1 | // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
2 | // for details. All rights reserved. Use of this source code is governed by a |
3 | // BSD-style license that can be found in the LICENSE file. |
4 | |
5 | #include "vm/globals.h" // Needed here to get TARGET_ARCH_ARM64. |
6 | #if defined(TARGET_ARCH_ARM64) |
7 | |
8 | #define SHOULD_NOT_INCLUDE_RUNTIME |
9 | |
10 | #include "vm/class_id.h" |
11 | #include "vm/compiler/asm_intrinsifier.h" |
12 | #include "vm/compiler/assembler/assembler.h" |
13 | |
14 | namespace dart { |
15 | namespace compiler { |
16 | |
17 | // When entering intrinsics code: |
18 | // R4: Arguments descriptor |
19 | // LR: Return address |
20 | // The R4 register can be destroyed only if there is no slow-path, i.e. |
21 | // if the intrinsified method always executes a return. |
22 | // The FP register should not be modified, because it is used by the profiler. |
23 | // The PP and THR registers (see constants_arm64.h) must be preserved. |
24 | |
25 | #define __ assembler-> |
26 | |
27 | intptr_t AsmIntrinsifier::ParameterSlotFromSp() { |
28 | return -1; |
29 | } |
30 | |
31 | static bool IsABIPreservedRegister(Register reg) { |
32 | return ((1 << reg) & kAbiPreservedCpuRegs) != 0; |
33 | } |
34 | |
35 | void AsmIntrinsifier::IntrinsicCallPrologue(Assembler* assembler) { |
36 | ASSERT(IsABIPreservedRegister(CODE_REG)); |
37 | ASSERT(!IsABIPreservedRegister(ARGS_DESC_REG)); |
38 | ASSERT(IsABIPreservedRegister(CALLEE_SAVED_TEMP)); |
39 | ASSERT(IsABIPreservedRegister(CALLEE_SAVED_TEMP2)); |
40 | ASSERT(CALLEE_SAVED_TEMP != CODE_REG); |
41 | ASSERT(CALLEE_SAVED_TEMP != ARGS_DESC_REG); |
42 | ASSERT(CALLEE_SAVED_TEMP2 != CODE_REG); |
43 | ASSERT(CALLEE_SAVED_TEMP2 != ARGS_DESC_REG); |
44 | |
45 | assembler->Comment("IntrinsicCallPrologue" ); |
46 | assembler->mov(CALLEE_SAVED_TEMP, LR); |
47 | assembler->mov(CALLEE_SAVED_TEMP2, ARGS_DESC_REG); |
48 | } |
49 | |
50 | void AsmIntrinsifier::IntrinsicCallEpilogue(Assembler* assembler) { |
51 | assembler->Comment("IntrinsicCallEpilogue" ); |
52 | assembler->mov(LR, CALLEE_SAVED_TEMP); |
53 | assembler->mov(ARGS_DESC_REG, CALLEE_SAVED_TEMP2); |
54 | } |
55 | |
56 | // Allocate a GrowableObjectArray:: using the backing array specified. |
57 | // On stack: type argument (+1), data (+0). |
58 | void AsmIntrinsifier::GrowableArray_Allocate(Assembler* assembler, |
59 | Label* normal_ir_body) { |
60 | // The newly allocated object is returned in R0. |
61 | const intptr_t kTypeArgumentsOffset = 1 * target::kWordSize; |
62 | const intptr_t kArrayOffset = 0 * target::kWordSize; |
63 | |
64 | // Try allocating in new space. |
65 | const Class& cls = GrowableObjectArrayClass(); |
66 | __ TryAllocate(cls, normal_ir_body, R0, R1); |
67 | |
68 | // Store backing array object in growable array object. |
69 | __ ldr(R1, Address(SP, kArrayOffset)); // Data argument. |
70 | // R0 is new, no barrier needed. |
71 | __ StoreIntoObjectNoBarrier( |
72 | R0, FieldAddress(R0, target::GrowableObjectArray::data_offset()), R1); |
73 | |
74 | // R0: new growable array object start as a tagged pointer. |
75 | // Store the type argument field in the growable array object. |
76 | __ ldr(R1, Address(SP, kTypeArgumentsOffset)); // Type argument. |
77 | __ StoreIntoObjectNoBarrier( |
78 | R0, |
79 | FieldAddress(R0, target::GrowableObjectArray::type_arguments_offset()), |
80 | R1); |
81 | |
82 | // Set the length field in the growable array object to 0. |
83 | __ LoadImmediate(R1, 0); |
84 | __ str(R1, FieldAddress(R0, target::GrowableObjectArray::length_offset())); |
85 | __ ret(); // Returns the newly allocated object in R0. |
86 | |
87 | __ Bind(normal_ir_body); |
88 | } |
89 | |
90 | static int GetScaleFactor(intptr_t size) { |
91 | switch (size) { |
92 | case 1: |
93 | return 0; |
94 | case 2: |
95 | return 1; |
96 | case 4: |
97 | return 2; |
98 | case 8: |
99 | return 3; |
100 | case 16: |
101 | return 4; |
102 | } |
103 | UNREACHABLE(); |
104 | return -1; |
105 | } |
106 | |
107 | #define TYPED_ARRAY_ALLOCATION(cid, max_len, scale_shift) \ |
108 | Label fall_through; \ |
109 | const intptr_t kArrayLengthStackOffset = 0 * target::kWordSize; \ |
110 | NOT_IN_PRODUCT(__ MaybeTraceAllocation(cid, R2, normal_ir_body)); \ |
111 | __ ldr(R2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \ |
112 | /* Check that length is a positive Smi. */ \ |
113 | /* R2: requested array length argument. */ \ |
114 | __ BranchIfNotSmi(R2, normal_ir_body); \ |
115 | __ CompareRegisters(R2, ZR); \ |
116 | __ b(normal_ir_body, LT); \ |
117 | __ SmiUntag(R2); \ |
118 | /* Check for maximum allowed length. */ \ |
119 | /* R2: untagged array length. */ \ |
120 | __ CompareImmediate(R2, max_len); \ |
121 | __ b(normal_ir_body, GT); \ |
122 | __ LslImmediate(R2, R2, scale_shift); \ |
123 | const intptr_t fixed_size_plus_alignment_padding = \ |
124 | target::TypedData::InstanceSize() + \ |
125 | target::ObjectAlignment::kObjectAlignment - 1; \ |
126 | __ AddImmediate(R2, fixed_size_plus_alignment_padding); \ |
127 | __ andi(R2, R2, \ |
128 | Immediate(~(target::ObjectAlignment::kObjectAlignment - 1))); \ |
129 | __ ldr(R0, Address(THR, target::Thread::top_offset())); \ |
130 | \ |
131 | /* R2: allocation size. */ \ |
132 | __ adds(R1, R0, Operand(R2)); \ |
133 | __ b(normal_ir_body, CS); /* Fail on unsigned overflow. */ \ |
134 | \ |
135 | /* Check if the allocation fits into the remaining space. */ \ |
136 | /* R0: potential new object start. */ \ |
137 | /* R1: potential next object start. */ \ |
138 | /* R2: allocation size. */ \ |
139 | __ ldr(R6, Address(THR, target::Thread::end_offset())); \ |
140 | __ cmp(R1, Operand(R6)); \ |
141 | __ b(normal_ir_body, CS); \ |
142 | \ |
143 | /* Successfully allocated the object(s), now update top to point to */ \ |
144 | /* next object start and initialize the object. */ \ |
145 | __ str(R1, Address(THR, target::Thread::top_offset())); \ |
146 | __ AddImmediate(R0, kHeapObjectTag); \ |
147 | /* Initialize the tags. */ \ |
148 | /* R0: new object start as a tagged pointer. */ \ |
149 | /* R1: new object end address. */ \ |
150 | /* R2: allocation size. */ \ |
151 | { \ |
152 | __ CompareImmediate(R2, target::ObjectLayout::kSizeTagMaxSizeTag); \ |
153 | __ LslImmediate(R2, R2, \ |
154 | target::ObjectLayout::kTagBitsSizeTagPos - \ |
155 | target::ObjectAlignment::kObjectAlignmentLog2); \ |
156 | __ csel(R2, ZR, R2, HI); \ |
157 | \ |
158 | /* Get the class index and insert it into the tags. */ \ |
159 | uint32_t tags = \ |
160 | target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); \ |
161 | __ LoadImmediate(TMP, tags); \ |
162 | __ orr(R2, R2, Operand(TMP)); \ |
163 | __ str(R2, FieldAddress(R0, target::Object::tags_offset())); /* Tags. */ \ |
164 | } \ |
165 | /* Set the length field. */ \ |
166 | /* R0: new object start as a tagged pointer. */ \ |
167 | /* R1: new object end address. */ \ |
168 | __ ldr(R2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \ |
169 | __ StoreIntoObjectNoBarrier( \ |
170 | R0, FieldAddress(R0, target::TypedDataBase::length_offset()), R2); \ |
171 | /* Initialize all array elements to 0. */ \ |
172 | /* R0: new object start as a tagged pointer. */ \ |
173 | /* R1: new object end address. */ \ |
174 | /* R2: iterator which initially points to the start of the variable */ \ |
175 | /* R3: scratch register. */ \ |
176 | /* data area to be initialized. */ \ |
177 | __ mov(R3, ZR); \ |
178 | __ AddImmediate(R2, R0, target::TypedData::InstanceSize() - 1); \ |
179 | __ StoreInternalPointer( \ |
180 | R0, FieldAddress(R0, target::TypedDataBase::data_field_offset()), R2); \ |
181 | Label init_loop, done; \ |
182 | __ Bind(&init_loop); \ |
183 | __ cmp(R2, Operand(R1)); \ |
184 | __ b(&done, CS); \ |
185 | __ str(R3, Address(R2, 0)); \ |
186 | __ add(R2, R2, Operand(target::kWordSize)); \ |
187 | __ b(&init_loop); \ |
188 | __ Bind(&done); \ |
189 | \ |
190 | __ ret(); \ |
191 | __ Bind(normal_ir_body); |
192 | |
193 | #define TYPED_DATA_ALLOCATOR(clazz) \ |
194 | void AsmIntrinsifier::TypedData_##clazz##_factory(Assembler* assembler, \ |
195 | Label* normal_ir_body) { \ |
196 | intptr_t size = TypedDataElementSizeInBytes(kTypedData##clazz##Cid); \ |
197 | intptr_t max_len = TypedDataMaxNewSpaceElements(kTypedData##clazz##Cid); \ |
198 | int shift = GetScaleFactor(size); \ |
199 | TYPED_ARRAY_ALLOCATION(kTypedData##clazz##Cid, max_len, shift); \ |
200 | } |
201 | CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR) |
202 | #undef TYPED_DATA_ALLOCATOR |
203 | |
204 | // Loads args from stack into R0 and R1 |
205 | // Tests if they are smis, jumps to label not_smi if not. |
206 | static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) { |
207 | __ ldr(R0, Address(SP, +0 * target::kWordSize)); |
208 | __ ldr(R1, Address(SP, +1 * target::kWordSize)); |
209 | __ orr(TMP, R0, Operand(R1)); |
210 | __ BranchIfNotSmi(TMP, not_smi); |
211 | } |
212 | |
213 | void AsmIntrinsifier::Integer_addFromInteger(Assembler* assembler, |
214 | Label* normal_ir_body) { |
215 | TestBothArgumentsSmis(assembler, normal_ir_body); // Checks two smis. |
216 | __ adds(R0, R0, Operand(R1)); // Adds. |
217 | __ b(normal_ir_body, VS); // Fall-through on overflow. |
218 | __ ret(); |
219 | __ Bind(normal_ir_body); |
220 | } |
221 | |
222 | void AsmIntrinsifier::Integer_add(Assembler* assembler, Label* normal_ir_body) { |
223 | Integer_addFromInteger(assembler, normal_ir_body); |
224 | } |
225 | |
226 | void AsmIntrinsifier::Integer_subFromInteger(Assembler* assembler, |
227 | Label* normal_ir_body) { |
228 | TestBothArgumentsSmis(assembler, normal_ir_body); |
229 | __ subs(R0, R0, Operand(R1)); // Subtract. |
230 | __ b(normal_ir_body, VS); // Fall-through on overflow. |
231 | __ ret(); |
232 | __ Bind(normal_ir_body); |
233 | } |
234 | |
235 | void AsmIntrinsifier::Integer_sub(Assembler* assembler, Label* normal_ir_body) { |
236 | TestBothArgumentsSmis(assembler, normal_ir_body); |
237 | __ subs(R0, R1, Operand(R0)); // Subtract. |
238 | __ b(normal_ir_body, VS); // Fall-through on overflow. |
239 | __ ret(); |
240 | __ Bind(normal_ir_body); |
241 | } |
242 | |
243 | void AsmIntrinsifier::Integer_mulFromInteger(Assembler* assembler, |
244 | Label* normal_ir_body) { |
245 | TestBothArgumentsSmis(assembler, normal_ir_body); // checks two smis |
246 | __ SmiUntag(R0); // Untags R6. We only want result shifted by one. |
247 | |
248 | __ mul(TMP, R0, R1); |
249 | __ smulh(TMP2, R0, R1); |
250 | // TMP: result bits 64..127. |
251 | __ cmp(TMP2, Operand(TMP, ASR, 63)); |
252 | __ b(normal_ir_body, NE); |
253 | __ mov(R0, TMP); |
254 | __ ret(); |
255 | __ Bind(normal_ir_body); |
256 | } |
257 | |
258 | void AsmIntrinsifier::Integer_mul(Assembler* assembler, Label* normal_ir_body) { |
259 | Integer_mulFromInteger(assembler, normal_ir_body); |
260 | } |
261 | |
262 | // Optimizations: |
263 | // - result is 0 if: |
264 | // - left is 0 |
265 | // - left equals right |
266 | // - result is left if |
267 | // - left > 0 && left < right |
268 | // R1: Tagged left (dividend). |
269 | // R0: Tagged right (divisor). |
270 | // Returns: |
271 | // R1: Untagged fallthrough result (remainder to be adjusted), or |
272 | // R0: Tagged return result (remainder). |
273 | static void EmitRemainderOperation(Assembler* assembler) { |
274 | Label return_zero, modulo; |
275 | const Register left = R1; |
276 | const Register right = R0; |
277 | const Register result = R1; |
278 | const Register tmp = R2; |
279 | ASSERT(left == result); |
280 | |
281 | // Check for quick zero results. |
282 | __ CompareRegisters(left, ZR); |
283 | __ b(&return_zero, EQ); |
284 | __ CompareRegisters(left, right); |
285 | __ b(&return_zero, EQ); |
286 | |
287 | // Check if result should be left. |
288 | __ CompareRegisters(left, ZR); |
289 | __ b(&modulo, LT); |
290 | // left is positive. |
291 | __ CompareRegisters(left, right); |
292 | // left is less than right, result is left. |
293 | __ b(&modulo, GT); |
294 | __ mov(R0, left); |
295 | __ ret(); |
296 | |
