| 1 | // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include <setjmp.h> // NOLINT |
| 6 | #include <stdlib.h> |
| 7 | |
| 8 | #include "vm/globals.h" |
| 9 | #if defined(TARGET_ARCH_ARM) |
| 10 | |
| 11 | // Only build the simulator if not compiling for real ARM hardware. |
| 12 | #if defined(USING_SIMULATOR) |
| 13 | |
| 14 | #include "vm/simulator.h" |
| 15 | |
| 16 | #include "vm/compiler/assembler/disassembler.h" |
| 17 | #include "vm/constants.h" |
| 18 | #include "vm/cpu.h" |
| 19 | #include "vm/native_arguments.h" |
| 20 | #include "vm/os_thread.h" |
| 21 | #include "vm/stack_frame.h" |
| 22 | |
| 23 | namespace dart { |
| 24 | |
| 25 | DEFINE_FLAG(uint64_t, |
| 26 | trace_sim_after, |
| 27 | ULLONG_MAX, |
| 28 | "Trace simulator execution after instruction count reached." ); |
| 29 | DEFINE_FLAG(uint64_t, |
| 30 | stop_sim_at, |
| 31 | ULLONG_MAX, |
| 32 | "Instruction address or instruction count to stop simulator at." ); |
| 33 | |
| 34 | // This macro provides a platform independent use of sscanf. The reason for |
| 35 | // SScanF not being implemented in a platform independent way through |
| 36 | // OS in the same way as SNPrint is that the Windows C Run-Time |
| 37 | // Library does not provide vsscanf. |
| 38 | #define SScanF sscanf // NOLINT |
| 39 | |
| 40 | // SimulatorSetjmpBuffer are linked together, and the last created one |
| 41 | // is referenced by the Simulator. When an exception is thrown, the exception |
| 42 | // runtime looks at where to jump and finds the corresponding |
| 43 | // SimulatorSetjmpBuffer based on the stack pointer of the exception handler. |
| 44 | // The runtime then does a Longjmp on that buffer to return to the simulator. |
| 45 | class SimulatorSetjmpBuffer { |
| 46 | public: |
| 47 | void Longjmp() { |
| 48 | // "This" is now the last setjmp buffer. |
| 49 | simulator_->set_last_setjmp_buffer(this); |
| 50 | longjmp(buffer_, 1); |
| 51 | } |
| 52 | |
| 53 | explicit SimulatorSetjmpBuffer(Simulator* sim) { |
| 54 | simulator_ = sim; |
| 55 | link_ = sim->last_setjmp_buffer(); |
| 56 | sim->set_last_setjmp_buffer(this); |
| 57 | sp_ = static_cast<uword>(sim->get_register(SP)); |
| 58 | } |
| 59 | |
| 60 | ~SimulatorSetjmpBuffer() { |
| 61 | ASSERT(simulator_->last_setjmp_buffer() == this); |
| 62 | simulator_->set_last_setjmp_buffer(link_); |
| 63 | } |
| 64 | |
| 65 | SimulatorSetjmpBuffer* link() { return link_; } |
| 66 | |
| 67 | uword sp() { return sp_; } |
| 68 | |
| 69 | private: |
| 70 | uword sp_; |
| 71 | Simulator* simulator_; |
| 72 | SimulatorSetjmpBuffer* link_; |
| 73 | jmp_buf buffer_; |
| 74 | |
| 75 | friend class Simulator; |
| 76 | }; |
| 77 | |
| 78 | // The SimulatorDebugger class is used by the simulator while debugging |
| 79 | // simulated ARM code. |
| 80 | class SimulatorDebugger { |
| 81 | public: |
| 82 | explicit SimulatorDebugger(Simulator* sim); |
| 83 | ~SimulatorDebugger(); |
| 84 | |
| 85 | void Stop(Instr* instr, const char* message); |
| 86 | void Debug(); |
| 87 | char* ReadLine(const char* prompt); |
| 88 | |
| 89 | private: |
| 90 | Simulator* sim_; |
| 91 | |
| 92 | bool GetValue(char* desc, uint32_t* value); |
| 93 | bool GetFValue(char* desc, float* value); |
| 94 | bool GetDValue(char* desc, double* value); |
| 95 | |
| 96 | static TokenPosition GetApproximateTokenIndex(const Code& code, uword pc); |
| 97 | |
| 98 | static void PrintDartFrame(uword pc, |
| 99 | uword fp, |
| 100 | uword sp, |
| 101 | const Function& function, |
| 102 | TokenPosition token_pos, |
| 103 | bool is_optimized, |
| 104 | bool is_inlined); |
| 105 | void PrintBacktrace(); |
| 106 | |
| 107 | // Set or delete a breakpoint. Returns true if successful. |
| 108 | bool SetBreakpoint(Instr* breakpc); |
| 109 | bool DeleteBreakpoint(Instr* breakpc); |
| 110 | |
| 111 | // Undo and redo all breakpoints. This is needed to bracket disassembly and |
| 112 | // execution to skip past breakpoints when run from the debugger. |
| 113 | void UndoBreakpoints(); |
| 114 | void RedoBreakpoints(); |
| 115 | }; |
| 116 | |
| 117 | SimulatorDebugger::SimulatorDebugger(Simulator* sim) { |
| 118 | sim_ = sim; |
| 119 | } |
| 120 | |
| 121 | SimulatorDebugger::~SimulatorDebugger() {} |
| 122 | |
| 123 | void SimulatorDebugger::Stop(Instr* instr, const char* message) { |
| 124 | OS::PrintErr("Simulator hit %s\n" , message); |
| 125 | Debug(); |
| 126 | } |
| 127 | |
| 128 | static Register LookupCpuRegisterByName(const char* name) { |
| 129 | static const char* kNames[] = { |
| 130 | "r0" , "r1" , "r2" , "r3" , "r4" , "r5" , "r6" , "r7" , "r8" , "r9" , "r10" , |
| 131 | "r11" , "r12" , "r13" , "r14" , "r15" , "pc" , "lr" , "sp" , "ip" , "fp" , "pp" }; |
| 132 | static const Register kRegisters[] = {R0, R1, R2, R3, R4, R5, R6, R7, |
| 133 | R8, R9, R10, R11, R12, R13, R14, R15, |
| 134 | PC, LR, SP, IP, FP, PP}; |
| 135 | ASSERT(ARRAY_SIZE(kNames) == ARRAY_SIZE(kRegisters)); |
| 136 | for (unsigned i = 0; i < ARRAY_SIZE(kNames); i++) { |
| 137 | if (strcmp(kNames[i], name) == 0) { |
| 138 | return kRegisters[i]; |
| 139 | } |
| 140 | } |
| 141 | return kNoRegister; |
| 142 | } |
| 143 | |
| 144 | static SRegister LookupSRegisterByName(const char* name) { |
| 145 | int reg_nr = -1; |
| 146 | bool ok = SScanF(name, "s%d" , ®_nr); |
| 147 | if (ok && (0 <= reg_nr) && (reg_nr < kNumberOfSRegisters)) { |
| 148 | return static_cast<SRegister>(reg_nr); |
| 149 | } |
| 150 | return kNoSRegister; |
| 151 | } |
| 152 | |
| 153 | static DRegister LookupDRegisterByName(const char* name) { |
| 154 | int reg_nr = -1; |
| 155 | bool ok = SScanF(name, "d%d" , ®_nr); |
| 156 | if (ok && (0 <= reg_nr) && (reg_nr < kNumberOfDRegisters)) { |
| 157 | return static_cast<DRegister>(reg_nr); |
| 158 | } |
| 159 | return kNoDRegister; |
| 160 | } |
| 161 | |
| 162 | bool SimulatorDebugger::GetValue(char* desc, uint32_t* value) { |
| 163 | Register reg = LookupCpuRegisterByName(desc); |
| 164 | if (reg != kNoRegister) { |
| 165 | if (reg == PC) { |
| 166 | *value = sim_->get_pc(); |
| 167 | } else { |
| 168 | *value = sim_->get_register(reg); |
| 169 | } |
| 170 | return true; |
| 171 | } |
| 172 | if (desc[0] == '*') { |
| 173 | uint32_t addr; |
| 174 | if (GetValue(desc + 1, &addr)) { |
| 175 | if (Simulator::IsIllegalAddress(addr)) { |
| 176 | return false; |
| 177 | } |
| 178 | *value = *(reinterpret_cast<uint32_t*>(addr)); |
| 179 | return true; |
| 180 | } |
| 181 | } |
| 182 | bool retval = SScanF(desc, "0x%x" , value) == 1; |
| 183 | if (!retval) { |
| 184 | retval = SScanF(desc, "%x" , value) == 1; |
| 185 | } |
| 186 | return retval; |
| 187 | } |
| 188 | |
| 189 | bool SimulatorDebugger::GetFValue(char* desc, float* value) { |
| 190 | SRegister sreg = LookupSRegisterByName(desc); |
| 191 | if (sreg != kNoSRegister) { |
| 192 | *value = sim_->get_sregister(sreg); |
| 193 | return true; |
| 194 | } |
| 195 | if (desc[0] == '*') { |
| 196 | uint32_t addr; |
| 197 | if (GetValue(desc + 1, &addr)) { |
| 198 | if (Simulator::IsIllegalAddress(addr)) { |
| 199 | return false; |
| 200 | } |
| 201 | *value = *(reinterpret_cast<float*>(addr)); |
| 202 | return true; |
| 203 | } |
| 204 | } |
| 205 | return false; |
| 206 | } |
| 207 | |
| 208 | bool SimulatorDebugger::GetDValue(char* desc, double* value) { |
| 209 | DRegister dreg = LookupDRegisterByName(desc); |
| 210 | if (dreg != kNoDRegister) { |
| 211 | *value = sim_->get_dregister(dreg); |
| 212 | return true; |
| 213 | } |
| 214 | if (desc[0] == '*') { |
| 215 | uint32_t addr; |
| 216 | if (GetValue(desc + 1, &addr)) { |
| 217 | if (Simulator::IsIllegalAddress(addr)) { |
| 218 | return false; |
| 219 | } |
