| 1 | // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/compiler/relocation.h" |
| 6 | |
| 7 | #include "vm/code_patcher.h" |
| 8 | #include "vm/heap/pages.h" |
| 9 | #include "vm/instructions.h" |
| 10 | #include "vm/object_store.h" |
| 11 | #include "vm/stub_code.h" |
| 12 | |
| 13 | namespace dart { |
| 14 | |
| 15 | #if defined(DART_PRECOMPILER) && !defined(TARGET_ARCH_IA32) |
| 16 | |
| 17 | // Only for testing. |
| 18 | DEFINE_FLAG(bool, |
| 19 | always_generate_trampolines_for_testing, |
| 20 | false, |
| 21 | "Generate always trampolines (for testing purposes)." ); |
| 22 | |
| 23 | const intptr_t kTrampolineSize = |
| 24 | Utils::RoundUp(PcRelativeTrampolineJumpPattern::kLengthInBytes, |
| 25 | ImageWriter::kBareInstructionsAlignment); |
| 26 | |
| 27 | CodeRelocator::CodeRelocator(Thread* thread, |
| 28 | GrowableArray<CodePtr>* code_objects, |
| 29 | GrowableArray<ImageWriterCommand>* commands) |
| 30 | : StackResource(thread), |
| 31 | thread_(thread), |
| 32 | code_objects_(code_objects), |
| 33 | commands_(commands), |
| 34 | kind_type_and_offset_(Smi::Handle(thread->zone())), |
| 35 | target_(Object::Handle(thread->zone())), |
| 36 | destination_(Code::Handle(thread->zone())) {} |
| 37 | |
| 38 | void CodeRelocator::Relocate(bool is_vm_isolate) { |
| 39 | Zone* zone = Thread::Current()->zone(); |
| 40 | auto& current_caller = Code::Handle(zone); |
| 41 | auto& call_targets = Array::Handle(zone); |
| 42 | |
| 43 | // Do one linear pass over all code objects and determine: |
| 44 | // |
| 45 | // * the maximum instruction size |
| 46 | // * the maximum number of calls |
| 47 | // * the maximum offset into a target instruction |
| 48 | // |
| 49 | FindInstructionAndCallLimits(); |
| 50 | |
| 51 | // Emit all instructions and do relocations on the way. |
| 52 | for (intptr_t i = 0; i < code_objects_->length(); ++i) { |
| 53 | current_caller = (*code_objects_)[i]; |
| 54 | |
| 55 | const intptr_t code_text_offset = next_text_offset_; |
| 56 | if (!AddInstructionsToText(current_caller.raw())) { |
| 57 | continue; |
| 58 | } |
| 59 | |
| 60 | call_targets = current_caller.static_calls_target_table(); |
| 61 | ScanCallTargets(current_caller, call_targets, code_text_offset); |
| 62 | |
| 63 | // Any unresolved calls to this instruction can be fixed now. |
| 64 | ResolveUnresolvedCallsTargeting(current_caller.instructions()); |
| 65 | |
| 66 | // If we have forward/backwards calls which are almost out-of-range, we'll |
| 67 | // create trampolines now. |
| 68 | BuildTrampolinesForAlmostOutOfRangeCalls(); |
| 69 | } |
| 70 | |
| 71 | // We're guaranteed to have all calls resolved, since |
| 72 | // * backwards calls are resolved eagerly |
| 73 | // * forward calls are resolved once the target is written |
| 74 | ASSERT(all_unresolved_calls_.IsEmpty()); |
| 75 | ASSERT(unresolved_calls_by_destination_.IsEmpty()); |
| 76 | |
| 77 | // Any trampolines we created must be patched with the right offsets. |
| 78 | auto it = trampolines_by_destination_.GetIterator(); |
| 79 | while (true) { |
| 80 | auto entry = it.Next(); |
| 81 | if (entry == nullptr) break; |
| 82 | |
| 83 | UnresolvedTrampolineList* trampoline_list = entry->value; |
| 84 | while (!trampoline_list->IsEmpty()) { |
| 85 | auto unresolved_trampoline = trampoline_list->RemoveFirst(); |
| 86 | ResolveTrampoline(unresolved_trampoline); |
| 87 | delete unresolved_trampoline; |
| 88 | } |
| 89 | delete trampoline_list; |
| 90 | } |
