1 | // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
2 | // for details. All rights reserved. Use of this source code is governed by a |
3 | // BSD-style license that can be found in the LICENSE file. |
4 | |
5 | #include "vm/compiler/relocation.h" |
6 | |
7 | #include "vm/code_patcher.h" |
8 | #include "vm/heap/pages.h" |
9 | #include "vm/instructions.h" |
10 | #include "vm/object_store.h" |
11 | #include "vm/stub_code.h" |
12 | |
13 | namespace dart { |
14 | |
15 | #if defined(DART_PRECOMPILER) && !defined(TARGET_ARCH_IA32) |
16 | |
17 | // Only for testing. |
18 | DEFINE_FLAG(bool, |
19 | always_generate_trampolines_for_testing, |
20 | false, |
21 | "Generate always trampolines (for testing purposes)." ); |
22 | |
23 | const intptr_t kTrampolineSize = |
24 | Utils::RoundUp(PcRelativeTrampolineJumpPattern::kLengthInBytes, |
25 | ImageWriter::kBareInstructionsAlignment); |
26 | |
27 | CodeRelocator::CodeRelocator(Thread* thread, |
28 | GrowableArray<CodePtr>* code_objects, |
29 | GrowableArray<ImageWriterCommand>* commands) |
30 | : StackResource(thread), |
31 | thread_(thread), |
32 | code_objects_(code_objects), |
33 | commands_(commands), |
34 | kind_type_and_offset_(Smi::Handle(thread->zone())), |
35 | target_(Object::Handle(thread->zone())), |
36 | destination_(Code::Handle(thread->zone())) {} |
37 | |
38 | void CodeRelocator::Relocate(bool is_vm_isolate) { |
39 | Zone* zone = Thread::Current()->zone(); |
40 | auto& current_caller = Code::Handle(zone); |
41 | auto& call_targets = Array::Handle(zone); |
42 | |
43 | // Do one linear pass over all code objects and determine: |
44 | // |
45 | // * the maximum instruction size |
46 | // * the maximum number of calls |
47 | // * the maximum offset into a target instruction |
48 | // |
49 | FindInstructionAndCallLimits(); |
50 | |
51 | // Emit all instructions and do relocations on the way. |
52 | for (intptr_t i = 0; i < code_objects_->length(); ++i) { |
53 | current_caller = (*code_objects_)[i]; |
54 | |
55 | const intptr_t code_text_offset = next_text_offset_; |
56 | if (!AddInstructionsToText(current_caller.raw())) { |
57 | continue; |
58 | } |
59 | |
60 | call_targets = current_caller.static_calls_target_table(); |
61 | ScanCallTargets(current_caller, call_targets, code_text_offset); |
62 | |
63 | // Any unresolved calls to this instruction can be fixed now. |
64 | ResolveUnresolvedCallsTargeting(current_caller.instructions()); |
65 | |
66 | // If we have forward/backwards calls which are almost out-of-range, we'll |
67 | // create trampolines now. |
68 | BuildTrampolinesForAlmostOutOfRangeCalls(); |
69 | } |
70 | |
71 | // We're guaranteed to have all calls resolved, since |
72 | // * backwards calls are resolved eagerly |
73 | // * forward calls are resolved once the target is written |
74 | ASSERT(all_unresolved_calls_.IsEmpty()); |
75 | ASSERT(unresolved_calls_by_destination_.IsEmpty()); |
76 | |
77 | // Any trampolines we created must be patched with the right offsets. |
78 | auto it = trampolines_by_destination_.GetIterator(); |
79 | while (true) { |
80 | auto entry = it.Next(); |
81 | if (entry == nullptr) break; |
82 | |
83 | UnresolvedTrampolineList* trampoline_list = entry->value; |
84 | while (!trampoline_list->IsEmpty()) { |
85 | auto unresolved_trampoline = trampoline_list->RemoveFirst(); |
86 | ResolveTrampoline(unresolved_trampoline); |
87 | delete unresolved_trampoline; |
88 | } |
89 | delete trampoline_list; |
90 | } |
91 | trampolines_by_destination_.Clear(); |
92 | |
93 | // We're done now, so we clear out the targets tables. |
94 | auto& caller = Code::Handle(zone); |
95 | if (!is_vm_isolate) { |
96 | for (intptr_t i = 0; i < code_objects_->length(); ++i) { |
97 | caller = (*code_objects_)[i]; |
98 | caller.set_static_calls_target_table(Array::empty_array()); |
99 | } |
100 | } |
101 | } |
102 | |
