| 1 | // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/globals.h" // Needed here to get TARGET_ARCH_ARM64. |
| 6 | #if defined(TARGET_ARCH_ARM64) |
| 7 | |
| 8 | #define SHOULD_NOT_INCLUDE_RUNTIME |
| 9 | |
| 10 | #include "vm/class_id.h" |
| 11 | #include "vm/compiler/asm_intrinsifier.h" |
| 12 | #include "vm/compiler/assembler/assembler.h" |
| 13 | |
| 14 | namespace dart { |
| 15 | namespace compiler { |
| 16 | |
| 17 | // When entering intrinsics code: |
| 18 | // R4: Arguments descriptor |
| 19 | // LR: Return address |
| 20 | // The R4 register can be destroyed only if there is no slow-path, i.e. |
| 21 | // if the intrinsified method always executes a return. |
| 22 | // The FP register should not be modified, because it is used by the profiler. |
| 23 | // The PP and THR registers (see constants_arm64.h) must be preserved. |
| 24 | |
| 25 | #define __ assembler-> |
| 26 | |
| 27 | intptr_t AsmIntrinsifier::ParameterSlotFromSp() { |
| 28 | return -1; |
| 29 | } |
| 30 | |
| 31 | static bool IsABIPreservedRegister(Register reg) { |
| 32 | return ((1 << reg) & kAbiPreservedCpuRegs) != 0; |
| 33 | } |
| 34 | |
| 35 | void AsmIntrinsifier::IntrinsicCallPrologue(Assembler* assembler) { |
| 36 | ASSERT(IsABIPreservedRegister(CODE_REG)); |
| 37 | ASSERT(!IsABIPreservedRegister(ARGS_DESC_REG)); |
| 38 | ASSERT(IsABIPreservedRegister(CALLEE_SAVED_TEMP)); |
| 39 | ASSERT(IsABIPreservedRegister(CALLEE_SAVED_TEMP2)); |
| 40 | ASSERT(CALLEE_SAVED_TEMP != CODE_REG); |
| 41 | ASSERT(CALLEE_SAVED_TEMP != ARGS_DESC_REG); |
| 42 | ASSERT(CALLEE_SAVED_TEMP2 != CODE_REG); |
| 43 | ASSERT(CALLEE_SAVED_TEMP2 != ARGS_DESC_REG); |
| 44 | |
| 45 | assembler->Comment("IntrinsicCallPrologue" ); |
| 46 | assembler->mov(CALLEE_SAVED_TEMP, LR); |
| 47 | assembler->mov(CALLEE_SAVED_TEMP2, ARGS_DESC_REG); |
| 48 | } |
| 49 | |
| 50 | void AsmIntrinsifier::IntrinsicCallEpilogue(Assembler* assembler) { |
| 51 | assembler->Comment("IntrinsicCallEpilogue" ); |
| 52 | assembler->mov(LR, CALLEE_SAVED_TEMP); |
| 53 | assembler->mov(ARGS_DESC_REG, CALLEE_SAVED_TEMP2); |
| 54 | } |
| 55 | |
| 56 | // Allocate a GrowableObjectArray:: using the backing array specified. |
| 57 | // On stack: type argument (+1), data (+0). |
| 58 | void AsmIntrinsifier::GrowableArray_Allocate(Assembler* assembler, |
| 59 | Label* normal_ir_body) { |
| 60 | // The newly allocated object is returned in R0. |
| 61 | const intptr_t kTypeArgumentsOffset = 1 * target::kWordSize; |
| 62 | const intptr_t kArrayOffset = 0 * target::kWordSize; |
| 63 | |
| 64 | // Try allocating in new space. |
| 65 | const Class& cls = GrowableObjectArrayClass(); |
| 66 | __ TryAllocate(cls, normal_ir_body, R0, R1); |
| 67 | |
| 68 | // Store backing array object in growable array object. |
| 69 | __ ldr(R1, Address(SP, kArrayOffset)); // Data argument. |
| 70 | // R0 is new, no barrier needed. |
| 71 | __ StoreIntoObjectNoBarrier( |
| 72 | R0, FieldAddress(R0, target::GrowableObjectArray::data_offset()), R1); |
| 73 | |
| 74 | // R0: new growable array object start as a tagged pointer. |
| 75 | // Store the type argument field in the growable array object. |
| 76 | __ ldr(R1, Address(SP, kTypeArgumentsOffset)); // Type argument. |
| 77 | __ StoreIntoObjectNoBarrier( |
| 78 | R0, |
| 79 | FieldAddress(R0, target::GrowableObjectArray::type_arguments_offset()), |
| 80 | R1); |
| 81 | |
| 82 | // Set the length field in the growable array object to 0. |
| 83 | __ LoadImmediate(R1, 0); |
| 84 | __ str(R1, FieldAddress(R0, target::GrowableObjectArray::length_offset())); |
| 85 | __ ret(); // Returns the newly allocated object in R0. |
| 86 | |
| 87 | __ Bind(normal_ir_body); |
| 88 | } |
| 89 | |
| 90 | static int GetScaleFactor(intptr_t size) { |
| 91 | switch (size) { |
| 92 | case 1: |
| 93 | return 0; |
| 94 | case 2: |
| 95 | return 1; |
| 96 | case 4: |
| 97 | return 2; |
| 98 | case 8: |
| 99 | return 3; |
| 100 | case 16: |
| 101 | return 4; |
| 102 | } |
| 103 | UNREACHABLE(); |
| 104 | return -1; |
| 105 | } |
| 106 | |
| 107 | #define TYPED_ARRAY_ALLOCATION(cid, max_len, scale_shift) \ |
| 108 | Label fall_through; \ |
| 109 | const intptr_t kArrayLengthStackOffset = 0 * target::kWordSize; \ |
| 110 | NOT_IN_PRODUCT(__ MaybeTraceAllocation(cid, R2, normal_ir_body)); \ |
| 111 | __ ldr(R2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \ |
| 112 | /* Check that length is a positive Smi. */ \ |
| 113 | /* R2: requested array length argument. */ \ |
| 114 | __ BranchIfNotSmi(R2, normal_ir_body); \ |
| 115 | __ CompareRegisters(R2, ZR); \ |
| 116 | __ b(normal_ir_body, LT); \ |
| 117 | __ SmiUntag(R2); \ |
| 118 | /* Check for maximum allowed length. */ \ |
| 119 | /* R2: untagged array length. */ \ |
| 120 | __ CompareImmediate(R2, max_len); \ |
| 121 | __ b(normal_ir_body, GT); \ |
| 122 | __ LslImmediate(R2, R2, scale_shift); \ |
| 123 | const intptr_t fixed_size_plus_alignment_padding = \ |
| 124 | target::TypedData::InstanceSize() + \ |
| 125 | target::ObjectAlignment::kObjectAlignment - 1; \ |
| 126 | __ AddImmediate(R2, fixed_size_plus_alignment_padding); \ |
| 127 | __ andi(R2, R2, \ |
| 128 | Immediate(~(target::ObjectAlignment::kObjectAlignment - 1))); \ |
| 129 | __ ldr(R0, Address(THR, target::Thread::top_offset())); \ |
| 130 | \ |
| 131 | /* R2: allocation size. */ \ |
| 132 | __ adds(R1, R0, Operand(R2)); \ |
| 133 | __ b(normal_ir_body, CS); /* Fail on unsigned overflow. */ \ |
| 134 | \ |
| 135 | /* Check if the allocation fits into the remaining space. */ \ |
| 136 | /* R0: potential new object start. */ \ |
| 137 | /* R1: potential next object start. */ \ |
| 138 | /* R2: allocation size. */ \ |
| 139 | __ ldr(R6, Address(THR, target::Thread::end_offset())); \ |
| 140 | __ cmp(R1, Operand(R6)); \ |
| 141 | __ b(normal_ir_body, CS); \ |
| 142 | \ |
| 143 | /* Successfully allocated the object(s), now update top to point to */ \ |
| 144 | /* next object start and initialize the object. */ \ |
| 145 | __ str(R1, Address(THR, target::Thread::top_offset())); \ |
| 146 | __ AddImmediate(R0, kHeapObjectTag); \ |
| 147 | /* Initialize the tags. */ \ |
| 148 | /* R0: new object start as a tagged pointer. */ \ |
| 149 | /* R1: new object end address. */ \ |
| 150 | /* R2: allocation size. */ \ |
| 151 | { \ |
| 152 | __ CompareImmediate(R2, target::ObjectLayout::kSizeTagMaxSizeTag); \ |
| 153 | __ LslImmediate(R2, R2, \ |
| 154 | target::ObjectLayout::kTagBitsSizeTagPos - \ |
| 155 | target::ObjectAlignment::kObjectAlignmentLog2); \ |
| 156 | __ csel(R2, ZR, R2, HI); \ |
| 157 | \ |
| 158 | /* Get the class index and insert it into the tags. */ \ |
| 159 | uint32_t tags = \ |
| 160 | target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); \ |
| 161 | __ LoadImmediate(TMP, tags); \ |
| 162 | __ orr(R2, R2, Operand(TMP)); \ |
| 163 | __ str(R2, FieldAddress(R0, target::Object::tags_offset())); /* Tags. */ \ |
| 164 | } \ |
| 165 | /* Set the length field. */ \ |
| 166 | /* R0: new object start as a tagged pointer. */ \ |
| 167 | /* R1: new object end address. */ \ |
| 168 | __ ldr(R2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \ |
| 169 | __ StoreIntoObjectNoBarrier( \ |
| 170 | R0, FieldAddress(R0, target::TypedDataBase::length_offset()), R2); \ |
| 171 | /* Initialize all array elements to 0. */ \ |
| 172 | /* R0: new object start as a tagged pointer. */ \ |
| 173 | /* R1: new object end address. */ \ |
| 174 | /* R2: iterator which initially points to the start of the variable */ \ |
| 175 | /* R3: scratch register. */ \ |
| 176 | /* data area to be initialized. */ \ |
| 177 | __ mov(R3, ZR); \ |
| 178 | __ AddImmediate(R2, R0, target::TypedData::InstanceSize() - 1); \ |
| 179 | __ StoreInternalPointer( \ |
| 180 | R0, FieldAddress(R0, target::TypedDataBase::data_field_offset()), R2); \ |
| 181 | Label init_loop, done; \ |
| 182 | __ Bind(&init_loop); \ |
| 183 | __ cmp(R2, Operand(R1)); \ |
| 184 | __ b(&done, CS); \ |
| 185 | __ str(R3, Address(R2, 0)); \ |
| 186 | __ add(R2, R2, Operand(target::kWordSize)); \ |
| 187 | __ b(&init_loop); \ |
| 188 | __ Bind(&done); \ |
| 189 | \ |
| 190 | __ ret(); \ |
| 191 | __ Bind(normal_ir_body); |
| 192 | |
| 193 | #define TYPED_DATA_ALLOCATOR(clazz) \ |
| 194 | void AsmIntrinsifier::TypedData_##clazz##_factory(Assembler* assembler, \ |
| 195 | Label* normal_ir_body) { \ |
| 196 | intptr_t size = TypedDataElementSizeInBytes(kTypedData##clazz##Cid); \ |
| 197 | intptr_t max_len = TypedDataMaxNewSpaceElements(kTypedData##clazz##Cid); \ |
| 198 | int shift = GetScaleFactor(size); \ |
| 199 | TYPED_ARRAY_ALLOCATION(kTypedData##clazz##Cid, max_len, shift); \ |
| 200 | } |
| 201 | CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR) |
| 202 | #undef TYPED_DATA_ALLOCATOR |
| 203 | |
| 204 | // Loads args from stack into R0 and R1 |
| 205 | // Tests if they are smis, jumps to label not_smi if not. |
| 206 | static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) { |
| 207 | __ ldr(R0, Address(SP, +0 * target::kWordSize)); |
| 208 | __ ldr(R1, Address(SP, +1 * target::kWordSize)); |
| 209 | __ orr(TMP, R0, Operand(R1)); |
| 210 | __ BranchIfNotSmi(TMP, not_smi); |
| 211 | } |
| 212 | |
| 213 | void AsmIntrinsifier::Integer_addFromInteger(Assembler* assembler, |
| 214 | Label* normal_ir_body) { |
| 215 | TestBothArgumentsSmis(assembler, normal_ir_body); // Checks two smis. |
| 216 | __ adds(R0, R0, Operand(R1)); // Adds. |
| 217 | __ b(normal_ir_body, VS); // Fall-through on overflow. |
| 218 | __ ret(); |
| 219 | __ Bind(normal_ir_body); |
| 220 | } |
| 221 | |
| 222 | void AsmIntrinsifier::Integer_add(Assembler* assembler, Label* normal_ir_body) { |
| 223 | Integer_addFromInteger(assembler, normal_ir_body); |
| 224 | } |
| 225 | |
| 226 | void AsmIntrinsifier::Integer_subFromInteger(Assembler* assembler, |
| 227 | Label* normal_ir_body) { |
| 228 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 229 | __ subs(R0, R0, Operand(R1)); // Subtract. |
| 230 | __ b(normal_ir_body, VS); // Fall-through on overflow. |
| 231 | __ ret(); |
| 232 | __ Bind(normal_ir_body); |
| 233 | } |
| 234 | |
| 235 | void AsmIntrinsifier::Integer_sub(Assembler* assembler, Label* normal_ir_body) { |
| 236 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 237 | __ subs(R0, R1, Operand(R0)); // Subtract. |
| 238 | __ b(normal_ir_body, VS); // Fall-through on overflow. |
| 239 | __ ret(); |
| 240 | __ Bind(normal_ir_body); |
| 241 | } |
| 242 | |
| 243 | void AsmIntrinsifier::Integer_mulFromInteger(Assembler* assembler, |
| 244 | Label* normal_ir_body) { |
| 245 | TestBothArgumentsSmis(assembler, normal_ir_body); // checks two smis |
| 246 | __ SmiUntag(R0); // Untags R6. We only want result shifted by one. |
| 247 | |
| 248 | __ mul(TMP, R0, R1); |
| 249 | __ smulh(TMP2, R0, R1); |
| 250 | // TMP: result bits 64..127. |
| 251 | __ cmp(TMP2, Operand(TMP, ASR, 63)); |
| 252 | __ b(normal_ir_body, NE); |
| 253 | __ mov(R0, TMP); |
| 254 | __ ret(); |
| 255 | __ Bind(normal_ir_body); |
| 256 | } |
| 257 | |
| 258 | void AsmIntrinsifier::Integer_mul(Assembler* assembler, Label* normal_ir_body) { |
| 259 | Integer_mulFromInteger(assembler, normal_ir_body); |
| 260 | } |
| 261 | |
| 262 | // Optimizations: |
| 263 | // - result is 0 if: |
| 264 | // - left is 0 |
| 265 | // - left equals right |
| 266 | // - result is left if |
| 267 | // - left > 0 && left < right |
| 268 | // R1: Tagged left (dividend). |
| 269 | // R0: Tagged right (divisor). |
| 270 | // Returns: |
| 271 | // R1: Untagged fallthrough result (remainder to be adjusted), or |
| 272 | // R0: Tagged return result (remainder). |
| 273 | static void EmitRemainderOperation(Assembler* assembler) { |
| 274 | Label return_zero, modulo; |
| 275 | const Register left = R1; |
| 276 | const Register right = R0; |
| 277 | const Register result = R1; |
| 278 | const Register tmp = R2; |
| 279 | ASSERT(left == result); |
| 280 | |
| 281 | // Check for quick zero results. |
| 282 | __ CompareRegisters(left, ZR); |
| 283 | __ b(&return_zero, EQ); |
| 284 | __ CompareRegisters(left, right); |
| 285 | __ b(&return_zero, EQ); |
| 286 | |
| 287 | // Check if result should be left. |
| 288 | __ CompareRegisters(left, ZR); |
| 289 | __ b(&modulo, LT); |
| 290 | // left is positive. |
| 291 | __ CompareRegisters(left, right); |
| 292 | // left is less than right, result is left. |
| 293 | __ b(&modulo, GT); |
| 294 | __ mov(R0, left); |
| 295 | __ ret(); |
| 296 | |
| 297 | __ Bind(&return_zero); |
| 298 | __ mov(R0, ZR); |
| 299 | __ ret(); |
| 300 | |
| 301 | __ Bind(&modulo); |
| 302 | // result <- left - right * (left / right) |