297 | __ Bind(&return_zero); |
298 | __ mov(R0, ZR); |
299 | __ ret(); |
300 | |
301 | __ Bind(&modulo); |
302 | // result <- left - right * (left / right) |
303 | __ SmiUntag(left); |
304 | __ SmiUntag(right); |
305 | |
306 | __ sdiv(tmp, left, right); |
307 | __ msub(result, right, tmp, left); // result <- left - right * tmp |
308 | } |
309 | |
310 | // Implementation: |
311 | // res = left % right; |
312 | // if (res < 0) { |
313 | // if (right < 0) { |
314 | // res = res - right; |
315 | // } else { |
316 | // res = res + right; |
317 | // } |
318 | // } |
319 | void AsmIntrinsifier::Integer_moduloFromInteger(Assembler* assembler, |
320 | Label* normal_ir_body) { |
321 | // Check to see if we have integer division |
322 | Label neg_remainder, fall_through; |
323 | __ ldr(R1, Address(SP, +0 * target::kWordSize)); |
324 | __ ldr(R0, Address(SP, +1 * target::kWordSize)); |
325 | __ orr(TMP, R0, Operand(R1)); |
326 | __ BranchIfNotSmi(TMP, normal_ir_body); |
327 | // R1: Tagged left (dividend). |
328 | // R0: Tagged right (divisor). |
329 | // Check if modulo by zero -> exception thrown in main function. |
330 | __ CompareRegisters(R0, ZR); |
331 | __ b(normal_ir_body, EQ); |
332 | EmitRemainderOperation(assembler); |
333 | // Untagged right in R0. Untagged remainder result in R1. |
334 | |
335 | __ CompareRegisters(R1, ZR); |
336 | __ b(&neg_remainder, LT); |
337 | __ SmiTag(R0, R1); // Tag and move result to R0. |
338 | __ ret(); |
339 | |
340 | __ Bind(&neg_remainder); |
341 | // Result is negative, adjust it. |
342 | __ CompareRegisters(R0, ZR); |
343 | __ sub(TMP, R1, Operand(R0)); |
344 | __ add(TMP2, R1, Operand(R0)); |
345 | __ csel(R0, TMP2, TMP, GE); |
346 | __ SmiTag(R0); |
347 | __ ret(); |
348 | |
349 | __ Bind(normal_ir_body); |
350 | } |
351 | |
352 | void AsmIntrinsifier::Integer_truncDivide(Assembler* assembler, |
353 | Label* normal_ir_body) { |
354 | // Check to see if we have integer division |
355 | |
356 | TestBothArgumentsSmis(assembler, normal_ir_body); |
357 | __ CompareRegisters(R0, ZR); |
358 | __ b(normal_ir_body, EQ); // If b is 0, fall through. |
359 | |
360 | __ SmiUntag(R0); |
361 | __ SmiUntag(R1); |
362 | |
363 | __ sdiv(R0, R1, R0); |
364 | |
365 | // Check the corner case of dividing the 'MIN_SMI' with -1, in which case we |
366 | // cannot tag the result. |
367 | __ CompareImmediate(R0, 0x4000000000000000); |
368 | __ b(normal_ir_body, EQ); |
369 | __ SmiTag(R0); // Not equal. Okay to tag and return. |
370 | __ ret(); // Return. |
371 | __ Bind(normal_ir_body); |
372 | } |
373 | |
374 | void AsmIntrinsifier::Integer_negate(Assembler* assembler, |
375 | Label* normal_ir_body) { |
376 | __ ldr(R0, Address(SP, +0 * target::kWordSize)); // Grab first argument. |
377 | __ BranchIfNotSmi(R0, normal_ir_body); |
378 | __ negs(R0, R0); |
379 | __ b(normal_ir_body, VS); |
380 | __ ret(); |
381 | __ Bind(normal_ir_body); |
382 | } |
383 | |
384 | void AsmIntrinsifier::Integer_bitAndFromInteger(Assembler* assembler, |
385 | Label* normal_ir_body) { |
386 | TestBothArgumentsSmis(assembler, normal_ir_body); // Checks two smis. |
387 | __ and_(R0, R0, Operand(R1)); |
388 | __ ret(); |
389 | __ Bind(normal_ir_body); |
390 | } |
391 | |
392 | void AsmIntrinsifier::Integer_bitAnd(Assembler* assembler, |
393 | Label* normal_ir_body) { |
394 | Integer_bitAndFromInteger(assembler, normal_ir_body); |
395 | } |
396 | |
397 | void AsmIntrinsifier::Integer_bitOrFromInteger(Assembler* assembler, |
398 | Label* normal_ir_body) { |
399 | TestBothArgumentsSmis(assembler, normal_ir_body); // Checks two smis. |
400 | __ orr(R0, R0, Operand(R1)); |
401 | __ ret(); |
402 | __ Bind(normal_ir_body); |
403 | } |
404 | |
405 | void AsmIntrinsifier::Integer_bitOr(Assembler* assembler, |
406 | Label* normal_ir_body) { |
407 | Integer_bitOrFromInteger(assembler, normal_ir_body); |
408 | } |
409 | |
410 | void AsmIntrinsifier::Integer_bitXorFromInteger(Assembler* assembler, |
411 | Label* normal_ir_body) { |
412 | TestBothArgumentsSmis(assembler, normal_ir_body); // Checks two smis. |
413 | __ eor(R0, R0, Operand(R1)); |
414 | __ ret(); |
415 | __ Bind(normal_ir_body); |
416 | } |
417 | |
418 | void AsmIntrinsifier::Integer_bitXor(Assembler* assembler, |
419 | Label* normal_ir_body) { |
420 | Integer_bitXorFromInteger(assembler, normal_ir_body); |
421 | } |
422 | |
423 | void AsmIntrinsifier::Integer_shl(Assembler* assembler, Label* normal_ir_body) { |
424 | ASSERT(kSmiTagShift == 1); |
425 | ASSERT(kSmiTag == 0); |
426 | const Register right = R0; |
427 | const Register left = R1; |
428 | const Register temp = R2; |
429 | const Register result = R0; |
430 | |
431 | TestBothArgumentsSmis(assembler, normal_ir_body); |
432 | __ CompareImmediate(right, target::ToRawSmi(target::kSmiBits)); |
433 | __ b(normal_ir_body, CS); |
434 | |
435 | // Left is not a constant. |
436 | // Check if count too large for handling it inlined. |
437 | __ SmiUntag(TMP, right); // SmiUntag right into TMP. |
438 | // Overflow test (preserve left, right, and TMP); |
439 | __ lslv(temp, left, TMP); |
440 | __ asrv(TMP2, temp, TMP); |
441 | __ CompareRegisters(left, TMP2); |
442 | __ b(normal_ir_body, NE); // Overflow. |
443 | // Shift for result now we know there is no overflow. |
444 | __ lslv(result, left, TMP); |
445 | __ ret(); |
446 | __ Bind(normal_ir_body); |
447 | } |
448 | |
449 | static void CompareIntegers(Assembler* assembler, |
450 | Label* normal_ir_body, |
451 | Condition true_condition) { |
452 | Label true_label; |
453 | TestBothArgumentsSmis(assembler, normal_ir_body); |
454 | // R0 contains the right argument, R1 the left. |
455 | __ CompareRegisters(R1, R0); |
456 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
457 | __ LoadObject(TMP, CastHandle<Object>(TrueObject())); |
458 | __ csel(R0, TMP, R0, true_condition); |
459 | __ ret(); |
460 | __ Bind(normal_ir_body); |
461 | } |
462 | |
463 | void AsmIntrinsifier::Integer_greaterThanFromInt(Assembler* assembler, |
464 | Label* normal_ir_body) { |
465 | CompareIntegers(assembler, normal_ir_body, LT); |
466 | } |
467 | |
468 | void AsmIntrinsifier::Integer_lessThan(Assembler* assembler, |
469 | Label* normal_ir_body) { |
470 | Integer_greaterThanFromInt(assembler, normal_ir_body); |
471 | } |
472 | |
473 | void AsmIntrinsifier::Integer_greaterThan(Assembler* assembler, |
474 | Label* normal_ir_body) { |
475 | CompareIntegers(assembler, normal_ir_body, GT); |
476 | } |
477 | |
478 | void AsmIntrinsifier::Integer_lessEqualThan(Assembler* assembler, |
479 | Label* normal_ir_body) { |
480 | CompareIntegers(assembler, normal_ir_body, LE); |
481 | } |
482 | |
483 | void AsmIntrinsifier::Integer_greaterEqualThan(Assembler* assembler, |
484 | Label* normal_ir_body) { |
485 | CompareIntegers(assembler, normal_ir_body, GE); |
486 | } |
487 | |
488 | // This is called for Smi and Mint receivers. The right argument |
489 | // can be Smi, Mint or double. |
490 | void AsmIntrinsifier::Integer_equalToInteger(Assembler* assembler, |
491 | Label* normal_ir_body) { |
492 | Label true_label, check_for_mint; |
493 | // For integer receiver '===' check first. |
494 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
495 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); |
496 | __ cmp(R0, Operand(R1)); |
497 | __ b(&true_label, EQ); |
498 | |
499 | __ orr(R2, R0, Operand(R1)); |
500 | __ BranchIfNotSmi(R2, &check_for_mint); |
501 | // If R0 or R1 is not a smi do Mint checks. |
502 | |
503 | // Both arguments are smi, '===' is good enough. |
504 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
505 | __ ret(); |
506 | __ Bind(&true_label); |
507 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
508 | __ ret(); |
509 | |
510 | // At least one of the arguments was not Smi. |
511 | Label receiver_not_smi; |
512 | __ Bind(&check_for_mint); |
513 | |
514 | __ BranchIfNotSmi(R1, &receiver_not_smi); // Check receiver. |
515 | |
516 | // Left (receiver) is Smi, return false if right is not Double. |
517 | // Note that an instance of Mint never contains a value that can be |
518 | // represented by Smi. |
519 | |
520 | __ CompareClassId(R0, kDoubleCid); |
521 | __ b(normal_ir_body, EQ); |
522 | __ LoadObject(R0, |
523 | CastHandle<Object>(FalseObject())); // Smi == Mint -> false. |
524 | __ ret(); |
525 | |
526 | __ Bind(&receiver_not_smi); |
527 | // R1: receiver. |
528 | |
529 | __ CompareClassId(R1, kMintCid); |
530 | __ b(normal_ir_body, NE); |
531 | // Receiver is Mint, return false if right is Smi. |
532 | __ BranchIfNotSmi(R0, normal_ir_body); |
533 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
534 | __ ret(); |
535 | // TODO(srdjan): Implement Mint == Mint comparison. |
536 | |
537 | __ Bind(normal_ir_body); |
538 | } |
539 | |
540 | void AsmIntrinsifier::Integer_equal(Assembler* assembler, |
541 | Label* normal_ir_body) { |
542 | Integer_equalToInteger(assembler, normal_ir_body); |
543 | } |
544 | |
545 | void AsmIntrinsifier::Integer_sar(Assembler* assembler, Label* normal_ir_body) { |
546 | TestBothArgumentsSmis(assembler, normal_ir_body); |
547 | // Shift amount in R0. Value to shift in R1. |
548 | |
549 | // Fall through if shift amount is negative. |
550 | __ SmiUntag(R0); |
551 | __ CompareRegisters(R0, ZR); |
552 | __ b(normal_ir_body, LT); |
553 | |
554 | // If shift amount is bigger than 63, set to 63. |
555 | __ LoadImmediate(TMP, 0x3F); |
556 | __ CompareRegisters(R0, TMP); |
557 | __ csel(R0, TMP, R0, GT); |
558 | __ SmiUntag(R1); |
559 | __ asrv(R0, R1, R0); |
560 | __ SmiTag(R0); |
561 | __ ret(); |
562 | __ Bind(normal_ir_body); |
563 | } |
564 | |
565 | void AsmIntrinsifier::Smi_bitNegate(Assembler* assembler, |
566 | Label* normal_ir_body) { |
567 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
568 | __ mvn(R0, R0); |
569 | __ andi(R0, R0, Immediate(~kSmiTagMask)); // Remove inverted smi-tag. |
570 | __ ret(); |
571 | } |
572 | |
573 | void AsmIntrinsifier::Smi_bitLength(Assembler* assembler, |
574 | Label* normal_ir_body) { |
575 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
576 | __ SmiUntag(R0); |
577 | // XOR with sign bit to complement bits if value is negative. |
578 | __ eor(R0, R0, Operand(R0, ASR, 63)); |
579 | __ clz(R0, R0); |
580 | __ LoadImmediate(R1, 64); |
581 | __ sub(R0, R1, Operand(R0)); |
582 | __ SmiTag(R0); |
583 | __ ret(); |
584 | } |
585 | |
586 | void AsmIntrinsifier::Smi_bitAndFromSmi(Assembler* assembler, |
587 | Label* normal_ir_body) { |
588 | Integer_bitAndFromInteger(assembler, normal_ir_body); |
589 | } |
590 | |
591 | void AsmIntrinsifier::Bigint_lsh(Assembler* assembler, Label* normal_ir_body) { |
592 | // static void _lsh(Uint32List x_digits, int x_used, int n, |
593 | // Uint32List r_digits) |
594 | |
595 | // R2 = x_used, R3 = x_digits, x_used > 0, x_used is Smi. |
596 | __ ldp(R2, R3, Address(SP, 2 * target::kWordSize, Address::PairOffset)); |
597 | __ add(R2, R2, Operand(2)); // x_used > 0, Smi. R2 = x_used + 1, round up. |
598 | __ AsrImmediate(R2, R2, 2); // R2 = num of digit pairs to read. |
599 | // R4 = r_digits, R5 = n, n is Smi, n % _DIGIT_BITS != 0. |
600 | __ ldp(R4, R5, Address(SP, 0 * target::kWordSize, Address::PairOffset)); |
601 | __ SmiUntag(R5); |
602 | // R0 = n ~/ (2*_DIGIT_BITS) |
603 | __ AsrImmediate(R0, R5, 6); |
604 | // R6 = &x_digits[0] |
605 | __ add(R6, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
606 | // R7 = &x_digits[2*R2] |
607 | __ add(R7, R6, Operand(R2, LSL, 3)); |
608 | // R8 = &r_digits[2*1] |
609 | __ add(R8, R4, |
610 | Operand(target::TypedData::data_offset() - kHeapObjectTag + |
611 | 2 * kBytesPerBigIntDigit)); |
612 | // R8 = &r_digits[2*(R2 + n ~/ (2*_DIGIT_BITS) + 1)] |
613 | __ add(R0, R0, Operand(R2)); |
614 | __ add(R8, R8, Operand(R0, LSL, 3)); |
615 | // R3 = n % (2 * _DIGIT_BITS) |
616 | __ AndImmediate(R3, R5, 63); |
617 | // R2 = 64 - R3 |
618 | __ LoadImmediate(R2, 64); |
619 | __ sub(R2, R2, Operand(R3)); |
620 | __ mov(R1, ZR); |
621 | Label loop; |
622 | __ Bind(&loop); |
623 | __ ldr(R0, Address(R7, -2 * kBytesPerBigIntDigit, Address::PreIndex)); |