| 220 | *value = *(reinterpret_cast<double*>(addr)); |
| 221 | return true; |
| 222 | } |
| 223 | } |
| 224 | return false; |
| 225 | } |
| 226 | |
| 227 | TokenPosition SimulatorDebugger::GetApproximateTokenIndex(const Code& code, |
| 228 | uword pc) { |
| 229 | TokenPosition token_pos = TokenPosition::kNoSource; |
| 230 | uword pc_offset = pc - code.PayloadStart(); |
| 231 | const PcDescriptors& descriptors = |
| 232 | PcDescriptors::Handle(code.pc_descriptors()); |
| 233 | PcDescriptors::Iterator iter(descriptors, PcDescriptorsLayout::kAnyKind); |
| 234 | while (iter.MoveNext()) { |
| 235 | if (iter.PcOffset() == pc_offset) { |
| 236 | return iter.TokenPos(); |
| 237 | } else if (!token_pos.IsReal() && (iter.PcOffset() > pc_offset)) { |
| 238 | token_pos = iter.TokenPos(); |
| 239 | } |
| 240 | } |
| 241 | return token_pos; |
| 242 | } |
| 243 | |
| 244 | void SimulatorDebugger::PrintDartFrame(uword pc, |
| 245 | uword fp, |
| 246 | uword sp, |
| 247 | const Function& function, |
| 248 | TokenPosition token_pos, |
| 249 | bool is_optimized, |
| 250 | bool is_inlined) { |
| 251 | const Script& script = Script::Handle(function.script()); |
| 252 | const String& func_name = String::Handle(function.QualifiedScrubbedName()); |
| 253 | const String& url = String::Handle(script.url()); |
| 254 | intptr_t line = -1; |
| 255 | intptr_t column = -1; |
| 256 | if (token_pos.IsReal()) { |
| 257 | script.GetTokenLocation(token_pos, &line, &column); |
| 258 | } |
| 259 | OS::PrintErr( |
| 260 | "pc=0x%" Px " fp=0x%" Px " sp=0x%" Px " %s%s (%s:%" Pd ":%" Pd ")\n" , pc, |
| 261 | fp, sp, is_optimized ? (is_inlined ? "inlined " : "optimized " ) : "" , |
| 262 | func_name.ToCString(), url.ToCString(), line, column); |
| 263 | } |
| 264 | |
| 265 | void SimulatorDebugger::PrintBacktrace() { |
| 266 | StackFrameIterator frames( |
| 267 | sim_->get_register(FP), sim_->get_register(SP), sim_->get_pc(), |
| 268 | ValidationPolicy::kDontValidateFrames, Thread::Current(), |
| 269 | StackFrameIterator::kNoCrossThreadIteration); |
| 270 | StackFrame* frame = frames.NextFrame(); |
| 271 | ASSERT(frame != NULL); |
| 272 | Function& function = Function::Handle(); |
| 273 | Function& inlined_function = Function::Handle(); |
| 274 | Code& code = Code::Handle(); |
| 275 | Code& unoptimized_code = Code::Handle(); |
| 276 | while (frame != NULL) { |
| 277 | if (frame->IsDartFrame()) { |
| 278 | ASSERT(!frame->is_interpreted()); // Not yet supported. |
| 279 | code = frame->LookupDartCode(); |
| 280 | function = code.function(); |
| 281 | if (code.is_optimized()) { |
| 282 | // For optimized frames, extract all the inlined functions if any |
| 283 | // into the stack trace. |
| 284 | InlinedFunctionsIterator it(code, frame->pc()); |
| 285 | while (!it.Done()) { |
| 286 | // Print each inlined frame with its pc in the corresponding |
| 287 | // unoptimized frame. |
| 288 | inlined_function = it.function(); |
| 289 | unoptimized_code = it.code(); |
| 290 | uword unoptimized_pc = it.pc(); |
| 291 | it.Advance(); |
| 292 | if (!it.Done()) { |
| 293 | PrintDartFrame( |
| 294 | unoptimized_pc, frame->fp(), frame->sp(), inlined_function, |
| 295 | GetApproximateTokenIndex(unoptimized_code, unoptimized_pc), |
| 296 | true, true); |
| 297 | } |
| 298 | } |
| 299 | // Print the optimized inlining frame below. |
| 300 | } |
| 301 | PrintDartFrame(frame->pc(), frame->fp(), frame->sp(), function, |
| 302 | GetApproximateTokenIndex(code, frame->pc()), |
| 303 | code.is_optimized(), false); |
| 304 | } else { |
| 305 | OS::PrintErr("pc=0x%" Px " fp=0x%" Px " sp=0x%" Px " %s frame\n" , |
| 306 | frame->pc(), frame->fp(), frame->sp(), |
| 307 | frame->IsEntryFrame() |
| 308 | ? "entry" |
| 309 | : frame->IsExitFrame() |
| 310 | ? "exit" |
| 311 | : frame->IsStubFrame() ? "stub" : "invalid" ); |
| 312 | } |
| 313 | frame = frames.NextFrame(); |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | bool SimulatorDebugger::SetBreakpoint(Instr* breakpc) { |
| 318 | // Check if a breakpoint can be set. If not return without any side-effects. |
| 319 | if (sim_->break_pc_ != NULL) { |
| 320 | return false; |
| 321 | } |
| 322 | |
| 323 | // Set the breakpoint. |
| 324 | sim_->break_pc_ = breakpc; |
| 325 | sim_->break_instr_ = breakpc->InstructionBits(); |
| 326 | // Not setting the breakpoint instruction in the code itself. It will be set |
| 327 | // when the debugger shell continues. |
| 328 | return true; |
| 329 | } |
| 330 | |
| 331 | bool SimulatorDebugger::DeleteBreakpoint(Instr* breakpc) { |
| 332 | if (sim_->break_pc_ != NULL) { |
| 333 | sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| 334 | } |
| 335 | |
| 336 | sim_->break_pc_ = NULL; |
| 337 | sim_->break_instr_ = 0; |
| 338 | return true; |
| 339 | } |
| 340 | |
| 341 | void SimulatorDebugger::UndoBreakpoints() { |
| 342 | if (sim_->break_pc_ != NULL) { |
| 343 | sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | void SimulatorDebugger::RedoBreakpoints() { |
| 348 | if (sim_->break_pc_ != NULL) { |
| 349 | sim_->break_pc_->SetInstructionBits(Instr::kSimulatorBreakpointInstruction); |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | void SimulatorDebugger::Debug() { |
| 354 | intptr_t last_pc = -1; |
| 355 | bool done = false; |
| 356 | |
| 357 | #define COMMAND_SIZE 63 |
| 358 | #define ARG_SIZE 255 |
| 359 | |
| 360 | #define STR(a) #a |
| 361 | #define XSTR(a) STR(a) |
| 362 | |
| 363 | char cmd[COMMAND_SIZE + 1]; |
| 364 | char arg1[ARG_SIZE + 1]; |
| 365 | char arg2[ARG_SIZE + 1]; |
| 366 | |
| 367 | // make sure to have a proper terminating character if reaching the limit |
| 368 | cmd[COMMAND_SIZE] = 0; |
| 369 | arg1[ARG_SIZE] = 0; |
| 370 | arg2[ARG_SIZE] = 0; |
| 371 | |
| 372 | // Undo all set breakpoints while running in the debugger shell. This will |
| 373 | // make them invisible to all commands. |
| 374 | UndoBreakpoints(); |
| 375 | |
| 376 | while (!done) { |
| 377 | if (last_pc != sim_->get_pc()) { |
| 378 | last_pc = sim_->get_pc(); |
| 379 | if (Simulator::IsIllegalAddress(last_pc)) { |
| 380 | OS::PrintErr("pc is out of bounds: 0x%" Px "\n" , last_pc); |
| 381 | } else { |
| 382 | if (FLAG_support_disassembler) { |
| 383 | Disassembler::Disassemble(last_pc, last_pc + Instr::kInstrSize); |
| 384 | } else { |
| 385 | OS::PrintErr("Disassembler not supported in this mode.\n" ); |
| 386 | } |
| 387 | } |
| 388 | } |
| 389 | char* line = ReadLine("sim> " ); |
| 390 | if (line == NULL) { |
| 391 | FATAL("ReadLine failed" ); |
| 392 | } else { |
| 393 | // Use sscanf to parse the individual parts of the command line. At the |
| 394 | // moment no command expects more than two parameters. |
| 395 | int args = SScanF(line, |
| 396 | "%" XSTR(COMMAND_SIZE) "s " |
| 397 | "%" XSTR(ARG_SIZE) "s " |
| 398 | "%" XSTR(ARG_SIZE) "s" , |
| 399 | cmd, arg1, arg2); |
| 400 | if ((strcmp(cmd, "h" ) == 0) || (strcmp(cmd, "help" ) == 0)) { |
| 401 | OS::PrintErr( |
| 402 | "c/cont -- continue execution\n" |
| 403 | "disasm -- disassemble instrs at current pc location\n" |
| 404 | " other variants are:\n" |
| 405 | " disasm <address>\n" |
| 406 | " disasm <address> <number_of_instructions>\n" |
| 407 | " by default 10 instrs are disassembled\n" |
| 408 | "del -- delete breakpoints\n" |
| 409 | "flags -- print flag values\n" |
| 410 | "gdb -- transfer control to gdb\n" |
| 411 | "h/help -- print this help string\n" |
| 412 | "break <address> -- set break point at specified address\n" |
| 413 | "p/print <reg or icount or value or *addr> -- print integer\n" |
| 414 | "ps/printsingle <sreg or *addr> -- print float value\n" |
| 415 | "pd/printdouble <dreg or *addr> -- print double value\n" |