103 | void CodeRelocator::FindInstructionAndCallLimits() { |
104 | auto zone = thread_->zone(); |
105 | auto& current_caller = Code::Handle(zone); |
106 | auto& call_targets = Array::Handle(zone); |
107 | |
108 | for (intptr_t i = 0; i < code_objects_->length(); ++i) { |
109 | current_caller = (*code_objects_)[i]; |
110 | const intptr_t size = |
111 | ImageWriter::SizeInSnapshot(current_caller.instructions()); |
112 | if (size > max_instructions_size_) { |
113 | max_instructions_size_ = size; |
114 | } |
115 | |
116 | call_targets = current_caller.static_calls_target_table(); |
117 | if (!call_targets.IsNull()) { |
118 | intptr_t num_calls = 0; |
119 | StaticCallsTable calls(call_targets); |
120 | for (auto call : calls) { |
121 | kind_type_and_offset_ = call.Get<Code::kSCallTableKindAndOffset>(); |
122 | const auto kind = |
123 | Code::KindField::decode(kind_type_and_offset_.Value()); |
124 | const auto return_pc_offset = |
125 | Code::OffsetField::decode(kind_type_and_offset_.Value()); |
126 | const auto call_entry_point = |
127 | Code::EntryPointField::decode(kind_type_and_offset_.Value()); |
128 | |
129 | if (kind == Code::kCallViaCode) { |
130 | continue; |
131 | } |
132 | |
133 | destination_ = GetTarget(call); |
134 | num_calls++; |
135 | |
136 | // A call site can decide to jump not to the beginning of a function but |
137 | // rather jump into it at a certain (positive) offset. |
138 | int32_t offset_into_target = 0; |
139 | if (kind == Code::kPcRelativeCall || kind == Code::kPcRelativeTTSCall) { |
140 | const intptr_t call_instruction_offset = |
141 | return_pc_offset - PcRelativeCallPattern::kLengthInBytes; |
142 | PcRelativeCallPattern call(current_caller.PayloadStart() + |
143 | call_instruction_offset); |
144 | ASSERT(call.IsValid()); |
145 | offset_into_target = call.distance(); |
146 | } else { |
147 | ASSERT(kind == Code::kPcRelativeTailCall); |
148 | const intptr_t call_instruction_offset = |
149 | return_pc_offset - PcRelativeTailCallPattern::kLengthInBytes; |
150 | PcRelativeTailCallPattern call(current_caller.PayloadStart() + |
151 | call_instruction_offset); |
152 | ASSERT(call.IsValid()); |
153 | offset_into_target = call.distance(); |
154 | } |
155 | |
156 | const uword destination_payload = destination_.PayloadStart(); |
157 | const uword entry_point = call_entry_point == Code::kUncheckedEntry |
158 | ? destination_.UncheckedEntryPoint() |
159 | : destination_.EntryPoint(); |
160 | |
161 | offset_into_target += (entry_point - destination_payload); |
162 | |
163 | if (offset_into_target > max_offset_into_target_) { |
164 | max_offset_into_target_ = offset_into_target; |
165 | } |
166 | } |
167 | |
168 | if (num_calls > max_calls_) { |
169 | max_calls_ = num_calls; |
170 | } |
171 | } |
172 | } |
173 | } |
174 | |
175 | bool CodeRelocator::AddInstructionsToText(CodePtr code) { |
176 | InstructionsPtr instructions = Code::InstructionsOf(code); |
177 | |
178 | // If two [Code] objects point to the same [Instructions] object, we'll just |
179 | // use the first one (they are equivalent for all practical purposes). |
180 | if (text_offsets_.HasKey(instructions)) { |
181 | return false; |
182 | } |
183 | text_offsets_.Insert({instructions, next_text_offset_}); |
184 | commands_->Add(ImageWriterCommand(next_text_offset_, code)); |
185 | next_text_offset_ += ImageWriter::SizeInSnapshot(instructions); |
186 | |
187 | return true; |
188 | } |
189 | |
190 | UnresolvedTrampoline* CodeRelocator::FindTrampolineFor( |
191 | UnresolvedCall* unresolved_call) { |
192 | auto destination = Code::InstructionsOf(unresolved_call->callee); |
193 | auto entry = trampolines_by_destination_.Lookup(destination); |
194 | if (entry != nullptr) { |
195 | UnresolvedTrampolineList* trampolines = entry->value; |
196 | ASSERT(!trampolines->IsEmpty()); |
197 | |
198 | // For the destination of [unresolved_call] we might have multiple |
