bind(&double_op); |
1463 | __ vsqrtd(D0, D1); |
1464 | const Class& double_class = DoubleClass(); |
1465 | __ TryAllocate(double_class, normal_ir_body, R0, |
1466 | R1); // Result register. |
1467 | __ StoreDToOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
1468 | __ Ret(); |
1469 | __ Bind(&is_smi); |
1470 | __ SmiUntag(R0); |
1471 | __ vmovsr(S0, R0); |
1472 | __ vcvtdi(D1, S0); |
1473 | __ b(&double_op); |
1474 | __ Bind(normal_ir_body); |
1475 | } |
1476 | } |
1477 | |
1478 | // var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64; |
1479 | // _state[kSTATE_LO] = state & _MASK_32; |
1480 | // _state[kSTATE_HI] = state >> 32; |
1481 | void AsmIntrinsifier::Random_nextState(Assembler* assembler, |
1482 | Label* normal_ir_body) { |
1483 | const Field& state_field = LookupMathRandomStateFieldOffset(); |
1484 | const int64_t a_int_value = AsmIntrinsifier::kRandomAValue; |
1485 | |
1486 | // 'a_int_value' is a mask. |
1487 | ASSERT(Utils::IsUint(32, a_int_value)); |
1488 | int32_t a_int32_value = static_cast<int32_t>(a_int_value); |
1489 | |
1490 | // Receiver. |
1491 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1492 | // Field '_state'. |
1493 | __ ldr(R1, FieldAddress(R0, target::Field::OffsetOf(state_field))); |
1494 | // Addresses of _state[0] and _state[1]. |
1495 | |
1496 | const int64_t disp_0 = |
1497 | target::Instance::DataOffsetFor(kTypedDataUint32ArrayCid); |
1498 | const int64_t disp_1 = |
1499 | disp_0 + target::Instance::ElementSizeFor(kTypedDataUint32ArrayCid); |
1500 | |
1501 | __ LoadImmediate(R0, a_int32_value); |
1502 | __ LoadFromOffset(kWord, R2, R1, disp_0 - kHeapObjectTag); |
1503 | __ LoadFromOffset(kWord, R3, R1, disp_1 - kHeapObjectTag); |
1504 | __ mov(R8, Operand(0)); // Zero extend unsigned _state[kSTATE_HI]. |
1505 | // Unsigned 32-bit multiply and 64-bit accumulate into R8:R3. |
1506 | __ umlal(R3, R8, R0, R2); // R8:R3 <- R8:R3 + R0 * R2. |
1507 | __ StoreToOffset(kWord, R3, R1, disp_0 - kHeapObjectTag); |
1508 | __ StoreToOffset(kWord, R8, R1, disp_1 - kHeapObjectTag); |
1509 | ASSERT(target::ToRawSmi(0) == 0); |
1510 | __ eor(R0, R0, Operand(R0)); |
1511 | __ Ret(); |
1512 | } |
1513 | |
1514 | void AsmIntrinsifier::ObjectEquals(Assembler* assembler, |
1515 | Label* normal_ir_body) { |
1516 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1517 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); |
1518 | __ cmp(R0, Operand(R1)); |
1519 | __ LoadObject(R0, CastHandle<Object>(FalseObject()), NE); |
1520 | __ LoadObject(R0, CastHandle<Object>(TrueObject()), EQ); |
1521 | __ Ret(); |
1522 | } |
1523 | |
1524 | static void RangeCheck(Assembler* assembler, |
1525 | Register val, |
1526 | Register tmp, |
1527 | intptr_t low, |
1528 | intptr_t high, |
1529 | Condition cc, |
1530 | Label* target) { |
1531 | __ AddImmediate(tmp, val, -low); |
1532 | __ CompareImmediate(tmp, high - low); |
1533 | __ b(target, cc); |
1534 | } |
1535 | |
1536 | const Condition kIfNotInRange = HI; |
1537 | const Condition kIfInRange = LS; |
1538 | |
1539 | static void JumpIfInteger(Assembler* assembler, |
1540 | Register cid, |
1541 | Register tmp, |
1542 | Label* target) { |
1543 | RangeCheck(assembler, cid, tmp, kSmiCid, kMintCid, kIfInRange, target); |
1544 | } |
1545 | |
1546 | static void JumpIfNotInteger(Assembler* assembler, |
1547 | Register cid, |
1548 | Register tmp, |
1549 | Label* target) { |
1550 | RangeCheck(assembler, cid, tmp, kSmiCid, kMintCid, kIfNotInRange, target); |
1551 | } |
1552 | |
1553 | static void JumpIfString(Assembler* assembler, |
1554 | Register cid, |
1555 | Register tmp, |
1556 | Label* target) { |
1557 | RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid, |
1558 | kIfInRange, target); |
1559 | } |
1560 | |
1561 | static void JumpIfNotString(Assembler* assembler, |
1562 | Register cid, |
1563 | Register tmp, |
1564 | Label* target) { |
1565 | RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid, |
1566 | kIfNotInRange, target); |
1567 | } |
1568 | |
1569 | // Return type quickly for simple types (not parameterized and not signature). |
1570 | void AsmIntrinsifier::ObjectRuntimeType(Assembler* assembler, |
1571 | Label* normal_ir_body) { |
1572 | Label use_declaration_type, not_double, not_integer; |
1573 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1574 | __ LoadClassIdMayBeSmi(R1, R0); |
1575 | |
1576 | __ CompareImmediate(R1, kClosureCid); |
1577 | __ b(normal_ir_body, EQ); // Instance is a closure. |
1578 | |
1579 | __ CompareImmediate(R1, kNumPredefinedCids); |
1580 | __ b(&use_declaration_type, HI); |