| 303 | __ SmiUntag(left); |
| 304 | __ SmiUntag(right); |
| 305 | |
| 306 | __ sdiv(tmp, left, right); |
| 307 | __ msub(result, right, tmp, left); // result <- left - right * tmp |
| 308 | } |
| 309 | |
| 310 | // Implementation: |
| 311 | // res = left % right; |
| 312 | // if (res < 0) { |
| 313 | // if (right < 0) { |
| 314 | // res = res - right; |
| 315 | // } else { |
| 316 | // res = res + right; |
| 317 | // } |
| 318 | // } |
| 319 | void AsmIntrinsifier::Integer_moduloFromInteger(Assembler* assembler, |
| 320 | Label* normal_ir_body) { |
| 321 | // Check to see if we have integer division |
| 322 | Label neg_remainder, fall_through; |
| 323 | __ ldr(R1, Address(SP, +0 * target::kWordSize)); |
| 324 | __ ldr(R0, Address(SP, +1 * target::kWordSize)); |
| 325 | __ orr(TMP, R0, Operand(R1)); |
| 326 | __ BranchIfNotSmi(TMP, normal_ir_body); |
| 327 | // R1: Tagged left (dividend). |
| 328 | // R0: Tagged right (divisor). |
| 329 | // Check if modulo by zero -> exception thrown in main function. |
| 330 | __ CompareRegisters(R0, ZR); |
| 331 | __ b(normal_ir_body, EQ); |
| 332 | EmitRemainderOperation(assembler); |
| 333 | // Untagged right in R0. Untagged remainder result in R1. |
| 334 | |
| 335 | __ CompareRegisters(R1, ZR); |
| 336 | __ b(&neg_remainder, LT); |
| 337 | __ SmiTag(R0, R1); // Tag and move result to R0. |
| 338 | __ ret(); |
| 339 | |
| 340 | __ Bind(&neg_remainder); |
| 341 | // Result is negative, adjust it. |
| 342 | __ CompareRegisters(R0, ZR); |
| 343 | __ sub(TMP, R1, Operand(R0)); |
| 344 | __ add(TMP2, R1, Operand(R0)); |
| 345 | __ csel(R0, TMP2, TMP, GE); |
| 346 | __ SmiTag(R0); |
| 347 | __ ret(); |
| 348 | |
| 349 | __ Bind(normal_ir_body); |
| 350 | } |
| 351 | |
| 352 | void AsmIntrinsifier::Integer_truncDivide(Assembler* assembler, |
| 353 | Label* normal_ir_body) { |
| 354 | // Check to see if we have integer division |
| 355 | |
| 356 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 357 | __ CompareRegisters(R0, ZR); |
| 358 | __ b(normal_ir_body, EQ); // If b is 0, fall through. |
| 359 | |
| 360 | __ SmiUntag(R0); |
| 361 | __ SmiUntag(R1); |
| 362 | |
| 363 | __ sdiv(R0, R1, R0); |
| 364 | |
| 365 | // Check the corner case of dividing the 'MIN_SMI' with -1, in which case we |
| 366 | // cannot tag the result. |
| 367 | __ CompareImmediate(R0, 0x4000000000000000); |
| 368 | __ b(normal_ir_body, EQ); |
| 369 | __ SmiTag(R0); // Not equal. Okay to tag and return. |
| 370 | __ ret(); // Return. |
| 371 | __ Bind(normal_ir_body); |
| 372 | } |
| 373 | |
| 374 | void AsmIntrinsifier::Integer_negate(Assembler* assembler, |
| 375 | Label* normal_ir_body) { |
| 376 | __ ldr(R0, Address(SP, +0 * target::kWordSize)); // Grab first argument. |
| 377 | __ BranchIfNotSmi(R0, normal_ir_body); |
| 378 | __ negs(R0, R0); |
| 379 | __ b(normal_ir_body, VS); |
| 380 | __ ret(); |
| 381 | __ Bind(normal_ir_body); |
| 382 | } |
| 383 | |
| 384 | void AsmIntrinsifier::Integer_bitAndFromInteger(Assembler* assembler, |
| 385 | Label* normal_ir_body) { |
| 386 | TestBothArgumentsSmis(assembler, normal_ir_body); // Checks two smis. |
| 387 | __ and_(R0, R0, Operand(R1)); |
| 388 | __ ret(); |
| 389 | __ Bind(normal_ir_body); |
| 390 | } |
| 391 | |
| 392 | void AsmIntrinsifier::Integer_bitAnd(Assembler* assembler, |
| 393 | Label* normal_ir_body) { |
| 394 | Integer_bitAndFromInteger(assembler, normal_ir_body); |
| 395 | } |
| 396 | |
| 397 | void AsmIntrinsifier::Integer_bitOrFromInteger(Assembler* assembler, |
| 398 | Label* normal_ir_body) { |
| 399 | TestBothArgumentsSmis(assembler, normal_ir_body); // Checks two smis. |
| 400 | __ orr(R0, R0, Operand(R1)); |
| 401 | __ ret(); |
| 402 | __ Bind(normal_ir_body); |
| 403 | } |
| 404 | |
| 405 | void AsmIntrinsifier::Integer_bitOr(Assembler* assembler, |
| 406 | Label* normal_ir_body) { |
| 407 | Integer_bitOrFromInteger(assembler, normal_ir_body); |
| 408 | } |
| 409 | |
| 410 | void AsmIntrinsifier::Integer_bitXorFromInteger(Assembler* assembler, |
| 411 | Label* normal_ir_body) { |
| 412 | TestBothArgumentsSmis(assembler, normal_ir_body); // Checks two smis. |
| 413 | __ eor(R0, R0, Operand(R1)); |
| 414 | __ ret(); |
| 415 | __ Bind(normal_ir_body); |
| 416 | } |
| 417 | |
| 418 | void AsmIntrinsifier::Integer_bitXor(Assembler* assembler, |
| 419 | Label* normal_ir_body) { |
| 420 | Integer_bitXorFromInteger(assembler, normal_ir_body); |
| 421 | } |
| 422 | |
| 423 | void AsmIntrinsifier::Integer_shl(Assembler* assembler, Label* normal_ir_body) { |
| 424 | ASSERT(kSmiTagShift == 1); |
| 425 | ASSERT(kSmiTag == 0); |
| 426 | const Register right = R0; |
| 427 | const Register left = R1; |
| 428 | const Register temp = R2; |
| 429 | const Register result = R0; |
| 430 | |
| 431 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 432 | __ CompareImmediate(right, target::ToRawSmi(target::kSmiBits)); |
| 433 | __ b(normal_ir_body, CS); |
| 434 | |
| 435 | // Left is not a constant. |
| 436 | // Check if count too large for handling it inlined. |
| 437 | __ SmiUntag(TMP, right); // SmiUntag right into TMP. |
| 438 | // Overflow test (preserve left, right, and TMP); |
| 439 | __ lslv(temp, left, TMP); |
| 440 | __ asrv(TMP2, temp, TMP); |
| 441 | __ CompareRegisters(left, TMP2); |
| 442 | __ b(normal_ir_body, NE); // Overflow. |
| 443 | // Shift for result now we know there is no overflow. |
| 444 | __ lslv(result, left, TMP); |
| 445 | __ ret(); |
| 446 | __ Bind(normal_ir_body); |
| 447 | } |
| 448 | |
| 449 | static void CompareIntegers(Assembler* assembler, |
| 450 | Label* normal_ir_body, |
| 451 | Condition true_condition) { |
| 452 | Label true_label; |
| 453 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 454 | // R0 contains the right argument, R1 the left. |
| 455 | __ CompareRegisters(R1, R0); |
| 456 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 457 | __ LoadObject(TMP, CastHandle<Object>(TrueObject())); |
| 458 | __ csel(R0, TMP, R0, true_condition); |
| 459 | __ ret(); |
| 460 | __ Bind(normal_ir_body); |
| 461 | } |
| 462 | |
| 463 | void AsmIntrinsifier::Integer_greaterThanFromInt(Assembler* assembler, |
| 464 | Label* normal_ir_body) { |
| 465 | CompareIntegers(assembler, normal_ir_body, LT); |
| 466 | } |
| 467 | |
| 468 | void AsmIntrinsifier::Integer_lessThan(Assembler* assembler, |
| 469 | Label* normal_ir_body) { |
| 470 | Integer_greaterThanFromInt(assembler, normal_ir_body); |
| 471 | } |
| 472 | |
| 473 | void AsmIntrinsifier::Integer_greaterThan(Assembler* assembler, |
| 474 | Label* normal_ir_body) { |
| 475 | CompareIntegers(assembler, normal_ir_body, GT); |
| 476 | } |
| 477 | |
| 478 | void AsmIntrinsifier::Integer_lessEqualThan(Assembler* assembler, |
| 479 | Label* normal_ir_body) { |
| 480 | CompareIntegers(assembler, normal_ir_body, LE); |
| 481 | } |
| 482 | |
| 483 | void AsmIntrinsifier::Integer_greaterEqualThan(Assembler* assembler, |
| 484 | Label* normal_ir_body) { |
| 485 | CompareIntegers(assembler, normal_ir_body, GE); |
| 486 | } |
| 487 | |
| 488 | // This is called for Smi and Mint receivers. The right argument |
| 489 | // can be Smi, Mint or double. |
| 490 | void AsmIntrinsifier::Integer_equalToInteger(Assembler* assembler, |
| 491 | Label* normal_ir_body) { |
| 492 | Label true_label, check_for_mint; |
| 493 | // For integer receiver '===' check first. |
| 494 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 495 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); |
| 496 | __ cmp(R0, Operand(R1)); |
| 497 | __ b(&true_label, EQ); |
| 498 | |
| 499 | __ orr(R2, R0, Operand(R1)); |
| 500 | __ BranchIfNotSmi(R2, &check_for_mint); |
| 501 | // If R0 or R1 is not a smi do Mint checks. |
| 502 | |
| 503 | // Both arguments are smi, '===' is good enough. |
| 504 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 505 | __ ret(); |
| 506 | __ Bind(&true_label); |
| 507 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
| 508 | __ ret(); |
| 509 | |
| 510 | // At least one of the arguments was not Smi. |
| 511 | Label receiver_not_smi; |
| 512 | __ Bind(&check_for_mint); |
| 513 | |
| 514 | __ BranchIfNotSmi(R1, &receiver_not_smi); // Check receiver. |
| 515 | |
| 516 | // Left (receiver) is Smi, return false if right is not Double. |
| 517 | // Note that an instance of Mint never contains a value that can be |
| 518 | // represented by Smi. |
| 519 | |
| 520 | __ CompareClassId(R0, kDoubleCid); |
| 521 | __ b(normal_ir_body, EQ); |
| 522 | __ LoadObject(R0, |
| 523 | CastHandle<Object>(FalseObject())); // Smi == Mint -> false. |
| 524 | __ ret(); |
| 525 | |
| 526 | __ Bind(&receiver_not_smi); |
| 527 | // R1: receiver. |
| 528 | |
| 529 | __ CompareClassId(R1, kMintCid); |
| 530 | __ b(normal_ir_body, NE); |
| 531 | // Receiver is Mint, return false if right is Smi. |
| 532 | __ BranchIfNotSmi(R0, normal_ir_body); |
| 533 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 534 | __ ret(); |
| 535 | // TODO(srdjan): Implement Mint == Mint comparison. |
| 536 | |
| 537 | __ Bind(normal_ir_body); |
| 538 | } |
| 539 | |
| 540 | void AsmIntrinsifier::Integer_equal(Assembler* assembler, |
| 541 | Label* normal_ir_body) { |
| 542 | Integer_equalToInteger(assembler, normal_ir_body); |
| 543 | } |
| 544 | |
| 545 | void AsmIntrinsifier::Integer_sar(Assembler* assembler, Label* normal_ir_body) { |
| 546 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 547 | // Shift amount in R0. Value to shift in R1. |
| 548 | |
| 549 | // Fall through if shift amount is negative. |
| 550 | __ SmiUntag(R0); |
| 551 | __ CompareRegisters(R0, ZR); |
| 552 | __ b(normal_ir_body, LT); |
| 553 | |
| 554 | // If shift amount is bigger than 63, set to 63. |
| 555 | __ LoadImmediate(TMP, 0x3F); |
| 556 | __ CompareRegisters(R0, TMP); |
| 557 | __ csel(R0, TMP, R0, GT); |
| 558 | __ SmiUntag(R1); |
| 559 | __ asrv(R0, R1, R0); |
| 560 | __ SmiTag(R0); |
| 561 | __ ret(); |
| 562 | __ Bind(normal_ir_body); |
| 563 | } |
| 564 | |
| 565 | void AsmIntrinsifier::Smi_bitNegate(Assembler* assembler, |
| 566 | Label* normal_ir_body) { |
| 567 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 568 | __ mvn(R0, R0); |
| 569 | __ andi(R0, R0, Immediate(~kSmiTagMask)); // Remove inverted smi-tag. |
| 570 | __ ret(); |
| 571 | } |
| 572 | |
| 573 | void AsmIntrinsifier::Smi_bitLength(Assembler* assembler, |
| 574 | Label* normal_ir_body) { |
| 575 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 576 | __ SmiUntag(R0); |
| 577 | // XOR with sign bit to complement bits if value is negative. |
| 578 | __ eor(R0, R0, Operand(R0, ASR, 63)); |
| 579 | __ clz(R0, R0); |
| 580 | __ LoadImmediate(R1, 64); |
| 581 | __ sub(R0, R1, Operand(R0)); |
| 582 | __ SmiTag(R0); |
| 583 | __ ret(); |
| 584 | } |
| 585 | |
| 586 | void AsmIntrinsifier::Smi_bitAndFromSmi(Assembler* assembler, |
| 587 | Label* normal_ir_body) { |
| 588 | Integer_bitAndFromInteger(assembler, normal_ir_body); |
| 589 | } |
| 590 | |
| 591 | void AsmIntrinsifier::Bigint_lsh(Assembler* assembler, Label* normal_ir_body) { |
| 592 | // static void _lsh(Uint32List x_digits, int x_used, int n, |
| 593 | // Uint32List r_digits) |
| 594 | |
| 595 | // R2 = x_used, R3 = x_digits, x_used > 0, x_used is Smi. |
| 596 | __ ldp(R2, R3, Address(SP, 2 * target::kWordSize, Address::PairOffset)); |
| 597 | __ add(R2, R2, Operand(2)); // x_used > 0, Smi. R2 = x_used + 1, round up. |
| 598 | __ AsrImmediate(R2, R2, 2); // R2 = num of digit pairs to read. |
| 599 | // R4 = r_digits, R5 = n, n is Smi, n % _DIGIT_BITS != 0. |
| 600 | __ ldp(R4, R5, Address(SP, 0 * target::kWordSize, Address::PairOffset)); |
| 601 | __ SmiUntag(R5); |
| 602 | // R0 = n ~/ (2*_DIGIT_BITS) |
| 603 | __ AsrImmediate(R0, R5, 6); |
| 604 | // R6 = &x_digits[0] |
| 605 | __ add(R6, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 606 | // R7 = &x_digits[2*R2] |
| 607 | __ add(R7, R6, Operand(R2, LSL, 3)); |
| 608 | // R8 = &r_digits[2*1] |
| 609 | __ add(R8, R4, |
| 610 | Operand(target::TypedData::data_offset() - kHeapObjectTag + |
| 611 | 2 * kBytesPerBigIntDigit)); |
| 612 | // R8 = &r_digits[2*(R2 + n ~/ (2*_DIGIT_BITS) + 1)] |
| 613 | __ add(R0, R0, Operand(R2)); |
| 614 | __ add(R8, R8, Operand(R0, LSL, 3)); |
| 615 | // R3 = n % (2 * _DIGIT_BITS) |
| 616 | __ AndImmediate(R3, R5, 63); |
| 617 | // R2 = 64 - R3 |
| 618 | __ LoadImmediate(R2, 64); |
| 619 | __ sub(R2, R2, Operand(R3)); |
| 620 | __ mov(R1, ZR); |
| 621 | Label loop; |
| 622 | __ Bind(&loop); |
| 623 | __ ldr(R0, Address(R7, -2 * kBytesPerBigIntDigit, Address::PreIndex)); |
| 624 | __ lsrv(R4, R0, R2); |
| 625 | __ orr(R1, R1, Operand(R4)); |