199 | // trampolines. The trampolines are sorted according to insertion order, |
200 | // which guarantees increasing text_offset's. So we go from the back of the |
201 | // list as long as we have trampolines that are in-range and then check |
202 | // whether the target offset matches. |
203 | auto it = trampolines->End(); |
204 | --it; |
205 | do { |
206 | UnresolvedTrampoline* trampoline = *it; |
207 | if (!IsTargetInRangeFor(unresolved_call, trampoline->text_offset)) { |
208 | break; |
209 | } |
210 | if (trampoline->offset_into_target == |
211 | unresolved_call->offset_into_target) { |
212 | return trampoline; |
213 | } |
214 | --it; |
215 | } while (it != trampolines->Begin()); |
216 | } |
217 | return nullptr; |
218 | } |
219 | |
220 | void CodeRelocator::AddTrampolineToText(InstructionsPtr destination, |
221 | uint8_t* trampoline_bytes, |
222 | intptr_t trampoline_length) { |
223 | commands_->Add(ImageWriterCommand(next_text_offset_, trampoline_bytes, |
224 | trampoline_length)); |
225 | next_text_offset_ += trampoline_length; |
226 | } |
227 | |
228 | void CodeRelocator::ScanCallTargets(const Code& code, |
229 | const Array& call_targets, |
230 | intptr_t code_text_offset) { |
231 | if (call_targets.IsNull()) { |
232 | return; |
233 | } |
234 | StaticCallsTable calls(call_targets); |
235 | for (auto call : calls) { |
236 | kind_type_and_offset_ = call.Get<Code::kSCallTableKindAndOffset>(); |
237 | const auto kind = Code::KindField::decode(kind_type_and_offset_.Value()); |
238 | const auto return_pc_offset = |
239 | Code::OffsetField::decode(kind_type_and_offset_.Value()); |
240 | const auto call_entry_point = |
241 | Code::EntryPointField::decode(kind_type_and_offset_.Value()); |
242 | |
243 | if (kind == Code::kCallViaCode) { |
244 | continue; |
245 | } |
246 | |
247 | destination_ = GetTarget(call); |
248 | |
249 | // A call site can decide to jump not to the beginning of a function but |
250 | // rather jump into it at a certain offset. |
251 | int32_t offset_into_target = 0; |
252 | bool is_tail_call; |
253 | intptr_t call_instruction_offset; |
254 | if (kind == Code::kPcRelativeCall || kind == Code::kPcRelativeTTSCall) { |
255 | call_instruction_offset = |
256 | return_pc_offset - PcRelativeCallPattern::kLengthInBytes; |
257 | PcRelativeCallPattern call(code.PayloadStart() + call_instruction_offset); |
258 | ASSERT(call.IsValid()); |
259 | offset_into_target = call.distance(); |
260 | is_tail_call = false; |
261 | } else { |
262 | ASSERT(kind == Code::kPcRelativeTailCall); |
263 | call_instruction_offset = |
264 | return_pc_offset - PcRelativeTailCallPattern::kLengthInBytes; |
265 | PcRelativeTailCallPattern call(code.PayloadStart() + |
266 | call_instruction_offset); |
267 | ASSERT(call.IsValid()); |
268 | offset_into_target = call.distance(); |
269 | is_tail_call = true; |
270 | } |
271 | |
272 | const uword destination_payload = destination_.PayloadStart(); |
273 | const uword entry_point = call_entry_point == Code::kUncheckedEntry |
274 | ? destination_.UncheckedEntryPoint() |
275 | : destination_.EntryPoint(); |
276 | |
277 | offset_into_target += (entry_point - destination_payload); |
278 | |
279 | const intptr_t text_offset = |
280 | code_text_offset + AdjustPayloadOffset(call_instruction_offset); |
281 | |
282 | UnresolvedCall unresolved_call(code.raw(), call_instruction_offset, |
283 | text_offset, destination_.raw(), |
284 | offset_into_target, is_tail_call); |
285 | if (!TryResolveBackwardsCall(&unresolved_call)) { |
286 | EnqueueUnresolvedCall(new UnresolvedCall(unresolved_call)); |
287 | } |
288 | } |
289 | } |
290 | |
291 | void CodeRelocator::EnqueueUnresolvedCall(UnresolvedCall* unresolved_call) { |
292 | // Add it to the min-heap by .text offset. |
293 | all_unresolved_calls_.Append(unresolved_call); |
294 | |
295 | // Add it to callers of destination. |