624 | __ lsrv(R4, R0, R2); |
625 | __ orr(R1, R1, Operand(R4)); |
626 | __ str(R1, Address(R8, -2 * kBytesPerBigIntDigit, Address::PreIndex)); |
627 | __ lslv(R1, R0, R3); |
628 | __ cmp(R7, Operand(R6)); |
629 | __ b(&loop, NE); |
630 | __ str(R1, Address(R8, -2 * kBytesPerBigIntDigit, Address::PreIndex)); |
631 | __ LoadObject(R0, NullObject()); |
632 | __ ret(); |
633 | } |
634 | |
635 | void AsmIntrinsifier::Bigint_rsh(Assembler* assembler, Label* normal_ir_body) { |
636 | // static void _lsh(Uint32List x_digits, int x_used, int n, |
637 | // Uint32List r_digits) |
638 | |
639 | // R2 = x_used, R3 = x_digits, x_used > 0, x_used is Smi. |
640 | __ ldp(R2, R3, Address(SP, 2 * target::kWordSize, Address::PairOffset)); |
641 | __ add(R2, R2, Operand(2)); // x_used > 0, Smi. R2 = x_used + 1, round up. |
642 | __ AsrImmediate(R2, R2, 2); // R2 = num of digit pairs to read. |
643 | // R4 = r_digits, R5 = n, n is Smi, n % _DIGIT_BITS != 0. |
644 | __ ldp(R4, R5, Address(SP, 0 * target::kWordSize, Address::PairOffset)); |
645 | __ SmiUntag(R5); |
646 | // R0 = n ~/ (2*_DIGIT_BITS) |
647 | __ AsrImmediate(R0, R5, 6); |
648 | // R8 = &r_digits[0] |
649 | __ add(R8, R4, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
650 | // R7 = &x_digits[2*(n ~/ (2*_DIGIT_BITS))] |
651 | __ add(R7, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
652 | __ add(R7, R7, Operand(R0, LSL, 3)); |
653 | // R6 = &r_digits[2*(R2 - n ~/ (2*_DIGIT_BITS) - 1)] |
654 | __ add(R0, R0, Operand(1)); |
655 | __ sub(R0, R2, Operand(R0)); |
656 | __ add(R6, R8, Operand(R0, LSL, 3)); |
657 | // R3 = n % (2*_DIGIT_BITS) |
658 | __ AndImmediate(R3, R5, 63); |
659 | // R2 = 64 - R3 |
660 | __ LoadImmediate(R2, 64); |
661 | __ sub(R2, R2, Operand(R3)); |
662 | // R1 = x_digits[n ~/ (2*_DIGIT_BITS)] >> (n % (2*_DIGIT_BITS)) |
663 | __ ldr(R1, Address(R7, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
664 | __ lsrv(R1, R1, R3); |
665 | Label loop_entry; |
666 | __ b(&loop_entry); |
667 | Label loop; |
668 | __ Bind(&loop); |
669 | __ ldr(R0, Address(R7, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
670 | __ lslv(R4, R0, R2); |
671 | __ orr(R1, R1, Operand(R4)); |
672 | __ str(R1, Address(R8, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
673 | __ lsrv(R1, R0, R3); |
674 | __ Bind(&loop_entry); |
675 | __ cmp(R8, Operand(R6)); |
676 | __ b(&loop, NE); |
677 | __ str(R1, Address(R8, 0)); |
678 | __ LoadObject(R0, NullObject()); |
679 | __ ret(); |
680 | } |
681 | |
682 | void AsmIntrinsifier::Bigint_absAdd(Assembler* assembler, |
683 | Label* normal_ir_body) { |
684 | // static void _absAdd(Uint32List digits, int used, |
685 | // Uint32List a_digits, int a_used, |
686 | // Uint32List r_digits) |
687 | |
688 | // R2 = used, R3 = digits |
689 | __ ldp(R2, R3, Address(SP, 3 * target::kWordSize, Address::PairOffset)); |
690 | __ add(R2, R2, Operand(2)); // used > 0, Smi. R2 = used + 1, round up. |
691 | __ add(R2, ZR, Operand(R2, ASR, 2)); // R2 = num of digit pairs to process. |
692 | // R3 = &digits[0] |
693 | __ add(R3, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
694 | |
695 | // R4 = a_used, R5 = a_digits |
696 | __ ldp(R4, R5, Address(SP, 1 * target::kWordSize, Address::PairOffset)); |
697 | __ add(R4, R4, Operand(2)); // a_used > 0, Smi. R4 = a_used + 1, round up. |
698 | __ add(R4, ZR, Operand(R4, ASR, 2)); // R4 = num of digit pairs to process. |
699 | // R5 = &a_digits[0] |
700 | __ add(R5, R5, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
701 | |
702 | // R6 = r_digits |
703 | __ ldr(R6, Address(SP, 0 * target::kWordSize)); |
704 | // R6 = &r_digits[0] |
705 | __ add(R6, R6, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
706 | |
707 | // R7 = &digits[a_used rounded up to even number]. |
708 | __ add(R7, R3, Operand(R4, LSL, 3)); |
709 | |
710 | // R8 = &digits[a_used rounded up to even number]. |
711 | __ add(R8, R3, Operand(R2, LSL, 3)); |
712 | |
713 | __ adds(R0, R0, Operand(0)); // carry flag = 0 |
714 | Label add_loop; |
715 | __ Bind(&add_loop); |
716 | // Loop (a_used+1)/2 times, a_used > 0. |
717 | __ ldr(R0, Address(R3, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
718 | __ ldr(R1, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
719 | __ adcs(R0, R0, R1); |
720 | __ sub(R9, R3, Operand(R7)); // Does not affect carry flag. |
721 | __ str(R0, Address(R6, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
722 | __ cbnz(&add_loop, R9); // Does not affect carry flag. |
723 | |
724 | Label last_carry; |
725 | __ sub(R9, R3, Operand(R8)); // Does not affect carry flag. |
726 | __ cbz(&last_carry, R9); // If used - a_used == 0. |
727 | |
728 | Label carry_loop; |
729 | __ Bind(&carry_loop); |
730 | // Loop (used+1)/2 - (a_used+1)/2 times, used - a_used > 0. |
731 | __ ldr(R0, Address(R3, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
732 | __ adcs(R0, R0, ZR); |
733 | __ sub(R9, R3, Operand(R8)); // Does not affect carry flag. |
734 | __ str(R0, Address(R6, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
735 | __ cbnz(&carry_loop, R9); |
736 | |
737 | __ Bind(&last_carry); |
738 | Label done; |
739 | __ b(&done, CC); |
740 | __ LoadImmediate(R0, 1); |
741 | __ str(R0, Address(R6, 0)); |
742 | |
743 | __ Bind(&done); |
744 | __ LoadObject(R0, NullObject()); |
745 | __ ret(); |
746 | } |
747 | |
748 | void AsmIntrinsifier::Bigint_absSub(Assembler* assembler, |
749 | Label* normal_ir_body) { |
750 | // static void _absSub(Uint32List digits, int used, |
751 | // Uint32List a_digits, int a_used, |
752 | // Uint32List r_digits) |
753 | |
754 | // R2 = used, R3 = digits |
755 | __ ldp(R2, R3, Address(SP, 3 * target::kWordSize, Address::PairOffset)); |
756 | __ add(R2, R2, Operand(2)); // used > 0, Smi. R2 = used + 1, round up. |
757 | __ add(R2, ZR, Operand(R2, ASR, 2)); // R2 = num of digit pairs to process. |
758 | // R3 = &digits[0] |
759 | __ add(R3, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
760 | |
761 | // R4 = a_used, R5 = a_digits |
762 | __ ldp(R4, R5, Address(SP, 1 * target::kWordSize, Address::PairOffset)); |
763 | __ add(R4, R4, Operand(2)); // a_used > 0, Smi. R4 = a_used + 1, round up. |
764 | __ add(R4, ZR, Operand(R4, ASR, 2)); // R4 = num of digit pairs to process. |
765 | // R5 = &a_digits[0] |
766 | __ add(R5, R5, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
767 | |
768 | // R6 = r_digits |
769 | __ ldr(R6, Address(SP, 0 * target::kWordSize)); |
770 | // R6 = &r_digits[0] |
771 | __ add(R6, R6, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
772 | |
773 | // R7 = &digits[a_used rounded up to even number]. |
774 | __ add(R7, R3, Operand(R4, LSL, 3)); |
775 | |
776 | // R8 = &digits[a_used rounded up to even number]. |
777 | __ add(R8, R3, Operand(R2, LSL, 3)); |
778 | |
779 | __ subs(R0, R0, Operand(0)); // carry flag = 1 |
780 | Label sub_loop; |
781 | __ Bind(&sub_loop); |
782 | // Loop (a_used+1)/2 times, a_used > 0. |
783 | __ ldr(R0, Address(R3, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
784 | __ ldr(R1, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
785 | __ sbcs(R0, R0, R1); |
786 | __ sub(R9, R3, Operand(R7)); // Does not affect carry flag. |
787 | __ str(R0, Address(R6, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
788 | __ cbnz(&sub_loop, R9); // Does not affect carry flag. |
789 | |
790 | Label done; |
791 | __ sub(R9, R3, Operand(R8)); // Does not affect carry flag. |
792 | __ cbz(&done, R9); // If used - a_used == 0. |
793 | |
794 | Label carry_loop; |
795 | __ Bind(&carry_loop); |
796 | // Loop (used+1)/2 - (a_used+1)/2 times, used - a_used > 0. |
797 | __ ldr(R0, Address(R3, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
798 | __ sbcs(R0, R0, ZR); |
799 | __ sub(R9, R3, Operand(R8)); // Does not affect carry flag. |
800 | __ str(R0, Address(R6, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
801 | __ cbnz(&carry_loop, R9); |
802 | |
803 | __ Bind(&done); |
804 | __ LoadObject(R0, NullObject()); |
805 | __ ret(); |
806 | } |
807 | |
808 | void AsmIntrinsifier::Bigint_mulAdd(Assembler* assembler, |
809 | Label* normal_ir_body) { |
810 | // Pseudo code: |
811 | // static int _mulAdd(Uint32List x_digits, int xi, |
812 | // Uint32List m_digits, int i, |
813 | // Uint32List a_digits, int j, int n) { |
814 | // uint64_t x = x_digits[xi >> 1 .. (xi >> 1) + 1]; // xi is Smi and even. |
815 | // if (x == 0 || n == 0) { |
816 | // return 2; |
817 | // } |
818 | // uint64_t* mip = &m_digits[i >> 1]; // i is Smi and even. |
819 | // uint64_t* ajp = &a_digits[j >> 1]; // j is Smi and even. |
820 | // uint64_t c = 0; |
821 | // SmiUntag(n); // n is Smi and even. |
822 | // n = (n + 1)/2; // Number of pairs to process. |
823 | // do { |
824 | // uint64_t mi = *mip++; |
825 | // uint64_t aj = *ajp; |
826 | // uint128_t t = x*mi + aj + c; // 64-bit * 64-bit -> 128-bit. |
827 | // *ajp++ = low64(t); |
828 | // c = high64(t); |
829 | // } while (--n > 0); |
830 | // while (c != 0) { |
831 | // uint128_t t = *ajp + c; |
832 | // *ajp++ = low64(t); |
833 | // c = high64(t); // c == 0 or 1. |
834 | // } |
835 | // return 2; |
836 | // } |
837 | |
838 | Label done; |
839 | // R3 = x, no_op if x == 0 |
840 | // R0 = xi as Smi, R1 = x_digits. |
841 | __ ldp(R0, R1, Address(SP, 5 * target::kWordSize, Address::PairOffset)); |
842 | __ add(R1, R1, Operand(R0, LSL, 1)); |
843 | __ ldr(R3, FieldAddress(R1, target::TypedData::data_offset())); |
844 | __ tst(R3, Operand(R3)); |
845 | __ b(&done, EQ); |
846 | |
847 | // R6 = (SmiUntag(n) + 1)/2, no_op if n == 0 |
848 | __ ldr(R6, Address(SP, 0 * target::kWordSize)); |
849 | __ add(R6, R6, Operand(2)); |
850 | __ adds(R6, ZR, Operand(R6, ASR, 2)); // SmiUntag(R6) and set cc. |
851 | __ b(&done, EQ); |
852 | |
853 | // R4 = mip = &m_digits[i >> 1] |
854 | // R0 = i as Smi, R1 = m_digits. |
855 | __ ldp(R0, R1, Address(SP, 3 * target::kWordSize, Address::PairOffset)); |
856 | __ add(R1, R1, Operand(R0, LSL, 1)); |
857 | __ add(R4, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
858 | |
859 | // R5 = ajp = &a_digits[j >> 1] |
860 | // R0 = j as Smi, R1 = a_digits. |
861 | __ ldp(R0, R1, Address(SP, 1 * target::kWordSize, Address::PairOffset)); |
862 | __ add(R1, R1, Operand(R0, LSL, 1)); |
863 | __ add(R5, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
864 | |
865 | // R1 = c = 0 |
866 | __ mov(R1, ZR); |
867 | |
868 | Label muladd_loop; |
869 | __ Bind(&muladd_loop); |
870 | // x: R3 |
871 | // mip: R4 |
872 | // ajp: R5 |
873 | // c: R1 |
874 | // n: R6 |
875 | // t: R7:R8 (not live at loop entry) |
876 | |
877 | // uint64_t mi = *mip++ |
878 | __ ldr(R2, Address(R4, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
879 | |
880 | // uint64_t aj = *ajp |
881 | __ ldr(R0, Address(R5, 0)); |
882 | |
883 | // uint128_t t = x*mi + aj + c |
884 | __ mul(R7, R2, R3); // R7 = low64(R2*R3). |
885 | __ umulh(R8, R2, R3); // R8 = high64(R2*R3), t = R8:R7 = x*mi. |
886 | __ adds(R7, R7, Operand(R0)); |
887 | __ adc(R8, R8, ZR); // t += aj. |
888 | __ adds(R0, R7, Operand(R1)); // t += c, R0 = low64(t). |
889 | __ adc(R1, R8, ZR); // c = R1 = high64(t). |
890 | |
891 | // *ajp++ = low64(t) = R0 |
892 | __ str(R0, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
893 | |
894 | // while (--n > 0) |
895 | __ subs(R6, R6, Operand(1)); // --n |
896 | __ b(&muladd_loop, NE); |
897 | |
898 | __ tst(R1, Operand(R1)); |
899 | __ b(&done, EQ); |
900 | |
901 | // *ajp++ += c |
902 | __ ldr(R0, Address(R5, 0)); |
903 | __ adds(R0, R0, Operand(R1)); |
904 | __ str(R0, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
905 | __ b(&done, CC); |
906 | |
907 | Label propagate_carry_loop; |
908 | __ Bind(&propagate_carry_loop); |
909 | __ ldr(R0, Address(R5, 0)); |
910 | __ adds(R0, R0, Operand(1)); |
911 | __ str(R0, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
912 | __ b(&propagate_carry_loop, CS); |
913 | |
914 | __ Bind(&done); |
915 | __ LoadImmediate(R0, target::ToRawSmi(2)); // Two digits processed. |
916 | __ ret(); |
917 | } |
918 | |