| 416 | "po/printobject <*reg or *addr> -- print object\n" |
| 417 | "si/stepi -- single step an instruction\n" |
| 418 | "trace -- toggle execution tracing mode\n" |
| 419 | "bt -- print backtrace\n" |
| 420 | "unstop -- if current pc is a stop instr make it a nop\n" |
| 421 | "q/quit -- Quit the debugger and exit the program\n" ); |
| 422 | } else if ((strcmp(cmd, "quit" ) == 0) || (strcmp(cmd, "q" ) == 0)) { |
| 423 | OS::PrintErr("Quitting\n" ); |
| 424 | OS::Exit(0); |
| 425 | } else if ((strcmp(cmd, "si" ) == 0) || (strcmp(cmd, "stepi" ) == 0)) { |
| 426 | sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); |
| 427 | } else if ((strcmp(cmd, "c" ) == 0) || (strcmp(cmd, "cont" ) == 0)) { |
| 428 | // Execute the one instruction we broke at with breakpoints disabled. |
| 429 | sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); |
| 430 | // Leave the debugger shell. |
| 431 | done = true; |
| 432 | } else if ((strcmp(cmd, "p" ) == 0) || (strcmp(cmd, "print" ) == 0)) { |
| 433 | if (args == 2) { |
| 434 | uint32_t value; |
| 435 | if (strcmp(arg1, "icount" ) == 0) { |
| 436 | const uint64_t icount = sim_->get_icount(); |
| 437 | OS::PrintErr("icount: %" Pu64 " 0x%" Px64 "\n" , icount, icount); |
| 438 | } else if (GetValue(arg1, &value)) { |
| 439 | OS::PrintErr("%s: %u 0x%x\n" , arg1, value, value); |
| 440 | } else { |
| 441 | OS::PrintErr("%s unrecognized\n" , arg1); |
| 442 | } |
| 443 | } else { |
| 444 | OS::PrintErr("print <reg or icount or value or *addr>\n" ); |
| 445 | } |
| 446 | } else if ((strcmp(cmd, "ps" ) == 0) || |
| 447 | (strcmp(cmd, "printsingle" ) == 0)) { |
| 448 | if (args == 2) { |
| 449 | float fvalue; |
| 450 | if (GetFValue(arg1, &fvalue)) { |
| 451 | uint32_t value = bit_cast<uint32_t, float>(fvalue); |
| 452 | OS::PrintErr("%s: 0%u 0x%x %.8g\n" , arg1, value, value, fvalue); |
| 453 | } else { |
| 454 | OS::PrintErr("%s unrecognized\n" , arg1); |
| 455 | } |
| 456 | } else { |
| 457 | OS::PrintErr("printfloat <sreg or *addr>\n" ); |
| 458 | } |
| 459 | } else if ((strcmp(cmd, "pd" ) == 0) || |
| 460 | (strcmp(cmd, "printdouble" ) == 0)) { |
| 461 | if (args == 2) { |
| 462 | double dvalue; |
| 463 | if (GetDValue(arg1, &dvalue)) { |
| 464 | uint64_t long_value = bit_cast<uint64_t, double>(dvalue); |
| 465 | OS::PrintErr("%s: %llu 0x%llx %.8g\n" , arg1, long_value, long_value, |
| 466 | dvalue); |
| 467 | } else { |
| 468 | OS::PrintErr("%s unrecognized\n" , arg1); |
| 469 | } |
| 470 | } else { |
| 471 | OS::PrintErr("printdouble <dreg or *addr>\n" ); |
| 472 | } |
| 473 | } else if ((strcmp(cmd, "po" ) == 0) || |
| 474 | (strcmp(cmd, "printobject" ) == 0)) { |
| 475 | if (args == 2) { |
| 476 | uint32_t value; |
| 477 | // Make the dereferencing '*' optional. |
| 478 | if (((arg1[0] == '*') && GetValue(arg1 + 1, &value)) || |
| 479 | GetValue(arg1, &value)) { |
| 480 | if (Isolate::Current()->heap()->Contains(value)) { |
| 481 | OS::PrintErr("%s: \n" , arg1); |
| 482 | #if defined(DEBUG) |
| 483 | const Object& obj = Object::Handle(static_cast<ObjectPtr>(value)); |
| 484 | obj.Print(); |
| 485 | #endif // defined(DEBUG) |
| 486 | } else { |
| 487 | OS::PrintErr("0x%x is not an object reference\n" , value); |
| 488 | } |
| 489 | } else { |
| 490 | OS::PrintErr("%s unrecognized\n" , arg1); |
| 491 | } |
| 492 | } else { |
| 493 | OS::PrintErr("printobject <*reg or *addr>\n" ); |
| 494 | } |
| 495 | } else if (strcmp(cmd, "disasm" ) == 0) { |
| 496 | uint32_t start = 0; |
| 497 | uint32_t end = 0; |
| 498 | if (args == 1) { |
| 499 | start = sim_->get_pc(); |
| 500 | end = start + (10 * Instr::kInstrSize); |
| 501 | } else if (args == 2) { |
| 502 | if (GetValue(arg1, &start)) { |
| 503 | // No length parameter passed, assume 10 instructions. |
| 504 | if (Simulator::IsIllegalAddress(start)) { |
| 505 | // If start isn't a valid address, warn and use PC instead. |
| 506 | OS::PrintErr("First argument yields invalid address: 0x%x\n" , |
| 507 | start); |
| 508 | OS::PrintErr("Using PC instead\n" ); |
| 509 | start = sim_->get_pc(); |
| 510 | } |
| 511 | end = start + (10 * Instr::kInstrSize); |
| 512 | } |
| 513 | } else { |
| 514 | uint32_t length; |
| 515 | if (GetValue(arg1, &start) && GetValue(arg2, &length)) { |
| 516 | if (Simulator::IsIllegalAddress(start)) { |
| 517 | // If start isn't a valid address, warn and use PC instead. |
| 518 | OS::PrintErr("First argument yields invalid address: 0x%x\n" , |
| 519 | start); |
| 520 | OS::PrintErr("Using PC instead\n" ); |
| 521 | start = sim_->get_pc(); |
| 522 | } |
| 523 | end = start + (length * Instr::kInstrSize); |
| 524 | } |
| 525 | } |
| 526 | if ((start > 0) && (end > start)) { |
| 527 | if (FLAG_support_disassembler) { |
| 528 | Disassembler::Disassemble(start, end); |
| 529 | } else { |
| 530 | OS::PrintErr("Disassembler not supported in this mode.\n" ); |
| 531 | } |
| 532 | } else { |
| 533 | OS::PrintErr("disasm [<address> [<number_of_instructions>]]\n" ); |
| 534 | } |
| 535 | } else if (strcmp(cmd, "gdb" ) == 0) { |
| 536 | OS::PrintErr("relinquishing control to gdb\n" ); |
| 537 | OS::DebugBreak(); |
| 538 | OS::PrintErr("regaining control from gdb\n" ); |
| 539 | } else if (strcmp(cmd, "break" ) == 0) { |
| 540 | if (args == 2) { |
| 541 | uint32_t addr; |
| 542 | if (GetValue(arg1, &addr)) { |
| 543 | if (!SetBreakpoint(reinterpret_cast<Instr*>(addr))) { |
| 544 | OS::PrintErr("setting breakpoint failed\n" ); |
| 545 | } |
| 546 | } else { |
| 547 | OS::PrintErr("%s unrecognized\n" , arg1); |
| 548 | } |
| 549 | } else { |
| 550 | OS::PrintErr("break <addr>\n" ); |
| 551 | } |
| 552 | } else if (strcmp(cmd, "del" ) == 0) { |
| 553 | if (!DeleteBreakpoint(NULL)) { |
| 554 | OS::PrintErr("deleting breakpoint failed\n" ); |
| 555 | } |
| 556 | } else if (strcmp(cmd, "flags" ) == 0) { |
| 557 | OS::PrintErr("APSR: " ); |
| 558 | OS::PrintErr("N flag: %d; " , sim_->n_flag_); |
| 559 | OS::PrintErr("Z flag: %d; " , sim_->z_flag_); |
| 560 | OS::PrintErr("C flag: %d; " , sim_->c_flag_); |
| 561 | OS::PrintErr("V flag: %d\n" , sim_->v_flag_); |
| 562 | OS::PrintErr("FPSCR: " ); |
| 563 | OS::PrintErr("N flag: %d; " , sim_->fp_n_flag_); |
| 564 | OS::PrintErr("Z flag: %d; " , sim_->fp_z_flag_); |
| 565 | OS::PrintErr("C flag: %d; " , sim_->fp_c_flag_); |
| 566 | OS::PrintErr("V flag: %d\n" , sim_->fp_v_flag_); |
| 567 | } else if (strcmp(cmd, "unstop" ) == 0) { |
| 568 | intptr_t stop_pc = sim_->get_pc() - Instr::kInstrSize; |
| 569 | Instr* stop_instr = reinterpret_cast<Instr*>(stop_pc); |
| 570 | if (stop_instr->IsSvc() || stop_instr->IsBkpt()) { |
| 571 | stop_instr->SetInstructionBits(Instr::kNopInstruction); |
| 572 | } else { |
| 573 | OS::PrintErr("Not at debugger stop.\n" ); |
| 574 | } |
| 575 | } else if (strcmp(cmd, "trace" ) == 0) { |
| 576 | if (FLAG_trace_sim_after == ULLONG_MAX) { |
| 577 | FLAG_trace_sim_after = sim_->get_icount(); |
| 578 | OS::PrintErr("execution tracing on\n" ); |
| 579 | } else { |
| 580 | FLAG_trace_sim_after = ULLONG_MAX; |
| 581 | OS::PrintErr("execution tracing off\n" ); |
| 582 | } |
| 583 | } else if (strcmp(cmd, "bt" ) == 0) { |
| 584 | Thread* thread = reinterpret_cast<Thread*>(sim_->get_register(THR)); |
| 585 | thread->set_execution_state(Thread::kThreadInVM); |
| 586 | PrintBacktrace(); |
| 587 | thread->set_execution_state(Thread::kThreadInGenerated); |
| 588 | } else { |
| 589 | OS::PrintErr("Unknown command: %s\n" , cmd); |
| 590 | } |
| 591 | } |
| 592 | delete[] line; |
| 593 | } |
| 594 | |
| 595 | // Add all the breakpoints back to stop execution and enter the debugger |
| 596 | // shell when hit. |
| 597 | RedoBreakpoints(); |
| 598 | |
| 599 | #undef COMMAND_SIZE |