296 | InstructionsPtr destination = Code::InstructionsOf(unresolved_call->callee); |
297 | if (!unresolved_calls_by_destination_.HasKey(destination)) { |
298 | unresolved_calls_by_destination_.Insert( |
299 | {destination, new SameDestinationUnresolvedCallsList()}); |
300 | } |
301 | unresolved_calls_by_destination_.LookupValue(destination) |
302 | ->Append(unresolved_call); |
303 | } |
304 | |
305 | void CodeRelocator::EnqueueUnresolvedTrampoline( |
306 | UnresolvedTrampoline* unresolved_trampoline) { |
307 | auto destination = Code::InstructionsOf(unresolved_trampoline->callee); |
308 | auto entry = trampolines_by_destination_.Lookup(destination); |
309 | |
310 | UnresolvedTrampolineList* trampolines = nullptr; |
311 | if (entry == nullptr) { |
312 | trampolines = new UnresolvedTrampolineList(); |
313 | trampolines_by_destination_.Insert({destination, trampolines}); |
314 | } else { |
315 | trampolines = entry->value; |
316 | } |
317 | trampolines->Append(unresolved_trampoline); |
318 | } |
319 | |
320 | bool CodeRelocator::TryResolveBackwardsCall(UnresolvedCall* unresolved_call) { |
321 | auto callee = Code::InstructionsOf(unresolved_call->callee); |
322 | auto map_entry = text_offsets_.Lookup(callee); |
323 | if (map_entry == nullptr) return false; |
324 | |
325 | ResolveCall(unresolved_call); |
326 | return true; |
327 | } |
328 | |
329 | void CodeRelocator::ResolveUnresolvedCallsTargeting( |
330 | const InstructionsPtr instructions) { |
331 | if (unresolved_calls_by_destination_.HasKey(instructions)) { |
332 | SameDestinationUnresolvedCallsList* calls = |
333 | unresolved_calls_by_destination_.LookupValue(instructions); |
334 | auto it = calls->Begin(); |
335 | while (it != calls->End()) { |
336 | UnresolvedCall* unresolved_call = *it; |
337 | ++it; |
338 | ASSERT(Code::InstructionsOf(unresolved_call->callee) == instructions); |
339 | ResolveCall(unresolved_call); |
340 | |
341 | // Remove the call from both lists. |
342 | calls->Remove(unresolved_call); |
343 | all_unresolved_calls_.Remove(unresolved_call); |
344 | |
345 | delete unresolved_call; |
346 | } |
347 | ASSERT(calls->IsEmpty()); |
348 | delete calls; |
349 | bool ok = unresolved_calls_by_destination_.Remove(instructions); |
350 | ASSERT(ok); |
351 | } |
352 | } |
353 | |
354 | void CodeRelocator::ResolveCall(UnresolvedCall* unresolved_call) { |
355 | const intptr_t destination_text = |
356 | FindDestinationInText(Code::InstructionsOf(unresolved_call->callee), |
357 | unresolved_call->offset_into_target); |
358 | |
359 | ResolveCallToDestination(unresolved_call, destination_text); |
360 | } |
361 | |
362 | void CodeRelocator::ResolveCallToDestination(UnresolvedCall* unresolved_call, |
363 | intptr_t destination_text) { |
364 | const intptr_t call_text_offset = unresolved_call->text_offset; |
365 | const intptr_t call_offset = unresolved_call->call_offset; |
366 | |
367 | const int32_t distance = destination_text - call_text_offset; |
368 | { |
369 | auto const caller = unresolved_call->caller; |
370 | uword addr = Code::PayloadStartOf(caller) + call_offset; |
371 | if (FLAG_write_protect_code) { |
372 | addr -= OldPage::Of(Code::InstructionsOf(caller))->AliasOffset(); |
373 | } |
374 | if (unresolved_call->is_tail_call) { |
375 | PcRelativeTailCallPattern call(addr); |
376 | ASSERT(call.IsValid()); |
377 | call.set_distance(static_cast<int32_t>(distance)); |
378 | ASSERT(call.distance() == distance); |
379 | } else { |
380 | PcRelativeCallPattern call(addr); |
381 | ASSERT(call.IsValid()); |
382 | call.set_distance(static_cast<int32_t>(distance)); |
383 | ASSERT(call.distance() == distance); |
384 | } |
385 | } |
386 | |
387 | unresolved_call->caller = nullptr; |
388 | unresolved_call->callee = nullptr; |
389 | } |
390 | |
391 | void CodeRelocator::ResolveTrampoline( |
392 | UnresolvedTrampoline* unresolved_trampoline) { |
393 | const intptr_t trampoline_text_offset = unresolved_trampoline->text_offset; |