919 | void AsmIntrinsifier::Bigint_sqrAdd(Assembler* assembler, |
920 | Label* normal_ir_body) { |
921 | // Pseudo code: |
922 | // static int _sqrAdd(Uint32List x_digits, int i, |
923 | // Uint32List a_digits, int used) { |
924 | // uint64_t* xip = &x_digits[i >> 1]; // i is Smi and even. |
925 | // uint64_t x = *xip++; |
926 | // if (x == 0) return 2; |
927 | // uint64_t* ajp = &a_digits[i]; // j == 2*i, i is Smi. |
928 | // uint64_t aj = *ajp; |
929 | // uint128_t t = x*x + aj; |
930 | // *ajp++ = low64(t); |
931 | // uint128_t c = high64(t); |
932 | // int n = ((used - i + 2) >> 2) - 1; // used and i are Smi. n: num pairs. |
933 | // while (--n >= 0) { |
934 | // uint64_t xi = *xip++; |
935 | // uint64_t aj = *ajp; |
936 | // uint192_t t = 2*x*xi + aj + c; // 2-bit * 64-bit * 64-bit -> 129-bit. |
937 | // *ajp++ = low64(t); |
938 | // c = high128(t); // 65-bit. |
939 | // } |
940 | // uint64_t aj = *ajp; |
941 | // uint128_t t = aj + c; // 64-bit + 65-bit -> 66-bit. |
942 | // *ajp++ = low64(t); |
943 | // *ajp = high64(t); |
944 | // return 2; |
945 | // } |
946 | |
947 | // R4 = xip = &x_digits[i >> 1] |
948 | // R2 = i as Smi, R3 = x_digits |
949 | __ ldp(R2, R3, Address(SP, 2 * target::kWordSize, Address::PairOffset)); |
950 | __ add(R3, R3, Operand(R2, LSL, 1)); |
951 | __ add(R4, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
952 | |
953 | // R3 = x = *xip++, return if x == 0 |
954 | Label x_zero; |
955 | __ ldr(R3, Address(R4, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
956 | __ tst(R3, Operand(R3)); |
957 | __ b(&x_zero, EQ); |
958 | |
959 | // R5 = ajp = &a_digits[i] |
960 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); // a_digits |
961 | __ add(R1, R1, Operand(R2, LSL, 2)); // j == 2*i, i is Smi. |
962 | __ add(R5, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
963 | |
964 | // R6:R1 = t = x*x + *ajp |
965 | __ ldr(R0, Address(R5, 0)); |
966 | __ mul(R1, R3, R3); // R1 = low64(R3*R3). |
967 | __ umulh(R6, R3, R3); // R6 = high64(R3*R3). |
968 | __ adds(R1, R1, Operand(R0)); // R6:R1 += *ajp. |
969 | __ adc(R6, R6, ZR); // R6 = low64(c) = high64(t). |
970 | __ mov(R7, ZR); // R7 = high64(c) = 0. |
971 | |
972 | // *ajp++ = low64(t) = R1 |
973 | __ str(R1, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
974 | |
975 | // int n = (used - i + 1)/2 - 1 |
976 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); // used is Smi |
977 | __ sub(R8, R0, Operand(R2)); |
978 | __ add(R8, R8, Operand(2)); |
979 | __ movn(R0, Immediate(1), 0); // R0 = ~1 = -2. |
980 | __ adds(R8, R0, Operand(R8, ASR, 2)); // while (--n >= 0) |
981 | |
982 | Label loop, done; |
983 | __ b(&done, MI); |
984 | |
985 | __ Bind(&loop); |
986 | // x: R3 |
987 | // xip: R4 |
988 | // ajp: R5 |
989 | // c: R7:R6 |
990 | // t: R2:R1:R0 (not live at loop entry) |
991 | // n: R8 |
992 | |
993 | // uint64_t xi = *xip++ |
994 | __ ldr(R2, Address(R4, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
995 | |
996 | // uint192_t t = R2:R1:R0 = 2*x*xi + aj + c |
997 | __ mul(R0, R2, R3); // R0 = low64(R2*R3) = low64(x*xi). |
998 | __ umulh(R1, R2, R3); // R1 = high64(R2*R3) = high64(x*xi). |
999 | __ adds(R0, R0, Operand(R0)); |
1000 | __ adcs(R1, R1, R1); |
1001 | __ adc(R2, ZR, ZR); // R2:R1:R0 = R1:R0 + R1:R0 = 2*x*xi. |
1002 | __ adds(R0, R0, Operand(R6)); |
1003 | __ adcs(R1, R1, R7); |
1004 | __ adc(R2, R2, ZR); // R2:R1:R0 += c. |
1005 | __ ldr(R7, Address(R5, 0)); // R7 = aj = *ajp. |
1006 | __ adds(R0, R0, Operand(R7)); |
1007 | __ adcs(R6, R1, ZR); |
1008 | __ adc(R7, R2, ZR); // R7:R6:R0 = 2*x*xi + aj + c. |
1009 | |
1010 | // *ajp++ = low64(t) = R0 |
1011 | __ str(R0, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
1012 | |
1013 | // while (--n >= 0) |
1014 | __ subs(R8, R8, Operand(1)); // --n |
1015 | __ b(&loop, PL); |
1016 | |
1017 | __ Bind(&done); |
1018 | // uint64_t aj = *ajp |
1019 | __ ldr(R0, Address(R5, 0)); |
1020 | |
1021 | // uint128_t t = aj + c |
1022 | __ adds(R6, R6, Operand(R0)); |
1023 | __ adc(R7, R7, ZR); |
1024 | |
1025 | // *ajp = low64(t) = R6 |
1026 | // *(ajp + 1) = high64(t) = R7 |
1027 | __ stp(R6, R7, Address(R5, 0, Address::PairOffset)); |
1028 | |
1029 | __ Bind(&x_zero); |
1030 | __ LoadImmediate(R0, target::ToRawSmi(2)); // Two digits processed. |
1031 | __ ret(); |
1032 | } |
1033 | |
1034 | void AsmIntrinsifier::Bigint_estimateQuotientDigit(Assembler* assembler, |
1035 | Label* normal_ir_body) { |
1036 | // There is no 128-bit by 64-bit division instruction on arm64, so we use two |
1037 | // 64-bit by 32-bit divisions and two 64-bit by 64-bit multiplications to |
1038 | // adjust the two 32-bit digits of the estimated quotient. |
1039 | // |
1040 | // Pseudo code: |
1041 | // static int _estQuotientDigit(Uint32List args, Uint32List digits, int i) { |
1042 | // uint64_t yt = args[_YT_LO .. _YT]; // _YT_LO == 0, _YT == 1. |
1043 | // uint64_t* dp = &digits[(i >> 1) - 1]; // i is Smi. |
1044 | // uint64_t dh = dp[0]; // dh == digits[(i >> 1) - 1 .. i >> 1]. |
1045 | // uint64_t qd; |
1046 | // if (dh == yt) { |
1047 | // qd = (DIGIT_MASK << 32) | DIGIT_MASK; |
1048 | // } else { |
1049 | // dl = dp[-1]; // dl == digits[(i >> 1) - 3 .. (i >> 1) - 2]. |
1050 | // // We cannot calculate qd = dh:dl / yt, so ... |
1051 | // uint64_t yth = yt >> 32; |
1052 | // uint64_t qh = dh / yth; |
1053 | // uint128_t ph:pl = yt*qh; |
1054 | // uint64_t tl = (dh << 32)|(dl >> 32); |
1055 | // uint64_t th = dh >> 32; |
1056 | // while ((ph > th) || ((ph == th) && (pl > tl))) { |
1057 | // if (pl < yt) --ph; |
1058 | // pl -= yt; |
1059 | // --qh; |
1060 | // } |
1061 | // qd = qh << 32; |
1062 | // tl = (pl << 32); |
1063 | // th = (ph << 32)|(pl >> 32); |
1064 | // if (tl > dl) ++th; |
1065 | // dl -= tl; |
1066 | // dh -= th; |
1067 | // uint64_t ql = ((dh << 32)|(dl >> 32)) / yth; |
1068 | // ph:pl = yt*ql; |
1069 | // while ((ph > dh) || ((ph == dh) && (pl > dl))) { |
1070 | // if (pl < yt) --ph; |
1071 | // pl -= yt; |
1072 | // --ql; |
1073 | // } |
1074 | // qd |= ql; |
1075 | // } |
1076 | // args[_QD .. _QD_HI] = qd; // _QD == 2, _QD_HI == 3. |
1077 | // return 2; |
1078 | // } |
1079 | |
1080 | // R4 = args |
1081 | __ ldr(R4, Address(SP, 2 * target::kWordSize)); // args |
1082 | |
1083 | // R3 = yt = args[0..1] |
1084 | __ ldr(R3, FieldAddress(R4, target::TypedData::data_offset())); |
1085 | |
1086 | // R2 = dh = digits[(i >> 1) - 1 .. i >> 1] |
1087 | // R0 = i as Smi, R1 = digits |
1088 | __ ldp(R0, R1, Address(SP, 0 * target::kWordSize, Address::PairOffset)); |
1089 | __ add(R1, R1, Operand(R0, LSL, 1)); |
1090 | __ ldr(R2, FieldAddress( |
1091 | R1, target::TypedData::data_offset() - kBytesPerBigIntDigit)); |
1092 | |
1093 | // R0 = qd = (DIGIT_MASK << 32) | DIGIT_MASK = -1 |
1094 | __ movn(R0, Immediate(0), 0); |
1095 | |
1096 | // Return qd if dh == yt |
1097 | Label return_qd; |
1098 | __ cmp(R2, Operand(R3)); |
1099 | __ b(&return_qd, EQ); |
1100 | |
1101 | // R1 = dl = digits[(i >> 1) - 3 .. (i >> 1) - 2] |
1102 | __ ldr(R1, FieldAddress(R1, target::TypedData::data_offset() - |
1103 | 3 * kBytesPerBigIntDigit)); |
1104 | |
1105 | // R5 = yth = yt >> 32 |
1106 | __ orr(R5, ZR, Operand(R3, LSR, 32)); |
1107 | |
1108 | // R6 = qh = dh / yth |
1109 | __ udiv(R6, R2, R5); |
1110 | |
1111 | // R8:R7 = ph:pl = yt*qh |
1112 | __ mul(R7, R3, R6); |
1113 | __ umulh(R8, R3, R6); |
1114 | |
1115 | // R9 = tl = (dh << 32)|(dl >> 32) |
1116 | __ orr(R9, ZR, Operand(R2, LSL, 32)); |
1117 | __ orr(R9, R9, Operand(R1, LSR, 32)); |
1118 | |
1119 | // R10 = th = dh >> 32 |
1120 | __ orr(R10, ZR, Operand(R2, LSR, 32)); |
1121 | |
1122 | // while ((ph > th) || ((ph == th) && (pl > tl))) |
1123 | Label qh_adj_loop, qh_adj, qh_ok; |
1124 | __ Bind(&qh_adj_loop); |
1125 | __ cmp(R8, Operand(R10)); |
1126 | __ b(&qh_adj, HI); |
1127 | __ b(&qh_ok, NE); |
1128 | __ cmp(R7, Operand(R9)); |
1129 | __ b(&qh_ok, LS); |
1130 | |
1131 | __ Bind(&qh_adj); |
1132 | // if (pl < yt) --ph |
1133 | __ sub(TMP, R8, Operand(1)); // TMP = ph - 1 |
1134 | __ cmp(R7, Operand(R3)); |
1135 | __ csel(R8, TMP, R8, CC); // R8 = R7 < R3 ? TMP : R8 |
1136 | |
1137 | // pl -= yt |
1138 | __ sub(R7, R7, Operand(R3)); |
1139 | |
1140 | // --qh |
1141 | __ sub(R6, R6, Operand(1)); |
1142 | |
1143 | // Continue while loop. |
1144 | __ b(&qh_adj_loop); |
1145 | |
1146 | __ Bind(&qh_ok); |
1147 | // R0 = qd = qh << 32 |
1148 | __ orr(R0, ZR, Operand(R6, LSL, 32)); |
1149 | |
1150 | // tl = (pl << 32) |
1151 | __ orr(R9, ZR, Operand(R7, LSL, 32)); |
1152 | |
1153 | // th = (ph << 32)|(pl >> 32); |
1154 | __ orr(R10, ZR, Operand(R8, LSL, 32)); |
1155 | __ orr(R10, R10, Operand(R7, LSR, 32)); |
1156 | |
1157 | // if (tl > dl) ++th |
1158 | __ add(TMP, R10, Operand(1)); // TMP = th + 1 |
1159 | __ cmp(R9, Operand(R1)); |
1160 | __ csel(R10, TMP, R10, HI); // R10 = R9 > R1 ? TMP : R10 |
1161 | |
1162 | // dl -= tl |
1163 | __ sub(R1, R1, Operand(R9)); |
1164 | |
1165 | // dh -= th |
1166 | __ sub(R2, R2, Operand(R10)); |
1167 | |
1168 | // R6 = ql = ((dh << 32)|(dl >> 32)) / yth |
1169 | __ orr(R6, ZR, Operand(R2, LSL, 32)); |
1170 | __ orr(R6, R6, Operand(R1, LSR, 32)); |
1171 | __ udiv(R6, R6, R5); |
1172 | |
1173 | // R8:R7 = ph:pl = yt*ql |
1174 | __ mul(R7, R3, R6); |
1175 | __ umulh(R8, R3, R6); |
1176 | |
1177 | // while ((ph > dh) || ((ph == dh) && (pl > dl))) { |
1178 | Label ql_adj_loop, ql_adj, ql_ok; |
1179 | __ Bind(&ql_adj_loop); |
1180 | __ cmp(R8, Operand(R2)); |
1181 | __ b(&ql_adj, HI); |
1182 | __ b(&ql_ok, NE); |
1183 | __ cmp(R7, Operand(R1)); |
1184 | __ b(&ql_ok, LS); |
1185 | |
1186 | __ Bind(&ql_adj); |
1187 | // if (pl < yt) --ph |
1188 | __ sub(TMP, R8, Operand(1)); // TMP = ph - 1 |
1189 | __ cmp(R7, Operand(R3)); |
1190 | __ csel(R8, TMP, R8, CC); // R8 = R7 < R3 ? TMP : R8 |
1191 | |
1192 | // pl -= yt |
1193 | __ sub(R7, R7, Operand(R3)); |
1194 | |
1195 | // --ql |
1196 | __ sub(R6, R6, Operand(1)); |
1197 | |
1198 | // Continue while loop. |
1199 | __ b(&ql_adj_loop); |
1200 | |
1201 | __ Bind(&ql_ok); |
1202 | // qd |= ql; |
1203 | __ orr(R0, R0, Operand(R6)); |
1204 | |
1205 | __ Bind(&return_qd); |
1206 | // args[2..3] = qd |
1207 | __ str(R0, FieldAddress(R4, target::TypedData::data_offset() + |
1208 | 2 * kBytesPerBigIntDigit)); |
1209 | |
1210 | __ LoadImmediate(R0, target::ToRawSmi(2)); // Two digits processed. |
1211 | __ ret(); |
1212 | } |
1213 | |
1214 | void AsmIntrinsifier::Montgomery_mulMod(Assembler* assembler, |
1215 | Label* normal_ir_body) { |
1216 | // Pseudo code: |
1217 | // static int _mulMod(Uint32List args, Uint32List digits, int i) { |
1218 | // uint64_t rho = args[_RHO .. _RHO_HI]; // _RHO == 2, _RHO_HI == 3. |
1219 | // uint64_t d = digits[i >> 1 .. (i >> 1) + 1]; // i is Smi and even. |
1220 | // uint128_t t = rho*d; |
1221 | // args[_MU .. _MU_HI] = t mod DIGIT_BASE^2; // _MU == 4, _MU_HI == 5. |
1222 | // return 2; |
1223 | // } |
1224 | |
1225 | // R4 = args |
1226 | __ ldr(R4, Address(SP, 2 * target::kWordSize)); // args |
1227 | |
1228 | // R3 = rho = args[2..3] |
1229 | __ ldr(R3, FieldAddress(R4, target::TypedData::data_offset() + |
1230 | 2 * kBytesPerBigIntDigit)); |
1231 | |
1232 | // R2 = digits[i >> 1 .. (i >> 1) + 1] |
1233 | // R0 = i as Smi, R1 = digits |
1234 | __ ldp(R0, R1, Address(SP, 0 * target::kWordSize, Address::PairOffset)); |
1235 | __ add(R1, R1, Operand(R0, LSL, 1)); |
1236 | __ ldr(R2, FieldAddress(R1, target::TypedData::data_offset())); |
1237 | |
1238 | // R0 = rho*d mod DIGIT_BASE |
1239 | __ mul(R0, R2, R3); // R0 = low64(R2*R3). |
1240 | |
1241 | // args[4 .. 5] = R0 |
1242 | __ str(R0, FieldAddress(R4, target::TypedData::data_offset() + |
1243 | 4 * kBytesPerBigIntDigit)); |
1244 | |
1245 | __ LoadImmediate(R0, target::ToRawSmi(2)); // Two digits processed. |
1246 | __ ret(); |
1247 | } |
1248 | |
1249 | // Check if the last argument is a double, jump to label 'is_smi' if smi |
1250 | // (easy to convert to double), otherwise jump to label 'not_double_smi', |
1251 | // Returns the last argument in R0. |