| 91 | trampolines_by_destination_.Clear(); |
| 92 | |
| 93 | // We're done now, so we clear out the targets tables. |
| 94 | auto& caller = Code::Handle(zone); |
| 95 | if (!is_vm_isolate) { |
| 96 | for (intptr_t i = 0; i < code_objects_->length(); ++i) { |
| 97 | caller = (*code_objects_)[i]; |
| 98 | caller.set_static_calls_target_table(Array::empty_array()); |
| 99 | } |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | void CodeRelocator::FindInstructionAndCallLimits() { |
| 104 | auto zone = thread_->zone(); |
| 105 | auto& current_caller = Code::Handle(zone); |
| 106 | auto& call_targets = Array::Handle(zone); |
| 107 | |
| 108 | for (intptr_t i = 0; i < code_objects_->length(); ++i) { |
| 109 | current_caller = (*code_objects_)[i]; |
| 110 | const intptr_t size = |
| 111 | ImageWriter::SizeInSnapshot(current_caller.instructions()); |
| 112 | if (size > max_instructions_size_) { |
| 113 | max_instructions_size_ = size; |
| 114 | } |
| 115 | |
| 116 | call_targets = current_caller.static_calls_target_table(); |
| 117 | if (!call_targets.IsNull()) { |
| 118 | intptr_t num_calls = 0; |
| 119 | StaticCallsTable calls(call_targets); |
| 120 | for (auto call : calls) { |
| 121 | kind_type_and_offset_ = call.Get<Code::kSCallTableKindAndOffset>(); |
| 122 | const auto kind = |
| 123 | Code::KindField::decode(kind_type_and_offset_.Value()); |
| 124 | const auto return_pc_offset = |
| 125 | Code::OffsetField::decode(kind_type_and_offset_.Value()); |
| 126 | const auto call_entry_point = |
| 127 | Code::EntryPointField::decode(kind_type_and_offset_.Value()); |
| 128 | |
| 129 | if (kind == Code::kCallViaCode) { |
| 130 | continue; |
| 131 | } |
| 132 | |
| 133 | destination_ = GetTarget(call); |
| 134 | num_calls++; |
| 135 | |
| 136 | // A call site can decide to jump not to the beginning of a function but |
| 137 | // rather jump into it at a certain (positive) offset. |
| 138 | int32_t offset_into_target = 0; |
| 139 | if (kind == Code::kPcRelativeCall || kind == Code::kPcRelativeTTSCall) { |
| 140 | const intptr_t call_instruction_offset = |
| 141 | return_pc_offset - PcRelativeCallPattern::kLengthInBytes; |
| 142 | PcRelativeCallPattern call(current_caller.PayloadStart() + |
| 143 | call_instruction_offset); |
| 144 | ASSERT(call.IsValid()); |
| 145 | offset_into_target = call.distance(); |
| 146 | } else { |
| 147 | ASSERT(kind == Code::kPcRelativeTailCall); |
| 148 | const intptr_t call_instruction_offset = |
| 149 | return_pc_offset - PcRelativeTailCallPattern::kLengthInBytes; |
| 150 | PcRelativeTailCallPattern call(current_caller.PayloadStart() + |
| 151 | call_instruction_offset); |
| 152 | ASSERT(call.IsValid()); |
| 153 | offset_into_target = call.distance(); |
| 154 | } |
| 155 | |
| 156 | const uword destination_payload = destination_.PayloadStart(); |
| 157 | const uword entry_point = call_entry_point == Code::kUncheckedEntry |
| 158 | ? destination_.UncheckedEntryPoint() |
| 159 | : destination_.EntryPoint(); |
| 160 | |
| 161 | offset_into_target += (entry_point - destination_payload); |
| 162 | |
| 163 | if (offset_into_target > max_offset_into_target_) { |
| 164 | max_offset_into_target_ = offset_into_target; |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | if (num_calls > max_calls_) { |
| 169 | max_calls_ = num_calls; |
| 170 | } |
| 171 | } |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | bool CodeRelocator::AddInstructionsToText(CodePtr code) { |
| 176 | InstructionsPtr instructions = Code::InstructionsOf(code); |