394 | const uword trampoline_start = |
395 | reinterpret_cast<uword>(unresolved_trampoline->trampoline_bytes); |
396 | |
397 | auto callee = Code::InstructionsOf(unresolved_trampoline->callee); |
398 | auto destination_text = |
399 | FindDestinationInText(callee, unresolved_trampoline->offset_into_target); |
400 | const int32_t distance = destination_text - trampoline_text_offset; |
401 | |
402 | PcRelativeTrampolineJumpPattern pattern(trampoline_start); |
403 | pattern.Initialize(); |
404 | pattern.set_distance(distance); |
405 | ASSERT(pattern.distance() == distance); |
406 | } |
407 | |
408 | bool CodeRelocator::IsTargetInRangeFor(UnresolvedCall* unresolved_call, |
409 | intptr_t target_text_offset) { |
410 | const auto forward_distance = |
411 | target_text_offset - unresolved_call->text_offset; |
412 | if (unresolved_call->is_tail_call) { |
413 | return PcRelativeTailCallPattern::kLowerCallingRange < forward_distance && |
414 | forward_distance < PcRelativeTailCallPattern::kUpperCallingRange; |
415 | } else { |
416 | return PcRelativeCallPattern::kLowerCallingRange < forward_distance && |
417 | forward_distance < PcRelativeCallPattern::kUpperCallingRange; |
418 | } |
419 | } |
420 | |
421 | CodePtr CodeRelocator::GetTarget(const StaticCallsTableEntry& call) { |
422 | // The precompiler should have already replaced all function entries |
423 | // with code entries. |
424 | ASSERT(call.Get<Code::kSCallTableFunctionTarget>() == Function::null()); |
425 | |
426 | target_ = call.Get<Code::kSCallTableCodeOrTypeTarget>(); |
427 | if (target_.IsAbstractType()) { |
428 | target_ = AbstractType::Cast(target_).type_test_stub(); |
429 | destination_ = Code::Cast(target_).raw(); |
430 | |
431 | // The AssertAssignableInstr will emit pc-relative calls to the TTS iff |
432 | // dst_type is instantiated. If we happened to not install an optimized |
433 | // TTS but rather a default one, it will live in the vm-isolate (to |
434 | // which we cannot make pc-relative calls). |
435 | // Though we have "equivalent" isolate-specific stubs we can use as |
436 | // targets instead. |
437 | // |
438 | // (We could make the AOT compiler install isolate-specific stubs |
439 | // into the types directly, but that does not work for types which |
440 | // live in the "vm-isolate" - such as `Type::dynamic_type()`). |
441 | if (destination_.InVMIsolateHeap()) { |
442 | auto object_store = thread_->isolate()->object_store(); |
443 | if (destination_.raw() == StubCode::DefaultTypeTest().raw()) { |
444 | destination_ = object_store->default_tts_stub(); |
445 | } else if (destination_.raw() == |
446 | StubCode::DefaultNullableTypeTest().raw()) { |
447 | destination_ = object_store->default_nullable_tts_stub(); |
448 | } else if (destination_.raw() == StubCode::TopTypeTypeTest().raw()) { |
449 | destination_ = object_store->top_type_tts_stub(); |
450 | } else if (destination_.raw() == StubCode::UnreachableTypeTest().raw()) { |
451 | destination_ = object_store->unreachable_tts_stub(); |
452 | } else if (destination_.raw() == StubCode::SlowTypeTest().raw()) { |
453 | destination_ = object_store->slow_tts_stub(); |
454 | } else { |
455 | UNREACHABLE(); |
456 | } |
457 | } |
458 | } else { |
459 | ASSERT(target_.IsCode()); |
460 | destination_ = Code::Cast(target_).raw(); |
461 | } |
462 | ASSERT(!destination_.InVMIsolateHeap()); |
463 | return destination_.raw(); |
464 | } |
465 | |
466 | void CodeRelocator::BuildTrampolinesForAlmostOutOfRangeCalls() { |
467 | while (!all_unresolved_calls_.IsEmpty()) { |
468 | UnresolvedCall* unresolved_call = all_unresolved_calls_.First(); |
469 | |
470 | // If we can emit another instructions object without causing the unresolved |
471 | // forward calls to become out-of-range, we'll not resolve it yet (maybe the |
472 | // target function will come very soon and we don't need a trampoline at |