| 600 | #undef ARG_SIZE |
| 601 | |
| 602 | #undef STR |
| 603 | #undef XSTR |
| 604 | } |
| 605 | |
| 606 | char* SimulatorDebugger::ReadLine(const char* prompt) { |
| 607 | char* result = NULL; |
| 608 | char line_buf[256]; |
| 609 | intptr_t offset = 0; |
| 610 | bool keep_going = true; |
| 611 | OS::PrintErr("%s" , prompt); |
| 612 | while (keep_going) { |
| 613 | if (fgets(line_buf, sizeof(line_buf), stdin) == NULL) { |
| 614 | // fgets got an error. Just give up. |
| 615 | if (result != NULL) { |
| 616 | delete[] result; |
| 617 | } |
| 618 | return NULL; |
| 619 | } |
| 620 | intptr_t len = strlen(line_buf); |
| 621 | if (len > 1 && line_buf[len - 2] == '\\' && line_buf[len - 1] == '\n') { |
| 622 | // When we read a line that ends with a "\" we remove the escape and |
| 623 | // append the remainder. |
| 624 | line_buf[len - 2] = '\n'; |
| 625 | line_buf[len - 1] = 0; |
| 626 | len -= 1; |
| 627 | } else if ((len > 0) && (line_buf[len - 1] == '\n')) { |
| 628 | // Since we read a new line we are done reading the line. This |
| 629 | // will exit the loop after copying this buffer into the result. |
| 630 | keep_going = false; |
| 631 | } |
| 632 | if (result == NULL) { |
| 633 | // Allocate the initial result and make room for the terminating '\0' |
| 634 | result = new char[len + 1]; |
| 635 | if (result == NULL) { |
| 636 | // OOM, so cannot readline anymore. |
| 637 | return NULL; |
| 638 | } |
| 639 | } else { |
| 640 | // Allocate a new result with enough room for the new addition. |
| 641 | intptr_t new_len = offset + len + 1; |
| 642 | char* new_result = new char[new_len]; |
| 643 | if (new_result == NULL) { |
| 644 | // OOM, free the buffer allocated so far and return NULL. |
| 645 | delete[] result; |
| 646 | return NULL; |
| 647 | } else { |
| 648 | // Copy the existing input into the new array and set the new |
| 649 | // array as the result. |
| 650 | memmove(new_result, result, offset); |
| 651 | delete[] result; |
| 652 | result = new_result; |
| 653 | } |
| 654 | } |
| 655 | // Copy the newly read line into the result. |
| 656 | memmove(result + offset, line_buf, len); |
| 657 | offset += len; |
| 658 | } |
| 659 | ASSERT(result != NULL); |
| 660 | result[offset] = '\0'; |
| 661 | return result; |
| 662 | } |
| 663 | |
| 664 | void Simulator::Init() {} |
| 665 | |
| 666 | Simulator::Simulator() : exclusive_access_addr_(0), exclusive_access_value_(0) { |
| 667 | // Setup simulator support first. Some of this information is needed to |
| 668 | // setup the architecture state. |
| 669 | // We allocate the stack here, the size is computed as the sum of |
| 670 | // the size specified by the user and the buffer space needed for |
| 671 | // handling stack overflow exceptions. To be safe in potential |
| 672 | // stack underflows we also add some underflow buffer space. |
| 673 | stack_ = |
| 674 | new char[(OSThread::GetSpecifiedStackSize() + |
| 675 | OSThread::kStackSizeBufferMax + kSimulatorStackUnderflowSize)]; |
| 676 | // Low address. |
| 677 | stack_limit_ = reinterpret_cast<uword>(stack_); |
| 678 | // Limit for StackOverflowError. |
| 679 | overflow_stack_limit_ = stack_limit_ + OSThread::kStackSizeBufferMax; |
| 680 | // High address. |
| 681 | stack_base_ = overflow_stack_limit_ + OSThread::GetSpecifiedStackSize(); |
| 682 | |
| 683 | pc_modified_ = false; |
| 684 | icount_ = 0; |
| 685 | break_pc_ = NULL; |
| 686 | break_instr_ = 0; |
| 687 | last_setjmp_buffer_ = NULL; |
| 688 | |
| 689 | // Setup architecture state. |
| 690 | // All registers are initialized to zero to start with. |
| 691 | for (int i = 0; i < kNumberOfCpuRegisters; i++) { |
| 692 | registers_[i] = 0; |
| 693 | } |
| 694 | n_flag_ = false; |
| 695 | z_flag_ = false; |
| 696 | c_flag_ = false; |
| 697 | v_flag_ = false; |
| 698 | |
| 699 | // The sp is initialized to point to the bottom (high address) of the |
| 700 | // allocated stack area. |
| 701 | registers_[SP] = stack_base(); |
| 702 | // The lr and pc are initialized to a known bad value that will cause an |
| 703 | // access violation if the simulator ever tries to execute it. |
| 704 | registers_[PC] = kBadLR; |
| 705 | registers_[LR] = kBadLR; |
| 706 | |
| 707 | // All double-precision registers are initialized to zero. |
| 708 | for (int i = 0; i < kNumberOfDRegisters; i++) { |
| 709 | dregisters_[i] = 0; |
| 710 | } |
| 711 | // Since VFP registers are overlapping, single-precision registers should |
| 712 | // already be initialized. |
| 713 | ASSERT(2 * kNumberOfDRegisters >= kNumberOfSRegisters); |
| 714 | for (int i = 0; i < kNumberOfSRegisters; i++) { |
| 715 | ASSERT(sregisters_[i] == 0.0); |
| 716 | } |
| 717 | fp_n_flag_ = false; |
| 718 | fp_z_flag_ = false; |
| 719 | fp_c_flag_ = false; |
| 720 | fp_v_flag_ = false; |
| 721 | } |
| 722 | |
| 723 | Simulator::~Simulator() { |
| 724 | delete[] stack_; |
| 725 | Isolate* isolate = Isolate::Current(); |
| 726 | if (isolate != NULL) { |
| 727 | isolate->set_simulator(NULL); |
| 728 | } |
| 729 | } |
| 730 | |
| 731 | // When the generated code calls an external reference we need to catch that in |
| 732 | // the simulator. The external reference will be a function compiled for the |
| 733 | // host architecture. We need to call that function instead of trying to |
| 734 | // execute it with the simulator. We do that by redirecting the external |
| 735 | // reference to a svc (supervisor call) instruction that is handled by |
| 736 | // the simulator. We write the original destination of the jump just at a known |
| 737 | // offset from the svc instruction so the simulator knows what to call. |
| 738 | class Redirection { |
| 739 | public: |
| 740 | uword address_of_svc_instruction() { |
| 741 | return reinterpret_cast<uword>(&svc_instruction_); |
| 742 | } |
| 743 | |
| 744 | uword external_function() const { return external_function_; } |
| 745 | |
| 746 | Simulator::CallKind call_kind() const { return call_kind_; } |
| 747 | |
| 748 | int argument_count() const { return argument_count_; } |
| 749 | |
| 750 | static Redirection* Get(uword external_function, |
| 751 | Simulator::CallKind call_kind, |
| 752 | int argument_count) { |
| 753 | MutexLocker ml(mutex_); |
| 754 | |
| 755 | Redirection* old_head = list_.load(std::memory_order_relaxed); |
| 756 | for (Redirection* current = old_head; current != nullptr; |
| 757 | current = current->next_) { |
| 758 | if (current->external_function_ == external_function) return current; |
| 759 | } |
| 760 | |
| 761 | Redirection* redirection = |
| 762 | new Redirection(external_function, call_kind, argument_count); |
| 763 | redirection->next_ = old_head; |
| 764 | |
| 765 | // Use a memory fence to ensure all pending writes are written at the time |
| 766 | // of updating the list head, so the profiling thread always has a valid |
| 767 | // list to look at. |
| 768 | list_.store(redirection, std::memory_order_release); |
| 769 | |
| 770 | return redirection; |
| 771 | } |
| 772 | |
| 773 | static Redirection* FromSvcInstruction(Instr* svc_instruction) { |
| 774 | char* addr_of_svc = reinterpret_cast<char*>(svc_instruction); |
| 775 | char* addr_of_redirection = |
| 776 | addr_of_svc - OFFSET_OF(Redirection, svc_instruction_); |
| 777 | return reinterpret_cast<Redirection*>(addr_of_redirection); |
| 778 | } |
| 779 | |
| 780 | // Please note that this function is called by the signal handler of the |
| 781 | // profiling thread. It can therefore run at any point in time and is not |
| 782 | // allowed to hold any locks - which is precisely the reason why the list is |
| 783 | // prepend-only and a memory fence is used when writing the list head [list_]! |