| 177 | |
| 178 | // If two [Code] objects point to the same [Instructions] object, we'll just |
| 179 | // use the first one (they are equivalent for all practical purposes). |
| 180 | if (text_offsets_.HasKey(instructions)) { |
| 181 | return false; |
| 182 | } |
| 183 | text_offsets_.Insert({instructions, next_text_offset_}); |
| 184 | commands_->Add(ImageWriterCommand(next_text_offset_, code)); |
| 185 | next_text_offset_ += ImageWriter::SizeInSnapshot(instructions); |
| 186 | |
| 187 | return true; |
| 188 | } |
| 189 | |
| 190 | UnresolvedTrampoline* CodeRelocator::FindTrampolineFor( |
| 191 | UnresolvedCall* unresolved_call) { |
| 192 | auto destination = Code::InstructionsOf(unresolved_call->callee); |
| 193 | auto entry = trampolines_by_destination_.Lookup(destination); |
| 194 | if (entry != nullptr) { |
| 195 | UnresolvedTrampolineList* trampolines = entry->value; |
| 196 | ASSERT(!trampolines->IsEmpty()); |
| 197 | |
| 198 | // For the destination of [unresolved_call] we might have multiple |
| 199 | // trampolines. The trampolines are sorted according to insertion order, |
| 200 | // which guarantees increasing text_offset's. So we go from the back of the |
| 201 | // list as long as we have trampolines that are in-range and then check |
| 202 | // whether the target offset matches. |
| 203 | auto it = trampolines->End(); |
| 204 | --it; |
| 205 | do { |
| 206 | UnresolvedTrampoline* trampoline = *it; |
| 207 | if (!IsTargetInRangeFor(unresolved_call, trampoline->text_offset)) { |
| 208 | break; |
| 209 | } |
| 210 | if (trampoline->offset_into_target == |
| 211 | unresolved_call->offset_into_target) { |
| 212 | return trampoline; |
| 213 | } |
| 214 | --it; |
| 215 | } while (it != trampolines->Begin()); |
| 216 | } |
| 217 | return nullptr; |
| 218 | } |
| 219 | |
| 220 | void CodeRelocator::AddTrampolineToText(InstructionsPtr destination, |
| 221 | uint8_t* trampoline_bytes, |
| 222 | intptr_t trampoline_length) { |
| 223 | commands_->Add(ImageWriterCommand(next_text_offset_, trampoline_bytes, |
| 224 | trampoline_length)); |
| 225 | next_text_offset_ += trampoline_length; |
| 226 | } |
| 227 | |
| 228 | void CodeRelocator::ScanCallTargets(const Code& code, |
| 229 | const Array& call_targets, |
| 230 | intptr_t code_text_offset) { |
| 231 | if (call_targets.IsNull()) { |
| 232 | return; |
| 233 | } |
| 234 | StaticCallsTable calls(call_targets); |
| 235 | for (auto call : calls) { |
| 236 | kind_type_and_offset_ = call.Get<Code::kSCallTableKindAndOffset>(); |
| 237 | const auto kind = Code::KindField::decode(kind_type_and_offset_.Value()); |
| 238 | const auto return_pc_offset = |
| 239 | Code::OffsetField::decode(kind_type_and_offset_.Value()); |
| 240 | const auto call_entry_point = |
| 241 | Code::EntryPointField::decode(kind_type_and_offset_.Value()); |
| 242 | |
| 243 | if (kind == Code::kCallViaCode) { |
| 244 | continue; |
| 245 | } |
| 246 | |
| 247 | destination_ = GetTarget(call); |
| 248 | |
| 249 | // A call site can decide to jump not to the beginning of a function but |
| 250 | // rather jump into it at a certain offset. |
| 251 | int32_t offset_into_target = 0; |
| 252 | bool is_tail_call; |
| 253 | intptr_t call_instruction_offset; |
| 254 | if (kind == Code::kPcRelativeCall || kind == Code::kPcRelativeTTSCall) { |
| 255 | call_instruction_offset = |
| 256 | return_pc_offset - PcRelativeCallPattern::kLengthInBytes; |