473 | // all). |
474 | const intptr_t future_boundary = |
475 | next_text_offset_ + max_instructions_size_ + |
476 | kTrampolineSize * |
477 | (unresolved_calls_by_destination_.Length() + max_calls_); |
478 | if (IsTargetInRangeFor(unresolved_call, future_boundary) && |
479 | !FLAG_always_generate_trampolines_for_testing) { |
480 | break; |
481 | } |
482 | |
483 | // We have a "critical" [unresolved_call] we have to resolve. If an |
484 | // existing trampoline is in range, we use that otherwise we create a new |
485 | // trampoline. |
486 | |
487 | // In the worst case we'll make a new trampoline here, in which case the |
488 | // current text offset must be in range for the "critical" |
489 | // [unresolved_call]. |
490 | ASSERT(IsTargetInRangeFor(unresolved_call, next_text_offset_)); |
491 | |
492 | // See if there is already a trampoline we could use. |
493 | intptr_t trampoline_text_offset = -1; |
494 | auto callee = Code::InstructionsOf(unresolved_call->callee); |
495 | |
496 | if (!FLAG_always_generate_trampolines_for_testing) { |
497 | auto old_trampoline_entry = FindTrampolineFor(unresolved_call); |
498 | if (old_trampoline_entry != nullptr) { |
499 | trampoline_text_offset = old_trampoline_entry->text_offset; |
500 | } |
501 | } |
502 | |
503 | // If there is no trampoline yet, we'll create a new one. |
504 | if (trampoline_text_offset == -1) { |
505 | // The ownership of the trampoline bytes will be transferred to the |
506 | // [ImageWriter], which will eventually write out the bytes and delete the |
507 | // buffer. |
508 | auto trampoline_bytes = new uint8_t[kTrampolineSize]; |
509 | ASSERT((kTrampolineSize % compiler::target::kWordSize) == 0); |
510 | for (uint8_t* cur = trampoline_bytes; |
511 | cur < trampoline_bytes + kTrampolineSize; |
512 | cur += compiler::target::kWordSize) { |
513 | *reinterpret_cast<compiler::target::uword*>(cur) = |
514 | kBreakInstructionFiller; |
515 | } |
516 | auto unresolved_trampoline = new UnresolvedTrampoline{ |
517 | unresolved_call->callee, |
518 | unresolved_call->offset_into_target, |
519 | trampoline_bytes, |
520 | next_text_offset_, |
521 | }; |
522 | AddTrampolineToText(callee, trampoline_bytes, kTrampolineSize); |
523 | EnqueueUnresolvedTrampoline(unresolved_trampoline); |
524 | trampoline_text_offset = unresolved_trampoline->text_offset; |
525 | } |
526 | |
527 | // Let the unresolved call to [destination] jump to the trampoline |
528 | // instead. |
529 | auto destination = Code::InstructionsOf(unresolved_call->callee); |
530 | ResolveCallToDestination(unresolved_call, trampoline_text_offset); |
531 | |
532 | // Remove this unresolved call from the global list and the per-destination |
533 | // list. |
534 | auto calls = unresolved_calls_by_destination_.LookupValue(destination); |
535 | calls->Remove(unresolved_call); |
536 | all_unresolved_calls_.Remove(unresolved_call); |
537 | delete unresolved_call; |
538 | |
539 | // If this destination has no longer any unresolved calls, remove it. |
540 | if (calls->IsEmpty()) { |
541 | unresolved_calls_by_destination_.Remove(destination); |
542 | delete calls; |
543 | } |
544 | } |
545 | } |
546 | |
547 | intptr_t CodeRelocator::FindDestinationInText(const InstructionsPtr destination, |
548 | intptr_t offset_into_target) { |
549 | auto const destination_offset = text_offsets_.LookupValue(destination); |
550 | return destination_offset + AdjustPayloadOffset(offset_into_target); |
551 | } |
552 | |
553 | intptr_t CodeRelocator::AdjustPayloadOffset(intptr_t payload_offset) { |
554 | if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
555 | return payload_offset; |
556 | } |
557 | return compiler::target::Instructions::HeaderSize() + payload_offset; |
558 | } |
559 | |
560 | #endif // defined(DART_PRECOMPILER) && !defined(TARGET_ARCH_IA32) |
561 | |
562 | } // namespace dart |
563 | |