1252 | static void TestLastArgumentIsDouble(Assembler* assembler, |
1253 | Label* is_smi, |
1254 | Label* not_double_smi) { |
1255 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1256 | __ BranchIfSmi(R0, is_smi); |
1257 | __ CompareClassId(R0, kDoubleCid); |
1258 | __ b(not_double_smi, NE); |
1259 | // Fall through with Double in R0. |
1260 | } |
1261 | |
1262 | // Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown |
1263 | // type. Return true or false object in the register R0. Any NaN argument |
1264 | // returns false. Any non-double arg1 causes control flow to fall through to the |
1265 | // slow case (compiled method body). |
1266 | static void CompareDoubles(Assembler* assembler, |
1267 | Label* normal_ir_body, |
1268 | Condition true_condition) { |
1269 | Label is_smi, double_op, not_nan; |
1270 | |
1271 | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
1272 | // Both arguments are double, right operand is in R0. |
1273 | |
1274 | __ LoadDFieldFromOffset(V1, R0, target::Double::value_offset()); |
1275 | __ Bind(&double_op); |
1276 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // Left argument. |
1277 | __ LoadDFieldFromOffset(V0, R0, target::Double::value_offset()); |
1278 | |
1279 | __ fcmpd(V0, V1); |
1280 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
1281 | // Return false if D0 or D1 was NaN before checking true condition. |
1282 | __ b(¬_nan, VC); |
1283 | __ ret(); |
1284 | __ Bind(¬_nan); |
1285 | __ LoadObject(TMP, CastHandle<Object>(TrueObject())); |
1286 | __ csel(R0, TMP, R0, true_condition); |
1287 | __ ret(); |
1288 | |
1289 | __ Bind(&is_smi); // Convert R0 to a double. |
1290 | __ SmiUntag(R0); |
1291 | __ scvtfdx(V1, R0); |
1292 | __ b(&double_op); // Then do the comparison. |
1293 | __ Bind(normal_ir_body); |
1294 | } |
1295 | |
1296 | void AsmIntrinsifier::Double_greaterThan(Assembler* assembler, |
1297 | Label* normal_ir_body) { |
1298 | CompareDoubles(assembler, normal_ir_body, HI); |
1299 | } |
1300 | |
1301 | void AsmIntrinsifier::Double_greaterEqualThan(Assembler* assembler, |
1302 | Label* normal_ir_body) { |
1303 | CompareDoubles(assembler, normal_ir_body, CS); |
1304 | } |
1305 | |
1306 | void AsmIntrinsifier::Double_lessThan(Assembler* assembler, |
1307 | Label* normal_ir_body) { |
1308 | CompareDoubles(assembler, normal_ir_body, CC); |
1309 | } |
1310 | |
1311 | void AsmIntrinsifier::Double_equal(Assembler* assembler, |
1312 | Label* normal_ir_body) { |
1313 | CompareDoubles(assembler, normal_ir_body, EQ); |
1314 | } |
1315 | |
1316 | void AsmIntrinsifier::Double_lessEqualThan(Assembler* assembler, |
1317 | Label* normal_ir_body) { |
1318 | CompareDoubles(assembler, normal_ir_body, LS); |
1319 | } |
1320 | |
1321 | // Expects left argument to be double (receiver). Right argument is unknown. |
1322 | // Both arguments are on stack. |
1323 | static void DoubleArithmeticOperations(Assembler* assembler, |
1324 | Label* normal_ir_body, |
1325 | Token::Kind kind) { |
1326 | Label is_smi, double_op; |
1327 | |
1328 | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
1329 | // Both arguments are double, right operand is in R0. |
1330 | __ LoadDFieldFromOffset(V1, R0, target::Double::value_offset()); |
1331 | __ Bind(&double_op); |
1332 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // Left argument. |
1333 | __ LoadDFieldFromOffset(V0, R0, target::Double::value_offset()); |
1334 | switch (kind) { |
1335 | case Token::kADD: |
1336 | __ faddd(V0, V0, V1); |
1337 | break; |
1338 | case Token::kSUB: |
1339 | __ fsubd(V0, V0, V1); |
1340 | break; |
1341 | case Token::kMUL: |
1342 | __ fmuld(V0, V0, V1); |
1343 | break; |
1344 | case Token::kDIV: |
1345 | __ fdivd(V0, V0, V1); |
1346 | break; |
1347 | default: |
1348 | UNREACHABLE(); |
1349 | } |
1350 | const Class& double_class = DoubleClass(); |
1351 | __ TryAllocate(double_class, normal_ir_body, R0, R1); |
1352 | __ StoreDFieldToOffset(V0, R0, target::Double::value_offset()); |
1353 | __ ret(); |
1354 | |
1355 | __ Bind(&is_smi); // Convert R0 to a double. |
1356 | __ SmiUntag(R0); |
1357 | __ scvtfdx(V1, R0); |
1358 | __ b(&double_op); |
1359 | |
1360 | __ Bind(normal_ir_body); |
1361 | } |
1362 | |
1363 | void AsmIntrinsifier::Double_add(Assembler* assembler, Label* normal_ir_body) { |
1364 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kADD); |
1365 | } |
1366 | |
1367 | void AsmIntrinsifier::Double_mul(Assembler* assembler, Label* normal_ir_body) { |
1368 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kMUL); |
1369 | } |
1370 | |
1371 | void AsmIntrinsifier::Double_sub(Assembler* assembler, Label* normal_ir_body) { |
1372 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kSUB); |
1373 | } |
1374 | |
1375 | void AsmIntrinsifier::Double_div(Assembler* assembler, Label* normal_ir_body) { |
1376 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kDIV); |
1377 | } |
1378 | |
1379 | // Left is double, right is integer (Mint or Smi) |
1380 | void AsmIntrinsifier::Double_mulFromInteger(Assembler* assembler, |
1381 | Label* normal_ir_body) { |
1382 | // Only smis allowed. |
1383 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1384 | __ BranchIfNotSmi(R0, normal_ir_body); |
1385 | // Is Smi. |
1386 | __ SmiUntag(R0); |
1387 | __ scvtfdx(V1, R0); |
1388 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); |
1389 | __ LoadDFieldFromOffset(V0, R0, target::Double::value_offset()); |
1390 | __ fmuld(V0, V0, V1); |
1391 | const Class& double_class = DoubleClass(); |
1392 | __ TryAllocate(double_class, normal_ir_body, R0, R1); |
1393 | __ StoreDFieldToOffset(V0, R0, target::Double::value_offset()); |
1394 | __ ret(); |
1395 | __ Bind(normal_ir_body); |
1396 | } |
1397 | |
1398 | void AsmIntrinsifier::DoubleFromInteger(Assembler* assembler, |
1399 | Label* normal_ir_body) { |
1400 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1401 | __ BranchIfNotSmi(R0, normal_ir_body); |
1402 | // Is Smi. |
1403 | __ SmiUntag(R0); |
1404 | __ scvtfdx(V0, R0); |
1405 | const Class& double_class = DoubleClass(); |
1406 | __ TryAllocate(double_class, normal_ir_body, R0, R1); |
1407 | __ StoreDFieldToOffset(V0, R0, target::Double::value_offset()); |
1408 | __ ret(); |
1409 | __ Bind(normal_ir_body); |
1410 | } |
1411 | |
1412 | void AsmIntrinsifier::Double_getIsNaN(Assembler* assembler, |
1413 | Label* normal_ir_body) { |
1414 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1415 | __ LoadDFieldFromOffset(V0, R0, target::Double::value_offset()); |
1416 | __ fcmpd(V0, V0); |
1417 | __ LoadObject(TMP, CastHandle<Object>(FalseObject())); |
1418 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
1419 | __ csel(R0, TMP, R0, VC); |
1420 | __ ret(); |
1421 | } |
1422 | |
1423 | void AsmIntrinsifier::Double_getIsInfinite(Assembler* assembler, |
1424 | Label* normal_ir_body) { |
1425 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1426 | __ LoadFieldFromOffset(R0, R0, target::Double::value_offset()); |
1427 | // Mask off the sign. |
1428 | __ AndImmediate(R0, R0, 0x7FFFFFFFFFFFFFFFLL); |
1429 | // Compare with +infinity. |
1430 | __ CompareImmediate(R0, 0x7FF0000000000000LL); |
1431 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
1432 | __ LoadObject(TMP, CastHandle<Object>(TrueObject())); |
1433 | __ csel(R0, TMP, R0, EQ); |
1434 | __ ret(); |
1435 | } |
1436 | |
1437 | void AsmIntrinsifier::Double_getIsNegative(Assembler* assembler, |
1438 | Label* normal_ir_body) { |
1439 | const Register false_reg = R0; |
1440 | const Register true_reg = R2; |
1441 | Label is_false, is_true, is_zero; |
1442 | |
1443 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1444 | __ LoadDFieldFromOffset(V0, R0, target::Double::value_offset()); |
1445 | __ fcmpdz(V0); |
1446 | __ LoadObject(true_reg, CastHandle<Object>(TrueObject())); |
1447 | __ LoadObject(false_reg, CastHandle<Object>(FalseObject())); |
1448 | __ b(&is_false, VS); // NaN -> false. |
1449 | __ b(&is_zero, EQ); // Check for negative zero. |
1450 | __ b(&is_false, CS); // >= 0 -> false. |
1451 | |
1452 | __ Bind(&is_true); |
1453 | __ mov(R0, true_reg); |
1454 | |
1455 | __ Bind(&is_false); |
1456 | __ ret(); |
1457 | |
1458 | __ Bind(&is_zero); |
1459 | // Check for negative zero by looking at the sign bit. |
1460 | __ fmovrd(R1, V0); |
1461 | __ LsrImmediate(R1, R1, 63); |
1462 | __ tsti(R1, Immediate(1)); |
1463 | __ csel(R0, true_reg, false_reg, NE); // Sign bit set. |
1464 | __ ret(); |
1465 | } |
1466 | |
1467 | void AsmIntrinsifier::DoubleToInteger(Assembler* assembler, |
1468 | Label* normal_ir_body) { |
1469 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1470 | __ LoadDFieldFromOffset(V0, R0, target::Double::value_offset()); |
1471 | |
1472 | // Explicit NaN check, since ARM gives an FPU exception if you try to |
1473 | // convert NaN to an int. |
1474 | __ fcmpd(V0, V0); |
1475 | __ b(normal_ir_body, VS); |
1476 | |
1477 | __ fcvtzds(R0, V0); |
1478 | // Overflow is signaled with minint. |
1479 | // Check for overflow and that it fits into Smi. |
1480 | __ CompareImmediate(R0, 0xC000000000000000); |
1481 | __ b(normal_ir_body, MI); |
1482 | __ SmiTag(R0); |
1483 | __ ret(); |
1484 | __ Bind(normal_ir_body); |
1485 | } |
1486 | |
1487 | void AsmIntrinsifier::Double_hashCode(Assembler* assembler, |
1488 | Label* normal_ir_body) { |
1489 | // TODO(dartbug.com/31174): Convert this to a graph intrinsic. |
1490 | |
1491 | // Load double value and check that it isn't NaN, since ARM gives an |
1492 | // FPU exception if you try to convert NaN to an int. |
1493 | Label double_hash; |
1494 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); |
1495 | __ LoadDFieldFromOffset(V0, R1, target::Double::value_offset()); |
1496 | __ fcmpd(V0, V0); |
1497 | __ b(&double_hash, VS); |
1498 | |
1499 | // Convert double value to signed 64-bit int in R0 and back to a |
1500 | // double value in V1. |
1501 | __ fcvtzds(R0, V0); |
1502 | __ scvtfdx(V1, R0); |
1503 | |
1504 | // Tag the int as a Smi, making sure that it fits; this checks for |
1505 | // overflow in the conversion from double to int. Conversion |
1506 | // overflow is signalled by fcvt through clamping R0 to either |
1507 | // INT64_MAX or INT64_MIN (saturation). |
1508 | ASSERT(kSmiTag == 0 && kSmiTagShift == 1); |
1509 | __ adds(R0, R0, Operand(R0)); |
1510 | __ b(normal_ir_body, VS); |
1511 | |
1512 | // Compare the two double values. If they are equal, we return the |
1513 | // Smi tagged result immediately as the hash code. |
1514 | __ fcmpd(V0, V1); |
1515 | __ b(&double_hash, NE); |
1516 | __ ret(); |
1517 | |
1518 | // Convert the double bits to a hash code that fits in a Smi. |
1519 | __ Bind(&double_hash); |
1520 | __ fmovrd(R0, V0); |
1521 | __ eor(R0, R0, Operand(R0, LSR, 32)); |
1522 | __ AndImmediate(R0, R0, target::kSmiMax); |
1523 | __ SmiTag(R0); |
1524 | __ ret(); |
1525 | |
1526 | // Fall into the native C++ implementation. |
1527 | __ Bind(normal_ir_body); |
1528 | } |
1529 | |
1530 | void AsmIntrinsifier::MathSqrt(Assembler* assembler, Label* normal_ir_body) { |
1531 | Label is_smi, double_op; |
1532 | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
1533 | // Argument is double and is in R0. |
1534 | __ LoadDFieldFromOffset(V1, R0, target::Double::value_offset()); |
1535 | __ Bind(&double_op); |
1536 | __ fsqrtd(V0, V1); |
1537 | const Class& double_class = DoubleClass(); |
1538 | __ TryAllocate(double_class, normal_ir_body, R0, R1); |
1539 | __ StoreDFieldToOffset(V0, R0, target::Double::value_offset()); |
1540 | __ ret(); |
1541 | __ Bind(&is_smi); |
1542 | __ SmiUntag(R0); |
1543 | __ scvtfdx(V1, R0); |
1544 | __ b(&double_op); |
1545 | __ Bind(normal_ir_body); |
1546 | } |
1547 | |
1548 | // var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64; |
1549 | // _state[kSTATE_LO] = state & _MASK_32; |
1550 | // _state[kSTATE_HI] = state >> 32; |
1551 | void AsmIntrinsifier::Random_nextState(Assembler* assembler, |
1552 | Label* normal_ir_body) { |
1553 | const Field& state_field = LookupMathRandomStateFieldOffset(); |