| 784 | static uword FunctionForRedirect(uword address_of_svc) { |
| 785 | for (Redirection* current = list_.load(std::memory_order_acquire); |
| 786 | current != nullptr; current = current->next_) { |
| 787 | if (current->address_of_svc_instruction() == address_of_svc) { |
| 788 | return current->external_function_; |
| 789 | } |
| 790 | } |
| 791 | return 0; |
| 792 | } |
| 793 | |
| 794 | private: |
| 795 | Redirection(uword external_function, |
| 796 | Simulator::CallKind call_kind, |
| 797 | int argument_count) |
| 798 | : external_function_(external_function), |
| 799 | call_kind_(call_kind), |
| 800 | argument_count_(argument_count), |
| 801 | svc_instruction_(Instr::kSimulatorRedirectInstruction), |
| 802 | next_(NULL) {} |
| 803 | |
| 804 | uword external_function_; |
| 805 | Simulator::CallKind call_kind_; |
| 806 | int argument_count_; |
| 807 | uint32_t svc_instruction_; |
| 808 | Redirection* next_; |
| 809 | static std::atomic<Redirection*> list_; |
| 810 | static Mutex* mutex_; |
| 811 | }; |
| 812 | |
| 813 | std::atomic<Redirection*> Redirection::list_ = {nullptr}; |
| 814 | Mutex* Redirection::mutex_ = new Mutex(); |
| 815 | |
| 816 | uword Simulator::RedirectExternalReference(uword function, |
| 817 | CallKind call_kind, |
| 818 | int argument_count) { |
| 819 | Redirection* redirection = |
| 820 | Redirection::Get(function, call_kind, argument_count); |
| 821 | return redirection->address_of_svc_instruction(); |
| 822 | } |
| 823 | |
| 824 | uword Simulator::FunctionForRedirect(uword redirect) { |
| 825 | return Redirection::FunctionForRedirect(redirect); |
| 826 | } |
| 827 | |
| 828 | // Get the active Simulator for the current isolate. |
| 829 | Simulator* Simulator::Current() { |
| 830 | Isolate* isolate = Isolate::Current(); |
| 831 | Simulator* simulator = isolate->simulator(); |
| 832 | if (simulator == NULL) { |
| 833 | NoSafepointScope no_safepoint; |
| 834 | simulator = new Simulator(); |
| 835 | isolate->set_simulator(simulator); |
| 836 | } |
| 837 | return simulator; |
| 838 | } |
| 839 | |
| 840 | // Sets the register in the architecture state. It will also deal with updating |
| 841 | // Simulator internal state for special registers such as PC. |
| 842 | DART_FORCE_INLINE void Simulator::set_register(Register reg, int32_t value) { |
| 843 | ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); |
| 844 | if (reg == PC) { |
| 845 | pc_modified_ = true; |
| 846 | } |
| 847 | registers_[reg] = value; |
| 848 | } |
| 849 | |
| 850 | // Raw access to the PC register. |
| 851 | DART_FORCE_INLINE void Simulator::set_pc(int32_t value) { |
| 852 | pc_modified_ = true; |
| 853 | registers_[PC] = value; |
| 854 | } |
| 855 | |
| 856 | // Accessors for VFP register state. |
| 857 | DART_FORCE_INLINE void Simulator::set_sregister(SRegister reg, float value) { |
| 858 | ASSERT(TargetCPUFeatures::vfp_supported()); |
| 859 | ASSERT((reg >= 0) && (reg < kNumberOfSRegisters)); |
| 860 | sregisters_[reg] = bit_cast<int32_t, float>(value); |
| 861 | } |
| 862 | |
| 863 | DART_FORCE_INLINE float Simulator::get_sregister(SRegister reg) const { |
| 864 | ASSERT(TargetCPUFeatures::vfp_supported()); |
| 865 | ASSERT((reg >= 0) && (reg < kNumberOfSRegisters)); |
| 866 | return bit_cast<float, int32_t>(sregisters_[reg]); |
| 867 | } |
| 868 | |
| 869 | DART_FORCE_INLINE void Simulator::set_dregister(DRegister reg, double value) { |
| 870 | ASSERT(TargetCPUFeatures::vfp_supported()); |
| 871 | ASSERT((reg >= 0) && (reg < kNumberOfDRegisters)); |
| 872 | dregisters_[reg] = bit_cast<int64_t, double>(value); |
| 873 | } |
| 874 | |
| 875 | DART_FORCE_INLINE double Simulator::get_dregister(DRegister reg) const { |
| 876 | ASSERT(TargetCPUFeatures::vfp_supported()); |
| 877 | ASSERT((reg >= 0) && (reg < kNumberOfDRegisters)); |
| 878 | return bit_cast<double, int64_t>(dregisters_[reg]); |
| 879 | } |
| 880 | |
| 881 | void Simulator::set_qregister(QRegister reg, const simd_value_t& value) { |
| 882 | ASSERT(TargetCPUFeatures::neon_supported()); |
| 883 | ASSERT((reg >= 0) && (reg < kNumberOfQRegisters)); |
| 884 | qregisters_[reg].data_[0] = value.data_[0]; |
| 885 | qregisters_[reg].data_[1] = value.data_[1]; |
| 886 | qregisters_[reg].data_[2] = value.data_[2]; |
| 887 | qregisters_[reg].data_[3] = value.data_[3]; |
| 888 | } |
| 889 | |
| 890 | void Simulator::get_qregister(QRegister reg, simd_value_t* value) const { |
| 891 | ASSERT(TargetCPUFeatures::neon_supported()); |
| 892 | // TODO(zra): Replace this test with an assert after we support |
| 893 | // 16 Q registers. |
| 894 | if ((reg >= 0) && (reg < kNumberOfQRegisters)) { |
| 895 | *value = qregisters_[reg]; |
| 896 | } |
| 897 | } |
| 898 | |
| 899 | void Simulator::set_sregister_bits(SRegister reg, int32_t value) { |
| 900 | ASSERT(TargetCPUFeatures::vfp_supported()); |
| 901 | ASSERT((reg >= 0) && (reg < kNumberOfSRegisters)); |
| 902 | sregisters_[reg] = value; |
| 903 | } |
| 904 | |
| 905 | int32_t Simulator::get_sregister_bits(SRegister reg) const { |
| 906 | ASSERT(TargetCPUFeatures::vfp_supported()); |
| 907 | ASSERT((reg >= 0) && (reg < kNumberOfSRegisters)); |
| 908 | return sregisters_[reg]; |
| 909 | } |
| 910 | |
| 911 | void Simulator::set_dregister_bits(DRegister reg, int64_t value) { |
| 912 | ASSERT(TargetCPUFeatures::vfp_supported()); |
| 913 | ASSERT((reg >= 0) && (reg < kNumberOfDRegisters)); |
| 914 | dregisters_[reg] = value; |
| 915 | } |
| 916 | |
| 917 | int64_t Simulator::get_dregister_bits(DRegister reg) const { |
| 918 | ASSERT(TargetCPUFeatures::vfp_supported()); |
| 919 | ASSERT((reg >= 0) && (reg < kNumberOfDRegisters)); |
| 920 | return dregisters_[reg]; |
| 921 | } |
| 922 | |
| 923 | void Simulator::HandleIllegalAccess(uword addr, Instr* instr) { |
| 924 | uword fault_pc = get_pc(); |
| 925 | // The debugger will not be able to single step past this instruction, but |
| 926 | // it will be possible to disassemble the code and inspect registers. |
| 927 | char buffer[128]; |
| 928 | snprintf(buffer, sizeof(buffer), |
| 929 | "illegal memory access at 0x%" Px ", pc=0x%" Px "\n" , addr, |
| 930 | fault_pc); |
| 931 | SimulatorDebugger dbg(this); |
| 932 | dbg.Stop(instr, buffer); |
| 933 | // The debugger will return control in non-interactive mode. |
| 934 | FATAL("Cannot continue execution after illegal memory access." ); |
| 935 | } |
| 936 | |
| 937 | void Simulator::UnimplementedInstruction(Instr* instr) { |
| 938 | char buffer[64]; |
| 939 | snprintf(buffer, sizeof(buffer), "Unimplemented instruction: pc=%p\n" , instr); |
| 940 | SimulatorDebugger dbg(this); |
| 941 | dbg.Stop(instr, buffer); |
| 942 | FATAL("Cannot continue execution after unimplemented instruction." ); |
| 943 | } |
| 944 | |
| 945 | DART_FORCE_INLINE intptr_t Simulator::ReadW(uword addr, Instr* instr) { |
| 946 | return *reinterpret_cast<intptr_t*>(addr); |
| 947 | } |
| 948 | |
| 949 | DART_FORCE_INLINE void Simulator::WriteW(uword addr, |
| 950 | intptr_t value, |
| 951 | Instr* instr) { |
| 952 | *reinterpret_cast<intptr_t*>(addr) = value; |
| 953 | } |
| 954 | |
| 955 | DART_FORCE_INLINE uint16_t Simulator::ReadHU(uword addr, Instr* instr) { |
| 956 | return *reinterpret_cast<uint16_t*>(addr); |
| 957 | } |
| 958 | |
| 959 | DART_FORCE_INLINE int16_t Simulator::ReadH(uword addr, Instr* instr) { |
| 960 | return *reinterpret_cast<int16_t*>(addr); |
| 961 | } |
| 962 | |
| 963 | DART_FORCE_INLINE void Simulator::WriteH(uword addr, |
| 964 | uint16_t value, |
| 965 | Instr* instr) { |
| 966 | *reinterpret_cast<uint16_t*>(addr) = value; |
| 967 | } |
| 968 | |
| 969 | DART_FORCE_INLINE uint8_t Simulator::ReadBU(uword addr) { |