1581 | |
1582 | __ CompareImmediate(R1, kDoubleCid); |
1583 | __ b(¬_double, NE); |
1584 | |
1585 | __ LoadIsolate(R0); |
1586 | __ LoadFromOffset(kWord, R0, R0, |
1587 | target::Isolate::cached_object_store_offset()); |
1588 | __ LoadFromOffset(kWord, R0, R0, target::ObjectStore::double_type_offset()); |
1589 | __ Ret(); |
1590 | |
1591 | __ Bind(¬_double); |
1592 | JumpIfNotInteger(assembler, R1, R0, ¬_integer); |
1593 | __ LoadIsolate(R0); |
1594 | __ LoadFromOffset(kWord, R0, R0, |
1595 | target::Isolate::cached_object_store_offset()); |
1596 | __ LoadFromOffset(kWord, R0, R0, target::ObjectStore::int_type_offset()); |
1597 | __ Ret(); |
1598 | |
1599 | __ Bind(¬_integer); |
1600 | JumpIfNotString(assembler, R1, R0, &use_declaration_type); |
1601 | __ LoadIsolate(R0); |
1602 | __ LoadFromOffset(kWord, R0, R0, |
1603 | target::Isolate::cached_object_store_offset()); |
1604 | __ LoadFromOffset(kWord, R0, R0, target::ObjectStore::string_type_offset()); |
1605 | __ Ret(); |
1606 | |
1607 | __ Bind(&use_declaration_type); |
1608 | __ LoadClassById(R2, R1); |
1609 | __ ldrh(R3, FieldAddress(R2, target::Class::num_type_arguments_offset())); |
1610 | __ CompareImmediate(R3, 0); |
1611 | __ b(normal_ir_body, NE); |
1612 | |
1613 | __ ldr(R0, FieldAddress(R2, target::Class::declaration_type_offset())); |
1614 | __ CompareObject(R0, NullObject()); |
1615 | __ b(normal_ir_body, EQ); |
1616 | __ Ret(); |
1617 | |
1618 | __ Bind(normal_ir_body); |
1619 | } |
1620 | |
1621 | // Compares cid1 and cid2 to see if they're syntactically equivalent. If this |
1622 | // can be determined by this fast path, it jumps to either equal or not_equal, |
1623 | // otherwise it jumps to normal_ir_body. May clobber cid1, cid2, and scratch. |
1624 | static void EquivalentClassIds(Assembler* assembler, |
1625 | Label* normal_ir_body, |
1626 | Label* equal, |
1627 | Label* not_equal, |
1628 | Register cid1, |
1629 | Register cid2, |
1630 | Register scratch) { |
1631 | Label different_cids, not_integer; |
1632 | |
1633 | // Check if left hand side is a closure. Closures are handled in the runtime. |
1634 | __ CompareImmediate(cid1, kClosureCid); |
1635 | __ b(normal_ir_body, EQ); |
1636 | |
1637 | // Check whether class ids match. If class ids don't match types may still be |
1638 | // considered equivalent (e.g. multiple string implementation classes map to a |
1639 | // single String type). |
1640 | __ cmp(cid1, Operand(cid2)); |
1641 | __ b(&different_cids, NE); |
1642 | |
1643 | // Types have the same class and neither is a closure type. |
1644 | // Check if there are no type arguments. In this case we can return true. |
1645 | // Otherwise fall through into the runtime to handle comparison. |
1646 | __ LoadClassById(scratch, cid1); |
1647 | __ ldrh(scratch, |
1648 | FieldAddress(scratch, target::Class::num_type_arguments_offset())); |
1649 | __ CompareImmediate(scratch, 0); |
1650 | __ b(normal_ir_body, NE); |
1651 | __ b(equal); |
1652 | |
1653 | // Class ids are different. Check if we are comparing two string types (with |
1654 | // different representations) or two integer types. |
1655 | __ Bind(&different_cids); |
1656 | __ CompareImmediate(cid1, kNumPredefinedCids); |
1657 | __ b(not_equal, HI); |
1658 | |
1659 | // Check if both are integer types. |
1660 | JumpIfNotInteger(assembler, cid1, scratch, ¬_integer); |
1661 | |
1662 | // First type is an integer. Check if the second is an integer too. |
1663 | // Otherwise types are unequiv because only integers have the same runtime |
1664 | // type as other integers. |
1665 | JumpIfInteger(assembler, cid2, scratch, equal); |
1666 | __ b(not_equal); |
1667 | |
1668 | __ Bind(¬_integer); |
1669 | // Check if the first type is String. If it is not then types are not |
1670 | // equivalent because they have different class ids and they are not strings |
1671 | // or integers. |
1672 | JumpIfNotString(assembler, cid1, scratch, not_equal); |
1673 | // First type is String. Check if the second is a string too. |
1674 | JumpIfString(assembler, cid2, scratch, equal); |
1675 | // String types are only equivalent to other String types. |
1676 | __ b(not_equal); |
1677 | } |
1678 | |
1679 | void AsmIntrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler, |
1680 | Label* normal_ir_body) { |
1681 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1682 | __ LoadClassIdMayBeSmi(R1, R0); |
1683 | |
1684 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); |
1685 | __ LoadClassIdMayBeSmi(R2, R0); |
1686 | |
1687 | Label equal, not_equal; |