| 257 | PcRelativeCallPattern call(code.PayloadStart() + call_instruction_offset); |
| 258 | ASSERT(call.IsValid()); |
| 259 | offset_into_target = call.distance(); |
| 260 | is_tail_call = false; |
| 261 | } else { |
| 262 | ASSERT(kind == Code::kPcRelativeTailCall); |
| 263 | call_instruction_offset = |
| 264 | return_pc_offset - PcRelativeTailCallPattern::kLengthInBytes; |
| 265 | PcRelativeTailCallPattern call(code.PayloadStart() + |
| 266 | call_instruction_offset); |
| 267 | ASSERT(call.IsValid()); |
| 268 | offset_into_target = call.distance(); |
| 269 | is_tail_call = true; |
| 270 | } |
| 271 | |
| 272 | const uword destination_payload = destination_.PayloadStart(); |
| 273 | const uword entry_point = call_entry_point == Code::kUncheckedEntry |
| 274 | ? destination_.UncheckedEntryPoint() |
| 275 | : destination_.EntryPoint(); |
| 276 | |
| 277 | offset_into_target += (entry_point - destination_payload); |
| 278 | |
| 279 | const intptr_t text_offset = |
| 280 | code_text_offset + AdjustPayloadOffset(call_instruction_offset); |
| 281 | |
| 282 | UnresolvedCall unresolved_call(code.raw(), call_instruction_offset, |
| 283 | text_offset, destination_.raw(), |
| 284 | offset_into_target, is_tail_call); |
| 285 | if (!TryResolveBackwardsCall(&unresolved_call)) { |
| 286 | EnqueueUnresolvedCall(new UnresolvedCall(unresolved_call)); |
| 287 | } |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | void CodeRelocator::EnqueueUnresolvedCall(UnresolvedCall* unresolved_call) { |
| 292 | // Add it to the min-heap by .text offset. |
| 293 | all_unresolved_calls_.Append(unresolved_call); |
| 294 | |
| 295 | // Add it to callers of destination. |
| 296 | InstructionsPtr destination = Code::InstructionsOf(unresolved_call->callee); |
| 297 | if (!unresolved_calls_by_destination_.HasKey(destination)) { |
| 298 | unresolved_calls_by_destination_.Insert( |
| 299 | {destination, new SameDestinationUnresolvedCallsList()}); |
| 300 | } |
| 301 | unresolved_calls_by_destination_.LookupValue(destination) |
| 302 | ->Append(unresolved_call); |
| 303 | } |
| 304 | |
| 305 | void CodeRelocator::EnqueueUnresolvedTrampoline( |
| 306 | UnresolvedTrampoline* unresolved_trampoline) { |
| 307 | auto destination = Code::InstructionsOf(unresolved_trampoline->callee); |
| 308 | auto entry = trampolines_by_destination_.Lookup(destination); |
| 309 | |
| 310 | UnresolvedTrampolineList* trampolines = nullptr; |
| 311 | if (entry == nullptr) { |
| 312 | trampolines = new UnresolvedTrampolineList(); |
| 313 | trampolines_by_destination_.Insert({destination, trampolines}); |
| 314 | } else { |
| 315 | trampolines = entry->value; |
| 316 | } |
| 317 | trampolines->Append(unresolved_trampoline); |
| 318 | } |
| 319 | |
| 320 | bool CodeRelocator::TryResolveBackwardsCall(UnresolvedCall* unresolved_call) { |
| 321 | auto callee = Code::InstructionsOf(unresolved_call->callee); |
| 322 | auto map_entry = text_offsets_.Lookup(callee); |
| 323 | if (map_entry == nullptr) return false; |
| 324 | |
| 325 | ResolveCall(unresolved_call); |
| 326 | return true; |
| 327 | } |
| 328 | |
| 329 | void CodeRelocator::ResolveUnresolvedCallsTargeting( |
| 330 | const InstructionsPtr instructions) { |
| 331 | if (unresolved_calls_by_destination_.HasKey(instructions)) { |
| 332 | SameDestinationUnresolvedCallsList* calls = |
| 333 | unresolved_calls_by_destination_.LookupValue(instructions); |
| 334 | auto it = calls->Begin(); |
| 335 | while (it != calls->End()) { |
| 336 | UnresolvedCall* unresolved_call = *it; |