| 970 | return *reinterpret_cast<uint8_t*>(addr); |
| 971 | } |
| 972 | |
| 973 | DART_FORCE_INLINE int8_t Simulator::ReadB(uword addr) { |
| 974 | return *reinterpret_cast<int8_t*>(addr); |
| 975 | } |
| 976 | |
| 977 | DART_FORCE_INLINE void Simulator::WriteB(uword addr, uint8_t value) { |
| 978 | *reinterpret_cast<uint8_t*>(addr) = value; |
| 979 | } |
| 980 | |
| 981 | void Simulator::ClearExclusive() { |
| 982 | exclusive_access_addr_ = 0; |
| 983 | exclusive_access_value_ = 0; |
| 984 | } |
| 985 | |
| 986 | intptr_t Simulator::ReadExclusiveW(uword addr, Instr* instr) { |
| 987 | exclusive_access_addr_ = addr; |
| 988 | exclusive_access_value_ = ReadW(addr, instr); |
| 989 | return exclusive_access_value_; |
| 990 | } |
| 991 | |
| 992 | intptr_t Simulator::WriteExclusiveW(uword addr, intptr_t value, Instr* instr) { |
| 993 | // In a well-formed code store-exclusive instruction should always follow |
| 994 | // a corresponding load-exclusive instruction with the same address. |
| 995 | ASSERT((exclusive_access_addr_ == 0) || (exclusive_access_addr_ == addr)); |
| 996 | if (exclusive_access_addr_ != addr) { |
| 997 | return 1; // Failure. |
| 998 | } |
| 999 | |
| 1000 | int32_t old_value = static_cast<uint32_t>(exclusive_access_value_); |
| 1001 | ClearExclusive(); |
| 1002 | |
| 1003 | auto atomic_addr = reinterpret_cast<RelaxedAtomic<int32_t>*>(addr); |
| 1004 | if (atomic_addr->compare_exchange_weak(old_value, value)) { |
| 1005 | return 0; // Success. |
| 1006 | } |
| 1007 | return 1; // Failure. |
| 1008 | } |
| 1009 | |
| 1010 | bool Simulator::IsTracingExecution() const { |
| 1011 | return icount_ > FLAG_trace_sim_after; |
| 1012 | } |
| 1013 | |
| 1014 | // Unsupported instructions use Format to print an error and stop execution. |
| 1015 | void Simulator::Format(Instr* instr, const char* format) { |
| 1016 | OS::PrintErr("Simulator found unsupported instruction:\n 0x%p: %s\n" , instr, |
| 1017 | format); |
| 1018 | UNIMPLEMENTED(); |
| 1019 | } |
| 1020 | |
| 1021 | // Checks if the current instruction should be executed based on its |
| 1022 | // condition bits. |
| 1023 | DART_FORCE_INLINE bool Simulator::ConditionallyExecute(Instr* instr) { |
| 1024 | switch (instr->ConditionField()) { |
| 1025 | case EQ: |
| 1026 | return z_flag_; |
| 1027 | case NE: |
| 1028 | return !z_flag_; |
| 1029 | case CS: |
| 1030 | return c_flag_; |
| 1031 | case CC: |
| 1032 | return !c_flag_; |
| 1033 | case MI: |
| 1034 | return n_flag_; |
| 1035 | case PL: |
| 1036 | return !n_flag_; |
| 1037 | case VS: |
| 1038 | return v_flag_; |
| 1039 | case VC: |
| 1040 | return !v_flag_; |
| 1041 | case HI: |
| 1042 | return c_flag_ && !z_flag_; |
| 1043 | case LS: |
| 1044 | return !c_flag_ || z_flag_; |
| 1045 | case GE: |
| 1046 | return n_flag_ == v_flag_; |
| 1047 | case LT: |
| 1048 | return n_flag_ != v_flag_; |
| 1049 | case GT: |
| 1050 | return !z_flag_ && (n_flag_ == v_flag_); |
| 1051 | case LE: |
| 1052 | return z_flag_ || (n_flag_ != v_flag_); |
| 1053 | case AL: |
| 1054 | return true; |
| 1055 | default: |
| 1056 | UNREACHABLE(); |
| 1057 | } |
| 1058 | return false; |
| 1059 | } |
| 1060 | |
| 1061 | // Calculate and set the Negative and Zero flags. |
| 1062 | DART_FORCE_INLINE void Simulator::SetNZFlags(int32_t val) { |
| 1063 | n_flag_ = (val < 0); |
| 1064 | z_flag_ = (val == 0); |
| 1065 | } |
| 1066 | |
| 1067 | // Set the Carry flag. |
| 1068 | DART_FORCE_INLINE void Simulator::SetCFlag(bool val) { |
| 1069 | c_flag_ = val; |
| 1070 | } |
| 1071 | |
| 1072 | // Set the oVerflow flag. |
| 1073 | DART_FORCE_INLINE void Simulator::SetVFlag(bool val) { |
| 1074 | v_flag_ = val; |
| 1075 | } |
| 1076 | |
| 1077 | // Calculate C flag value for additions (and subtractions with adjusted args). |
| 1078 | DART_FORCE_INLINE bool Simulator::CarryFrom(int32_t left, |
| 1079 | int32_t right, |
| 1080 | int32_t carry) { |
| 1081 | uint64_t uleft = static_cast<uint32_t>(left); |
| 1082 | uint64_t uright = static_cast<uint32_t>(right); |
| 1083 | uint64_t ucarry = static_cast<uint32_t>(carry); |
| 1084 | return ((uleft + uright + ucarry) >> 32) != 0; |
| 1085 | } |
| 1086 | |
| 1087 | // Calculate V flag value for additions (and subtractions with adjusted args). |
| 1088 | DART_FORCE_INLINE bool Simulator::OverflowFrom(int32_t left, |
| 1089 | int32_t right, |
| 1090 | int32_t carry) { |
| 1091 | int64_t result = static_cast<int64_t>(left) + right + carry; |
| 1092 | return (result >> 31) != (result >> 32); |
| 1093 | } |
| 1094 | |
| 1095 | // Addressing Mode 1 - Data-processing operands: |
| 1096 | // Get the value based on the shifter_operand with register. |
| 1097 | int32_t Simulator::GetShiftRm(Instr* instr, bool* carry_out) { |
| 1098 | Shift shift = instr->ShiftField(); |
| 1099 | int shift_amount = instr->ShiftAmountField(); |
| 1100 | int32_t result = get_register(instr->RmField()); |
| 1101 | if (instr->Bit(4) == 0) { |
| 1102 | // by immediate |
| 1103 | if ((shift == ROR) && (shift_amount == 0)) { |
| 1104 | UnimplementedInstruction(instr); |
| 1105 | } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) { |
| 1106 | shift_amount = 32; |
| 1107 | } |
| 1108 | switch (shift) { |
| 1109 | case ASR: { |
| 1110 | if (shift_amount == 0) { |
| 1111 | if (result < 0) { |
| 1112 | result = 0xffffffff; |
| 1113 | *carry_out = true; |
| 1114 | } else { |
| 1115 | result = 0; |
| 1116 | *carry_out = false; |
| 1117 | } |
| 1118 | } else { |
| 1119 | result >>= (shift_amount - 1); |
| 1120 | *carry_out = (result & 1) == 1; |
| 1121 | result >>= 1; |
| 1122 | } |
| 1123 | break; |
| 1124 | } |
| 1125 | |
| 1126 | case LSL: { |
| 1127 | if (shift_amount == 0) { |
| 1128 | *carry_out = c_flag_; |
| 1129 | } else { |
| 1130 | result = static_cast<uint32_t>(result) << (shift_amount - 1); |
| 1131 | *carry_out = (result < 0); |
| 1132 | result = static_cast<uint32_t>(result) << 1; |
| 1133 | } |
| 1134 | break; |
| 1135 | } |
| 1136 | |
| 1137 | case LSR: { |
| 1138 | if (shift_amount == 0) { |
| 1139 | result = 0; |
| 1140 | *carry_out = c_flag_; |
| 1141 | } else { |
| 1142 | uint32_t uresult = static_cast<uint32_t>(result); |
| 1143 | uresult >>= (shift_amount - 1); |
| 1144 | *carry_out = (uresult & 1) == 1; |
| 1145 | uresult >>= 1; |
| 1146 | result = static_cast<int32_t>(uresult); |
| 1147 | } |
| 1148 | break; |
| 1149 | } |
| 1150 | |
| 1151 | case ROR: { |
| 1152 | UnimplementedInstruction(instr); |
| 1153 | break; |
| 1154 | } |
| 1155 | |
| 1156 | default: { |
| 1157 | UNREACHABLE(); |
| 1158 | break; |
| 1159 | } |
| 1160 | } |
| 1161 | } else { |
| 1162 | // by register |
| 1163 | Register rs = instr->RsField(); |
| 1164 | shift_amount = get_register(rs) & 0xff; |
| 1165 | switch (shift) { |
| 1166 | case ASR: { |
| 1167 | if (shift_amount == 0) { |
| 1168 | *carry_out = c_flag_; |
| 1169 | } else if (shift_amount < 32) { |
| 1170 | result >>= (shift_amount - 1); |
| 1171 | *carry_out = (result & 1) == 1; |
| 1172 | result >>= 1; |
| 1173 | } else { |
| 1174 | ASSERT(shift_amount >= 32); |
| 1175 | if (result < 0) { |
| 1176 | *carry_out = true; |
| 1177 | result = 0xffffffff; |
| 1178 | } else { |
| 1179 | *carry_out = false; |
| 1180 | result = 0; |
| 1181 | } |
| 1182 | } |
| 1183 | break; |
| 1184 | } |
| 1185 | |
| 1186 | case LSL: { |
| 1187 | if (shift_amount == 0) { |
| 1188 | *carry_out = c_flag_; |
| 1189 | } else if (shift_amount < 32) { |
| 1190 | result = static_cast<uint32_t>(result) << (shift_amount - 1); |
| 1191 | *carry_out = (result < 0); |
| 1192 | result = static_cast<uint32_t>(result) << 1; |
| 1193 | } else if (shift_amount == 32) { |
| 1194 | *carry_out = (result & 1) == 1; |