| 626 | __ str(R1, Address(R8, -2 * kBytesPerBigIntDigit, Address::PreIndex)); |
| 627 | __ lslv(R1, R0, R3); |
| 628 | __ cmp(R7, Operand(R6)); |
| 629 | __ b(&loop, NE); |
| 630 | __ str(R1, Address(R8, -2 * kBytesPerBigIntDigit, Address::PreIndex)); |
| 631 | __ LoadObject(R0, NullObject()); |
| 632 | __ ret(); |
| 633 | } |
| 634 | |
| 635 | void AsmIntrinsifier::Bigint_rsh(Assembler* assembler, Label* normal_ir_body) { |
| 636 | // static void _lsh(Uint32List x_digits, int x_used, int n, |
| 637 | // Uint32List r_digits) |
| 638 | |
| 639 | // R2 = x_used, R3 = x_digits, x_used > 0, x_used is Smi. |
| 640 | __ ldp(R2, R3, Address(SP, 2 * target::kWordSize, Address::PairOffset)); |
| 641 | __ add(R2, R2, Operand(2)); // x_used > 0, Smi. R2 = x_used + 1, round up. |
| 642 | __ AsrImmediate(R2, R2, 2); // R2 = num of digit pairs to read. |
| 643 | // R4 = r_digits, R5 = n, n is Smi, n % _DIGIT_BITS != 0. |
| 644 | __ ldp(R4, R5, Address(SP, 0 * target::kWordSize, Address::PairOffset)); |
| 645 | __ SmiUntag(R5); |
| 646 | // R0 = n ~/ (2*_DIGIT_BITS) |
| 647 | __ AsrImmediate(R0, R5, 6); |
| 648 | // R8 = &r_digits[0] |
| 649 | __ add(R8, R4, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 650 | // R7 = &x_digits[2*(n ~/ (2*_DIGIT_BITS))] |
| 651 | __ add(R7, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 652 | __ add(R7, R7, Operand(R0, LSL, 3)); |
| 653 | // R6 = &r_digits[2*(R2 - n ~/ (2*_DIGIT_BITS) - 1)] |
| 654 | __ add(R0, R0, Operand(1)); |
| 655 | __ sub(R0, R2, Operand(R0)); |
| 656 | __ add(R6, R8, Operand(R0, LSL, 3)); |
| 657 | // R3 = n % (2*_DIGIT_BITS) |
| 658 | __ AndImmediate(R3, R5, 63); |
| 659 | // R2 = 64 - R3 |
| 660 | __ LoadImmediate(R2, 64); |
| 661 | __ sub(R2, R2, Operand(R3)); |
| 662 | // R1 = x_digits[n ~/ (2*_DIGIT_BITS)] >> (n % (2*_DIGIT_BITS)) |
| 663 | __ ldr(R1, Address(R7, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 664 | __ lsrv(R1, R1, R3); |
| 665 | Label loop_entry; |
| 666 | __ b(&loop_entry); |
| 667 | Label loop; |
| 668 | __ Bind(&loop); |
| 669 | __ ldr(R0, Address(R7, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 670 | __ lslv(R4, R0, R2); |
| 671 | __ orr(R1, R1, Operand(R4)); |
| 672 | __ str(R1, Address(R8, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 673 | __ lsrv(R1, R0, R3); |
| 674 | __ Bind(&loop_entry); |
| 675 | __ cmp(R8, Operand(R6)); |
| 676 | __ b(&loop, NE); |
| 677 | __ str(R1, Address(R8, 0)); |
| 678 | __ LoadObject(R0, NullObject()); |
| 679 | __ ret(); |
| 680 | } |
| 681 | |
| 682 | void AsmIntrinsifier::Bigint_absAdd(Assembler* assembler, |
| 683 | Label* normal_ir_body) { |
| 684 | // static void _absAdd(Uint32List digits, int used, |
| 685 | // Uint32List a_digits, int a_used, |
| 686 | // Uint32List r_digits) |
| 687 | |
| 688 | // R2 = used, R3 = digits |
| 689 | __ ldp(R2, R3, Address(SP, 3 * target::kWordSize, Address::PairOffset)); |
| 690 | __ add(R2, R2, Operand(2)); // used > 0, Smi. R2 = used + 1, round up. |
| 691 | __ add(R2, ZR, Operand(R2, ASR, 2)); // R2 = num of digit pairs to process. |
| 692 | // R3 = &digits[0] |
| 693 | __ add(R3, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 694 | |
| 695 | // R4 = a_used, R5 = a_digits |
| 696 | __ ldp(R4, R5, Address(SP, 1 * target::kWordSize, Address::PairOffset)); |
| 697 | __ add(R4, R4, Operand(2)); // a_used > 0, Smi. R4 = a_used + 1, round up. |
| 698 | __ add(R4, ZR, Operand(R4, ASR, 2)); // R4 = num of digit pairs to process. |
| 699 | // R5 = &a_digits[0] |
| 700 | __ add(R5, R5, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 701 | |
| 702 | // R6 = r_digits |
| 703 | __ ldr(R6, Address(SP, 0 * target::kWordSize)); |
| 704 | // R6 = &r_digits[0] |
| 705 | __ add(R6, R6, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 706 | |
| 707 | // R7 = &digits[a_used rounded up to even number]. |
| 708 | __ add(R7, R3, Operand(R4, LSL, 3)); |
| 709 | |
| 710 | // R8 = &digits[a_used rounded up to even number]. |
| 711 | __ add(R8, R3, Operand(R2, LSL, 3)); |
| 712 | |
| 713 | __ adds(R0, R0, Operand(0)); // carry flag = 0 |
| 714 | Label add_loop; |
| 715 | __ Bind(&add_loop); |
| 716 | // Loop (a_used+1)/2 times, a_used > 0. |
| 717 | __ ldr(R0, Address(R3, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 718 | __ ldr(R1, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 719 | __ adcs(R0, R0, R1); |
| 720 | __ sub(R9, R3, Operand(R7)); // Does not affect carry flag. |
| 721 | __ str(R0, Address(R6, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 722 | __ cbnz(&add_loop, R9); // Does not affect carry flag. |
| 723 | |
| 724 | Label last_carry; |
| 725 | __ sub(R9, R3, Operand(R8)); // Does not affect carry flag. |
| 726 | __ cbz(&last_carry, R9); // If used - a_used == 0. |
| 727 | |
| 728 | Label carry_loop; |
| 729 | __ Bind(&carry_loop); |
| 730 | // Loop (used+1)/2 - (a_used+1)/2 times, used - a_used > 0. |
| 731 | __ ldr(R0, Address(R3, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 732 | __ adcs(R0, R0, ZR); |
| 733 | __ sub(R9, R3, Operand(R8)); // Does not affect carry flag. |
| 734 | __ str(R0, Address(R6, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 735 | __ cbnz(&carry_loop, R9); |
| 736 | |
| 737 | __ Bind(&last_carry); |
| 738 | Label done; |
| 739 | __ b(&done, CC); |
| 740 | __ LoadImmediate(R0, 1); |
| 741 | __ str(R0, Address(R6, 0)); |
| 742 | |
| 743 | __ Bind(&done); |
| 744 | __ LoadObject(R0, NullObject()); |
| 745 | __ ret(); |
| 746 | } |
| 747 | |
| 748 | void AsmIntrinsifier::Bigint_absSub(Assembler* assembler, |
| 749 | Label* normal_ir_body) { |
| 750 | // static void _absSub(Uint32List digits, int used, |
| 751 | // Uint32List a_digits, int a_used, |
| 752 | // Uint32List r_digits) |
| 753 | |
| 754 | // R2 = used, R3 = digits |
| 755 | __ ldp(R2, R3, Address(SP, 3 * target::kWordSize, Address::PairOffset)); |
| 756 | __ add(R2, R2, Operand(2)); // used > 0, Smi. R2 = used + 1, round up. |
| 757 | __ add(R2, ZR, Operand(R2, ASR, 2)); // R2 = num of digit pairs to process. |
| 758 | // R3 = &digits[0] |
| 759 | __ add(R3, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 760 | |
| 761 | // R4 = a_used, R5 = a_digits |
| 762 | __ ldp(R4, R5, Address(SP, 1 * target::kWordSize, Address::PairOffset)); |
| 763 | __ add(R4, R4, Operand(2)); // a_used > 0, Smi. R4 = a_used + 1, round up. |
| 764 | __ add(R4, ZR, Operand(R4, ASR, 2)); // R4 = num of digit pairs to process. |
| 765 | // R5 = &a_digits[0] |
| 766 | __ add(R5, R5, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 767 | |
| 768 | // R6 = r_digits |
| 769 | __ ldr(R6, Address(SP, 0 * target::kWordSize)); |
| 770 | // R6 = &r_digits[0] |
| 771 | __ add(R6, R6, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 772 | |
| 773 | // R7 = &digits[a_used rounded up to even number]. |
| 774 | __ add(R7, R3, Operand(R4, LSL, 3)); |
| 775 | |
| 776 | // R8 = &digits[a_used rounded up to even number]. |
| 777 | __ add(R8, R3, Operand(R2, LSL, 3)); |
| 778 | |
| 779 | __ subs(R0, R0, Operand(0)); // carry flag = 1 |
| 780 | Label sub_loop; |
| 781 | __ Bind(&sub_loop); |
| 782 | // Loop (a_used+1)/2 times, a_used > 0. |
| 783 | __ ldr(R0, Address(R3, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 784 | __ ldr(R1, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 785 | __ sbcs(R0, R0, R1); |
| 786 | __ sub(R9, R3, Operand(R7)); // Does not affect carry flag. |
| 787 | __ str(R0, Address(R6, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 788 | __ cbnz(&sub_loop, R9); // Does not affect carry flag. |
| 789 | |
| 790 | Label done; |
| 791 | __ sub(R9, R3, Operand(R8)); // Does not affect carry flag. |
| 792 | __ cbz(&done, R9); // If used - a_used == 0. |
| 793 | |
| 794 | Label carry_loop; |
| 795 | __ Bind(&carry_loop); |
| 796 | // Loop (used+1)/2 - (a_used+1)/2 times, used - a_used > 0. |
| 797 | __ ldr(R0, Address(R3, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 798 | __ sbcs(R0, R0, ZR); |
| 799 | __ sub(R9, R3, Operand(R8)); // Does not affect carry flag. |
| 800 | __ str(R0, Address(R6, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 801 | __ cbnz(&carry_loop, R9); |
| 802 | |
| 803 | __ Bind(&done); |
| 804 | __ LoadObject(R0, NullObject()); |
| 805 | __ ret(); |
| 806 | } |
| 807 | |
| 808 | void AsmIntrinsifier::Bigint_mulAdd(Assembler* assembler, |
| 809 | Label* normal_ir_body) { |
| 810 | // Pseudo code: |
| 811 | // static int _mulAdd(Uint32List x_digits, int xi, |
| 812 | // Uint32List m_digits, int i, |
| 813 | // Uint32List a_digits, int j, int n) { |
| 814 | // uint64_t x = x_digits[xi >> 1 .. (xi >> 1) + 1]; // xi is Smi and even. |
| 815 | // if (x == 0 || n == 0) { |
| 816 | // return 2; |
| 817 | // } |
| 818 | // uint64_t* mip = &m_digits[i >> 1]; // i is Smi and even. |
| 819 | // uint64_t* ajp = &a_digits[j >> 1]; // j is Smi and even. |
| 820 | // uint64_t c = 0; |
| 821 | // SmiUntag(n); // n is Smi and even. |
| 822 | // n = (n + 1)/2; // Number of pairs to process. |
| 823 | // do { |
| 824 | // uint64_t mi = *mip++; |
| 825 | // uint64_t aj = *ajp; |
| 826 | // uint128_t t = x*mi + aj + c; // 64-bit * 64-bit -> 128-bit. |
| 827 | // *ajp++ = low64(t); |
| 828 | // c = high64(t); |
| 829 | // } while (--n > 0); |
| 830 | // while (c != 0) { |
| 831 | // uint128_t t = *ajp + c; |
| 832 | // *ajp++ = low64(t); |
| 833 | // c = high64(t); // c == 0 or 1. |
| 834 | // } |
| 835 | // return 2; |
| 836 | // } |
| 837 | |
| 838 | Label done; |
| 839 | // R3 = x, no_op if x == 0 |
| 840 | // R0 = xi as Smi, R1 = x_digits. |
| 841 | __ ldp(R0, R1, Address(SP, 5 * target::kWordSize, Address::PairOffset)); |
| 842 | __ add(R1, R1, Operand(R0, LSL, 1)); |
| 843 | __ ldr(R3, FieldAddress(R1, target::TypedData::data_offset())); |
| 844 | __ tst(R3, Operand(R3)); |
| 845 | __ b(&done, EQ); |
| 846 | |
| 847 | // R6 = (SmiUntag(n) + 1)/2, no_op if n == 0 |
| 848 | __ ldr(R6, Address(SP, 0 * target::kWordSize)); |
| 849 | __ add(R6, R6, Operand(2)); |
| 850 | __ adds(R6, ZR, Operand(R6, ASR, 2)); // SmiUntag(R6) and set cc. |
| 851 | __ b(&done, EQ); |
| 852 | |
| 853 | // R4 = mip = &m_digits[i >> 1] |
| 854 | // R0 = i as Smi, R1 = m_digits. |
| 855 | __ ldp(R0, R1, Address(SP, 3 * target::kWordSize, Address::PairOffset)); |
| 856 | __ add(R1, R1, Operand(R0, LSL, 1)); |
| 857 | __ add(R4, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 858 | |
| 859 | // R5 = ajp = &a_digits[j >> 1] |
| 860 | // R0 = j as Smi, R1 = a_digits. |
| 861 | __ ldp(R0, R1, Address(SP, 1 * target::kWordSize, Address::PairOffset)); |
| 862 | __ add(R1, R1, Operand(R0, LSL, 1)); |
| 863 | __ add(R5, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 864 | |
| 865 | // R1 = c = 0 |
| 866 | __ mov(R1, ZR); |
| 867 | |
| 868 | Label muladd_loop; |
| 869 | __ Bind(&muladd_loop); |
| 870 | // x: R3 |
| 871 | // mip: R4 |
| 872 | // ajp: R5 |
| 873 | // c: R1 |
| 874 | // n: R6 |
| 875 | // t: R7:R8 (not live at loop entry) |
| 876 | |
| 877 | // uint64_t mi = *mip++ |
| 878 | __ ldr(R2, Address(R4, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 879 | |
| 880 | // uint64_t aj = *ajp |
| 881 | __ ldr(R0, Address(R5, 0)); |
| 882 | |
| 883 | // uint128_t t = x*mi + aj + c |
| 884 | __ mul(R7, R2, R3); // R7 = low64(R2*R3). |
| 885 | __ umulh(R8, R2, R3); // R8 = high64(R2*R3), t = R8:R7 = x*mi. |
| 886 | __ adds(R7, R7, Operand(R0)); |
| 887 | __ adc(R8, R8, ZR); // t += aj. |
| 888 | __ adds(R0, R7, Operand(R1)); // t += c, R0 = low64(t). |
| 889 | __ adc(R1, R8, ZR); // c = R1 = high64(t). |
| 890 | |
| 891 | // *ajp++ = low64(t) = R0 |
| 892 | __ str(R0, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 893 | |
| 894 | // while (--n > 0) |
| 895 | __ subs(R6, R6, Operand(1)); // --n |
| 896 | __ b(&muladd_loop, NE); |
| 897 | |
| 898 | __ tst(R1, Operand(R1)); |
| 899 | __ b(&done, EQ); |
| 900 | |
| 901 | // *ajp++ += c |
| 902 | __ ldr(R0, Address(R5, 0)); |
| 903 | __ adds(R0, R0, Operand(R1)); |
| 904 | __ str(R0, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 905 | __ b(&done, CC); |
| 906 | |
| 907 | Label propagate_carry_loop; |
| 908 | __ Bind(&propagate_carry_loop); |
| 909 | __ ldr(R0, Address(R5, 0)); |
| 910 | __ adds(R0, R0, Operand(1)); |
| 911 | __ str(R0, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 912 | __ b(&propagate_carry_loop, CS); |
| 913 | |
| 914 | __ Bind(&done); |
| 915 | __ LoadImmediate(R0, target::ToRawSmi(2)); // Two digits processed. |
| 916 | __ ret(); |
| 917 | } |
| 918 | |
| 919 | void AsmIntrinsifier::Bigint_sqrAdd(Assembler* assembler, |
| 920 | Label* normal_ir_body) { |
| 921 | // Pseudo code: |