1688 | EquivalentClassIds(assembler, normal_ir_body, &equal, ¬_equal, R1, R2, R0); |
1689 | |
1690 | __ Bind(&equal); |
1691 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
1692 | __ Ret(); |
1693 | |
1694 | __ Bind(¬_equal); |
1695 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
1696 | __ Ret(); |
1697 | |
1698 | __ Bind(normal_ir_body); |
1699 | } |
1700 | |
1701 | void AsmIntrinsifier::String_getHashCode(Assembler* assembler, |
1702 | Label* normal_ir_body) { |
1703 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1704 | __ ldr(R0, FieldAddress(R0, target::String::hash_offset())); |
1705 | __ cmp(R0, Operand(0)); |
1706 | __ bx(LR, NE); |
1707 | // Hash not yet computed. |
1708 | __ Bind(normal_ir_body); |
1709 | } |
1710 | |
1711 | void AsmIntrinsifier::Type_getHashCode(Assembler* assembler, |
1712 | Label* normal_ir_body) { |
1713 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1714 | __ ldr(R0, FieldAddress(R0, target::Type::hash_offset())); |
1715 | __ cmp(R0, Operand(0)); |
1716 | __ bx(LR, NE); |
1717 | // Hash not yet computed. |
1718 | __ Bind(normal_ir_body); |
1719 | } |
1720 | |
1721 | void AsmIntrinsifier::Type_equality(Assembler* assembler, |
1722 | Label* normal_ir_body) { |
1723 | Label equal, not_equal, equiv_cids, check_legacy; |
1724 | |
1725 | __ ldm(IA, SP, (1 << R1 | 1 << R2)); |
1726 | __ cmp(R1, Operand(R2)); |
1727 | __ b(&equal, EQ); |
1728 | |
1729 | // R1 might not be a Type object, so check that first (R2 should be though, |
1730 | // since this is a method on the Type class). |
1731 | __ LoadClassIdMayBeSmi(R0, R1); |
1732 | __ CompareImmediate(R0, kTypeCid); |
1733 | __ b(normal_ir_body, NE); |
1734 | |
1735 | // Check if types are syntactically equal. |
1736 | __ ldr(R3, FieldAddress(R1, target::Type::type_class_id_offset())); |
1737 | __ SmiUntag(R3); |
1738 | __ ldr(R4, FieldAddress(R2, target::Type::type_class_id_offset())); |
1739 | __ SmiUntag(R4); |
1740 | EquivalentClassIds(assembler, normal_ir_body, &equiv_cids, ¬_equal, R3, R4, |
1741 | R0); |
1742 | |
1743 | // Check nullability. |
1744 | __ Bind(&equiv_cids); |
1745 | __ ldrb(R1, FieldAddress(R1, target::Type::nullability_offset())); |
1746 | __ ldrb(R2, FieldAddress(R2, target::Type::nullability_offset())); |
1747 | __ cmp(R1, Operand(R2)); |
1748 | __ b(&check_legacy, NE); |
1749 | // Fall through to equal case if nullability is strictly equal. |
1750 | |
1751 | __ Bind(&equal); |
1752 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
1753 | __ Ret(); |
1754 | |
1755 | // At this point the nullabilities are different, so they can only be |
1756 | // syntactically equivalent if they're both either kNonNullable or kLegacy. |
1757 | // These are the two largest values of the enum, so we can just do a < check. |
1758 | ASSERT(target::Nullability::kNullable < target::Nullability::kNonNullable && |
1759 | target::Nullability::kNonNullable < target::Nullability::kLegacy); |
1760 | __ Bind(&check_legacy); |
1761 | __ CompareImmediate(R1, target::Nullability::kNonNullable); |
1762 | __ b(¬_equal, LT); |
1763 | __ CompareImmediate(R2, target::Nullability::kNonNullable); |
1764 | __ b(&equal, GE); |
1765 | |
1766 | __ Bind(¬_equal); |
1767 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
1768 | __ Ret(); |
1769 | |
1770 | __ Bind(normal_ir_body); |
1771 | } |
1772 | |
1773 | void GenerateSubstringMatchesSpecialization(Assembler* assembler, |
1774 | intptr_t receiver_cid, |
1775 | intptr_t other_cid, |
1776 | Label* return_true, |
1777 | Label* return_false) { |
1778 | __ SmiUntag(R1); |
1779 | __ ldr(R8, FieldAddress(R0, target::String::length_offset())); // this.length |
1780 | __ SmiUntag(R8); |
1781 | __ ldr(R9, |
1782 | FieldAddress(R2, target::String::length_offset())); // other.length |
1783 | __ SmiUntag(R9); |
1784 | |
1785 | // if (other.length == 0) return true; |
1786 | __ cmp(R9, Operand(0)); |
1787 | __ b(return_true, EQ); |
1788 | |
1789 | // if (start < 0) return false; |
1790 | __ cmp(R1, Operand(0)); |
1791 | __ b(return_false, LT); |
1792 | |
1793 | // if (start + other.length > this.length) return false; |
1794 | __ add(R3, R1, Operand(R9)); |
1795 | __ cmp(R3, Operand(R8)); |
1796 | __ b(return_false, GT); |
1797 | |
1798 | if (receiver_cid == kOneByteStringCid) { |
1799 | __ AddImmediate(R0, target::OneByteString::data_offset() - kHeapObjectTag); |
1800 | __ add(R0, R0, Operand(R1)); |
1801 | } else { |
1802 | ASSERT(receiver_cid == kTwoByteStringCid); |
1803 | __ AddImmediate(R0, target::TwoByteString::data_offset() - kHeapObjectTag); |