| 1195 | result = 0; |
| 1196 | } else { |
| 1197 | ASSERT(shift_amount > 32); |
| 1198 | *carry_out = false; |
| 1199 | result = 0; |
| 1200 | } |
| 1201 | break; |
| 1202 | } |
| 1203 | |
| 1204 | case LSR: { |
| 1205 | if (shift_amount == 0) { |
| 1206 | *carry_out = c_flag_; |
| 1207 | } else if (shift_amount < 32) { |
| 1208 | uint32_t uresult = static_cast<uint32_t>(result); |
| 1209 | uresult >>= (shift_amount - 1); |
| 1210 | *carry_out = (uresult & 1) == 1; |
| 1211 | uresult >>= 1; |
| 1212 | result = static_cast<int32_t>(uresult); |
| 1213 | } else if (shift_amount == 32) { |
| 1214 | *carry_out = (result < 0); |
| 1215 | result = 0; |
| 1216 | } else { |
| 1217 | *carry_out = false; |
| 1218 | result = 0; |
| 1219 | } |
| 1220 | break; |
| 1221 | } |
| 1222 | |
| 1223 | case ROR: { |
| 1224 | UnimplementedInstruction(instr); |
| 1225 | break; |
| 1226 | } |
| 1227 | |
| 1228 | default: { |
| 1229 | UNREACHABLE(); |
| 1230 | break; |
| 1231 | } |
| 1232 | } |
| 1233 | } |
| 1234 | return result; |
| 1235 | } |
| 1236 | |
| 1237 | // Addressing Mode 1 - Data-processing operands: |
| 1238 | // Get the value based on the shifter_operand with immediate. |
| 1239 | DART_FORCE_INLINE int32_t Simulator::GetImm(Instr* instr, bool* carry_out) { |
| 1240 | uint8_t rotate = instr->RotateField() * 2; |
| 1241 | int32_t immed8 = instr->Immed8Field(); |
| 1242 | int32_t imm = Utils::RotateRight(immed8, rotate); |
| 1243 | *carry_out = (rotate == 0) ? c_flag_ : (imm < 0); |
| 1244 | return imm; |
| 1245 | } |
| 1246 | |
| 1247 | // Addressing Mode 4 - Load and Store Multiple |
| 1248 | void Simulator::HandleRList(Instr* instr, bool load) { |
| 1249 | Register rn = instr->RnField(); |
| 1250 | int32_t rn_val = get_register(rn); |
| 1251 | int rlist = instr->RlistField(); |
| 1252 | int num_regs = Utils::CountOneBits32(static_cast<uint32_t>(rlist)); |
| 1253 | |
| 1254 | uword address = 0; |
| 1255 | uword end_address = 0; |
| 1256 | switch (instr->PUField()) { |
| 1257 | case 0: { |
| 1258 | // Print("da"); |
| 1259 | address = rn_val - (num_regs * 4) + 4; |
| 1260 | end_address = rn_val + 4; |
| 1261 | rn_val = rn_val - (num_regs * 4); |
| 1262 | break; |
| 1263 | } |
| 1264 | case 1: { |
| 1265 | // Print("ia"); |
| 1266 | address = rn_val; |
| 1267 | end_address = rn_val + (num_regs * 4); |
| 1268 | rn_val = rn_val + (num_regs * 4); |
| 1269 | break; |
| 1270 | } |
| 1271 | case 2: { |
| 1272 | // Print("db"); |
| 1273 | address = rn_val - (num_regs * 4); |
| 1274 | end_address = rn_val; |
| 1275 | rn_val = address; |
| 1276 | break; |
| 1277 | } |
| 1278 | case 3: { |
| 1279 | // Print("ib"); |
| 1280 | address = rn_val + 4; |
| 1281 | end_address = rn_val + (num_regs * 4) + 4; |
| 1282 | rn_val = rn_val + (num_regs * 4); |
| 1283 | break; |
| 1284 | } |
| 1285 | default: { |
| 1286 | UNREACHABLE(); |
| 1287 | break; |
| 1288 | } |
| 1289 | } |
| 1290 | if (IsIllegalAddress(address)) { |
| 1291 | HandleIllegalAccess(address, instr); |
| 1292 | } else { |
| 1293 | if (instr->HasW()) { |
| 1294 | set_register(rn, rn_val); |
| 1295 | } |
| 1296 | int reg = 0; |
| 1297 | while (rlist != 0) { |
| 1298 | if ((rlist & 1) != 0) { |
| 1299 | if (load) { |
| 1300 | set_register(static_cast<Register>(reg), ReadW(address, instr)); |
| 1301 | } else { |
| 1302 | WriteW(address, get_register(static_cast<Register>(reg)), instr); |
| 1303 | } |
| 1304 | address += 4; |
| 1305 | } |
| 1306 | reg++; |
| 1307 | rlist >>= 1; |
| 1308 | } |
| 1309 | ASSERT(end_address == address); |
| 1310 | } |
| 1311 | } |
| 1312 | |
| 1313 | // Calls into the Dart runtime are based on this interface. |
| 1314 | typedef void (*SimulatorRuntimeCall)(NativeArguments arguments); |
| 1315 | |
| 1316 | // Calls to leaf Dart runtime functions are based on this interface. |
| 1317 | typedef int32_t (*SimulatorLeafRuntimeCall)(int32_t r0, |
| 1318 | int32_t r1, |
| 1319 | int32_t r2, |
| 1320 | int32_t r3, |
| 1321 | int32_t r4); |
| 1322 | |
| 1323 | // [target] has several different signatures that differ from |
| 1324 | // SimulatorLeafRuntimeCall. We can call them all from here only because in |
| 1325 | // IA32's calling convention a function can be called with extra arguments |
| 1326 | // and the callee will see the first arguments and won't unbalance the stack. |
| 1327 | NO_SANITIZE_UNDEFINED("function" ) |
| 1328 | static int32_t InvokeLeafRuntime(SimulatorLeafRuntimeCall target, |
| 1329 | int32_t r0, |
| 1330 | int32_t r1, |
| 1331 | int32_t r2, |
| 1332 | int32_t r3, |
| 1333 | int32_t r4) { |
| 1334 | return target(r0, r1, r2, r3, r4); |
| 1335 | } |
| 1336 | |
| 1337 | // Calls to leaf float Dart runtime functions are based on this interface. |
| 1338 | typedef double (*SimulatorLeafFloatRuntimeCall)(double d0, double d1); |
| 1339 | |
| 1340 | // [target] has several different signatures that differ from |
| 1341 | // SimulatorFloatLeafRuntimeCall. We can call them all from here only because |
| 1342 | // IA32's calling convention a function can be called with extra arguments |
| 1343 | // and the callee will see the first arguments and won't unbalance the stack. |
| 1344 | NO_SANITIZE_UNDEFINED("function" ) |
| 1345 | static double InvokeFloatLeafRuntime(SimulatorLeafFloatRuntimeCall target, |
| 1346 | double d0, |
| 1347 | double d1) { |
| 1348 | return target(d0, d1); |
| 1349 | } |
| 1350 | |
| 1351 | // Calls to native Dart functions are based on this interface. |
| 1352 | typedef void (*SimulatorNativeCallWrapper)(Dart_NativeArguments arguments, |
| 1353 | Dart_NativeFunction target); |
| 1354 | |
| 1355 | void Simulator::SupervisorCall(Instr* instr) { |
| 1356 | int svc = instr->SvcField(); |
| 1357 | switch (svc) { |
| 1358 | case Instr::kSimulatorRedirectCode: { |
| 1359 | SimulatorSetjmpBuffer buffer(this); |
| 1360 | |
| 1361 | if (!setjmp(buffer.buffer_)) { |
| 1362 | int32_t saved_lr = get_register(LR); |
| 1363 | Redirection* redirection = Redirection::FromSvcInstruction(instr); |
| 1364 | uword external = redirection->external_function(); |
| 1365 | if (IsTracingExecution()) { |
| 1366 | THR_Print("Call to host function at 0x%" Pd "\n" , external); |
| 1367 | } |
| 1368 | if (redirection->call_kind() == kRuntimeCall) { |
| 1369 | NativeArguments arguments(NULL, 0, NULL, NULL); |
| 1370 | ASSERT(sizeof(NativeArguments) == 4 * kWordSize); |
| 1371 | arguments.thread_ = reinterpret_cast<Thread*>(get_register(R0)); |
| 1372 | arguments.argc_tag_ = get_register(R1); |
| 1373 | arguments.argv_ = reinterpret_cast<ObjectPtr*>(get_register(R2)); |
| 1374 | arguments.retval_ = reinterpret_cast<ObjectPtr*>(get_register(R3)); |
| 1375 | SimulatorRuntimeCall target = |
| 1376 | reinterpret_cast<SimulatorRuntimeCall>(external); |
| 1377 | target(arguments); |
| 1378 | set_register(R0, icount_); // Zap result register from void function. |
| 1379 | set_register(R1, icount_); |
| 1380 | } else if (redirection->call_kind() == kLeafRuntimeCall) { |
| 1381 | ASSERT((0 <= redirection->argument_count()) && |
| 1382 | (redirection->argument_count() <= 5)); |
| 1383 | int32_t r0 = get_register(R0); |
| 1384 | int32_t r1 = get_register(R1); |
| 1385 | int32_t r2 = get_register(R2); |
| 1386 | int32_t r3 = get_register(R3); |
| 1387 | int32_t r4 = *reinterpret_cast<int32_t*>(get_register(SP)); |
| 1388 | SimulatorLeafRuntimeCall target = |
| 1389 | reinterpret_cast<SimulatorLeafRuntimeCall>(external); |
| 1390 | r0 = InvokeLeafRuntime(target, r0, r1, r2, r3, r4); |
| 1391 | set_register(R0, r0); // Set returned result from function. |
| 1392 | set_register(R1, icount_); // Zap unused result register. |
| 1393 | } else if (redirection->call_kind() == kLeafFloatRuntimeCall) { |