| 922 | // static int _sqrAdd(Uint32List x_digits, int i, |
| 923 | // Uint32List a_digits, int used) { |
| 924 | // uint64_t* xip = &x_digits[i >> 1]; // i is Smi and even. |
| 925 | // uint64_t x = *xip++; |
| 926 | // if (x == 0) return 2; |
| 927 | // uint64_t* ajp = &a_digits[i]; // j == 2*i, i is Smi. |
| 928 | // uint64_t aj = *ajp; |
| 929 | // uint128_t t = x*x + aj; |
| 930 | // *ajp++ = low64(t); |
| 931 | // uint128_t c = high64(t); |
| 932 | // int n = ((used - i + 2) >> 2) - 1; // used and i are Smi. n: num pairs. |
| 933 | // while (--n >= 0) { |
| 934 | // uint64_t xi = *xip++; |
| 935 | // uint64_t aj = *ajp; |
| 936 | // uint192_t t = 2*x*xi + aj + c; // 2-bit * 64-bit * 64-bit -> 129-bit. |
| 937 | // *ajp++ = low64(t); |
| 938 | // c = high128(t); // 65-bit. |
| 939 | // } |
| 940 | // uint64_t aj = *ajp; |
| 941 | // uint128_t t = aj + c; // 64-bit + 65-bit -> 66-bit. |
| 942 | // *ajp++ = low64(t); |
| 943 | // *ajp = high64(t); |
| 944 | // return 2; |
| 945 | // } |
| 946 | |
| 947 | // R4 = xip = &x_digits[i >> 1] |
| 948 | // R2 = i as Smi, R3 = x_digits |
| 949 | __ ldp(R2, R3, Address(SP, 2 * target::kWordSize, Address::PairOffset)); |
| 950 | __ add(R3, R3, Operand(R2, LSL, 1)); |
| 951 | __ add(R4, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 952 | |
| 953 | // R3 = x = *xip++, return if x == 0 |
| 954 | Label x_zero; |
| 955 | __ ldr(R3, Address(R4, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 956 | __ tst(R3, Operand(R3)); |
| 957 | __ b(&x_zero, EQ); |
| 958 | |
| 959 | // R5 = ajp = &a_digits[i] |
| 960 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); // a_digits |
| 961 | __ add(R1, R1, Operand(R2, LSL, 2)); // j == 2*i, i is Smi. |
| 962 | __ add(R5, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 963 | |
| 964 | // R6:R1 = t = x*x + *ajp |
| 965 | __ ldr(R0, Address(R5, 0)); |
| 966 | __ mul(R1, R3, R3); // R1 = low64(R3*R3). |
| 967 | __ umulh(R6, R3, R3); // R6 = high64(R3*R3). |
| 968 | __ adds(R1, R1, Operand(R0)); // R6:R1 += *ajp. |
| 969 | __ adc(R6, R6, ZR); // R6 = low64(c) = high64(t). |
| 970 | __ mov(R7, ZR); // R7 = high64(c) = 0. |
| 971 | |
| 972 | // *ajp++ = low64(t) = R1 |
| 973 | __ str(R1, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 974 | |
| 975 | // int n = (used - i + 1)/2 - 1 |
| 976 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); // used is Smi |
| 977 | __ sub(R8, R0, Operand(R2)); |
| 978 | __ add(R8, R8, Operand(2)); |
| 979 | __ movn(R0, Immediate(1), 0); // R0 = ~1 = -2. |
| 980 | __ adds(R8, R0, Operand(R8, ASR, 2)); // while (--n >= 0) |
| 981 | |
| 982 | Label loop, done; |
| 983 | __ b(&done, MI); |
| 984 | |
| 985 | __ Bind(&loop); |
| 986 | // x: R3 |
| 987 | // xip: R4 |
| 988 | // ajp: R5 |
| 989 | // c: R7:R6 |
| 990 | // t: R2:R1:R0 (not live at loop entry) |
| 991 | // n: R8 |
| 992 | |
| 993 | // uint64_t xi = *xip++ |
| 994 | __ ldr(R2, Address(R4, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 995 | |
| 996 | // uint192_t t = R2:R1:R0 = 2*x*xi + aj + c |
| 997 | __ mul(R0, R2, R3); // R0 = low64(R2*R3) = low64(x*xi). |
| 998 | __ umulh(R1, R2, R3); // R1 = high64(R2*R3) = high64(x*xi). |
| 999 | __ adds(R0, R0, Operand(R0)); |
| 1000 | __ adcs(R1, R1, R1); |
| 1001 | __ adc(R2, ZR, ZR); // R2:R1:R0 = R1:R0 + R1:R0 = 2*x*xi. |
| 1002 | __ adds(R0, R0, Operand(R6)); |
| 1003 | __ adcs(R1, R1, R7); |
| 1004 | __ adc(R2, R2, ZR); // R2:R1:R0 += c. |
| 1005 | __ ldr(R7, Address(R5, 0)); // R7 = aj = *ajp. |
| 1006 | __ adds(R0, R0, Operand(R7)); |
| 1007 | __ adcs(R6, R1, ZR); |
| 1008 | __ adc(R7, R2, ZR); // R7:R6:R0 = 2*x*xi + aj + c. |
| 1009 | |
| 1010 | // *ajp++ = low64(t) = R0 |
| 1011 | __ str(R0, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); |
| 1012 | |
| 1013 | // while (--n >= 0) |
| 1014 | __ subs(R8, R8, Operand(1)); // --n |
| 1015 | __ b(&loop, PL); |
| 1016 | |
| 1017 | __ Bind(&done); |
| 1018 | // uint64_t aj = *ajp |
| 1019 | __ ldr(R0, Address(R5, 0)); |
| 1020 | |
| 1021 | // uint128_t t = aj + c |
| 1022 | __ adds(R6, R6, Operand(R0)); |
| 1023 | __ adc(R7, R7, ZR); |
| 1024 | |
| 1025 | // *ajp = low64(t) = R6 |
| 1026 | // *(ajp + 1) = high64(t) = R7 |
| 1027 | __ stp(R6, R7, Address(R5, 0, Address::PairOffset)); |
| 1028 | |
| 1029 | __ Bind(&x_zero); |
| 1030 | __ LoadImmediate(R0, target::ToRawSmi(2)); // Two digits processed. |
| 1031 | __ ret(); |
| 1032 | } |
| 1033 | |
| 1034 | void AsmIntrinsifier::Bigint_estimateQuotientDigit(Assembler* assembler, |
| 1035 | Label* normal_ir_body) { |
| 1036 | // There is no 128-bit by 64-bit division instruction on arm64, so we use two |
| 1037 | // 64-bit by 32-bit divisions and two 64-bit by 64-bit multiplications to |
| 1038 | // adjust the two 32-bit digits of the estimated quotient. |
| 1039 | // |
| 1040 | // Pseudo code: |
| 1041 | // static int _estQuotientDigit(Uint32List args, Uint32List digits, int i) { |
| 1042 | // uint64_t yt = args[_YT_LO .. _YT]; // _YT_LO == 0, _YT == 1. |
| 1043 | // uint64_t* dp = &digits[(i >> 1) - 1]; // i is Smi. |
| 1044 | // uint64_t dh = dp[0]; // dh == digits[(i >> 1) - 1 .. i >> 1]. |
| 1045 | // uint64_t qd; |
| 1046 | // if (dh == yt) { |
| 1047 | // qd = (DIGIT_MASK << 32) | DIGIT_MASK; |
| 1048 | // } else { |
| 1049 | // dl = dp[-1]; // dl == digits[(i >> 1) - 3 .. (i >> 1) - 2]. |
| 1050 | // // We cannot calculate qd = dh:dl / yt, so ... |
| 1051 | // uint64_t yth = yt >> 32; |
| 1052 | // uint64_t qh = dh / yth; |
| 1053 | // uint128_t ph:pl = yt*qh; |
| 1054 | // uint64_t tl = (dh << 32)|(dl >> 32); |
| 1055 | // uint64_t th = dh >> 32; |
| 1056 | // while ((ph > th) || ((ph == th) && (pl > tl))) { |
| 1057 | // if (pl < yt) --ph; |
| 1058 | // pl -= yt; |
| 1059 | // --qh; |
| 1060 | // } |
| 1061 | // qd = qh << 32; |
| 1062 | // tl = (pl << 32); |
| 1063 | // th = (ph << 32)|(pl >> 32); |
| 1064 | // if (tl > dl) ++th; |
| 1065 | // dl -= tl; |
| 1066 | // dh -= th; |
| 1067 | // uint64_t ql = ((dh << 32)|(dl >> 32)) / yth; |
| 1068 | // ph:pl = yt*ql; |
| 1069 | // while ((ph > dh) || ((ph == dh) && (pl > dl))) { |
| 1070 | // if (pl < yt) --ph; |
| 1071 | // pl -= yt; |
| 1072 | // --ql; |
| 1073 | // } |
| 1074 | // qd |= ql; |
| 1075 | // } |
| 1076 | // args[_QD .. _QD_HI] = qd; // _QD == 2, _QD_HI == 3. |
| 1077 | // return 2; |
| 1078 | // } |
| 1079 | |
| 1080 | // R4 = args |
| 1081 | __ ldr(R4, Address(SP, 2 * target::kWordSize)); // args |
| 1082 | |
| 1083 | // R3 = yt = args[0..1] |
| 1084 | __ ldr(R3, FieldAddress(R4, target::TypedData::data_offset())); |
| 1085 | |
| 1086 | // R2 = dh = digits[(i >> 1) - 1 .. i >> 1] |
| 1087 | // R0 = i as Smi, R1 = digits |
| 1088 | __ ldp(R0, R1, Address(SP, 0 * target::kWordSize, Address::PairOffset)); |
| 1089 | __ add(R1, R1, Operand(R0, LSL, 1)); |
| 1090 | __ ldr(R2, FieldAddress( |
| 1091 | R1, target::TypedData::data_offset() - kBytesPerBigIntDigit)); |
| 1092 | |
| 1093 | // R0 = qd = (DIGIT_MASK << 32) | DIGIT_MASK = -1 |
| 1094 | __ movn(R0, Immediate(0), 0); |
| 1095 | |
| 1096 | // Return qd if dh == yt |
| 1097 | Label return_qd; |
| 1098 | __ cmp(R2, Operand(R3)); |
| 1099 | __ b(&return_qd, EQ); |
| 1100 | |
| 1101 | // R1 = dl = digits[(i >> 1) - 3 .. (i >> 1) - 2] |
| 1102 | __ ldr(R1, FieldAddress(R1, target::TypedData::data_offset() - |
| 1103 | 3 * kBytesPerBigIntDigit)); |
| 1104 | |
| 1105 | // R5 = yth = yt >> 32 |
| 1106 | __ orr(R5, ZR, Operand(R3, LSR, 32)); |
| 1107 | |
| 1108 | // R6 = qh = dh / yth |
| 1109 | __ udiv(R6, R2, R5); |
| 1110 | |
| 1111 | // R8:R7 = ph:pl = yt*qh |
| 1112 | __ mul(R7, R3, R6); |
| 1113 | __ umulh(R8, R3, R6); |
| 1114 | |
| 1115 | // R9 = tl = (dh << 32)|(dl >> 32) |
| 1116 | __ orr(R9, ZR, Operand(R2, LSL, 32)); |
| 1117 | __ orr(R9, R9, Operand(R1, LSR, 32)); |
| 1118 | |
| 1119 | // R10 = th = dh >> 32 |
| 1120 | __ orr(R10, ZR, Operand(R2, LSR, 32)); |
| 1121 | |
| 1122 | // while ((ph > th) || ((ph == th) && (pl > tl))) |
| 1123 | Label qh_adj_loop, qh_adj, qh_ok; |
| 1124 | __ Bind(&qh_adj_loop); |
| 1125 | __ cmp(R8, Operand(R10)); |
| 1126 | __ b(&qh_adj, HI); |
| 1127 | __ b(&qh_ok, NE); |
| 1128 | __ cmp(R7, Operand(R9)); |
| 1129 | __ b(&qh_ok, LS); |
| 1130 | |
| 1131 | __ Bind(&qh_adj); |
| 1132 | // if (pl < yt) --ph |
| 1133 | __ sub(TMP, R8, Operand(1)); // TMP = ph - 1 |
| 1134 | __ cmp(R7, Operand(R3)); |
| 1135 | __ csel(R8, TMP, R8, CC); // R8 = R7 < R3 ? TMP : R8 |
| 1136 | |
| 1137 | // pl -= yt |
| 1138 | __ sub(R7, R7, Operand(R3)); |
| 1139 | |
| 1140 | // --qh |
| 1141 | __ sub(R6, R6, Operand(1)); |
| 1142 | |
| 1143 | // Continue while loop. |
| 1144 | __ b(&qh_adj_loop); |
| 1145 | |
| 1146 | __ Bind(&qh_ok); |
| 1147 | // R0 = qd = qh << 32 |
| 1148 | __ orr(R0, ZR, Operand(R6, LSL, 32)); |
| 1149 | |
| 1150 | // tl = (pl << 32) |
| 1151 | __ orr(R9, ZR, Operand(R7, LSL, 32)); |
| 1152 | |
| 1153 | // th = (ph << 32)|(pl >> 32); |
| 1154 | __ orr(R10, ZR, Operand(R8, LSL, 32)); |
| 1155 | __ orr(R10, R10, Operand(R7, LSR, 32)); |
| 1156 | |
| 1157 | // if (tl > dl) ++th |
| 1158 | __ add(TMP, R10, Operand(1)); // TMP = th + 1 |
| 1159 | __ cmp(R9, Operand(R1)); |
| 1160 | __ csel(R10, TMP, R10, HI); // R10 = R9 > R1 ? TMP : R10 |
| 1161 | |
| 1162 | // dl -= tl |
| 1163 | __ sub(R1, R1, Operand(R9)); |
| 1164 | |
| 1165 | // dh -= th |
| 1166 | __ sub(R2, R2, Operand(R10)); |
| 1167 | |
| 1168 | // R6 = ql = ((dh << 32)|(dl >> 32)) / yth |
| 1169 | __ orr(R6, ZR, Operand(R2, LSL, 32)); |
| 1170 | __ orr(R6, R6, Operand(R1, LSR, 32)); |
| 1171 | __ udiv(R6, R6, R5); |
| 1172 | |
| 1173 | // R8:R7 = ph:pl = yt*ql |
| 1174 | __ mul(R7, R3, R6); |
| 1175 | __ umulh(R8, R3, R6); |
| 1176 | |
| 1177 | // while ((ph > dh) || ((ph == dh) && (pl > dl))) { |
| 1178 | Label ql_adj_loop, ql_adj, ql_ok; |
| 1179 | __ Bind(&ql_adj_loop); |
| 1180 | __ cmp(R8, Operand(R2)); |
| 1181 | __ b(&ql_adj, HI); |
| 1182 | __ b(&ql_ok, NE); |
| 1183 | __ cmp(R7, Operand(R1)); |
| 1184 | __ b(&ql_ok, LS); |
| 1185 | |
| 1186 | __ Bind(&ql_adj); |
| 1187 | // if (pl < yt) --ph |
| 1188 | __ sub(TMP, R8, Operand(1)); // TMP = ph - 1 |
| 1189 | __ cmp(R7, Operand(R3)); |
| 1190 | __ csel(R8, TMP, R8, CC); // R8 = R7 < R3 ? TMP : R8 |
| 1191 | |
| 1192 | // pl -= yt |
| 1193 | __ sub(R7, R7, Operand(R3)); |
| 1194 | |
| 1195 | // --ql |
| 1196 | __ sub(R6, R6, Operand(1)); |
| 1197 | |
| 1198 | // Continue while loop. |
| 1199 | __ b(&ql_adj_loop); |
| 1200 | |
| 1201 | __ Bind(&ql_ok); |
| 1202 | // qd |= ql; |
| 1203 | __ orr(R0, R0, Operand(R6)); |
| 1204 | |
| 1205 | __ Bind(&return_qd); |
| 1206 | // args[2..3] = qd |
| 1207 | __ str(R0, FieldAddress(R4, target::TypedData::data_offset() + |
| 1208 | 2 * kBytesPerBigIntDigit)); |
| 1209 | |
| 1210 | __ LoadImmediate(R0, target::ToRawSmi(2)); // Two digits processed. |
| 1211 | __ ret(); |
| 1212 | } |
| 1213 | |
| 1214 | void AsmIntrinsifier::Montgomery_mulMod(Assembler* assembler, |
| 1215 | Label* normal_ir_body) { |
| 1216 | // Pseudo code: |
| 1217 | // static int _mulMod(Uint32List args, Uint32List digits, int i) { |
| 1218 | // uint64_t rho = args[_RHO .. _RHO_HI]; // _RHO == 2, _RHO_HI == 3. |
| 1219 | // uint64_t d = digits[i >> 1 .. (i >> 1) + 1]; // i is Smi and even. |
| 1220 | // uint128_t t = rho*d; |
| 1221 | // args[_MU .. _MU_HI] = t mod DIGIT_BASE^2; // _MU == 4, _MU_HI == 5. |
| 1222 | // return 2; |
| 1223 | // } |
| 1224 | |
| 1225 | // R4 = args |
| 1226 | __ ldr(R4, Address(SP, 2 * target::kWordSize)); // args |
| 1227 | |
| 1228 | // R3 = rho = args[2..3] |
| 1229 | __ ldr(R3, FieldAddress(R4, target::TypedData::data_offset() + |
| 1230 | 2 * kBytesPerBigIntDigit)); |
| 1231 | |
| 1232 | // R2 = digits[i >> 1 .. (i >> 1) + 1] |
| 1233 | // R0 = i as Smi, R1 = digits |
| 1234 | __ ldp(R0, R1, Address(SP, 0 * target::kWordSize, Address::PairOffset)); |
| 1235 | __ add(R1, R1, Operand(R0, LSL, 1)); |
| 1236 | __ ldr(R2, FieldAddress(R1, target::TypedData::data_offset())); |
| 1237 | |
| 1238 | // R0 = rho*d mod DIGIT_BASE |
| 1239 | __ mul(R0, R2, R3); // R0 = low64(R2*R3). |
| 1240 | |
| 1241 | // args[4 .. 5] = R0 |
| 1242 | __ str(R0, FieldAddress(R4, target::TypedData::data_offset() + |
| 1243 | 4 * kBytesPerBigIntDigit)); |
| 1244 | |
| 1245 | __ LoadImmediate(R0, target::ToRawSmi(2)); // Two digits processed. |
| 1246 | __ ret(); |
| 1247 | } |
| 1248 | |
| 1249 | // Check if the last argument is a double, jump to label 'is_smi' if smi |
| 1250 | // (easy to convert to double), otherwise jump to label 'not_double_smi', |
| 1251 | // Returns the last argument in R0. |
| 1252 | static void TestLastArgumentIsDouble(Assembler* assembler, |