1804 | __ add(R0, R0, Operand(R1)); |
1805 | __ add(R0, R0, Operand(R1)); |
1806 | } |
1807 | if (other_cid == kOneByteStringCid) { |
1808 | __ AddImmediate(R2, target::OneByteString::data_offset() - kHeapObjectTag); |
1809 | } else { |
1810 | ASSERT(other_cid == kTwoByteStringCid); |
1811 | __ AddImmediate(R2, target::TwoByteString::data_offset() - kHeapObjectTag); |
1812 | } |
1813 | |
1814 | // i = 0 |
1815 | __ LoadImmediate(R3, 0); |
1816 | |
1817 | // do |
1818 | Label loop; |
1819 | __ Bind(&loop); |
1820 | |
1821 | if (receiver_cid == kOneByteStringCid) { |
1822 | __ ldrb(R4, Address(R0, 0)); // this.codeUnitAt(i + start) |
1823 | } else { |
1824 | __ ldrh(R4, Address(R0, 0)); // this.codeUnitAt(i + start) |
1825 | } |
1826 | if (other_cid == kOneByteStringCid) { |
1827 | __ ldrb(TMP, Address(R2, 0)); // other.codeUnitAt(i) |
1828 | } else { |
1829 | __ ldrh(TMP, Address(R2, 0)); // other.codeUnitAt(i) |
1830 | } |
1831 | __ cmp(R4, Operand(TMP)); |
1832 | __ b(return_false, NE); |
1833 | |
1834 | // i++, while (i < len) |
1835 | __ AddImmediate(R3, 1); |
1836 | __ AddImmediate(R0, receiver_cid == kOneByteStringCid ? 1 : 2); |
1837 | __ AddImmediate(R2, other_cid == kOneByteStringCid ? 1 : 2); |
1838 | __ cmp(R3, Operand(R9)); |
1839 | __ b(&loop, LT); |
1840 | |
1841 | __ b(return_true); |
1842 | } |
1843 | |
1844 | // bool _substringMatches(int start, String other) |
1845 | // This intrinsic handles a OneByteString or TwoByteString receiver with a |
1846 | // OneByteString other. |
1847 | void AsmIntrinsifier::StringBaseSubstringMatches(Assembler* assembler, |
1848 | Label* normal_ir_body) { |
1849 | Label return_true, return_false, try_two_byte; |
1850 | __ ldr(R0, Address(SP, 2 * target::kWordSize)); // this |
1851 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); // start |
1852 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // other |
1853 | __ Push(R4); // Make ARGS_DESC_REG available. |
1854 | |
1855 | __ tst(R1, Operand(kSmiTagMask)); |
1856 | __ b(normal_ir_body, NE); // 'start' is not a Smi. |
1857 | |
1858 | __ CompareClassId(R2, kOneByteStringCid, R3); |
1859 | __ b(normal_ir_body, NE); |
1860 | |
1861 | __ CompareClassId(R0, kOneByteStringCid, R3); |
1862 | __ b(&try_two_byte, NE); |
1863 | |
1864 | GenerateSubstringMatchesSpecialization(assembler, kOneByteStringCid, |
1865 | kOneByteStringCid, &return_true, |
1866 | &return_false); |
1867 | |
1868 | __ Bind(&try_two_byte); |
1869 | __ CompareClassId(R0, kTwoByteStringCid, R3); |
1870 | __ b(normal_ir_body, NE); |
1871 | |
1872 | GenerateSubstringMatchesSpecialization(assembler, kTwoByteStringCid, |
1873 | kOneByteStringCid, &return_true, |
1874 | &return_false); |
1875 | |
1876 | __ Bind(&return_true); |
1877 | __ Pop(R4); |
1878 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
1879 | __ Ret(); |
1880 | |
1881 | __ Bind(&return_false); |
1882 | __ Pop(R4); |
1883 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
1884 | __ Ret(); |
1885 | |
1886 | __ Bind(normal_ir_body); |
1887 | __ Pop(R4); |
1888 | } |
1889 | |
1890 | void AsmIntrinsifier::Object_getHash(Assembler* assembler, |
1891 | Label* normal_ir_body) { |
1892 | UNREACHABLE(); |
1893 | } |
1894 | |
1895 | void AsmIntrinsifier::Object_setHash(Assembler* assembler, |
1896 | Label* normal_ir_body) { |
1897 | UNREACHABLE(); |
1898 | } |
1899 | |
1900 | void AsmIntrinsifier::StringBaseCharAt(Assembler* assembler, |
1901 | Label* normal_ir_body) { |
1902 | Label try_two_byte_string; |
1903 | |
1904 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); // Index. |
1905 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // String. |
1906 | __ tst(R1, Operand(kSmiTagMask)); |
1907 | __ b(normal_ir_body, NE); // Index is not a Smi. |
1908 | // Range check. |
1909 | __ ldr(R2, FieldAddress(R0, target::String::length_offset())); |
1910 | __ cmp(R1, Operand(R2)); |
1911 | __ b(normal_ir_body, CS); // Runtime throws exception. |
1912 | |
1913 | __ CompareClassId(R0, kOneByteStringCid, R3); |
1914 | __ b(&try_two_byte_string, NE); |
1915 | __ SmiUntag(R1); |
1916 | __ AddImmediate(R0, target::OneByteString::data_offset() - kHeapObjectTag); |
1917 | __ ldrb(R1, Address(R0, R1)); |
1918 | __ CompareImmediate(R1, target::Symbols::kNumberOfOneCharCodeSymbols); |
1919 | __ b(normal_ir_body, GE); |
1920 | __ ldr(R0, Address(THR, target::Thread::predefined_symbols_address_offset())); |
1921 | __ AddImmediate( |
1922 | R0, target::Symbols::kNullCharCodeSymbolOffset * target::kWordSize); |
1923 | __ ldr(R0, Address(R0, R1, LSL, 2)); |