1554 | const int64_t a_int_value = AsmIntrinsifier::kRandomAValue; |
1555 | |
1556 | // Receiver. |
1557 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1558 | // Field '_state'. |
1559 | __ ldr(R1, FieldAddress(R0, LookupFieldOffsetInBytes(state_field))); |
1560 | |
1561 | // Addresses of _state[0]. |
1562 | const int64_t disp = |
1563 | target::Instance::DataOffsetFor(kTypedDataUint32ArrayCid) - |
1564 | kHeapObjectTag; |
1565 | |
1566 | __ LoadImmediate(R0, a_int_value); |
1567 | __ LoadFromOffset(R2, R1, disp); |
1568 | __ LsrImmediate(R3, R2, 32); |
1569 | __ andi(R2, R2, Immediate(0xffffffff)); |
1570 | __ mul(R2, R0, R2); |
1571 | __ add(R2, R2, Operand(R3)); |
1572 | __ StoreToOffset(R2, R1, disp); |
1573 | ASSERT(target::ToRawSmi(0) == 0); |
1574 | __ eor(R0, R0, Operand(R0)); |
1575 | __ ret(); |
1576 | } |
1577 | |
1578 | void AsmIntrinsifier::ObjectEquals(Assembler* assembler, |
1579 | Label* normal_ir_body) { |
1580 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1581 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); |
1582 | __ cmp(R0, Operand(R1)); |
1583 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
1584 | __ LoadObject(TMP, CastHandle<Object>(TrueObject())); |
1585 | __ csel(R0, TMP, R0, EQ); |
1586 | __ ret(); |
1587 | } |
1588 | |
1589 | static void RangeCheck(Assembler* assembler, |
1590 | Register val, |
1591 | Register tmp, |
1592 | intptr_t low, |
1593 | intptr_t high, |
1594 | Condition cc, |
1595 | Label* target) { |
1596 | __ AddImmediate(tmp, val, -low); |
1597 | __ CompareImmediate(tmp, high - low); |
1598 | __ b(target, cc); |
1599 | } |
1600 | |
1601 | const Condition kIfNotInRange = HI; |
1602 | const Condition kIfInRange = LS; |
1603 | |
1604 | static void JumpIfInteger(Assembler* assembler, |
1605 | Register cid, |
1606 | Register tmp, |
1607 | Label* target) { |
1608 | RangeCheck(assembler, cid, tmp, kSmiCid, kMintCid, kIfInRange, target); |
1609 | } |
1610 | |
1611 | static void JumpIfNotInteger(Assembler* assembler, |
1612 | Register cid, |
1613 | Register tmp, |
1614 | Label* target) { |
1615 | RangeCheck(assembler, cid, tmp, kSmiCid, kMintCid, kIfNotInRange, target); |
1616 | } |
1617 | |
1618 | static void JumpIfString(Assembler* assembler, |
1619 | Register cid, |
1620 | Register tmp, |
1621 | Label* target) { |
1622 | RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid, |
1623 | kIfInRange, target); |
1624 | } |
1625 | |
1626 | static void JumpIfNotString(Assembler* assembler, |
1627 | Register cid, |
1628 | Register tmp, |
1629 | Label* target) { |
1630 | RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid, |
1631 | kIfNotInRange, target); |
1632 | } |
1633 | |
1634 | // Return type quickly for simple types (not parameterized and not signature). |
1635 | void AsmIntrinsifier::ObjectRuntimeType(Assembler* assembler, |
1636 | Label* normal_ir_body) { |
1637 | Label use_declaration_type, not_double, not_integer; |
1638 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1639 | __ LoadClassIdMayBeSmi(R1, R0); |
1640 | |
1641 | __ CompareImmediate(R1, kClosureCid); |
1642 | __ b(normal_ir_body, EQ); // Instance is a closure. |
1643 | |
1644 | __ CompareImmediate(R1, kNumPredefinedCids); |
1645 | __ b(&use_declaration_type, HI); |
1646 | |
1647 | __ CompareImmediate(R1, kDoubleCid); |
1648 | __ b(¬_double, NE); |
1649 | |
1650 | __ LoadIsolate(R0); |
1651 | __ LoadFromOffset(R0, R0, target::Isolate::cached_object_store_offset()); |
1652 | __ LoadFromOffset(R0, R0, target::ObjectStore::double_type_offset()); |
1653 | __ ret(); |
1654 | |
1655 | __ Bind(¬_double); |
1656 | JumpIfNotInteger(assembler, R1, R0, ¬_integer); |
1657 | __ LoadIsolate(R0); |
1658 | __ LoadFromOffset(R0, R0, target::Isolate::cached_object_store_offset()); |
1659 | __ LoadFromOffset(R0, R0, target::ObjectStore::int_type_offset()); |
1660 | __ ret(); |
1661 | |
1662 | __ Bind(¬_integer); |
1663 | JumpIfNotString(assembler, R1, R0, &use_declaration_type); |
1664 | __ LoadIsolate(R0); |
1665 | __ LoadFromOffset(R0, R0, target::Isolate::cached_object_store_offset()); |
1666 | __ LoadFromOffset(R0, R0, target::ObjectStore::string_type_offset()); |
1667 | __ ret(); |
1668 | |
1669 | __ Bind(&use_declaration_type); |
1670 | __ LoadClassById(R2, R1); |
1671 | __ ldr(R3, FieldAddress(R2, target::Class::num_type_arguments_offset()), |
1672 | kHalfword); |
1673 | __ CompareImmediate(R3, 0); |
1674 | __ b(normal_ir_body, NE); |
1675 | |
1676 | __ ldr(R0, FieldAddress(R2, target::Class::declaration_type_offset())); |
1677 | __ CompareObject(R0, NullObject()); |
1678 | __ b(normal_ir_body, EQ); |
1679 | __ ret(); |
1680 | |
1681 | __ Bind(normal_ir_body); |
1682 | } |
1683 | |
1684 | // Compares cid1 and cid2 to see if they're syntactically equivalent. If this |
1685 | // can be determined by this fast path, it jumps to either equal or not_equal, |
1686 | // otherwise it jumps to normal_ir_body. May clobber cid1, cid2, and scratch. |
1687 | static void EquivalentClassIds(Assembler* assembler, |
1688 | Label* normal_ir_body, |
1689 | Label* equal, |
1690 | Label* not_equal, |
1691 | Register cid1, |
1692 | Register cid2, |
1693 | Register scratch) { |
1694 | Label different_cids, not_integer; |
1695 | |
1696 | // Check if left hand side is a closure. Closures are handled in the runtime. |
1697 | __ CompareImmediate(cid1, kClosureCid); |
1698 | __ b(normal_ir_body, EQ); |
1699 | |
1700 | // Check whether class ids match. If class ids don't match types may still be |
1701 | // considered equivalent (e.g. multiple string implementation classes map to a |
1702 | // single String type). |
1703 | __ cmp(cid1, Operand(cid2)); |
1704 | __ b(&different_cids, NE); |
1705 | |
1706 | // Types have the same class and neither is a closure type. |
1707 | // Check if there are no type arguments. In this case we can return true. |
1708 | // Otherwise fall through into the runtime to handle comparison. |
1709 | __ LoadClassById(scratch, cid1); |
1710 | __ ldr(scratch, |
1711 | FieldAddress(scratch, target::Class::num_type_arguments_offset()), |
1712 | kHalfword); |
1713 | __ cbnz(normal_ir_body, scratch); |
1714 | __ b(equal); |
1715 | |
1716 | // Class ids are different. Check if we are comparing two string types (with |
1717 | // different representations) or two integer types. |
1718 | __ Bind(&different_cids); |
1719 | __ CompareImmediate(cid1, kNumPredefinedCids); |
1720 | __ b(not_equal, HI); |
1721 | |
1722 | // Check if both are integer types. |
1723 | JumpIfNotInteger(assembler, cid1, scratch, ¬_integer); |
1724 | |
1725 | // First type is an integer. Check if the second is an integer too. |
1726 | // Otherwise types are unequiv because only integers have the same runtime |
1727 | // type as other integers. |
1728 | JumpIfInteger(assembler, cid2, scratch, equal); |
1729 | __ b(not_equal); |
1730 | |
1731 | __ Bind(¬_integer); |
1732 | // Check if the first type is String. If it is not then types are not |
1733 | // equivalent because they have different class ids and they are not strings |
1734 | // or integers. |
1735 | JumpIfNotString(assembler, cid1, scratch, not_equal); |
1736 | // First type is String. Check if the second is a string too. |
1737 | JumpIfString(assembler, cid2, scratch, equal); |
1738 | // String types are only equivalent to other String types. |
1739 | // Fall-through to the not equal case. |
1740 | __ b(not_equal); |
1741 | } |
1742 | |
1743 | void AsmIntrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler, |
1744 | Label* normal_ir_body) { |
1745 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1746 | __ LoadClassIdMayBeSmi(R1, R0); |
1747 | |
1748 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); |
1749 | __ LoadClassIdMayBeSmi(R2, R0); |
1750 | |
1751 | Label equal, not_equal; |
1752 | EquivalentClassIds(assembler, normal_ir_body, &equal, ¬_equal, R1, R2, R0); |
1753 | |
1754 | __ Bind(&equal); |
1755 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
1756 | __ Ret(); |
1757 | |
1758 | __ Bind(¬_equal); |
1759 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
1760 | __ ret(); |
1761 | |
1762 | __ Bind(normal_ir_body); |
1763 | } |
1764 | |
1765 | void AsmIntrinsifier::String_getHashCode(Assembler* assembler, |
1766 | Label* normal_ir_body) { |
1767 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1768 | __ ldr(R0, FieldAddress(R0, target::String::hash_offset()), kUnsignedWord); |
1769 | __ adds(R0, R0, Operand(R0)); // Smi tag the hash code, setting Z flag. |
1770 | __ b(normal_ir_body, EQ); |
1771 | __ ret(); |
1772 | // Hash not yet computed. |
1773 | __ Bind(normal_ir_body); |
1774 | } |
1775 | |
1776 | void AsmIntrinsifier::Type_getHashCode(Assembler* assembler, |
1777 | Label* normal_ir_body) { |
1778 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1779 | __ ldr(R0, FieldAddress(R0, target::Type::hash_offset())); |
1780 | __ cbz(normal_ir_body, R0); |
1781 | __ ret(); |
1782 | // Hash not yet computed. |
1783 | __ Bind(normal_ir_body); |
1784 | } |
1785 | |
1786 | void AsmIntrinsifier::Type_equality(Assembler* assembler, |
1787 | Label* normal_ir_body) { |
1788 | Label equal, not_equal, equiv_cids, check_legacy; |
1789 | |
1790 | __ ldp(R1, R2, Address(SP, 0 * target::kWordSize, Address::PairOffset)); |
1791 | __ cmp(R1, Operand(R2)); |
1792 | __ b(&equal, EQ); |
1793 | |
1794 | // R1 might not be a Type object, so check that first (R2 should be though, |
1795 | // since this is a method on the Type class). |
1796 | __ LoadClassIdMayBeSmi(R0, R1); |
1797 | __ CompareImmediate(R0, kTypeCid); |
1798 | __ b(normal_ir_body, NE); |
1799 | |
1800 | // Check if types are syntactically equal. |
1801 | __ ldr(R3, FieldAddress(R1, target::Type::type_class_id_offset())); |
1802 | __ SmiUntag(R3); |
1803 | __ ldr(R4, FieldAddress(R2, target::Type::type_class_id_offset())); |
1804 | __ SmiUntag(R4); |
1805 | EquivalentClassIds(assembler, normal_ir_body, &equiv_cids, ¬_equal, R3, R4, |
1806 | R0); |
1807 | |
1808 | // Check nullability. |
1809 | __ Bind(&equiv_cids); |
1810 | __ ldr(R1, FieldAddress(R1, target::Type::nullability_offset()), |
1811 | kUnsignedByte); |
1812 | __ ldr(R2, FieldAddress(R2, target::Type::nullability_offset()), |
1813 | kUnsignedByte); |
1814 | __ cmp(R1, Operand(R2)); |
1815 | __ b(&check_legacy, NE); |
1816 | // Fall through to equal case if nullability is strictly equal. |
1817 | |
1818 | __ Bind(&equal); |
1819 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
1820 | __ Ret(); |
1821 | |
1822 | // At this point the nullabilities are different, so they can only be |
1823 | // syntactically equivalent if they're both either kNonNullable or kLegacy. |
1824 | // These are the two largest values of the enum, so we can just do a < check. |
1825 | ASSERT(target::Nullability::kNullable < target::Nullability::kNonNullable && |
1826 | target::Nullability::kNonNullable < target::Nullability::kLegacy); |
1827 | __ Bind(&check_legacy); |
1828 | __ CompareImmediate(R1, target::Nullability::kNonNullable); |
1829 | __ b(¬_equal, LT); |
1830 | __ CompareImmediate(R2, target::Nullability::kNonNullable); |
1831 | __ b(&equal, GE); |
1832 | |
1833 | __ Bind(¬_equal); |
1834 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
1835 | __ ret(); |
1836 | |
1837 | __ Bind(normal_ir_body); |
1838 | } |
1839 | |
1840 | void AsmIntrinsifier::Object_getHash(Assembler* assembler, |
1841 | Label* normal_ir_body) { |
1842 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
1843 | __ ldr(R0, FieldAddress(R0, target::String::hash_offset()), kUnsignedWord); |
1844 | __ SmiTag(R0); |
1845 | __ ret(); |
1846 | } |
1847 | |
1848 | void AsmIntrinsifier::Object_setHash(Assembler* assembler, |
1849 | Label* normal_ir_body) { |
1850 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // Object. |
1851 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); // Value. |
1852 | __ SmiUntag(R1); |
1853 | __ str(R1, FieldAddress(R0, target::String::hash_offset()), kUnsignedWord); |
1854 | __ ret(); |
1855 | } |
1856 | |
1857 | void GenerateSubstringMatchesSpecialization(Assembler* assembler, |