| 1253 | Label* is_smi, |
| 1254 | Label* not_double_smi) { |
| 1255 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1256 | __ BranchIfSmi(R0, is_smi); |
| 1257 | __ CompareClassId(R0, kDoubleCid); |
| 1258 | __ b(not_double_smi, NE); |
| 1259 | // Fall through with Double in R0. |
| 1260 | } |
| 1261 | |
| 1262 | // Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown |
| 1263 | // type. Return true or false object in the register R0. Any NaN argument |
| 1264 | // returns false. Any non-double arg1 causes control flow to fall through to the |
| 1265 | // slow case (compiled method body). |
| 1266 | static void CompareDoubles(Assembler* assembler, |
| 1267 | Label* normal_ir_body, |
| 1268 | Condition true_condition) { |
| 1269 | Label is_smi, double_op, not_nan; |
| 1270 | |
| 1271 | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
| 1272 | // Both arguments are double, right operand is in R0. |
| 1273 | |
| 1274 | __ LoadDFieldFromOffset(V1, R0, target::Double::value_offset()); |
| 1275 | __ Bind(&double_op); |
| 1276 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // Left argument. |
| 1277 | __ LoadDFieldFromOffset(V0, R0, target::Double::value_offset()); |
| 1278 | |
| 1279 | __ fcmpd(V0, V1); |
| 1280 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 1281 | // Return false if D0 or D1 was NaN before checking true condition. |
| 1282 | __ b(¬_nan, VC); |
| 1283 | __ ret(); |
| 1284 | __ Bind(¬_nan); |
| 1285 | __ LoadObject(TMP, CastHandle<Object>(TrueObject())); |
| 1286 | __ csel(R0, TMP, R0, true_condition); |
| 1287 | __ ret(); |
| 1288 | |
| 1289 | __ Bind(&is_smi); // Convert R0 to a double. |
| 1290 | __ SmiUntag(R0); |
| 1291 | __ scvtfdx(V1, R0); |
| 1292 | __ b(&double_op); // Then do the comparison. |
| 1293 | __ Bind(normal_ir_body); |
| 1294 | } |
| 1295 | |
| 1296 | void AsmIntrinsifier::Double_greaterThan(Assembler* assembler, |
| 1297 | Label* normal_ir_body) { |
| 1298 | CompareDoubles(assembler, normal_ir_body, HI); |
| 1299 | } |
| 1300 | |
| 1301 | void AsmIntrinsifier::Double_greaterEqualThan(Assembler* assembler, |
| 1302 | Label* normal_ir_body) { |
| 1303 | CompareDoubles(assembler, normal_ir_body, CS); |
| 1304 | } |
| 1305 | |
| 1306 | void AsmIntrinsifier::Double_lessThan(Assembler* assembler, |
| 1307 | Label* normal_ir_body) { |
| 1308 | CompareDoubles(assembler, normal_ir_body, CC); |
| 1309 | } |
| 1310 | |
| 1311 | void AsmIntrinsifier::Double_equal(Assembler* assembler, |
| 1312 | Label* normal_ir_body) { |
| 1313 | CompareDoubles(assembler, normal_ir_body, EQ); |
| 1314 | } |
| 1315 | |
| 1316 | void AsmIntrinsifier::Double_lessEqualThan(Assembler* assembler, |
| 1317 | Label* normal_ir_body) { |
| 1318 | CompareDoubles(assembler, normal_ir_body, LS); |
| 1319 | } |
| 1320 | |
| 1321 | // Expects left argument to be double (receiver). Right argument is unknown. |
| 1322 | // Both arguments are on stack. |
| 1323 | static void DoubleArithmeticOperations(Assembler* assembler, |
| 1324 | Label* normal_ir_body, |
| 1325 | Token::Kind kind) { |
| 1326 | Label is_smi, double_op; |
| 1327 | |
| 1328 | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
| 1329 | // Both arguments are double, right operand is in R0. |
| 1330 | __ LoadDFieldFromOffset(V1, R0, target::Double::value_offset()); |
| 1331 | __ Bind(&double_op); |
| 1332 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // Left argument. |
| 1333 | __ LoadDFieldFromOffset(V0, R0, target::Double::value_offset()); |
| 1334 | switch (kind) { |
| 1335 | case Token::kADD: |
| 1336 | __ faddd(V0, V0, V1); |
| 1337 | break; |
| 1338 | case Token::kSUB: |
| 1339 | __ fsubd(V0, V0, V1); |
| 1340 | break; |
| 1341 | case Token::kMUL: |
| 1342 | __ fmuld(V0, V0, V1); |
| 1343 | break; |
| 1344 | case Token::kDIV: |
| 1345 | __ fdivd(V0, V0, V1); |
| 1346 | break; |
| 1347 | default: |
| 1348 | UNREACHABLE(); |
| 1349 | } |
| 1350 | const Class& double_class = DoubleClass(); |
| 1351 | __ TryAllocate(double_class, normal_ir_body, R0, R1); |
| 1352 | __ StoreDFieldToOffset(V0, R0, target::Double::value_offset()); |
| 1353 | __ ret(); |
| 1354 | |
| 1355 | __ Bind(&is_smi); // Convert R0 to a double. |
| 1356 | __ SmiUntag(R0); |
| 1357 | __ scvtfdx(V1, R0); |
| 1358 | __ b(&double_op); |
| 1359 | |
| 1360 | __ Bind(normal_ir_body); |
| 1361 | } |
| 1362 | |
| 1363 | void AsmIntrinsifier::Double_add(Assembler* assembler, Label* normal_ir_body) { |
| 1364 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kADD); |
| 1365 | } |
| 1366 | |
| 1367 | void AsmIntrinsifier::Double_mul(Assembler* assembler, Label* normal_ir_body) { |
| 1368 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kMUL); |
| 1369 | } |
| 1370 | |
| 1371 | void AsmIntrinsifier::Double_sub(Assembler* assembler, Label* normal_ir_body) { |
| 1372 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kSUB); |
| 1373 | } |
| 1374 | |
| 1375 | void AsmIntrinsifier::Double_div(Assembler* assembler, Label* normal_ir_body) { |
| 1376 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kDIV); |
| 1377 | } |
| 1378 | |
| 1379 | // Left is double, right is integer (Mint or Smi) |
| 1380 | void AsmIntrinsifier::Double_mulFromInteger(Assembler* assembler, |
| 1381 | Label* normal_ir_body) { |
| 1382 | // Only smis allowed. |
| 1383 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1384 | __ BranchIfNotSmi(R0, normal_ir_body); |
| 1385 | // Is Smi. |
| 1386 | __ SmiUntag(R0); |
| 1387 | __ scvtfdx(V1, R0); |
| 1388 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); |
| 1389 | __ LoadDFieldFromOffset(V0, R0, target::Double::value_offset()); |
| 1390 | __ fmuld(V0, V0, V1); |
| 1391 | const Class& double_class = DoubleClass(); |
| 1392 | __ TryAllocate(double_class, normal_ir_body, R0, R1); |
| 1393 | __ StoreDFieldToOffset(V0, R0, target::Double::value_offset()); |
| 1394 | __ ret(); |
| 1395 | __ Bind(normal_ir_body); |
| 1396 | } |
| 1397 | |
| 1398 | void AsmIntrinsifier::DoubleFromInteger(Assembler* assembler, |
| 1399 | Label* normal_ir_body) { |
| 1400 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1401 | __ BranchIfNotSmi(R0, normal_ir_body); |
| 1402 | // Is Smi. |
| 1403 | __ SmiUntag(R0); |
| 1404 | __ scvtfdx(V0, R0); |
| 1405 | const Class& double_class = DoubleClass(); |
| 1406 | __ TryAllocate(double_class, normal_ir_body, R0, R1); |
| 1407 | __ StoreDFieldToOffset(V0, R0, target::Double::value_offset()); |
| 1408 | __ ret(); |
| 1409 | __ Bind(normal_ir_body); |
| 1410 | } |
| 1411 | |
| 1412 | void AsmIntrinsifier::Double_getIsNaN(Assembler* assembler, |
| 1413 | Label* normal_ir_body) { |
| 1414 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1415 | __ LoadDFieldFromOffset(V0, R0, target::Double::value_offset()); |
| 1416 | __ fcmpd(V0, V0); |
| 1417 | __ LoadObject(TMP, CastHandle<Object>(FalseObject())); |
| 1418 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
| 1419 | __ csel(R0, TMP, R0, VC); |
| 1420 | __ ret(); |
| 1421 | } |
| 1422 | |
| 1423 | void AsmIntrinsifier::Double_getIsInfinite(Assembler* assembler, |
| 1424 | Label* normal_ir_body) { |
| 1425 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1426 | __ LoadFieldFromOffset(R0, R0, target::Double::value_offset()); |
| 1427 | // Mask off the sign. |
| 1428 | __ AndImmediate(R0, R0, 0x7FFFFFFFFFFFFFFFLL); |
| 1429 | // Compare with +infinity. |
| 1430 | __ CompareImmediate(R0, 0x7FF0000000000000LL); |
| 1431 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 1432 | __ LoadObject(TMP, CastHandle<Object>(TrueObject())); |
| 1433 | __ csel(R0, TMP, R0, EQ); |
| 1434 | __ ret(); |
| 1435 | } |
| 1436 | |
| 1437 | void AsmIntrinsifier::Double_getIsNegative(Assembler* assembler, |
| 1438 | Label* normal_ir_body) { |
| 1439 | const Register false_reg = R0; |
| 1440 | const Register true_reg = R2; |
| 1441 | Label is_false, is_true, is_zero; |
| 1442 | |
| 1443 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1444 | __ LoadDFieldFromOffset(V0, R0, target::Double::value_offset()); |
| 1445 | __ fcmpdz(V0); |
| 1446 | __ LoadObject(true_reg, CastHandle<Object>(TrueObject())); |
| 1447 | __ LoadObject(false_reg, CastHandle<Object>(FalseObject())); |
| 1448 | __ b(&is_false, VS); // NaN -> false. |
| 1449 | __ b(&is_zero, EQ); // Check for negative zero. |
| 1450 | __ b(&is_false, CS); // >= 0 -> false. |
| 1451 | |
| 1452 | __ Bind(&is_true); |
| 1453 | __ mov(R0, true_reg); |
| 1454 | |
| 1455 | __ Bind(&is_false); |
| 1456 | __ ret(); |
| 1457 | |
| 1458 | __ Bind(&is_zero); |
| 1459 | // Check for negative zero by looking at the sign bit. |
| 1460 | __ fmovrd(R1, V0); |
| 1461 | __ LsrImmediate(R1, R1, 63); |
| 1462 | __ tsti(R1, Immediate(1)); |
| 1463 | __ csel(R0, true_reg, false_reg, NE); // Sign bit set. |
| 1464 | __ ret(); |
| 1465 | } |
| 1466 | |
| 1467 | void AsmIntrinsifier::DoubleToInteger(Assembler* assembler, |
| 1468 | Label* normal_ir_body) { |
| 1469 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1470 | __ LoadDFieldFromOffset(V0, R0, target::Double::value_offset()); |
| 1471 | |
| 1472 | // Explicit NaN check, since ARM gives an FPU exception if you try to |
| 1473 | // convert NaN to an int. |
| 1474 | __ fcmpd(V0, V0); |
| 1475 | __ b(normal_ir_body, VS); |
| 1476 | |
| 1477 | __ fcvtzds(R0, V0); |
| 1478 | // Overflow is signaled with minint. |
| 1479 | // Check for overflow and that it fits into Smi. |
| 1480 | __ CompareImmediate(R0, 0xC000000000000000); |
| 1481 | __ b(normal_ir_body, MI); |
| 1482 | __ SmiTag(R0); |
| 1483 | __ ret(); |
| 1484 | __ Bind(normal_ir_body); |
| 1485 | } |
| 1486 | |
| 1487 | void AsmIntrinsifier::Double_hashCode(Assembler* assembler, |
| 1488 | Label* normal_ir_body) { |
| 1489 | // TODO(dartbug.com/31174): Convert this to a graph intrinsic. |
| 1490 | |
| 1491 | // Load double value and check that it isn't NaN, since ARM gives an |
| 1492 | // FPU exception if you try to convert NaN to an int. |
| 1493 | Label double_hash; |
| 1494 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); |
| 1495 | __ LoadDFieldFromOffset(V0, R1, target::Double::value_offset()); |
| 1496 | __ fcmpd(V0, V0); |
| 1497 | __ b(&double_hash, VS); |
| 1498 | |
| 1499 | // Convert double value to signed 64-bit int in R0 and back to a |
| 1500 | // double value in V1. |
| 1501 | __ fcvtzds(R0, V0); |
| 1502 | __ scvtfdx(V1, R0); |
| 1503 | |
| 1504 | // Tag the int as a Smi, making sure that it fits; this checks for |
| 1505 | // overflow in the conversion from double to int. Conversion |
| 1506 | // overflow is signalled by fcvt through clamping R0 to either |
| 1507 | // INT64_MAX or INT64_MIN (saturation). |
| 1508 | ASSERT(kSmiTag == 0 && kSmiTagShift == 1); |
| 1509 | __ adds(R0, R0, Operand(R0)); |
| 1510 | __ b(normal_ir_body, VS); |
| 1511 | |
| 1512 | // Compare the two double values. If they are equal, we return the |
| 1513 | // Smi tagged result immediately as the hash code. |
| 1514 | __ fcmpd(V0, V1); |
| 1515 | __ b(&double_hash, NE); |
| 1516 | __ ret(); |
| 1517 | |
| 1518 | // Convert the double bits to a hash code that fits in a Smi. |
| 1519 | __ Bind(&double_hash); |
| 1520 | __ fmovrd(R0, V0); |
| 1521 | __ eor(R0, R0, Operand(R0, LSR, 32)); |
| 1522 | __ AndImmediate(R0, R0, target::kSmiMax); |
| 1523 | __ SmiTag(R0); |
| 1524 | __ ret(); |
| 1525 | |
| 1526 | // Fall into the native C++ implementation. |
| 1527 | __ Bind(normal_ir_body); |
| 1528 | } |
| 1529 | |
| 1530 | void AsmIntrinsifier::MathSqrt(Assembler* assembler, Label* normal_ir_body) { |
| 1531 | Label is_smi, double_op; |
| 1532 | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
| 1533 | // Argument is double and is in R0. |
| 1534 | __ LoadDFieldFromOffset(V1, R0, target::Double::value_offset()); |
| 1535 | __ Bind(&double_op); |
| 1536 | __ fsqrtd(V0, V1); |
| 1537 | const Class& double_class = DoubleClass(); |
| 1538 | __ TryAllocate(double_class, normal_ir_body, R0, R1); |
| 1539 | __ StoreDFieldToOffset(V0, R0, target::Double::value_offset()); |
| 1540 | __ ret(); |
| 1541 | __ Bind(&is_smi); |
| 1542 | __ SmiUntag(R0); |
| 1543 | __ scvtfdx(V1, R0); |
| 1544 | __ b(&double_op); |
| 1545 | __ Bind(normal_ir_body); |
| 1546 | } |
| 1547 | |
| 1548 | // var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64; |
| 1549 | // _state[kSTATE_LO] = state & _MASK_32; |
| 1550 | // _state[kSTATE_HI] = state >> 32; |
| 1551 | void AsmIntrinsifier::Random_nextState(Assembler* assembler, |
| 1552 | Label* normal_ir_body) { |
| 1553 | const Field& state_field = LookupMathRandomStateFieldOffset(); |
| 1554 | const int64_t a_int_value = AsmIntrinsifier::kRandomAValue; |
| 1555 | |