1924 | __ Ret(); |
1925 | |
1926 | __ Bind(&try_two_byte_string); |
1927 | __ CompareClassId(R0, kTwoByteStringCid, R3); |
1928 | __ b(normal_ir_body, NE); |
1929 | ASSERT(kSmiTagShift == 1); |
1930 | __ AddImmediate(R0, target::TwoByteString::data_offset() - kHeapObjectTag); |
1931 | __ ldrh(R1, Address(R0, R1)); |
1932 | __ CompareImmediate(R1, target::Symbols::kNumberOfOneCharCodeSymbols); |
1933 | __ b(normal_ir_body, GE); |
1934 | __ ldr(R0, Address(THR, target::Thread::predefined_symbols_address_offset())); |
1935 | __ AddImmediate( |
1936 | R0, target::Symbols::kNullCharCodeSymbolOffset * target::kWordSize); |
1937 | __ ldr(R0, Address(R0, R1, LSL, 2)); |
1938 | __ Ret(); |
1939 | |
1940 | __ Bind(normal_ir_body); |
1941 | } |
1942 | |
1943 | void AsmIntrinsifier::StringBaseIsEmpty(Assembler* assembler, |
1944 | Label* normal_ir_body) { |
1945 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1946 | __ ldr(R0, FieldAddress(R0, target::String::length_offset())); |
1947 | __ cmp(R0, Operand(target::ToRawSmi(0))); |
1948 | __ LoadObject(R0, CastHandle<Object>(TrueObject()), EQ); |
1949 | __ LoadObject(R0, CastHandle<Object>(FalseObject()), NE); |
1950 | __ Ret(); |
1951 | } |
1952 | |
1953 | void AsmIntrinsifier::OneByteString_getHashCode(Assembler* assembler, |
1954 | Label* normal_ir_body) { |
1955 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); |
1956 | __ ldr(R0, FieldAddress(R1, target::String::hash_offset())); |
1957 | __ cmp(R0, Operand(0)); |
1958 | __ bx(LR, NE); // Return if already computed. |
1959 | |
1960 | __ ldr(R2, FieldAddress(R1, target::String::length_offset())); |
1961 | |
1962 | Label done; |
1963 | // If the string is empty, set the hash to 1, and return. |
1964 | __ cmp(R2, Operand(target::ToRawSmi(0))); |
1965 | __ b(&done, EQ); |
1966 | |
1967 | __ SmiUntag(R2); |
1968 | __ mov(R3, Operand(0)); |
1969 | __ AddImmediate(R8, R1, |
1970 | target::OneByteString::data_offset() - kHeapObjectTag); |
1971 | // R1: Instance of OneByteString. |
1972 | // R2: String length, untagged integer. |
1973 | // R3: Loop counter, untagged integer. |
1974 | // R8: String data. |
1975 | // R0: Hash code, untagged integer. |
1976 | |
1977 | Label loop; |
1978 | // Add to hash code: (hash_ is uint32) |
1979 | // hash_ += ch; |
1980 | // hash_ += hash_ << 10; |
1981 | // hash_ ^= hash_ >> 6; |
1982 | // Get one characters (ch). |
1983 | __ Bind(&loop); |
1984 | __ ldrb(TMP, Address(R8, 0)); |
1985 | // TMP: ch. |
1986 | __ add(R3, R3, Operand(1)); |
1987 | __ add(R8, R8, Operand(1)); |
1988 | __ add(R0, R0, Operand(TMP)); |
1989 | __ add(R0, R0, Operand(R0, LSL, 10)); |
1990 | __ eor(R0, R0, Operand(R0, LSR, 6)); |
1991 | __ cmp(R3, Operand(R2)); |
1992 | __ b(&loop, NE); |
1993 | |
1994 | // Finalize. |
1995 | // hash_ += hash_ << 3; |
1996 | // hash_ ^= hash_ >> 11; |
1997 | // hash_ += hash_ << 15; |
1998 | __ add(R0, R0, Operand(R0, LSL, 3)); |
1999 | __ eor(R0, R0, Operand(R0, LSR, 11)); |
2000 | __ add(R0, R0, Operand(R0, LSL, 15)); |
2001 | // hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1); |
2002 | __ LoadImmediate(R2, |
2003 | (static_cast<intptr_t>(1) << target::String::kHashBits) - 1); |
2004 | __ and_(R0, R0, Operand(R2)); |
2005 | __ cmp(R0, Operand(0)); |
2006 | // return hash_ == 0 ? 1 : hash_; |
2007 | __ Bind(&done); |
2008 | __ mov(R0, Operand(1), EQ); |
2009 | __ SmiTag(R0); |
2010 | __ StoreIntoSmiField(FieldAddress(R1, target::String::hash_offset()), R0); |
2011 | __ Ret(); |
2012 | } |
2013 | |
2014 | // Allocates a _OneByteString or _TwoByteString. The content is not initialized. |
2015 | // 'length-reg' (R2) contains the desired length as a _Smi or _Mint. |
2016 | // Returns new string as tagged pointer in R0. |
2017 | static void TryAllocateString(Assembler* assembler, |
2018 | classid_t cid, |
2019 | Label* ok, |
2020 | Label* failure) { |
2021 | ASSERT(cid == kOneByteStringCid || cid == kTwoByteStringCid); |
2022 | const Register length_reg = R2; |
2023 | // _Mint length: call to runtime to produce error. |
2024 | __ BranchIfNotSmi(length_reg, failure); |
2025 | // Negative length: call to runtime to produce error. |
2026 | __ cmp(length_reg, Operand(0)); |
2027 | __ b(failure, LT); |
2028 | |
2029 | NOT_IN_PRODUCT(__ LoadAllocationStatsAddress(R0, cid)); |
2030 | NOT_IN_PRODUCT(__ MaybeTraceAllocation(R0, failure)); |
2031 | __ mov(R8, Operand(length_reg)); // Save the length register. |
2032 | if (cid == kOneByteStringCid) { |
2033 | __ SmiUntag(length_reg); |
2034 | } else { |
2035 | // Untag length and multiply by element size -> no-op. |