| 337 | ++it; |
| 338 | ASSERT(Code::InstructionsOf(unresolved_call->callee) == instructions); |
| 339 | ResolveCall(unresolved_call); |
| 340 | |
| 341 | // Remove the call from both lists. |
| 342 | calls->Remove(unresolved_call); |
| 343 | all_unresolved_calls_.Remove(unresolved_call); |
| 344 | |
| 345 | delete unresolved_call; |
| 346 | } |
| 347 | ASSERT(calls->IsEmpty()); |
| 348 | delete calls; |
| 349 | bool ok = unresolved_calls_by_destination_.Remove(instructions); |
| 350 | ASSERT(ok); |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | void CodeRelocator::ResolveCall(UnresolvedCall* unresolved_call) { |
| 355 | const intptr_t destination_text = |
| 356 | FindDestinationInText(Code::InstructionsOf(unresolved_call->callee), |
| 357 | unresolved_call->offset_into_target); |
| 358 | |
| 359 | ResolveCallToDestination(unresolved_call, destination_text); |
| 360 | } |
| 361 | |
| 362 | void CodeRelocator::ResolveCallToDestination(UnresolvedCall* unresolved_call, |
| 363 | intptr_t destination_text) { |
| 364 | const intptr_t call_text_offset = unresolved_call->text_offset; |
| 365 | const intptr_t call_offset = unresolved_call->call_offset; |
| 366 | |
| 367 | const int32_t distance = destination_text - call_text_offset; |
| 368 | { |
| 369 | auto const caller = unresolved_call->caller; |
| 370 | uword addr = Code::PayloadStartOf(caller) + call_offset; |
| 371 | if (FLAG_write_protect_code) { |
| 372 | addr -= OldPage::Of(Code::InstructionsOf(caller))->AliasOffset(); |
| 373 | } |
| 374 | if (unresolved_call->is_tail_call) { |
| 375 | PcRelativeTailCallPattern call(addr); |
| 376 | ASSERT(call.IsValid()); |
| 377 | call.set_distance(static_cast<int32_t>(distance)); |
| 378 | ASSERT(call.distance() == distance); |
| 379 | } else { |
| 380 | PcRelativeCallPattern call(addr); |
| 381 | ASSERT(call.IsValid()); |
| 382 | call.set_distance(static_cast<int32_t>(distance)); |
| 383 | ASSERT(call.distance() == distance); |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | unresolved_call->caller = nullptr; |
| 388 | unresolved_call->callee = nullptr; |
| 389 | } |
| 390 | |
| 391 | void CodeRelocator::ResolveTrampoline( |
| 392 | UnresolvedTrampoline* unresolved_trampoline) { |
| 393 | const intptr_t trampoline_text_offset = unresolved_trampoline->text_offset; |
| 394 | const uword trampoline_start = |
| 395 | reinterpret_cast<uword>(unresolved_trampoline->trampoline_bytes); |
| 396 | |
| 397 | auto callee = Code::InstructionsOf(unresolved_trampoline->callee); |
| 398 | auto destination_text = |
| 399 | FindDestinationInText(callee, unresolved_trampoline->offset_into_target); |
| 400 | const int32_t distance = destination_text - trampoline_text_offset; |
| 401 | |
| 402 | PcRelativeTrampolineJumpPattern pattern(trampoline_start); |
| 403 | pattern.Initialize(); |
| 404 | pattern.set_distance(distance); |
| 405 | ASSERT(pattern.distance() == distance); |
| 406 | } |
| 407 | |
| 408 | bool CodeRelocator::IsTargetInRangeFor(UnresolvedCall* unresolved_call, |
| 409 | intptr_t target_text_offset) { |
| 410 | const auto forward_distance = |
| 411 | target_text_offset - unresolved_call->text_offset; |
| 412 | if (unresolved_call->is_tail_call) { |
| 413 | return PcRelativeTailCallPattern::kLowerCallingRange < forward_distance && |
| 414 | forward_distance < PcRelativeTailCallPattern::kUpperCallingRange; |
| 415 | } else { |
| 416 | return PcRelativeCallPattern::kLowerCallingRange < forward_distance && |