| 1556 | // Receiver. |
| 1557 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1558 | // Field '_state'. |
| 1559 | __ ldr(R1, FieldAddress(R0, LookupFieldOffsetInBytes(state_field))); |
| 1560 | |
| 1561 | // Addresses of _state[0]. |
| 1562 | const int64_t disp = |
| 1563 | target::Instance::DataOffsetFor(kTypedDataUint32ArrayCid) - |
| 1564 | kHeapObjectTag; |
| 1565 | |
| 1566 | __ LoadImmediate(R0, a_int_value); |
| 1567 | __ LoadFromOffset(R2, R1, disp); |
| 1568 | __ LsrImmediate(R3, R2, 32); |
| 1569 | __ andi(R2, R2, Immediate(0xffffffff)); |
| 1570 | __ mul(R2, R0, R2); |
| 1571 | __ add(R2, R2, Operand(R3)); |
| 1572 | __ StoreToOffset(R2, R1, disp); |
| 1573 | ASSERT(target::ToRawSmi(0) == 0); |
| 1574 | __ eor(R0, R0, Operand(R0)); |
| 1575 | __ ret(); |
| 1576 | } |
| 1577 | |
| 1578 | void AsmIntrinsifier::ObjectEquals(Assembler* assembler, |
| 1579 | Label* normal_ir_body) { |
| 1580 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1581 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); |
| 1582 | __ cmp(R0, Operand(R1)); |
| 1583 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 1584 | __ LoadObject(TMP, CastHandle<Object>(TrueObject())); |
| 1585 | __ csel(R0, TMP, R0, EQ); |
| 1586 | __ ret(); |
| 1587 | } |
| 1588 | |
| 1589 | static void RangeCheck(Assembler* assembler, |
| 1590 | Register val, |
| 1591 | Register tmp, |
| 1592 | intptr_t low, |
| 1593 | intptr_t high, |
| 1594 | Condition cc, |
| 1595 | Label* target) { |
| 1596 | __ AddImmediate(tmp, val, -low); |
| 1597 | __ CompareImmediate(tmp, high - low); |
| 1598 | __ b(target, cc); |
| 1599 | } |
| 1600 | |
| 1601 | const Condition kIfNotInRange = HI; |
| 1602 | const Condition kIfInRange = LS; |
| 1603 | |
| 1604 | static void JumpIfInteger(Assembler* assembler, |
| 1605 | Register cid, |
| 1606 | Register tmp, |
| 1607 | Label* target) { |
| 1608 | RangeCheck(assembler, cid, tmp, kSmiCid, kMintCid, kIfInRange, target); |
| 1609 | } |
| 1610 | |
| 1611 | static void JumpIfNotInteger(Assembler* assembler, |
| 1612 | Register cid, |
| 1613 | Register tmp, |
| 1614 | Label* target) { |
| 1615 | RangeCheck(assembler, cid, tmp, kSmiCid, kMintCid, kIfNotInRange, target); |
| 1616 | } |
| 1617 | |
| 1618 | static void JumpIfString(Assembler* assembler, |
| 1619 | Register cid, |
| 1620 | Register tmp, |
| 1621 | Label* target) { |
| 1622 | RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid, |
| 1623 | kIfInRange, target); |
| 1624 | } |
| 1625 | |
| 1626 | static void JumpIfNotString(Assembler* assembler, |
| 1627 | Register cid, |
| 1628 | Register tmp, |
| 1629 | Label* target) { |
| 1630 | RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid, |
| 1631 | kIfNotInRange, target); |
| 1632 | } |
| 1633 | |
| 1634 | // Return type quickly for simple types (not parameterized and not signature). |
| 1635 | void AsmIntrinsifier::ObjectRuntimeType(Assembler* assembler, |
| 1636 | Label* normal_ir_body) { |
| 1637 | Label use_declaration_type, not_double, not_integer; |
| 1638 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1639 | __ LoadClassIdMayBeSmi(R1, R0); |
| 1640 | |
| 1641 | __ CompareImmediate(R1, kClosureCid); |
| 1642 | __ b(normal_ir_body, EQ); // Instance is a closure. |
| 1643 | |
| 1644 | __ CompareImmediate(R1, kNumPredefinedCids); |
| 1645 | __ b(&use_declaration_type, HI); |
| 1646 | |
| 1647 | __ CompareImmediate(R1, kDoubleCid); |
| 1648 | __ b(¬_double, NE); |
| 1649 | |
| 1650 | __ LoadIsolate(R0); |
| 1651 | __ LoadFromOffset(R0, R0, target::Isolate::cached_object_store_offset()); |
| 1652 | __ LoadFromOffset(R0, R0, target::ObjectStore::double_type_offset()); |
| 1653 | __ ret(); |
| 1654 | |
| 1655 | __ Bind(¬_double); |
| 1656 | JumpIfNotInteger(assembler, R1, R0, ¬_integer); |
| 1657 | __ LoadIsolate(R0); |
| 1658 | __ LoadFromOffset(R0, R0, target::Isolate::cached_object_store_offset()); |
| 1659 | __ LoadFromOffset(R0, R0, target::ObjectStore::int_type_offset()); |
| 1660 | __ ret(); |
| 1661 | |
| 1662 | __ Bind(¬_integer); |
| 1663 | JumpIfNotString(assembler, R1, R0, &use_declaration_type); |
| 1664 | __ LoadIsolate(R0); |
| 1665 | __ LoadFromOffset(R0, R0, target::Isolate::cached_object_store_offset()); |
| 1666 | __ LoadFromOffset(R0, R0, target::ObjectStore::string_type_offset()); |
| 1667 | __ ret(); |
| 1668 | |
| 1669 | __ Bind(&use_declaration_type); |
| 1670 | __ LoadClassById(R2, R1); |
| 1671 | __ ldr(R3, FieldAddress(R2, target::Class::num_type_arguments_offset()), |
| 1672 | kHalfword); |
| 1673 | __ CompareImmediate(R3, 0); |
| 1674 | __ b(normal_ir_body, NE); |
| 1675 | |
| 1676 | __ ldr(R0, FieldAddress(R2, target::Class::declaration_type_offset())); |
| 1677 | __ CompareObject(R0, NullObject()); |
| 1678 | __ b(normal_ir_body, EQ); |
| 1679 | __ ret(); |
| 1680 | |
| 1681 | __ Bind(normal_ir_body); |
| 1682 | } |
| 1683 | |
| 1684 | // Compares cid1 and cid2 to see if they're syntactically equivalent. If this |
| 1685 | // can be determined by this fast path, it jumps to either equal or not_equal, |
| 1686 | // otherwise it jumps to normal_ir_body. May clobber cid1, cid2, and scratch. |
| 1687 | static void EquivalentClassIds(Assembler* assembler, |
| 1688 | Label* normal_ir_body, |
| 1689 | Label* equal, |
| 1690 | Label* not_equal, |
| 1691 | Register cid1, |
| 1692 | Register cid2, |
| 1693 | Register scratch) { |
| 1694 | Label different_cids, not_integer; |
| 1695 | |
| 1696 | // Check if left hand side is a closure. Closures are handled in the runtime. |
| 1697 | __ CompareImmediate(cid1, kClosureCid); |
| 1698 | __ b(normal_ir_body, EQ); |
| 1699 | |
| 1700 | // Check whether class ids match. If class ids don't match types may still be |
| 1701 | // considered equivalent (e.g. multiple string implementation classes map to a |
| 1702 | // single String type). |
| 1703 | __ cmp(cid1, Operand(cid2)); |
| 1704 | __ b(&different_cids, NE); |
| 1705 | |
| 1706 | // Types have the same class and neither is a closure type. |
| 1707 | // Check if there are no type arguments. In this case we can return true. |
| 1708 | // Otherwise fall through into the runtime to handle comparison. |
| 1709 | __ LoadClassById(scratch, cid1); |
| 1710 | __ ldr(scratch, |
| 1711 | FieldAddress(scratch, target::Class::num_type_arguments_offset()), |
| 1712 | kHalfword); |
| 1713 | __ cbnz(normal_ir_body, scratch); |
| 1714 | __ b(equal); |
| 1715 | |
| 1716 | // Class ids are different. Check if we are comparing two string types (with |
| 1717 | // different representations) or two integer types. |
| 1718 | __ Bind(&different_cids); |
| 1719 | __ CompareImmediate(cid1, kNumPredefinedCids); |
| 1720 | __ b(not_equal, HI); |
| 1721 | |
| 1722 | // Check if both are integer types. |
| 1723 | JumpIfNotInteger(assembler, cid1, scratch, ¬_integer); |
| 1724 | |
| 1725 | // First type is an integer. Check if the second is an integer too. |
| 1726 | // Otherwise types are unequiv because only integers have the same runtime |
| 1727 | // type as other integers. |
| 1728 | JumpIfInteger(assembler, cid2, scratch, equal); |
| 1729 | __ b(not_equal); |
| 1730 | |
| 1731 | __ Bind(¬_integer); |
| 1732 | // Check if the first type is String. If it is not then types are not |
| 1733 | // equivalent because they have different class ids and they are not strings |
| 1734 | // or integers. |
| 1735 | JumpIfNotString(assembler, cid1, scratch, not_equal); |
| 1736 | // First type is String. Check if the second is a string too. |
| 1737 | JumpIfString(assembler, cid2, scratch, equal); |
| 1738 | // String types are only equivalent to other String types. |
| 1739 | // Fall-through to the not equal case. |
| 1740 | __ b(not_equal); |
| 1741 | } |
| 1742 | |
| 1743 | void AsmIntrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler, |
| 1744 | Label* normal_ir_body) { |
| 1745 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1746 | __ LoadClassIdMayBeSmi(R1, R0); |
| 1747 | |
| 1748 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); |
| 1749 | __ LoadClassIdMayBeSmi(R2, R0); |
| 1750 | |
| 1751 | Label equal, not_equal; |
| 1752 | EquivalentClassIds(assembler, normal_ir_body, &equal, ¬_equal, R1, R2, R0); |
| 1753 | |
| 1754 | __ Bind(&equal); |
| 1755 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
| 1756 | __ Ret(); |
| 1757 | |
| 1758 | __ Bind(¬_equal); |
| 1759 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 1760 | __ ret(); |
| 1761 | |
| 1762 | __ Bind(normal_ir_body); |
| 1763 | } |
| 1764 | |
| 1765 | void AsmIntrinsifier::String_getHashCode(Assembler* assembler, |
| 1766 | Label* normal_ir_body) { |
| 1767 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1768 | __ ldr(R0, FieldAddress(R0, target::String::hash_offset()), kUnsignedWord); |
| 1769 | __ adds(R0, R0, Operand(R0)); // Smi tag the hash code, setting Z flag. |
| 1770 | __ b(normal_ir_body, EQ); |
| 1771 | __ ret(); |
| 1772 | // Hash not yet computed. |
| 1773 | __ Bind(normal_ir_body); |
| 1774 | } |
| 1775 | |
| 1776 | void AsmIntrinsifier::Type_getHashCode(Assembler* assembler, |
| 1777 | Label* normal_ir_body) { |
| 1778 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1779 | __ ldr(R0, FieldAddress(R0, target::Type::hash_offset())); |
| 1780 | __ cbz(normal_ir_body, R0); |
| 1781 | __ ret(); |
| 1782 | // Hash not yet computed. |
| 1783 | __ Bind(normal_ir_body); |
| 1784 | } |
| 1785 | |
| 1786 | void AsmIntrinsifier::Type_equality(Assembler* assembler, |
| 1787 | Label* normal_ir_body) { |
| 1788 | Label equal, not_equal, equiv_cids, check_legacy; |
| 1789 | |
| 1790 | __ ldp(R1, R2, Address(SP, 0 * target::kWordSize, Address::PairOffset)); |
| 1791 | __ cmp(R1, Operand(R2)); |
| 1792 | __ b(&equal, EQ); |
| 1793 | |
| 1794 | // R1 might not be a Type object, so check that first (R2 should be though, |
| 1795 | // since this is a method on the Type class). |
| 1796 | __ LoadClassIdMayBeSmi(R0, R1); |
| 1797 | __ CompareImmediate(R0, kTypeCid); |
| 1798 | __ b(normal_ir_body, NE); |
| 1799 | |
| 1800 | // Check if types are syntactically equal. |
| 1801 | __ ldr(R3, FieldAddress(R1, target::Type::type_class_id_offset())); |
| 1802 | __ SmiUntag(R3); |
| 1803 | __ ldr(R4, FieldAddress(R2, target::Type::type_class_id_offset())); |
| 1804 | __ SmiUntag(R4); |
| 1805 | EquivalentClassIds(assembler, normal_ir_body, &equiv_cids, ¬_equal, R3, R4, |
| 1806 | R0); |
| 1807 | |
| 1808 | // Check nullability. |
| 1809 | __ Bind(&equiv_cids); |
| 1810 | __ ldr(R1, FieldAddress(R1, target::Type::nullability_offset()), |
| 1811 | kUnsignedByte); |
| 1812 | __ ldr(R2, FieldAddress(R2, target::Type::nullability_offset()), |
| 1813 | kUnsignedByte); |
| 1814 | __ cmp(R1, Operand(R2)); |
| 1815 | __ b(&check_legacy, NE); |
| 1816 | // Fall through to equal case if nullability is strictly equal. |
| 1817 | |
| 1818 | __ Bind(&equal); |
| 1819 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
| 1820 | __ Ret(); |
| 1821 | |
| 1822 | // At this point the nullabilities are different, so they can only be |
| 1823 | // syntactically equivalent if they're both either kNonNullable or kLegacy. |
| 1824 | // These are the two largest values of the enum, so we can just do a < check. |
| 1825 | ASSERT(target::Nullability::kNullable < target::Nullability::kNonNullable && |
| 1826 | target::Nullability::kNonNullable < target::Nullability::kLegacy); |
| 1827 | __ Bind(&check_legacy); |
| 1828 | __ CompareImmediate(R1, target::Nullability::kNonNullable); |
| 1829 | __ b(¬_equal, LT); |
| 1830 | __ CompareImmediate(R2, target::Nullability::kNonNullable); |
| 1831 | __ b(&equal, GE); |
| 1832 | |
| 1833 | __ Bind(¬_equal); |
| 1834 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 1835 | __ ret(); |
| 1836 | |
| 1837 | __ Bind(normal_ir_body); |
| 1838 | } |
| 1839 | |
| 1840 | void AsmIntrinsifier::Object_getHash(Assembler* assembler, |
| 1841 | Label* normal_ir_body) { |
| 1842 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1843 | __ ldr(R0, FieldAddress(R0, target::String::hash_offset()), kUnsignedWord); |
| 1844 | __ SmiTag(R0); |
| 1845 | __ ret(); |
| 1846 | } |
| 1847 | |
| 1848 | void AsmIntrinsifier::Object_setHash(Assembler* assembler, |
| 1849 | Label* normal_ir_body) { |
| 1850 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // Object. |
| 1851 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); // Value. |
| 1852 | __ SmiUntag(R1); |
| 1853 | __ str(R1, FieldAddress(R0, target::String::hash_offset()), kUnsignedWord); |
| 1854 | __ ret(); |
| 1855 | } |
| 1856 | |
| 1857 | void GenerateSubstringMatchesSpecialization(Assembler* assembler, |