1858 | intptr_t receiver_cid, |
1859 | intptr_t other_cid, |
1860 | Label* return_true, |
1861 | Label* return_false) { |
1862 | __ SmiUntag(R1); |
1863 | __ ldr(R8, FieldAddress(R0, target::String::length_offset())); // this.length |
1864 | __ SmiUntag(R8); |
1865 | __ ldr(R9, |
1866 | FieldAddress(R2, target::String::length_offset())); // other.length |
1867 | __ SmiUntag(R9); |
1868 | |
1869 | // if (other.length == 0) return true; |
1870 | __ cmp(R9, Operand(0)); |
1871 | __ b(return_true, EQ); |
1872 | |
1873 | // if (start < 0) return false; |
1874 | __ cmp(R1, Operand(0)); |
1875 | __ b(return_false, LT); |
1876 | |
1877 | // if (start + other.length > this.length) return false; |
1878 | __ add(R3, R1, Operand(R9)); |
1879 | __ cmp(R3, Operand(R8)); |
1880 | __ b(return_false, GT); |
1881 | |
1882 | if (receiver_cid == kOneByteStringCid) { |
1883 | __ AddImmediate(R0, target::OneByteString::data_offset() - kHeapObjectTag); |
1884 | __ add(R0, R0, Operand(R1)); |
1885 | } else { |
1886 | ASSERT(receiver_cid == kTwoByteStringCid); |
1887 | __ AddImmediate(R0, target::TwoByteString::data_offset() - kHeapObjectTag); |
1888 | __ add(R0, R0, Operand(R1)); |
1889 | __ add(R0, R0, Operand(R1)); |
1890 | } |
1891 | if (other_cid == kOneByteStringCid) { |
1892 | __ AddImmediate(R2, target::OneByteString::data_offset() - kHeapObjectTag); |
1893 | } else { |
1894 | ASSERT(other_cid == kTwoByteStringCid); |
1895 | __ AddImmediate(R2, target::TwoByteString::data_offset() - kHeapObjectTag); |
1896 | } |
1897 | |
1898 | // i = 0 |
1899 | __ LoadImmediate(R3, 0); |
1900 | |
1901 | // do |
1902 | Label loop; |
1903 | __ Bind(&loop); |
1904 | |
1905 | // this.codeUnitAt(i + start) |
1906 | __ ldr(R10, Address(R0, 0), |
1907 | receiver_cid == kOneByteStringCid ? kUnsignedByte : kUnsignedHalfword); |
1908 | // other.codeUnitAt(i) |
1909 | __ ldr(R11, Address(R2, 0), |
1910 | other_cid == kOneByteStringCid ? kUnsignedByte : kUnsignedHalfword); |
1911 | __ cmp(R10, Operand(R11)); |
1912 | __ b(return_false, NE); |
1913 | |
1914 | // i++, while (i < len) |
1915 | __ add(R3, R3, Operand(1)); |
1916 | __ add(R0, R0, Operand(receiver_cid == kOneByteStringCid ? 1 : 2)); |
1917 | __ add(R2, R2, Operand(other_cid == kOneByteStringCid ? 1 : 2)); |
1918 | __ cmp(R3, Operand(R9)); |
1919 | __ b(&loop, LT); |
1920 | |
1921 | __ b(return_true); |
1922 | } |
1923 | |
1924 | // bool _substringMatches(int start, String other) |
1925 | // This intrinsic handles a OneByteString or TwoByteString receiver with a |
1926 | // OneByteString other. |
1927 | void AsmIntrinsifier::StringBaseSubstringMatches(Assembler* assembler, |
1928 | Label* normal_ir_body) { |
1929 | Label return_true, return_false, try_two_byte; |
1930 | __ ldr(R0, Address(SP, 2 * target::kWordSize)); // this |
1931 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); // start |
1932 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // other |
1933 | |
1934 | __ BranchIfNotSmi(R1, normal_ir_body); |
1935 | |
1936 | __ CompareClassId(R2, kOneByteStringCid); |
1937 | __ b(normal_ir_body, NE); |
1938 | |
1939 | __ CompareClassId(R0, kOneByteStringCid); |
1940 | __ b(normal_ir_body, NE); |
1941 | |
1942 | GenerateSubstringMatchesSpecialization(assembler, kOneByteStringCid, |
1943 | kOneByteStringCid, &return_true, |
1944 | &return_false); |
1945 | |
1946 | __ Bind(&try_two_byte); |
1947 | __ CompareClassId(R0, kTwoByteStringCid); |
1948 | __ b(normal_ir_body, NE); |
1949 | |
1950 | GenerateSubstringMatchesSpecialization(assembler, kTwoByteStringCid, |
1951 | kOneByteStringCid, &return_true, |
1952 | &return_false); |
1953 | |
1954 | __ Bind(&return_true); |
1955 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
1956 | __ ret(); |
1957 | |
1958 | __ Bind(&return_false); |
1959 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
1960 | __ ret(); |
1961 | |
1962 | __ Bind(normal_ir_body); |
1963 | } |
1964 | |
1965 | void AsmIntrinsifier::StringBaseCharAt(Assembler* assembler, |
1966 | Label* normal_ir_body) { |
1967 | Label try_two_byte_string; |
1968 | |
1969 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); // Index. |
1970 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // String. |
1971 | __ BranchIfNotSmi(R1, normal_ir_body); // Index is not a Smi. |
1972 | // Range check. |
1973 | __ ldr(R2, FieldAddress(R0, target::String::length_offset())); |
1974 | __ cmp(R1, Operand(R2)); |
1975 | __ b(normal_ir_body, CS); // Runtime throws exception. |
1976 | |
1977 | __ CompareClassId(R0, kOneByteStringCid); |
1978 | __ b(&try_two_byte_string, NE); |
1979 | __ SmiUntag(R1); |
1980 | __ AddImmediate(R0, target::OneByteString::data_offset() - kHeapObjectTag); |
1981 | __ ldr(R1, Address(R0, R1), kUnsignedByte); |
1982 | __ CompareImmediate(R1, target::Symbols::kNumberOfOneCharCodeSymbols); |
1983 | __ b(normal_ir_body, GE); |
1984 | __ ldr(R0, Address(THR, target::Thread::predefined_symbols_address_offset())); |
1985 | __ AddImmediate( |
1986 | R0, target::Symbols::kNullCharCodeSymbolOffset * target::kWordSize); |
1987 | __ ldr(R0, Address(R0, R1, UXTX, Address::Scaled)); |
1988 | __ ret(); |
1989 | |
1990 | __ Bind(&try_two_byte_string); |
1991 | __ CompareClassId(R0, kTwoByteStringCid); |
1992 | __ b(normal_ir_body, NE); |
1993 | ASSERT(kSmiTagShift == 1); |
1994 | __ AddImmediate(R0, target::TwoByteString::data_offset() - kHeapObjectTag); |
1995 | __ ldr(R1, Address(R0, R1), kUnsignedHalfword); |
1996 | __ CompareImmediate(R1, target::Symbols::kNumberOfOneCharCodeSymbols); |
1997 | __ b(normal_ir_body, GE); |
1998 | __ ldr(R0, Address(THR, target::Thread::predefined_symbols_address_offset())); |
1999 | __ AddImmediate( |
2000 | R0, target::Symbols::kNullCharCodeSymbolOffset * target::kWordSize); |
2001 | __ ldr(R0, Address(R0, R1, UXTX, Address::Scaled)); |
2002 | __ ret(); |
2003 | |
2004 | __ Bind(normal_ir_body); |
2005 | } |
2006 | |
2007 | void AsmIntrinsifier::StringBaseIsEmpty(Assembler* assembler, |
2008 | Label* normal_ir_body) { |
2009 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
2010 | __ ldr(R0, FieldAddress(R0, target::String::length_offset())); |
2011 | __ cmp(R0, Operand(target::ToRawSmi(0))); |
2012 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
2013 | __ LoadObject(TMP, CastHandle<Object>(FalseObject())); |
2014 | __ csel(R0, TMP, R0, NE); |
2015 | __ ret(); |
2016 | } |
2017 | |
2018 | void AsmIntrinsifier::OneByteString_getHashCode(Assembler* assembler, |
2019 | Label* normal_ir_body) { |
2020 | Label compute_hash; |
2021 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); // OneByteString object. |
2022 | __ ldr(R0, FieldAddress(R1, target::String::hash_offset()), kUnsignedWord); |
2023 | __ adds(R0, R0, Operand(R0)); // Smi tag the hash code, setting Z flag. |
2024 | __ b(&compute_hash, EQ); |
2025 | __ ret(); // Return if already computed. |
2026 | |
2027 | __ Bind(&compute_hash); |
2028 | __ ldr(R2, FieldAddress(R1, target::String::length_offset())); |
2029 | __ SmiUntag(R2); |
2030 | |
2031 | Label done; |
2032 | // If the string is empty, set the hash to 1, and return. |
2033 | __ CompareRegisters(R2, ZR); |
2034 | __ b(&done, EQ); |
2035 | |
2036 | __ mov(R3, ZR); |
2037 | __ AddImmediate(R6, R1, |
2038 | target::OneByteString::data_offset() - kHeapObjectTag); |
2039 | // R1: Instance of OneByteString. |
2040 | // R2: String length, untagged integer. |
2041 | // R3: Loop counter, untagged integer. |
2042 | // R6: String data. |
2043 | // R0: Hash code, untagged integer. |
2044 | |
2045 | Label loop; |
2046 | // Add to hash code: (hash_ is uint32) |
2047 | // hash_ += ch; |
2048 | // hash_ += hash_ << 10; |
2049 | // hash_ ^= hash_ >> 6; |
2050 | // Get one characters (ch). |
2051 | __ Bind(&loop); |
2052 | __ ldr(R7, Address(R6, R3), kUnsignedByte); |
2053 | // R7: ch. |
2054 | __ add(R3, R3, Operand(1)); |
2055 | __ addw(R0, R0, Operand(R7)); |
2056 | __ addw(R0, R0, Operand(R0, LSL, 10)); |
2057 | __ eorw(R0, R0, Operand(R0, LSR, 6)); |
2058 | __ cmp(R3, Operand(R2)); |
2059 | __ b(&loop, NE); |
2060 | |
2061 | // Finalize. |
2062 | // hash_ += hash_ << 3; |
2063 | // hash_ ^= hash_ >> 11; |
2064 | // hash_ += hash_ << 15; |
2065 | __ addw(R0, R0, Operand(R0, LSL, 3)); |
2066 | __ eorw(R0, R0, Operand(R0, LSR, 11)); |
2067 | __ addw(R0, R0, Operand(R0, LSL, 15)); |
2068 | // hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1); |
2069 | __ AndImmediate(R0, R0, |
2070 | (static_cast<intptr_t>(1) << target::String::kHashBits) - 1); |
2071 | __ CompareRegisters(R0, ZR); |
2072 | // return hash_ == 0 ? 1 : hash_; |
2073 | __ Bind(&done); |
2074 | __ csinc(R0, R0, ZR, NE); // R0 <- (R0 != 0) ? R0 : (ZR + 1). |
2075 | __ str(R0, FieldAddress(R1, target::String::hash_offset()), kUnsignedWord); |
2076 | __ SmiTag(R0); |
2077 | __ ret(); |
2078 | } |
2079 | |
2080 | // Allocates a _OneByteString or _TwoByteString. The content is not initialized. |
2081 | // 'length-reg' (R2) contains the desired length as a _Smi or _Mint. |
2082 | // Returns new string as tagged pointer in R0. |
2083 | static void TryAllocateString(Assembler* assembler, |
2084 | classid_t cid, |
2085 | Label* ok, |
2086 | Label* failure) { |
2087 | ASSERT(cid == kOneByteStringCid || cid == kTwoByteStringCid); |
2088 | const Register length_reg = R2; |
2089 | // _Mint length: call to runtime to produce error. |
2090 | __ BranchIfNotSmi(length_reg, failure); |
2091 | // negative length: call to runtime to produce error. |
2092 | __ tbnz(failure, length_reg, compiler::target::kBitsPerWord - 1); |
2093 | |
2094 | NOT_IN_PRODUCT(__ MaybeTraceAllocation(cid, R0, failure)); |
2095 | __ mov(R6, length_reg); // Save the length register. |
2096 | if (cid == kOneByteStringCid) { |
2097 | // Untag length. |
2098 | __ adds(length_reg, ZR, Operand(length_reg, ASR, kSmiTagSize)); |
2099 | } else { |
2100 | // Untag length and multiply by element size -> no-op. |
2101 | __ adds(length_reg, ZR, Operand(length_reg)); |
2102 | } |
2103 | // If the length is 0 then we have to make the allocated size a bit bigger, |
2104 | // otherwise the string takes up less space than an ExternalOneByteString, |
2105 | // and cannot be externalized. TODO(erikcorry): We should probably just |
2106 | // return a static zero length string here instead. |
2107 | // length <- (length != 0) ? length : (ZR + 1). |
2108 | __ csinc(length_reg, length_reg, ZR, NE); |
2109 | const intptr_t fixed_size_plus_alignment_padding = |
2110 | target::String::InstanceSize() + |
2111 | target::ObjectAlignment::kObjectAlignment - 1; |
2112 | __ AddImmediate(length_reg, fixed_size_plus_alignment_padding); |
2113 | __ andi(length_reg, length_reg, |
2114 | Immediate(~(target::ObjectAlignment::kObjectAlignment - 1))); |
2115 | |
2116 | __ ldr(R0, Address(THR, target::Thread::top_offset())); |
2117 | |
2118 | // length_reg: allocation size. |
2119 | __ adds(R1, R0, Operand(length_reg)); |
2120 | __ b(failure, CS); // Fail on unsigned overflow. |
2121 | |
2122 | // Check if the allocation fits into the remaining space. |
2123 | // R0: potential new object start. |
2124 | // R1: potential next object start. |
2125 | // R2: allocation size. |
2126 | __ ldr(R7, Address(THR, target::Thread::end_offset())); |
2127 | __ cmp(R1, Operand(R7)); |
2128 | __ b(failure, CS); |
2129 | |
2130 | // Successfully allocated the object(s), now update top to point to |
2131 | // next object start and initialize the object. |
2132 | __ str(R1, Address(THR, target::Thread::top_offset())); |
2133 | __ AddImmediate(R0, kHeapObjectTag); |
2134 | |
2135 | // Initialize the tags. |
2136 | // R0: new object start as a tagged pointer. |
2137 | // R1: new object end address. |
2138 | // R2: allocation size. |
2139 | { |
2140 | const intptr_t shift = target::ObjectLayout::kTagBitsSizeTagPos - |
2141 | target::ObjectAlignment::kObjectAlignmentLog2; |
2142 | |
2143 | __ CompareImmediate(R2, target::ObjectLayout::kSizeTagMaxSizeTag); |
2144 | __ LslImmediate(R2, R2, shift); |
2145 | __ csel(R2, R2, ZR, LS); |