2036 | } |
2037 | const intptr_t fixed_size_plus_alignment_padding = |
2038 | target::String::InstanceSize() + |
2039 | target::ObjectAlignment::kObjectAlignment - 1; |
2040 | __ AddImmediate(length_reg, fixed_size_plus_alignment_padding); |
2041 | __ bic(length_reg, length_reg, |
2042 | Operand(target::ObjectAlignment::kObjectAlignment - 1)); |
2043 | |
2044 | __ ldr(R0, Address(THR, target::Thread::top_offset())); |
2045 | |
2046 | // length_reg: allocation size. |
2047 | __ adds(R1, R0, Operand(length_reg)); |
2048 | __ b(failure, CS); // Fail on unsigned overflow. |
2049 | |
2050 | // Check if the allocation fits into the remaining space. |
2051 | // R0: potential new object start. |
2052 | // R1: potential next object start. |
2053 | // R2: allocation size. |
2054 | __ ldr(TMP, Address(THR, target::Thread::end_offset())); |
2055 | __ cmp(R1, Operand(TMP)); |
2056 | __ b(failure, CS); |
2057 | |
2058 | // Successfully allocated the object(s), now update top to point to |
2059 | // next object start and initialize the object. |
2060 | __ str(R1, Address(THR, target::Thread::top_offset())); |
2061 | __ AddImmediate(R0, kHeapObjectTag); |
2062 | |
2063 | // Initialize the tags. |
2064 | // R0: new object start as a tagged pointer. |
2065 | // R1: new object end address. |
2066 | // R2: allocation size. |
2067 | { |
2068 | const intptr_t shift = target::ObjectLayout::kTagBitsSizeTagPos - |
2069 | target::ObjectAlignment::kObjectAlignmentLog2; |
2070 | |
2071 | __ CompareImmediate(R2, target::ObjectLayout::kSizeTagMaxSizeTag); |
2072 | __ mov(R3, Operand(R2, LSL, shift), LS); |
2073 | __ mov(R3, Operand(0), HI); |
2074 | |
2075 | // Get the class index and insert it into the tags. |
2076 | // R3: size and bit tags. |
2077 | const uint32_t tags = |
2078 | target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); |
2079 | __ LoadImmediate(TMP, tags); |
2080 | __ orr(R3, R3, Operand(TMP)); |
2081 | __ str(R3, FieldAddress(R0, target::Object::tags_offset())); // Store tags. |
2082 | } |
2083 | |
2084 | // Set the length field using the saved length (R8). |
2085 | __ StoreIntoObjectNoBarrier( |
2086 | R0, FieldAddress(R0, target::String::length_offset()), R8); |
2087 | // Clear hash. |
2088 | __ LoadImmediate(TMP, 0); |
2089 | __ StoreIntoObjectNoBarrier( |
2090 | R0, FieldAddress(R0, target::String::hash_offset()), TMP); |
2091 | |
2092 | __ b(ok); |
2093 | } |
2094 | |
2095 | // Arg0: OneByteString (receiver). |
2096 | // Arg1: Start index as Smi. |
2097 | // Arg2: End index as Smi. |
2098 | // The indexes must be valid. |
2099 | void AsmIntrinsifier::OneByteString_substringUnchecked(Assembler* assembler, |
2100 | Label* normal_ir_body) { |
2101 | const intptr_t kStringOffset = 2 * target::kWordSize; |
2102 | const intptr_t kStartIndexOffset = 1 * target::kWordSize; |
2103 | const intptr_t kEndIndexOffset = 0 * target::kWordSize; |
2104 | Label ok; |
2105 | |
2106 | __ ldr(R2, Address(SP, kEndIndexOffset)); |
2107 | __ ldr(TMP, Address(SP, kStartIndexOffset)); |
2108 | __ orr(R3, R2, Operand(TMP)); |
2109 | __ tst(R3, Operand(kSmiTagMask)); |
2110 | __ b(normal_ir_body, NE); // 'start', 'end' not Smi. |
2111 | |
2112 | __ sub(R2, R2, Operand(TMP)); |
2113 | TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body); |
2114 | __ Bind(&ok); |
2115 | // R0: new string as tagged pointer. |
2116 | // Copy string. |
2117 | __ ldr(R3, Address(SP, kStringOffset)); |
2118 | __ ldr(R1, Address(SP, kStartIndexOffset)); |
2119 | __ SmiUntag(R1); |
2120 | __ add(R3, R3, Operand(R1)); |
2121 | // Calculate start address and untag (- 1). |
2122 | __ AddImmediate(R3, target::OneByteString::data_offset() - 1); |
2123 | |
2124 | // R3: Start address to copy from (untagged). |
2125 | // R1: Untagged start index. |
2126 | __ ldr(R2, Address(SP, kEndIndexOffset)); |
2127 | __ SmiUntag(R2); |
2128 | __ sub(R2, R2, Operand(R1)); |
2129 | |
2130 | // R3: Start address to copy from (untagged). |
2131 | // R2: Untagged number of bytes to copy. |
2132 | // R0: Tagged result string. |
2133 | // R8: Pointer into R3. |
2134 | // R1: Pointer into R0. |
2135 | // TMP: Scratch register. |
2136 | Label loop, done; |
2137 | __ cmp(R2, Operand(0)); |
2138 | __ b(&done, LE); |
2139 | __ mov(R8, Operand(R3)); |
2140 | __ mov(R1, Operand(R0)); |
2141 | __ Bind(&loop); |
2142 | __ ldrb(TMP, Address(R8, 1, Address::PostIndex)); |
2143 | __ sub(R2, R2, Operand(1)); |
2144 | __ cmp(R2, Operand(0)); |
2145 | __ strb(TMP, FieldAddress(R1, target::OneByteString::data_offset())); |