| 1858 | intptr_t receiver_cid, |
| 1859 | intptr_t other_cid, |
| 1860 | Label* return_true, |
| 1861 | Label* return_false) { |
| 1862 | __ SmiUntag(R1); |
| 1863 | __ ldr(R8, FieldAddress(R0, target::String::length_offset())); // this.length |
| 1864 | __ SmiUntag(R8); |
| 1865 | __ ldr(R9, |
| 1866 | FieldAddress(R2, target::String::length_offset())); // other.length |
| 1867 | __ SmiUntag(R9); |
| 1868 | |
| 1869 | // if (other.length == 0) return true; |
| 1870 | __ cmp(R9, Operand(0)); |
| 1871 | __ b(return_true, EQ); |
| 1872 | |
| 1873 | // if (start < 0) return false; |
| 1874 | __ cmp(R1, Operand(0)); |
| 1875 | __ b(return_false, LT); |
| 1876 | |
| 1877 | // if (start + other.length > this.length) return false; |
| 1878 | __ add(R3, R1, Operand(R9)); |
| 1879 | __ cmp(R3, Operand(R8)); |
| 1880 | __ b(return_false, GT); |
| 1881 | |
| 1882 | if (receiver_cid == kOneByteStringCid) { |
| 1883 | __ AddImmediate(R0, target::OneByteString::data_offset() - kHeapObjectTag); |
| 1884 | __ add(R0, R0, Operand(R1)); |
| 1885 | } else { |
| 1886 | ASSERT(receiver_cid == kTwoByteStringCid); |
| 1887 | __ AddImmediate(R0, target::TwoByteString::data_offset() - kHeapObjectTag); |
| 1888 | __ add(R0, R0, Operand(R1)); |
| 1889 | __ add(R0, R0, Operand(R1)); |
| 1890 | } |
| 1891 | if (other_cid == kOneByteStringCid) { |
| 1892 | __ AddImmediate(R2, target::OneByteString::data_offset() - kHeapObjectTag); |
| 1893 | } else { |
| 1894 | ASSERT(other_cid == kTwoByteStringCid); |
| 1895 | __ AddImmediate(R2, target::TwoByteString::data_offset() - kHeapObjectTag); |
| 1896 | } |
| 1897 | |
| 1898 | // i = 0 |
| 1899 | __ LoadImmediate(R3, 0); |
| 1900 | |
| 1901 | // do |
| 1902 | Label loop; |
| 1903 | __ Bind(&loop); |
| 1904 | |
| 1905 | // this.codeUnitAt(i + start) |
| 1906 | __ ldr(R10, Address(R0, 0), |
| 1907 | receiver_cid == kOneByteStringCid ? kUnsignedByte : kUnsignedHalfword); |
| 1908 | // other.codeUnitAt(i) |
| 1909 | __ ldr(R11, Address(R2, 0), |
| 1910 | other_cid == kOneByteStringCid ? kUnsignedByte : kUnsignedHalfword); |
| 1911 | __ cmp(R10, Operand(R11)); |
| 1912 | __ b(return_false, NE); |
| 1913 | |
| 1914 | // i++, while (i < len) |
| 1915 | __ add(R3, R3, Operand(1)); |
| 1916 | __ add(R0, R0, Operand(receiver_cid == kOneByteStringCid ? 1 : 2)); |
| 1917 | __ add(R2, R2, Operand(other_cid == kOneByteStringCid ? 1 : 2)); |
| 1918 | __ cmp(R3, Operand(R9)); |
| 1919 | __ b(&loop, LT); |
| 1920 | |
| 1921 | __ b(return_true); |
| 1922 | } |
| 1923 | |
| 1924 | // bool _substringMatches(int start, String other) |
| 1925 | // This intrinsic handles a OneByteString or TwoByteString receiver with a |
| 1926 | // OneByteString other. |
| 1927 | void AsmIntrinsifier::StringBaseSubstringMatches(Assembler* assembler, |
| 1928 | Label* normal_ir_body) { |
| 1929 | Label return_true, return_false, try_two_byte; |
| 1930 | __ ldr(R0, Address(SP, 2 * target::kWordSize)); // this |
| 1931 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); // start |
| 1932 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // other |
| 1933 | |
| 1934 | __ BranchIfNotSmi(R1, normal_ir_body); |
| 1935 | |
| 1936 | __ CompareClassId(R2, kOneByteStringCid); |
| 1937 | __ b(normal_ir_body, NE); |
| 1938 | |
| 1939 | __ CompareClassId(R0, kOneByteStringCid); |
| 1940 | __ b(normal_ir_body, NE); |
| 1941 | |
| 1942 | GenerateSubstringMatchesSpecialization(assembler, kOneByteStringCid, |
| 1943 | kOneByteStringCid, &return_true, |
| 1944 | &return_false); |
| 1945 | |
| 1946 | __ Bind(&try_two_byte); |
| 1947 | __ CompareClassId(R0, kTwoByteStringCid); |
| 1948 | __ b(normal_ir_body, NE); |
| 1949 | |
| 1950 | GenerateSubstringMatchesSpecialization(assembler, kTwoByteStringCid, |
| 1951 | kOneByteStringCid, &return_true, |
| 1952 | &return_false); |
| 1953 | |
| 1954 | __ Bind(&return_true); |
| 1955 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
| 1956 | __ ret(); |
| 1957 | |
| 1958 | __ Bind(&return_false); |
| 1959 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 1960 | __ ret(); |
| 1961 | |
| 1962 | __ Bind(normal_ir_body); |
| 1963 | } |
| 1964 | |
| 1965 | void AsmIntrinsifier::StringBaseCharAt(Assembler* assembler, |
| 1966 | Label* normal_ir_body) { |
| 1967 | Label try_two_byte_string; |
| 1968 | |
| 1969 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); // Index. |
| 1970 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // String. |
| 1971 | __ BranchIfNotSmi(R1, normal_ir_body); // Index is not a Smi. |
| 1972 | // Range check. |
| 1973 | __ ldr(R2, FieldAddress(R0, target::String::length_offset())); |
| 1974 | __ cmp(R1, Operand(R2)); |
| 1975 | __ b(normal_ir_body, CS); // Runtime throws exception. |
| 1976 | |
| 1977 | __ CompareClassId(R0, kOneByteStringCid); |
| 1978 | __ b(&try_two_byte_string, NE); |
| 1979 | __ SmiUntag(R1); |
| 1980 | __ AddImmediate(R0, target::OneByteString::data_offset() - kHeapObjectTag); |
| 1981 | __ ldr(R1, Address(R0, R1), kUnsignedByte); |
| 1982 | __ CompareImmediate(R1, target::Symbols::kNumberOfOneCharCodeSymbols); |
| 1983 | __ b(normal_ir_body, GE); |
| 1984 | __ ldr(R0, Address(THR, target::Thread::predefined_symbols_address_offset())); |
| 1985 | __ AddImmediate( |
| 1986 | R0, target::Symbols::kNullCharCodeSymbolOffset * target::kWordSize); |
| 1987 | __ ldr(R0, Address(R0, R1, UXTX, Address::Scaled)); |
| 1988 | __ ret(); |
| 1989 | |
| 1990 | __ Bind(&try_two_byte_string); |
| 1991 | __ CompareClassId(R0, kTwoByteStringCid); |
| 1992 | __ b(normal_ir_body, NE); |
| 1993 | ASSERT(kSmiTagShift == 1); |
| 1994 | __ AddImmediate(R0, target::TwoByteString::data_offset() - kHeapObjectTag); |
| 1995 | __ ldr(R1, Address(R0, R1), kUnsignedHalfword); |
| 1996 | __ CompareImmediate(R1, target::Symbols::kNumberOfOneCharCodeSymbols); |
| 1997 | __ b(normal_ir_body, GE); |
| 1998 | __ ldr(R0, Address(THR, target::Thread::predefined_symbols_address_offset())); |
| 1999 | __ AddImmediate( |
| 2000 | R0, target::Symbols::kNullCharCodeSymbolOffset * target::kWordSize); |
| 2001 | __ ldr(R0, Address(R0, R1, UXTX, Address::Scaled)); |
| 2002 | __ ret(); |
| 2003 | |
| 2004 | __ Bind(normal_ir_body); |
| 2005 | } |
| 2006 | |
| 2007 | void AsmIntrinsifier::StringBaseIsEmpty(Assembler* assembler, |
| 2008 | Label* normal_ir_body) { |
| 2009 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 2010 | __ ldr(R0, FieldAddress(R0, target::String::length_offset())); |
| 2011 | __ cmp(R0, Operand(target::ToRawSmi(0))); |
| 2012 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
| 2013 | __ LoadObject(TMP, CastHandle<Object>(FalseObject())); |
| 2014 | __ csel(R0, TMP, R0, NE); |
| 2015 | __ ret(); |
| 2016 | } |
| 2017 | |
| 2018 | void AsmIntrinsifier::OneByteString_getHashCode(Assembler* assembler, |
| 2019 | Label* normal_ir_body) { |
| 2020 | Label compute_hash; |
| 2021 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); // OneByteString object. |
| 2022 | __ ldr(R0, FieldAddress(R1, target::String::hash_offset()), kUnsignedWord); |
| 2023 | __ adds(R0, R0, Operand(R0)); // Smi tag the hash code, setting Z flag. |
| 2024 | __ b(&compute_hash, EQ); |
| 2025 | __ ret(); // Return if already computed. |
| 2026 | |
| 2027 | __ Bind(&compute_hash); |
| 2028 | __ ldr(R2, FieldAddress(R1, target::String::length_offset())); |
| 2029 | __ SmiUntag(R2); |
| 2030 | |
| 2031 | Label done; |
| 2032 | // If the string is empty, set the hash to 1, and return. |
| 2033 | __ CompareRegisters(R2, ZR); |
| 2034 | __ b(&done, EQ); |
| 2035 | |
| 2036 | __ mov(R3, ZR); |
| 2037 | __ AddImmediate(R6, R1, |
| 2038 | target::OneByteString::data_offset() - kHeapObjectTag); |
| 2039 | // R1: Instance of OneByteString. |
| 2040 | // R2: String length, untagged integer. |
| 2041 | // R3: Loop counter, untagged integer. |
| 2042 | // R6: String data. |
| 2043 | // R0: Hash code, untagged integer. |
| 2044 | |
| 2045 | Label loop; |
| 2046 | // Add to hash code: (hash_ is uint32) |
| 2047 | // hash_ += ch; |
| 2048 | // hash_ += hash_ << 10; |
| 2049 | // hash_ ^= hash_ >> 6; |
| 2050 | // Get one characters (ch). |
| 2051 | __ Bind(&loop); |
| 2052 | __ ldr(R7, Address(R6, R3), kUnsignedByte); |
| 2053 | // R7: ch. |
| 2054 | __ add(R3, R3, Operand(1)); |
| 2055 | __ addw(R0, R0, Operand(R7)); |
| 2056 | __ addw(R0, R0, Operand(R0, LSL, 10)); |
| 2057 | __ eorw(R0, R0, Operand(R0, LSR, 6)); |
| 2058 | __ cmp(R3, Operand(R2)); |
| 2059 | __ b(&loop, NE); |
| 2060 | |
| 2061 | // Finalize. |
| 2062 | // hash_ += hash_ << 3; |
| 2063 | // hash_ ^= hash_ >> 11; |
| 2064 | // hash_ += hash_ << 15; |
| 2065 | __ addw(R0, R0, Operand(R0, LSL, 3)); |
| 2066 | __ eorw(R0, R0, Operand(R0, LSR, 11)); |
| 2067 | __ addw(R0, R0, Operand(R0, LSL, 15)); |
| 2068 | // hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1); |
| 2069 | __ AndImmediate(R0, R0, |
| 2070 | (static_cast<intptr_t>(1) << target::String::kHashBits) - 1); |
| 2071 | __ CompareRegisters(R0, ZR); |
| 2072 | // return hash_ == 0 ? 1 : hash_; |
| 2073 | __ Bind(&done); |
| 2074 | __ csinc(R0, R0, ZR, NE); // R0 <- (R0 != 0) ? R0 : (ZR + 1). |
| 2075 | __ str(R0, FieldAddress(R1, target::String::hash_offset()), kUnsignedWord); |
| 2076 | __ SmiTag(R0); |
| 2077 | __ ret(); |
| 2078 | } |
| 2079 | |
| 2080 | // Allocates a _OneByteString or _TwoByteString. The content is not initialized. |
| 2081 | // 'length-reg' (R2) contains the desired length as a _Smi or _Mint. |
| 2082 | // Returns new string as tagged pointer in R0. |
| 2083 | static void TryAllocateString(Assembler* assembler, |
| 2084 | classid_t cid, |
| 2085 | Label* ok, |
| 2086 | Label* failure) { |
| 2087 | ASSERT(cid == kOneByteStringCid || cid == kTwoByteStringCid); |
| 2088 | const Register length_reg = R2; |
| 2089 | // _Mint length: call to runtime to produce error. |
| 2090 | __ BranchIfNotSmi(length_reg, failure); |
| 2091 | // negative length: call to runtime to produce error. |
| 2092 | __ tbnz(failure, length_reg, compiler::target::kBitsPerWord - 1); |
| 2093 | |
| 2094 | NOT_IN_PRODUCT(__ MaybeTraceAllocation(cid, R0, failure)); |
| 2095 | __ mov(R6, length_reg); // Save the length register. |
| 2096 | if (cid == kOneByteStringCid) { |
| 2097 | // Untag length. |
| 2098 | __ adds(length_reg, ZR, Operand(length_reg, ASR, kSmiTagSize)); |
| 2099 | } else { |
| 2100 | // Untag length and multiply by element size -> no-op. |
| 2101 | __ adds(length_reg, ZR, Operand(length_reg)); |
| 2102 | } |
| 2103 | // If the length is 0 then we have to make the allocated size a bit bigger, |
| 2104 | // otherwise the string takes up less space than an ExternalOneByteString, |
| 2105 | // and cannot be externalized. TODO(erikcorry): We should probably just |
| 2106 | // return a static zero length string here instead. |
| 2107 | // length <- (length != 0) ? length : (ZR + 1). |
| 2108 | __ csinc(length_reg, length_reg, ZR, NE); |
| 2109 | const intptr_t fixed_size_plus_alignment_padding = |
| 2110 | target::String::InstanceSize() + |
| 2111 | target::ObjectAlignment::kObjectAlignment - 1; |
| 2112 | __ AddImmediate(length_reg, fixed_size_plus_alignment_padding); |
| 2113 | __ andi(length_reg, length_reg, |
| 2114 | Immediate(~(target::ObjectAlignment::kObjectAlignment - 1))); |
| 2115 | |
| 2116 | __ ldr(R0, Address(THR, target::Thread::top_offset())); |
| 2117 | |
| 2118 | // length_reg: allocation size. |
| 2119 | __ adds(R1, R0, Operand(length_reg)); |
| 2120 | __ b(failure, CS); // Fail on unsigned overflow. |
| 2121 | |
| 2122 | // Check if the allocation fits into the remaining space. |
| 2123 | // R0: potential new object start. |
| 2124 | // R1: potential next object start. |
| 2125 | // R2: allocation size. |
| 2126 | __ ldr(R7, Address(THR, target::Thread::end_offset())); |
| 2127 | __ cmp(R1, Operand(R7)); |
| 2128 | __ b(failure, CS); |
| 2129 | |
| 2130 | // Successfully allocated the object(s), now update top to point to |
| 2131 | // next object start and initialize the object. |
| 2132 | __ str(R1, Address(THR, target::Thread::top_offset())); |
| 2133 | __ AddImmediate(R0, kHeapObjectTag); |
| 2134 | |
| 2135 | // Initialize the tags. |
| 2136 | // R0: new object start as a tagged pointer. |
| 2137 | // R1: new object end address. |
| 2138 | // R2: allocation size. |
| 2139 | { |
| 2140 | const intptr_t shift = target::ObjectLayout::kTagBitsSizeTagPos - |
| 2141 | target::ObjectAlignment::kObjectAlignmentLog2; |
| 2142 | |
| 2143 | __ CompareImmediate(R2, target::ObjectLayout::kSizeTagMaxSizeTag); |
| 2144 | __ LslImmediate(R2, R2, shift); |
| 2145 | __ csel(R2, R2, ZR, LS); |
| 2146 | |