| 417 | forward_distance < PcRelativeCallPattern::kUpperCallingRange; |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | CodePtr CodeRelocator::GetTarget(const StaticCallsTableEntry& call) { |
| 422 | // The precompiler should have already replaced all function entries |
| 423 | // with code entries. |
| 424 | ASSERT(call.Get<Code::kSCallTableFunctionTarget>() == Function::null()); |
| 425 | |
| 426 | target_ = call.Get<Code::kSCallTableCodeOrTypeTarget>(); |
| 427 | if (target_.IsAbstractType()) { |
| 428 | target_ = AbstractType::Cast(target_).type_test_stub(); |
| 429 | destination_ = Code::Cast(target_).raw(); |
| 430 | |
| 431 | // The AssertAssignableInstr will emit pc-relative calls to the TTS iff |
| 432 | // dst_type is instantiated. If we happened to not install an optimized |
| 433 | // TTS but rather a default one, it will live in the vm-isolate (to |
| 434 | // which we cannot make pc-relative calls). |
| 435 | // Though we have "equivalent" isolate-specific stubs we can use as |
| 436 | // targets instead. |
| 437 | // |
| 438 | // (We could make the AOT compiler install isolate-specific stubs |
| 439 | // into the types directly, but that does not work for types which |
| 440 | // live in the "vm-isolate" - such as `Type::dynamic_type()`). |
| 441 | if (destination_.InVMIsolateHeap()) { |
| 442 | auto object_store = thread_->isolate()->object_store(); |
| 443 | if (destination_.raw() == StubCode::DefaultTypeTest().raw()) { |
| 444 | destination_ = object_store->default_tts_stub(); |
| 445 | } else if (destination_.raw() == |
| 446 | StubCode::DefaultNullableTypeTest().raw()) { |
| 447 | destination_ = object_store->default_nullable_tts_stub(); |
| 448 | } else if (destination_.raw() == StubCode::TopTypeTypeTest().raw()) { |
| 449 | destination_ = object_store->top_type_tts_stub(); |
| 450 | } else if (destination_.raw() == StubCode::UnreachableTypeTest().raw()) { |
| 451 | destination_ = object_store->unreachable_tts_stub(); |
| 452 | } else if (destination_.raw() == StubCode::SlowTypeTest().raw()) { |
| 453 | destination_ = object_store->slow_tts_stub(); |
| 454 | } else { |
| 455 | UNREACHABLE(); |
| 456 | } |
| 457 | } |
| 458 | } else { |
| 459 | ASSERT(target_.IsCode()); |
| 460 | destination_ = Code::Cast(target_).raw(); |
| 461 | } |
| 462 | ASSERT(!destination_.InVMIsolateHeap()); |
| 463 | return destination_.raw(); |
| 464 | } |
| 465 | |
| 466 | void CodeRelocator::BuildTrampolinesForAlmostOutOfRangeCalls() { |
| 467 | while (!all_unresolved_calls_.IsEmpty()) { |
| 468 | UnresolvedCall* unresolved_call = all_unresolved_calls_.First(); |
| 469 | |
| 470 | // If we can emit another instructions object without causing the unresolved |
| 471 | // forward calls to become out-of-range, we'll not resolve it yet (maybe the |
| 472 | // target function will come very soon and we don't need a trampoline at |
| 473 | // all). |
| 474 | const intptr_t future_boundary = |
| 475 | next_text_offset_ + max_instructions_size_ + |
| 476 | kTrampolineSize * |
| 477 | (unresolved_calls_by_destination_.Length() + max_calls_); |
| 478 | if (IsTargetInRangeFor(unresolved_call, future_boundary) && |
| 479 | !FLAG_always_generate_trampolines_for_testing) { |
| 480 | break; |
| 481 | } |
| 482 | |
| 483 | // We have a "critical" [unresolved_call] we have to resolve. If an |
| 484 | // existing trampoline is in range, we use that otherwise we create a new |
| 485 | // trampoline. |
| 486 | |