2146 | __ add(R1, R1, Operand(1)); |
2147 | __ b(&loop, GT); |
2148 | |
2149 | __ Bind(&done); |
2150 | __ Ret(); |
2151 | __ Bind(normal_ir_body); |
2152 | } |
2153 | |
2154 | void AsmIntrinsifier::WriteIntoOneByteString(Assembler* assembler, |
2155 | Label* normal_ir_body) { |
2156 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // Value. |
2157 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); // Index. |
2158 | __ ldr(R0, Address(SP, 2 * target::kWordSize)); // OneByteString. |
2159 | __ SmiUntag(R1); |
2160 | __ SmiUntag(R2); |
2161 | __ AddImmediate(R3, R0, |
2162 | target::OneByteString::data_offset() - kHeapObjectTag); |
2163 | __ strb(R2, Address(R3, R1)); |
2164 | __ Ret(); |
2165 | } |
2166 | |
2167 | void AsmIntrinsifier::WriteIntoTwoByteString(Assembler* assembler, |
2168 | Label* normal_ir_body) { |
2169 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // Value. |
2170 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); // Index. |
2171 | __ ldr(R0, Address(SP, 2 * target::kWordSize)); // TwoByteString. |
2172 | // Untag index and multiply by element size -> no-op. |
2173 | __ SmiUntag(R2); |
2174 | __ AddImmediate(R3, R0, |
2175 | target::TwoByteString::data_offset() - kHeapObjectTag); |
2176 | __ strh(R2, Address(R3, R1)); |
2177 | __ Ret(); |
2178 | } |
2179 | |
2180 | void AsmIntrinsifier::AllocateOneByteString(Assembler* assembler, |
2181 | Label* normal_ir_body) { |
2182 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // Length. |
2183 | Label ok; |
2184 | TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body); |
2185 | |
2186 | __ Bind(&ok); |
2187 | __ Ret(); |
2188 | |
2189 | __ Bind(normal_ir_body); |
2190 | } |
2191 | |
2192 | void AsmIntrinsifier::AllocateTwoByteString(Assembler* assembler, |
2193 | Label* normal_ir_body) { |
2194 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // Length. |
2195 | Label ok; |
2196 | TryAllocateString(assembler, kTwoByteStringCid, &ok, normal_ir_body); |
2197 | |
2198 | __ Bind(&ok); |
2199 | __ Ret(); |
2200 | |
2201 | __ Bind(normal_ir_body); |
2202 | } |
2203 | |
2204 | // TODO(srdjan): Add combinations (one-byte/two-byte/external strings). |
2205 | static void StringEquality(Assembler* assembler, |
2206 | Label* normal_ir_body, |
2207 | intptr_t string_cid) { |
2208 | Label is_true, is_false, loop; |
2209 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // This. |
2210 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); // Other. |
2211 | |
2212 | // Are identical? |
2213 | __ cmp(R0, Operand(R1)); |
2214 | __ b(&is_true, EQ); |
2215 | |
2216 | // Is other OneByteString? |
2217 | __ tst(R1, Operand(kSmiTagMask)); |
2218 | __ b(normal_ir_body, EQ); |
2219 | __ CompareClassId(R1, string_cid, R2); |
2220 | __ b(normal_ir_body, NE); |
2221 | |
2222 | // Have same length? |
2223 | __ ldr(R2, FieldAddress(R0, target::String::length_offset())); |
2224 | __ ldr(R3, FieldAddress(R1, target::String::length_offset())); |
2225 | __ cmp(R2, Operand(R3)); |
2226 | __ b(&is_false, NE); |
2227 | |
2228 | // Check contents, no fall-through possible. |
2229 | // TODO(zra): try out other sequences. |
2230 | ASSERT((string_cid == kOneByteStringCid) || |
2231 | (string_cid == kTwoByteStringCid)); |
2232 | const intptr_t offset = (string_cid == kOneByteStringCid) |
2233 | ? target::OneByteString::data_offset() |
2234 | : target::TwoByteString::data_offset(); |
2235 | __ AddImmediate(R0, offset - kHeapObjectTag); |
2236 | __ AddImmediate(R1, offset - kHeapObjectTag); |
2237 | __ SmiUntag(R2); |
2238 | __ Bind(&loop); |
2239 | __ AddImmediate(R2, -1); |
2240 | __ cmp(R2, Operand(0)); |
2241 | __ b(&is_true, LT); |
2242 | if (string_cid == kOneByteStringCid) { |
2243 | __ ldrb(R3, Address(R0)); |
2244 | __ ldrb(R4, Address(R1)); |
2245 | __ AddImmediate(R0, 1); |
2246 | __ AddImmediate(R1, 1); |
2247 | } else if (string_cid == kTwoByteStringCid) { |
2248 | __ ldrh(R3, Address(R0)); |
2249 | __ ldrh(R4, Address(R1)); |
2250 | __ AddImmediate(R0, 2); |
2251 | __ AddImmediate(R1, 2); |
2252 | } else { |
2253 | UNIMPLEMENTED(); |
2254 | } |
2255 | __ cmp(R3, Operand(R4)); |
2256 | __ b(&is_false, NE); |
2257 | __ b(&loop); |
2258 | |
2259 | __ Bind(&is_true); |
2260 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
2261 | __ Ret(); |
2262 | |
2263 | __ Bind(&is_false); |
2264 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
2265 | __ Ret(); |
2266 | |
2267 | __ Bind(normal_ir_body); |
2268 | } |
2269 | |
2270 | void AsmIntrinsifier::OneByteString_equality(Assembler* assembler, |