| 2147 | // Get the class index and insert it into the tags. |
| 2148 | // R2: size and bit tags. |
| 2149 | // This also clears the hash, which is in the high word of the tags. |
| 2150 | const uint32_t tags = |
| 2151 | target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); |
| 2152 | __ LoadImmediate(TMP, tags); |
| 2153 | __ orr(R2, R2, Operand(TMP)); |
| 2154 | __ str(R2, FieldAddress(R0, target::Object::tags_offset())); // Store tags. |
| 2155 | } |
| 2156 | |
| 2157 | // Set the length field using the saved length (R6). |
| 2158 | __ StoreIntoObjectNoBarrier( |
| 2159 | R0, FieldAddress(R0, target::String::length_offset()), R6); |
| 2160 | __ b(ok); |
| 2161 | } |
| 2162 | |
| 2163 | // Arg0: OneByteString (receiver). |
| 2164 | // Arg1: Start index as Smi. |
| 2165 | // Arg2: End index as Smi. |
| 2166 | // The indexes must be valid. |
| 2167 | void AsmIntrinsifier::OneByteString_substringUnchecked(Assembler* assembler, |
| 2168 | Label* normal_ir_body) { |
| 2169 | const intptr_t kStringOffset = 2 * target::kWordSize; |
| 2170 | const intptr_t kStartIndexOffset = 1 * target::kWordSize; |
| 2171 | const intptr_t kEndIndexOffset = 0 * target::kWordSize; |
| 2172 | Label ok; |
| 2173 | |
| 2174 | __ ldr(R2, Address(SP, kEndIndexOffset)); |
| 2175 | __ ldr(TMP, Address(SP, kStartIndexOffset)); |
| 2176 | __ orr(R3, R2, Operand(TMP)); |
| 2177 | __ BranchIfNotSmi(R3, normal_ir_body); // 'start', 'end' not Smi. |
| 2178 | |
| 2179 | __ sub(R2, R2, Operand(TMP)); |
| 2180 | TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body); |
| 2181 | __ Bind(&ok); |
| 2182 | // R0: new string as tagged pointer. |
| 2183 | // Copy string. |
| 2184 | __ ldr(R3, Address(SP, kStringOffset)); |
| 2185 | __ ldr(R1, Address(SP, kStartIndexOffset)); |
| 2186 | __ SmiUntag(R1); |
| 2187 | __ add(R3, R3, Operand(R1)); |
| 2188 | // Calculate start address and untag (- 1). |
| 2189 | __ AddImmediate(R3, target::OneByteString::data_offset() - 1); |
| 2190 | |
| 2191 | // R3: Start address to copy from (untagged). |
| 2192 | // R1: Untagged start index. |
| 2193 | __ ldr(R2, Address(SP, kEndIndexOffset)); |
| 2194 | __ SmiUntag(R2); |
| 2195 | __ sub(R2, R2, Operand(R1)); |
| 2196 | |
| 2197 | // R3: Start address to copy from (untagged). |
| 2198 | // R2: Untagged number of bytes to copy. |
| 2199 | // R0: Tagged result string. |
| 2200 | // R6: Pointer into R3. |
| 2201 | // R7: Pointer into R0. |
| 2202 | // R1: Scratch register. |
| 2203 | Label loop, done; |
| 2204 | __ cmp(R2, Operand(0)); |
| 2205 | __ b(&done, LE); |
| 2206 | __ mov(R6, R3); |
| 2207 | __ mov(R7, R0); |
| 2208 | __ Bind(&loop); |
| 2209 | __ ldr(R1, Address(R6), kUnsignedByte); |
| 2210 | __ AddImmediate(R6, 1); |
| 2211 | __ sub(R2, R2, Operand(1)); |
| 2212 | __ cmp(R2, Operand(0)); |
| 2213 | __ str(R1, FieldAddress(R7, target::OneByteString::data_offset()), |
| 2214 | kUnsignedByte); |
| 2215 | __ AddImmediate(R7, 1); |
| 2216 | __ b(&loop, GT); |
| 2217 | |
| 2218 | __ Bind(&done); |
| 2219 | __ ret(); |
| 2220 | __ Bind(normal_ir_body); |
| 2221 | } |
| 2222 | |
| 2223 | void AsmIntrinsifier::WriteIntoOneByteString(Assembler* assembler, |
| 2224 | Label* normal_ir_body) { |
| 2225 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // Value. |
| 2226 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); // Index. |
| 2227 | __ ldr(R0, Address(SP, 2 * target::kWordSize)); // OneByteString. |
| 2228 | __ SmiUntag(R1); |
| 2229 | __ SmiUntag(R2); |
| 2230 | __ AddImmediate(R3, R0, |
| 2231 | target::OneByteString::data_offset() - kHeapObjectTag); |
| 2232 | __ str(R2, Address(R3, R1), kUnsignedByte); |
| 2233 | __ ret(); |
| 2234 | } |
| 2235 | |
| 2236 | void AsmIntrinsifier::WriteIntoTwoByteString(Assembler* assembler, |
| 2237 | Label* normal_ir_body) { |
| 2238 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // Value. |
| 2239 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); // Index. |
| 2240 | __ ldr(R0, Address(SP, 2 * target::kWordSize)); // TwoByteString. |
| 2241 | // Untag index and multiply by element size -> no-op. |
| 2242 | __ SmiUntag(R2); |
| 2243 | __ AddImmediate(R3, R0, |
| 2244 | target::TwoByteString::data_offset() - kHeapObjectTag); |
| 2245 | __ str(R2, Address(R3, R1), kUnsignedHalfword); |
| 2246 | __ ret(); |
| 2247 | } |
| 2248 | |
| 2249 | void AsmIntrinsifier::AllocateOneByteString(Assembler* assembler, |
| 2250 | Label* normal_ir_body) { |
| 2251 | Label ok; |
| 2252 | |
| 2253 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // Length. |
| 2254 | TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body); |
| 2255 | |
| 2256 | __ Bind(&ok); |
| 2257 | __ ret(); |
| 2258 | |
| 2259 | __ Bind(normal_ir_body); |
| 2260 | } |
| 2261 | |
| 2262 | void AsmIntrinsifier::AllocateTwoByteString(Assembler* assembler, |
| 2263 | Label* normal_ir_body) { |
| 2264 | Label ok; |
| 2265 | |
| 2266 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // Length. |
| 2267 | TryAllocateString(assembler, kTwoByteStringCid, &ok, normal_ir_body); |
| 2268 | |
| 2269 | __ Bind(&ok); |
| 2270 | __ ret(); |
| 2271 | |
| 2272 | __ Bind(normal_ir_body); |
| 2273 | } |
| 2274 | |
| 2275 | // TODO(srdjan): Add combinations (one-byte/two-byte/external strings). |
| 2276 | static void StringEquality(Assembler* assembler, |
| 2277 | Label* normal_ir_body, |
| 2278 | intptr_t string_cid) { |
| 2279 | Label is_true, is_false, loop; |
| 2280 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // This. |
| 2281 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); // Other. |
| 2282 | |
| 2283 | // Are identical? |
| 2284 | __ cmp(R0, Operand(R1)); |
| 2285 | __ b(&is_true, EQ); |
| 2286 | |
| 2287 | // Is other OneByteString? |
| 2288 | __ BranchIfSmi(R1, normal_ir_body); |
| 2289 | __ CompareClassId(R1, string_cid); |
| 2290 | __ b(normal_ir_body, NE); |
| 2291 | |
| 2292 | // Have same length? |
| 2293 | __ ldr(R2, FieldAddress(R0, target::String::length_offset())); |
| 2294 | __ ldr(R3, FieldAddress(R1, target::String::length_offset())); |
| 2295 | __ cmp(R2, Operand(R3)); |
| 2296 | __ b(&is_false, NE); |
| 2297 | |
| 2298 | // Check contents, no fall-through possible. |
| 2299 | // TODO(zra): try out other sequences. |
| 2300 | ASSERT((string_cid == kOneByteStringCid) || |
| 2301 | (string_cid == kTwoByteStringCid)); |
| 2302 | const intptr_t offset = (string_cid == kOneByteStringCid) |
| 2303 | ? target::OneByteString::data_offset() |
| 2304 | : target::TwoByteString::data_offset(); |
| 2305 | __ AddImmediate(R0, offset - kHeapObjectTag); |
| 2306 | __ AddImmediate(R1, offset - kHeapObjectTag); |
| 2307 | __ SmiUntag(R2); |
| 2308 | __ Bind(&loop); |
| 2309 | __ AddImmediate(R2, -1); |
| 2310 | __ CompareRegisters(R2, ZR); |
| 2311 | __ b(&is_true, LT); |
| 2312 | if (string_cid == kOneByteStringCid) { |
| 2313 | __ ldr(R3, Address(R0), kUnsignedByte); |
| 2314 | __ ldr(R4, Address(R1), kUnsignedByte); |
| 2315 | __ AddImmediate(R0, 1); |
| 2316 | __ AddImmediate(R1, 1); |
| 2317 | } else if (string_cid == kTwoByteStringCid) { |
| 2318 | __ ldr(R3, Address(R0), kUnsignedHalfword); |
| 2319 | __ ldr(R4, Address(R1), kUnsignedHalfword); |
| 2320 | __ AddImmediate(R0, 2); |
| 2321 | __ AddImmediate(R1, 2); |
| 2322 | } else { |
| 2323 | UNIMPLEMENTED(); |
| 2324 | } |
| 2325 | __ cmp(R3, Operand(R4)); |
| 2326 | __ b(&is_false, NE); |
| 2327 | __ b(&loop); |
| 2328 | |
| 2329 | __ Bind(&is_true); |
| 2330 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
| 2331 | __ ret(); |
| 2332 | |
| 2333 | __ Bind(&is_false); |
| 2334 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 2335 | __ ret(); |
| 2336 | |
| 2337 | __ Bind(normal_ir_body); |
| 2338 | } |
| 2339 | |
| 2340 | void AsmIntrinsifier::OneByteString_equality(Assembler* assembler, |
| 2341 | Label* normal_ir_body) { |
| 2342 | StringEquality(assembler, normal_ir_body, kOneByteStringCid); |
| 2343 | } |
| 2344 | |
| 2345 | void AsmIntrinsifier::TwoByteString_equality(Assembler* assembler, |
| 2346 | Label* normal_ir_body) { |
| 2347 | StringEquality(assembler, normal_ir_body, kTwoByteStringCid); |
| 2348 | } |
| 2349 | |
| 2350 | void AsmIntrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler, |
| 2351 | Label* normal_ir_body, |
| 2352 | bool sticky) { |
| 2353 | if (FLAG_interpret_irregexp) return; |
| 2354 | |
| 2355 | static const intptr_t kRegExpParamOffset = 2 * target::kWordSize; |
| 2356 | static const intptr_t kStringParamOffset = 1 * target::kWordSize; |
| 2357 | // start_index smi is located at offset 0. |
| 2358 | |
| 2359 | // Incoming registers: |
| 2360 | // R0: Function. (Will be reloaded with the specialized matcher function.) |
| 2361 | // R4: Arguments descriptor. (Will be preserved.) |
| 2362 | // R5: Unknown. (Must be GC safe on tail call.) |
| 2363 | |
| 2364 | // Load the specialized function pointer into R0. Leverage the fact the |
| 2365 | // string CIDs as well as stored function pointers are in sequence. |
| 2366 | __ ldr(R2, Address(SP, kRegExpParamOffset)); |
| 2367 | __ ldr(R1, Address(SP, kStringParamOffset)); |
| 2368 | __ LoadClassId(R1, R1); |
| 2369 | __ AddImmediate(R1, -kOneByteStringCid); |
| 2370 | __ add(R1, R2, Operand(R1, LSL, target::kWordSizeLog2)); |
| 2371 | __ ldr(R0, FieldAddress(R1, target::RegExp::function_offset(kOneByteStringCid, |
| 2372 | sticky))); |
| 2373 | |
| 2374 | // Registers are now set up for the lazy compile stub. It expects the function |
| 2375 | // in R0, the argument descriptor in R4, and IC-Data in R5. |
| 2376 | __ eor(R5, R5, Operand(R5)); |
| 2377 | |
| 2378 | // Tail-call the function. |
| 2379 | __ ldr(CODE_REG, FieldAddress(R0, target::Function::code_offset())); |
| 2380 | __ ldr(R1, FieldAddress(R0, target::Function::entry_point_offset())); |
| 2381 | __ br(R1); |
| 2382 | } |
| 2383 | |
| 2384 | // On stack: user tag (+0). |
| 2385 | void AsmIntrinsifier::UserTag_makeCurrent(Assembler* assembler, |
| 2386 | Label* normal_ir_body) { |
| 2387 | // R1: Isolate. |
| 2388 | __ LoadIsolate(R1); |
| 2389 | // R0: Current user tag. |
| 2390 | __ ldr(R0, Address(R1, target::Isolate::current_tag_offset())); |
| 2391 | // R2: UserTag. |
| 2392 | __ ldr(R2, Address(SP, +0 * target::kWordSize)); |
| 2393 | // Set target::Isolate::current_tag_. |
| 2394 | __ str(R2, Address(R1, target::Isolate::current_tag_offset())); |
| 2395 | // R2: UserTag's tag. |
| 2396 | __ ldr(R2, FieldAddress(R2, target::UserTag::tag_offset())); |
| 2397 | // Set target::Isolate::user_tag_. |
| 2398 | __ str(R2, Address(R1, target::Isolate::user_tag_offset())); |
| 2399 | __ ret(); |
| 2400 | } |
| 2401 | |
| 2402 | void AsmIntrinsifier::UserTag_defaultTag(Assembler* assembler, |
| 2403 | Label* normal_ir_body) { |
| 2404 | __ LoadIsolate(R0); |
| 2405 | __ ldr(R0, Address(R0, target::Isolate::default_tag_offset())); |
| 2406 | __ ret(); |
| 2407 | } |
| 2408 | |
| 2409 | void AsmIntrinsifier::Profiler_getCurrentTag(Assembler* assembler, |
| 2410 | Label* normal_ir_body) { |
| 2411 | __ LoadIsolate(R0); |
| 2412 | __ ldr(R0, Address(R0, target::Isolate::current_tag_offset())); |
| 2413 | __ ret(); |
| 2414 | } |
| 2415 | |
| 2416 | void AsmIntrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler, |
| 2417 | Label* normal_ir_body) { |
| 2418 | #if !defined(SUPPORT_TIMELINE) |
| 2419 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 2420 | __ ret(); |
| 2421 | #else |
| 2422 | // Load TimelineStream*. |
| 2423 | __ ldr(R0, Address(THR, target::Thread::dart_stream_offset())); |
| 2424 | // Load uintptr_t from TimelineStream*. |
| 2425 | __ ldr(R0, Address(R0, target::TimelineStream::enabled_offset())); |
| 2426 | __ cmp(R0, Operand(0)); |
| 2427 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 2428 | __ LoadObject(TMP, CastHandle<Object>(TrueObject())); |
| 2429 | __ csel(R0, TMP, R0, NE); |
| 2430 | __ ret(); |
| 2431 | #endif |
| 2432 | } |
| 2433 | |
| 2434 | void AsmIntrinsifier::ClearAsyncThreadStackTrace(Assembler* assembler, |
| 2435 | Label* normal_ir_body) { |
| 2436 | __ LoadObject(R0, NullObject()); |
| 2437 | __ str(R0, Address(THR, target::Thread::async_stack_trace_offset())); |
| 2438 | __ ret(); |
| 2439 | } |
| 2440 | |
| 2441 | void AsmIntrinsifier::SetAsyncThreadStackTrace(Assembler* assembler, |
| 2442 | Label* normal_ir_body) { |
| 2443 | __ ldr(R0, Address(THR, target::Thread::async_stack_trace_offset())); |
| 2444 | __ LoadObject(R0, NullObject()); |
| 2445 | __ ret(); |
| 2446 | } |
| 2447 | |
| 2448 | #undef __ |
| 2449 | |
| 2450 | } // namespace compiler |
| 2451 | } // namespace dart |
| 2452 | |
| 2453 | #endif // defined(TARGET_ARCH_ARM64) |
| 2454 | |