2146 | |
2147 | // Get the class index and insert it into the tags. |
2148 | // R2: size and bit tags. |
2149 | // This also clears the hash, which is in the high word of the tags. |
2150 | const uint32_t tags = |
2151 | target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); |
2152 | __ LoadImmediate(TMP, tags); |
2153 | __ orr(R2, R2, Operand(TMP)); |
2154 | __ str(R2, FieldAddress(R0, target::Object::tags_offset())); // Store tags. |
2155 | } |
2156 | |
2157 | // Set the length field using the saved length (R6). |
2158 | __ StoreIntoObjectNoBarrier( |
2159 | R0, FieldAddress(R0, target::String::length_offset()), R6); |
2160 | __ b(ok); |
2161 | } |
2162 | |
2163 | // Arg0: OneByteString (receiver). |
2164 | // Arg1: Start index as Smi. |
2165 | // Arg2: End index as Smi. |
2166 | // The indexes must be valid. |
2167 | void AsmIntrinsifier::OneByteString_substringUnchecked(Assembler* assembler, |
2168 | Label* normal_ir_body) { |
2169 | const intptr_t kStringOffset = 2 * target::kWordSize; |
2170 | const intptr_t kStartIndexOffset = 1 * target::kWordSize; |
2171 | const intptr_t kEndIndexOffset = 0 * target::kWordSize; |
2172 | Label ok; |
2173 | |
2174 | __ ldr(R2, Address(SP, kEndIndexOffset)); |
2175 | __ ldr(TMP, Address(SP, kStartIndexOffset)); |
2176 | __ orr(R3, R2, Operand(TMP)); |
2177 | __ BranchIfNotSmi(R3, normal_ir_body); // 'start', 'end' not Smi. |
2178 | |
2179 | __ sub(R2, R2, Operand(TMP)); |
2180 | TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body); |
2181 | __ Bind(&ok); |
2182 | // R0: new string as tagged pointer. |
2183 | // Copy string. |
2184 | __ ldr(R3, Address(SP, kStringOffset)); |
2185 | __ ldr(R1, Address(SP, kStartIndexOffset)); |
2186 | __ SmiUntag(R1); |
2187 | __ add(R3, R3, Operand(R1)); |
2188 | // Calculate start address and untag (- 1). |
2189 | __ AddImmediate(R3, target::OneByteString::data_offset() - 1); |
2190 | |
2191 | // R3: Start address to copy from (untagged). |
2192 | // R1: Untagged start index. |
2193 | __ ldr(R2, Address(SP, kEndIndexOffset)); |
2194 | __ SmiUntag(R2); |
2195 | __ sub(R2, R2, Operand(R1)); |
2196 | |
2197 | // R3: Start address to copy from (untagged). |
2198 | // R2: Untagged number of bytes to copy. |
2199 | // R0: Tagged result string. |
2200 | // R6: Pointer into R3. |
2201 | // R7: Pointer into R0. |
2202 | // R1: Scratch register. |
2203 | Label loop, done; |
2204 | __ cmp(R2, Operand(0)); |
2205 | __ b(&done, LE); |
2206 | __ mov(R6, R3); |
2207 | __ mov(R7, R0); |
2208 | __ Bind(&loop); |
2209 | __ ldr(R1, Address(R6), kUnsignedByte); |
2210 | __ AddImmediate(R6, 1); |
2211 | __ sub(R2, R2, Operand(1)); |
2212 | __ cmp(R2, Operand(0)); |
2213 | __ str(R1, FieldAddress(R7, target::OneByteString::data_offset()), |
2214 | kUnsignedByte); |
2215 | __ AddImmediate(R7, 1); |
2216 | __ b(&loop, GT); |
2217 | |
2218 | __ Bind(&done); |
2219 | __ ret(); |
2220 | __ Bind(normal_ir_body); |
2221 | } |
2222 | |
2223 | void AsmIntrinsifier::WriteIntoOneByteString(Assembler* assembler, |
2224 | Label* normal_ir_body) { |
2225 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // Value. |
2226 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); // Index. |
2227 | __ ldr(R0, Address(SP, 2 * target::kWordSize)); // OneByteString. |
2228 | __ SmiUntag(R1); |
2229 | __ SmiUntag(R2); |
2230 | __ AddImmediate(R3, R0, |
2231 | target::OneByteString::data_offset() - kHeapObjectTag); |
2232 | __ str(R2, Address(R3, R1), kUnsignedByte); |
2233 | __ ret(); |
2234 | } |
2235 | |
2236 | void AsmIntrinsifier::WriteIntoTwoByteString(Assembler* assembler, |
2237 | Label* normal_ir_body) { |
2238 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // Value. |
2239 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); // Index. |
2240 | __ ldr(R0, Address(SP, 2 * target::kWordSize)); // TwoByteString. |
2241 | // Untag index and multiply by element size -> no-op. |
2242 | __ SmiUntag(R2); |
2243 | __ AddImmediate(R3, R0, |
2244 | target::TwoByteString::data_offset() - kHeapObjectTag); |
2245 | __ str(R2, Address(R3, R1), kUnsignedHalfword); |
2246 | __ ret(); |
2247 | } |
2248 | |
2249 | void AsmIntrinsifier::AllocateOneByteString(Assembler* assembler, |
2250 | Label* normal_ir_body) { |
2251 | Label ok; |
2252 | |
2253 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // Length. |
2254 | TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body); |
2255 | |
2256 | __ Bind(&ok); |
2257 | __ ret(); |
2258 | |
2259 | __ Bind(normal_ir_body); |
2260 | } |
2261 | |
2262 | void AsmIntrinsifier::AllocateTwoByteString(Assembler* assembler, |
2263 | Label* normal_ir_body) { |
2264 | Label ok; |
2265 | |
2266 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // Length. |
2267 | TryAllocateString(assembler, kTwoByteStringCid, &ok, normal_ir_body); |
2268 | |
2269 | __ Bind(&ok); |
2270 | __ ret(); |
2271 | |
2272 | __ Bind(normal_ir_body); |
2273 | } |
2274 | |
2275 | // TODO(srdjan): Add combinations (one-byte/two-byte/external strings). |
2276 | static void StringEquality(Assembler* assembler, |
2277 | Label* normal_ir_body, |
2278 | intptr_t string_cid) { |
2279 | Label is_true, is_false, loop; |
2280 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // This. |
2281 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); // Other. |
2282 | |
2283 | // Are identical? |
2284 | __ cmp(R0, Operand(R1)); |
2285 | __ b(&is_true, EQ); |
2286 | |
2287 | // Is other OneByteString? |
2288 | __ BranchIfSmi(R1, normal_ir_body); |
2289 | __ CompareClassId(R1, string_cid); |
2290 | __ b(normal_ir_body, NE); |
2291 | |
2292 | // Have same length? |
2293 | __ ldr(R2, FieldAddress(R0, target::String::length_offset())); |
2294 | __ ldr(R3, FieldAddress(R1, target::String::length_offset())); |
2295 | __ cmp(R2, Operand(R3)); |
2296 | __ b(&is_false, NE); |
2297 | |
2298 | // Check contents, no fall-through possible. |
2299 | // TODO(zra): try out other sequences. |
2300 | ASSERT((string_cid == kOneByteStringCid) || |
2301 | (string_cid == kTwoByteStringCid)); |
2302 | const intptr_t offset = (string_cid == kOneByteStringCid) |
2303 | ? target::OneByteString::data_offset() |
2304 | : target::TwoByteString::data_offset(); |
2305 | __ AddImmediate(R0, offset - kHeapObjectTag); |
2306 | __ AddImmediate(R1, offset - kHeapObjectTag); |
2307 | __ SmiUntag(R2); |
2308 | __ Bind(&loop); |
2309 | __ AddImmediate(R2, -1); |
2310 | __ CompareRegisters(R2, ZR); |
2311 | __ b(&is_true, LT); |
2312 | if (string_cid == kOneByteStringCid) { |
2313 | __ ldr(R3, Address(R0), kUnsignedByte); |
2314 | __ ldr(R4, Address(R1), kUnsignedByte); |
2315 | __ AddImmediate(R0, 1); |
2316 | __ AddImmediate(R1, 1); |
2317 | } else if (string_cid == kTwoByteStringCid) { |
2318 | __ ldr(R3, Address(R0), kUnsignedHalfword); |
2319 | __ ldr(R4, Address(R1), kUnsignedHalfword); |
2320 | __ AddImmediate(R0, 2); |
2321 | __ AddImmediate(R1, 2); |
2322 | } else { |
2323 | UNIMPLEMENTED(); |
2324 | } |
2325 | __ cmp(R3, Operand(R4)); |
2326 | __ b(&is_false, NE); |
2327 | __ b(&loop); |
2328 | |
2329 | __ Bind(&is_true); |
2330 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
2331 | __ ret(); |
2332 | |
2333 | __ Bind(&is_false); |
2334 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
2335 | __ ret(); |
2336 | |
2337 | __ Bind(normal_ir_body); |
2338 | } |
2339 | |
2340 | void AsmIntrinsifier::OneByteString_equality(Assembler* assembler, |
2341 | Label* normal_ir_body) { |
2342 | StringEquality(assembler, normal_ir_body, kOneByteStringCid); |
2343 | } |
2344 | |
2345 | void AsmIntrinsifier::TwoByteString_equality(Assembler* assembler, |
2346 | Label* normal_ir_body) { |
2347 | StringEquality(assembler, normal_ir_body, kTwoByteStringCid); |
2348 | } |
2349 | |
2350 | void AsmIntrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler, |
2351 | Label* normal_ir_body, |
2352 | bool sticky) { |
2353 | if (FLAG_interpret_irregexp) return; |
2354 | |
2355 | static const intptr_t kRegExpParamOffset = 2 * target::kWordSize; |
2356 | static const intptr_t kStringParamOffset = 1 * target::kWordSize; |
2357 | // start_index smi is located at offset 0. |
2358 | |
2359 | // Incoming registers: |
2360 | // R0: Function. (Will be reloaded with the specialized matcher function.) |
2361 | // R4: Arguments descriptor. (Will be preserved.) |
2362 | // R5: Unknown. (Must be GC safe on tail call.) |
2363 | |
2364 | // Load the specialized function pointer into R0. Leverage the fact the |
2365 | // string CIDs as well as stored function pointers are in sequence. |
2366 | __ ldr(R2, Address(SP, kRegExpParamOffset)); |
2367 | __ ldr(R1, Address(SP, kStringParamOffset)); |
2368 | __ LoadClassId(R1, R1); |
2369 | __ AddImmediate(R1, -kOneByteStringCid); |
2370 | __ add(R1, R2, Operand(R1, LSL, target::kWordSizeLog2)); |
2371 | __ ldr(R0, FieldAddress(R1, target::RegExp::function_offset(kOneByteStringCid, |
2372 | sticky))); |
2373 | |
2374 | // Registers are now set up for the lazy compile stub. It expects the function |
2375 | // in R0, the argument descriptor in R4, and IC-Data in R5. |
2376 | __ eor(R5, R5, Operand(R5)); |
2377 | |
2378 | // Tail-call the function. |
2379 | __ ldr(CODE_REG, FieldAddress(R0, target::Function::code_offset())); |
2380 | __ ldr(R1, FieldAddress(R0, target::Function::entry_point_offset())); |
2381 | __ br(R1); |
2382 | } |
2383 | |
2384 | // On stack: user tag (+0). |
2385 | void AsmIntrinsifier::UserTag_makeCurrent(Assembler* assembler, |
2386 | Label* normal_ir_body) { |
2387 | // R1: Isolate. |
2388 | __ LoadIsolate(R1); |
2389 | // R0: Current user tag. |
2390 | __ ldr(R0, Address(R1, target::Isolate::current_tag_offset())); |
2391 | // R2: UserTag. |
2392 | __ ldr(R2, Address(SP, +0 * target::kWordSize)); |
2393 | // Set target::Isolate::current_tag_. |
2394 | __ str(R2, Address(R1, target::Isolate::current_tag_offset())); |
2395 | // R2: UserTag's tag. |
2396 | __ ldr(R2, FieldAddress(R2, target::UserTag::tag_offset())); |
2397 | // Set target::Isolate::user_tag_. |
2398 | __ str(R2, Address(R1, target::Isolate::user_tag_offset())); |
2399 | __ ret(); |
2400 | } |
2401 | |
2402 | void AsmIntrinsifier::UserTag_defaultTag(Assembler* assembler, |
2403 | Label* normal_ir_body) { |
2404 | __ LoadIsolate(R0); |
2405 | __ ldr(R0, Address(R0, target::Isolate::default_tag_offset())); |
2406 | __ ret(); |
2407 | } |
2408 | |
2409 | void AsmIntrinsifier::Profiler_getCurrentTag(Assembler* assembler, |
2410 | Label* normal_ir_body) { |
2411 | __ LoadIsolate(R0); |
2412 | __ ldr(R0, Address(R0, target::Isolate::current_tag_offset())); |
2413 | __ ret(); |
2414 | } |
2415 | |
2416 | void AsmIntrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler, |
2417 | Label* normal_ir_body) { |
2418 | #if !defined(SUPPORT_TIMELINE) |
2419 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
2420 | __ ret(); |
2421 | #else |
2422 | // Load TimelineStream*. |
2423 | __ ldr(R0, Address(THR, target::Thread::dart_stream_offset())); |
2424 | // Load uintptr_t from TimelineStream*. |
2425 | __ ldr(R0, Address(R0, target::TimelineStream::enabled_offset())); |
2426 | __ cmp(R0, Operand(0)); |
2427 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
2428 | __ LoadObject(TMP, CastHandle<Object>(TrueObject())); |
2429 | __ csel(R0, TMP, R0, NE); |
2430 | __ ret(); |
2431 | #endif |
2432 | } |
2433 | |
2434 | void AsmIntrinsifier::ClearAsyncThreadStackTrace(Assembler* assembler, |
2435 | Label* normal_ir_body) { |
2436 | __ LoadObject(R0, NullObject()); |
2437 | __ str(R0, Address(THR, target::Thread::async_stack_trace_offset())); |
2438 | __ ret(); |
2439 | } |
2440 | |
2441 | void AsmIntrinsifier::SetAsyncThreadStackTrace(Assembler* assembler, |
2442 | Label* normal_ir_body) { |
2443 | __ ldr(R0, Address(THR, target::Thread::async_stack_trace_offset())); |
2444 | __ LoadObject(R0, NullObject()); |
2445 | __ ret(); |
2446 | } |
2447 | |
2448 | #undef __ |
2449 | |
2450 | } // namespace compiler |
2451 | } // namespace dart |
2452 | |
2453 | #endif // defined(TARGET_ARCH_ARM64) |
2454 | |