2271 | Label* normal_ir_body) { |
2272 | StringEquality(assembler, normal_ir_body, kOneByteStringCid); |
2273 | } |
2274 | |
2275 | void AsmIntrinsifier::TwoByteString_equality(Assembler* assembler, |
2276 | Label* normal_ir_body) { |
2277 | StringEquality(assembler, normal_ir_body, kTwoByteStringCid); |
2278 | } |
2279 | |
2280 | void AsmIntrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler, |
2281 | Label* normal_ir_body, |
2282 | bool sticky) { |
2283 | if (FLAG_interpret_irregexp) return; |
2284 | |
2285 | static const intptr_t kRegExpParamOffset = 2 * target::kWordSize; |
2286 | static const intptr_t kStringParamOffset = 1 * target::kWordSize; |
2287 | // start_index smi is located at offset 0. |
2288 | |
2289 | // Incoming registers: |
2290 | // R0: Function. (Will be reloaded with the specialized matcher function.) |
2291 | // R4: Arguments descriptor. (Will be preserved.) |
2292 | // R9: Unknown. (Must be GC safe on tail call.) |
2293 | |
2294 | // Load the specialized function pointer into R0. Leverage the fact the |
2295 | // string CIDs as well as stored function pointers are in sequence. |
2296 | __ ldr(R2, Address(SP, kRegExpParamOffset)); |
2297 | __ ldr(R1, Address(SP, kStringParamOffset)); |
2298 | __ LoadClassId(R1, R1); |
2299 | __ AddImmediate(R1, -kOneByteStringCid); |
2300 | __ add(R1, R2, Operand(R1, LSL, target::kWordSizeLog2)); |
2301 | __ ldr(R0, FieldAddress(R1, target::RegExp::function_offset(kOneByteStringCid, |
2302 | sticky))); |
2303 | |
2304 | // Registers are now set up for the lazy compile stub. It expects the function |
2305 | // in R0, the argument descriptor in R4, and IC-Data in R9. |
2306 | __ eor(R9, R9, Operand(R9)); |
2307 | |
2308 | // Tail-call the function. |
2309 | __ ldr(CODE_REG, FieldAddress(R0, target::Function::code_offset())); |
2310 | __ Branch(FieldAddress(R0, target::Function::entry_point_offset())); |
2311 | } |
2312 | |
2313 | // On stack: user tag (+0). |
2314 | void AsmIntrinsifier::UserTag_makeCurrent(Assembler* assembler, |
2315 | Label* normal_ir_body) { |
2316 | // R1: Isolate. |
2317 | __ LoadIsolate(R1); |
2318 | // R0: Current user tag. |
2319 | __ ldr(R0, Address(R1, target::Isolate::current_tag_offset())); |
2320 | // R2: UserTag. |
2321 | __ ldr(R2, Address(SP, +0 * target::kWordSize)); |
2322 | // Set target::Isolate::current_tag_. |
2323 | __ str(R2, Address(R1, target::Isolate::current_tag_offset())); |
2324 | // R2: UserTag's tag. |
2325 | __ ldr(R2, FieldAddress(R2, target::UserTag::tag_offset())); |
2326 | // Set target::Isolate::user_tag_. |
2327 | __ str(R2, Address(R1, target::Isolate::user_tag_offset())); |
2328 | __ Ret(); |
2329 | } |
2330 | |
2331 | void AsmIntrinsifier::UserTag_defaultTag(Assembler* assembler, |
2332 | Label* normal_ir_body) { |
2333 | __ LoadIsolate(R0); |
2334 | __ ldr(R0, Address(R0, target::Isolate::default_tag_offset())); |
2335 | __ Ret(); |
2336 | } |
2337 | |
2338 | void AsmIntrinsifier::Profiler_getCurrentTag(Assembler* assembler, |
2339 | Label* normal_ir_body) { |
2340 | __ LoadIsolate(R0); |
2341 | __ ldr(R0, Address(R0, target::Isolate::current_tag_offset())); |
2342 | __ Ret(); |
2343 | } |
2344 | |
2345 | void AsmIntrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler, |
2346 | Label* normal_ir_body) { |
2347 | #if !defined(SUPPORT_TIMELINE) |
2348 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
2349 | __ Ret(); |
2350 | #else |
2351 | // Load TimelineStream*. |
2352 | __ ldr(R0, Address(THR, target::Thread::dart_stream_offset())); |
2353 | // Load uintptr_t from TimelineStream*. |
2354 | __ ldr(R0, Address(R0, target::TimelineStream::enabled_offset())); |
2355 | __ cmp(R0, Operand(0)); |
2356 | __ LoadObject(R0, CastHandle<Object>(TrueObject()), NE); |
2357 | __ LoadObject(R0, CastHandle<Object>(FalseObject()), EQ); |
2358 | __ Ret(); |
2359 | #endif |
2360 | } |
2361 | |
2362 | void AsmIntrinsifier::ClearAsyncThreadStackTrace(Assembler* assembler, |
2363 | Label* normal_ir_body) { |
2364 | __ LoadObject(R0, NullObject()); |
2365 | __ str(R0, Address(THR, target::Thread::async_stack_trace_offset())); |
2366 | __ Ret(); |
2367 | } |
2368 | |
2369 | void AsmIntrinsifier::SetAsyncThreadStackTrace(Assembler* assembler, |
2370 | Label* normal_ir_body) { |
2371 | __ ldr(R0, Address(THR, target::Thread::async_stack_trace_offset())); |
2372 | __ LoadObject(R0, NullObject()); |
2373 | __ Ret(); |
2374 | } |
2375 | |
2376 | #undef __ |
2377 | |
2378 | } // namespace compiler |
2379 | } // namespace dart |
2380 | |
2381 | #endif // defined(TARGET_ARCH_ARM) |
2382 | |