| 487 | // In the worst case we'll make a new trampoline here, in which case the |
| 488 | // current text offset must be in range for the "critical" |
| 489 | // [unresolved_call]. |
| 490 | ASSERT(IsTargetInRangeFor(unresolved_call, next_text_offset_)); |
| 491 | |
| 492 | // See if there is already a trampoline we could use. |
| 493 | intptr_t trampoline_text_offset = -1; |
| 494 | auto callee = Code::InstructionsOf(unresolved_call->callee); |
| 495 | |
| 496 | if (!FLAG_always_generate_trampolines_for_testing) { |
| 497 | auto old_trampoline_entry = FindTrampolineFor(unresolved_call); |
| 498 | if (old_trampoline_entry != nullptr) { |
| 499 | trampoline_text_offset = old_trampoline_entry->text_offset; |
| 500 | } |
| 501 | } |
| 502 | |
| 503 | // If there is no trampoline yet, we'll create a new one. |
| 504 | if (trampoline_text_offset == -1) { |
| 505 | // The ownership of the trampoline bytes will be transferred to the |
| 506 | // [ImageWriter], which will eventually write out the bytes and delete the |
| 507 | // buffer. |
| 508 | auto trampoline_bytes = new uint8_t[kTrampolineSize]; |
| 509 | ASSERT((kTrampolineSize % compiler::target::kWordSize) == 0); |
| 510 | for (uint8_t* cur = trampoline_bytes; |
| 511 | cur < trampoline_bytes + kTrampolineSize; |
| 512 | cur += compiler::target::kWordSize) { |
| 513 | *reinterpret_cast<compiler::target::uword*>(cur) = |
| 514 | kBreakInstructionFiller; |
| 515 | } |
| 516 | auto unresolved_trampoline = new UnresolvedTrampoline{ |
| 517 | unresolved_call->callee, |
| 518 | unresolved_call->offset_into_target, |
| 519 | trampoline_bytes, |
| 520 | next_text_offset_, |
| 521 | }; |
| 522 | AddTrampolineToText(callee, trampoline_bytes, kTrampolineSize); |
| 523 | EnqueueUnresolvedTrampoline(unresolved_trampoline); |
| 524 | trampoline_text_offset = unresolved_trampoline->text_offset; |
| 525 | } |
| 526 | |
| 527 | // Let the unresolved call to [destination] jump to the trampoline |
| 528 | // instead. |
| 529 | auto destination = Code::InstructionsOf(unresolved_call->callee); |
| 530 | ResolveCallToDestination(unresolved_call, trampoline_text_offset); |
| 531 | |
| 532 | // Remove this unresolved call from the global list and the per-destination |
| 533 | // list. |
| 534 | auto calls = unresolved_calls_by_destination_.LookupValue(destination); |
| 535 | calls->Remove(unresolved_call); |
| 536 | all_unresolved_calls_.Remove(unresolved_call); |
| 537 | delete unresolved_call; |
| 538 | |
| 539 | // If this destination has no longer any unresolved calls, remove it. |
| 540 | if (calls->IsEmpty()) { |
| 541 | unresolved_calls_by_destination_.Remove(destination); |
| 542 | delete calls; |
| 543 | } |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | intptr_t CodeRelocator::FindDestinationInText(const InstructionsPtr destination, |
| 548 | intptr_t offset_into_target) { |
| 549 | auto const destination_offset = text_offsets_.LookupValue(destination); |
| 550 | return destination_offset + AdjustPayloadOffset(offset_into_target); |
| 551 | } |
| 552 | |
| 553 | intptr_t CodeRelocator::AdjustPayloadOffset(intptr_t payload_offset) { |
| 554 | if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
| 555 | return payload_offset; |
| 556 | } |
| 557 | return compiler::target::Instructions::HeaderSize() + payload_offset; |
| 558 | } |
| 559 | |
| 560 | #endif // defined(DART_PRECOMPILER) && !defined(TARGET_ARCH_IA32) |
| 561 | |
| 562 | } // namespace dart |
| 563 | |