| 1394 | ASSERT((0 <= redirection->argument_count()) && |
| 1395 | (redirection->argument_count() <= 2)); |
| 1396 | SimulatorLeafFloatRuntimeCall target = |
| 1397 | reinterpret_cast<SimulatorLeafFloatRuntimeCall>(external); |
| 1398 | if (TargetCPUFeatures::hardfp_supported()) { |
| 1399 | // If we're doing "hardfp", the double arguments are already in the |
| 1400 | // floating point registers. |
| 1401 | double d0 = get_dregister(D0); |
| 1402 | double d1 = get_dregister(D1); |
| 1403 | d0 = InvokeFloatLeafRuntime(target, d0, d1); |
| 1404 | set_dregister(D0, d0); |
| 1405 | } else { |
| 1406 | // If we're not doing "hardfp", we must be doing "soft" or "softfp", |
| 1407 | // So take the double arguments from the integer registers. |
| 1408 | uint32_t r0 = get_register(R0); |
| 1409 | int32_t r1 = get_register(R1); |
| 1410 | uint32_t r2 = get_register(R2); |
| 1411 | int32_t r3 = get_register(R3); |
| 1412 | int64_t a0 = Utils::LowHighTo64Bits(r0, r1); |
| 1413 | int64_t a1 = Utils::LowHighTo64Bits(r2, r3); |
| 1414 | double d0 = bit_cast<double, int64_t>(a0); |
| 1415 | double d1 = bit_cast<double, int64_t>(a1); |
| 1416 | d0 = InvokeFloatLeafRuntime(target, d0, d1); |
| 1417 | a0 = bit_cast<int64_t, double>(d0); |
| 1418 | r0 = Utils::Low32Bits(a0); |
| 1419 | r1 = Utils::High32Bits(a0); |
| 1420 | set_register(R0, r0); |
| 1421 | set_register(R1, r1); |
| 1422 | } |
| 1423 | } else { |
| 1424 | ASSERT(redirection->call_kind() == kNativeCallWrapper); |
| 1425 | SimulatorNativeCallWrapper wrapper = |
| 1426 | reinterpret_cast<SimulatorNativeCallWrapper>(external); |
| 1427 | Dart_NativeArguments arguments = |
| 1428 | reinterpret_cast<Dart_NativeArguments>(get_register(R0)); |
| 1429 | Dart_NativeFunction target_func = |
| 1430 | reinterpret_cast<Dart_NativeFunction>(get_register(R1)); |
| 1431 | wrapper(arguments, target_func); |
| 1432 | set_register(R0, icount_); // Zap result register from void function. |
| 1433 | set_register(R1, icount_); |
| 1434 | } |
| 1435 | |
| 1436 | // Zap caller-saved registers, since the actual runtime call could have |
| 1437 | // used them. |
| 1438 | set_register(R2, icount_); |
| 1439 | set_register(R3, icount_); |
| 1440 | set_register(IP, icount_); |
| 1441 | set_register(LR, icount_); |
| 1442 | if (TargetCPUFeatures::vfp_supported()) { |
| 1443 | double zap_dvalue = static_cast<double>(icount_); |
| 1444 | // Do not zap D0, as it may contain a float result. |
| 1445 | for (int i = D1; i <= D7; i++) { |
| 1446 | set_dregister(static_cast<DRegister>(i), zap_dvalue); |
| 1447 | } |
| 1448 | // The above loop also zaps overlapping registers S2-S15. |
| 1449 | // Registers D8-D15 (overlapping with S16-S31) are preserved. |
| 1450 | #if defined(VFPv3_D32) |
| 1451 | for (int i = D16; i <= D31; i++) { |
| 1452 | set_dregister(static_cast<DRegister>(i), zap_dvalue); |
| 1453 | } |
| 1454 | #endif |
| 1455 | } |
| 1456 | |
| 1457 | // Return. |
| 1458 | set_pc(saved_lr); |
| 1459 | } else { |
| 1460 | // Coming via long jump from a throw. Continue to exception handler. |
| 1461 | } |
| 1462 | |
| 1463 | break; |
| 1464 | } |
| 1465 | case Instr::kSimulatorBreakCode: { |
| 1466 | SimulatorDebugger dbg(this); |
| 1467 | dbg.Stop(instr, "breakpoint" ); |
| 1468 | break; |
| 1469 | } |
| 1470 | default: { |
| 1471 | UNREACHABLE(); |
| 1472 | break; |
| 1473 | } |
| 1474 | } |
| 1475 | } |
| 1476 | |
| 1477 | // Handle execution based on instruction types. |
| 1478 | |
| 1479 | // Instruction types 0 and 1 are both rolled into one function because they |
| 1480 | // only differ in the handling of the shifter_operand. |
| 1481 | DART_FORCE_INLINE void Simulator::DecodeType01(Instr* instr) { |
| 1482 | if (!instr->IsDataProcessing()) { |
| 1483 | // miscellaneous, multiply, sync primitives, extra loads and stores. |
| 1484 | if (instr->IsMiscellaneous()) { |
| 1485 | switch (instr->Bits(4, 3)) { |
| 1486 | case 1: { |
| 1487 | if (instr->Bits(21, 2) == 0x3) { |
| 1488 | // Format(instr, "clz'cond 'rd, 'rm"); |
| 1489 | Register rm = instr->RmField(); |
| 1490 | Register rd = instr->RdField(); |
| 1491 | int32_t rm_val = get_register(rm); |
| 1492 | int32_t rd_val = 0; |
| 1493 | if (rm_val != 0) { |
| 1494 | while (rm_val > 0) { |
| 1495 | rd_val++; |
| 1496 | rm_val <<= 1; |
| 1497 | } |
| 1498 | } else { |
| 1499 | rd_val = 32; |
| 1500 | } |
| 1501 | set_register(rd, rd_val); |
| 1502 | } else { |
| 1503 | ASSERT(instr->Bits(21, 2) == 0x1); |
| 1504 | // Format(instr, "bx'cond 'rm"); |
| 1505 | Register rm = instr->RmField(); |
| 1506 | int32_t rm_val = get_register(rm); |
| 1507 | set_pc(rm_val); |
| 1508 | } |
| 1509 | break; |
| 1510 | } |
| 1511 | case 3: { |
| 1512 | ASSERT(instr->Bits(21, 2) == 0x1); |
| 1513 | // Format(instr, "blx'cond 'rm"); |
| 1514 | Register rm = instr->RmField(); |
| 1515 | int32_t rm_val = get_register(rm); |
| 1516 | intptr_t pc = get_pc(); |
| 1517 | set_register(LR, pc + Instr::kInstrSize); |
| 1518 | set_pc(rm_val); |
| 1519 | break; |
| 1520 | } |
| 1521 | case 7: { |
| 1522 | if ((instr->Bits(21, 2) == 0x1) && (instr->ConditionField() == AL)) { |
| 1523 | // Format(instr, "bkpt #'imm12_4"); |
| 1524 | SimulatorDebugger dbg(this); |
| 1525 | int32_t imm = instr->BkptField(); |
| 1526 | char buffer[32]; |
| 1527 | snprintf(buffer, sizeof(buffer), "bkpt #0x%x" , imm); |
| 1528 | set_pc(get_pc() + Instr::kInstrSize); |
| 1529 | dbg.Stop(instr, buffer); |
| 1530 | } else { |
| 1531 | // Format(instr, "smc'cond"); |
| 1532 | UnimplementedInstruction(instr); |
| 1533 | } |
| 1534 | break; |
| 1535 | } |
| 1536 | default: { |
| 1537 | UnimplementedInstruction(instr); |
| 1538 | break; |
| 1539 | } |
| 1540 | } |
| 1541 | } else if (instr->IsMultiplyOrSyncPrimitive()) { |
| 1542 | if (instr->Bit(24) == 0) { |
| 1543 | // multiply instructions. |
| 1544 | Register rn = instr->RnField(); |
| 1545 | Register rd = instr->RdField(); |
| 1546 | Register rs = instr->RsField(); |
| 1547 | Register rm = instr->RmField(); |
| 1548 | uint32_t rm_val = get_register(rm); |
| 1549 | uint32_t rs_val = get_register(rs); |
| 1550 | uint32_t rd_val = 0; |
| 1551 | switch (instr->Bits(21, 3)) { |
| 1552 | case 1: |
| 1553 | // Registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. |
| 1554 | // Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd"); |
| 1555 | case 3: { |
| 1556 | // Registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. |
| 1557 | // Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd"); |
| 1558 | rd_val = get_register(rd); |
| 1559 | FALL_THROUGH; |
| 1560 | } |
| 1561 | case 0: { |
| 1562 | // Registers rd, rn, rm are encoded as rn, rm, rs. |
| 1563 | // Format(instr, "mul'cond's 'rn, 'rm, 'rs"); |
| 1564 | uint32_t alu_out = rm_val * rs_val; |
| 1565 | if (instr->Bits(21, 3) == 3) { // mls |
| 1566 | alu_out = -alu_out; |
| 1567 | } |
| 1568 | alu_out += rd_val; |
| 1569 | set_register(rn, alu_out); |
| 1570 | if (instr->HasS()) { |
| 1571 | SetNZFlags(alu_out); |
| 1572 | } |
| 1573 | break; |
| 1574 | } |
| 1575 | case 4: |
| 1576 | // Registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| 1577 | // Format(instr, "umull'cond's 'rd, 'rn, 'rm, 'rs"); |
| 1578 | case 6: { |
| 1579 | // Registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| 1580 | // Format(instr, "smull'cond's 'rd, 'rn, 'rm, 'rs"); |
| 1581 | int64_t result; |
| 1582 | if (instr->Bits(21, 3) == 4) { // umull |
| 1583 | uint64_t left_op = static_cast<uint32_t>(rm_val); |
| 1584 | uint64_t right_op = static_cast<uint32_t>(rs_val); |
| 1585 | result = left_op * right_op; // Unsigned multiplication. |
| 1586 | } else { // smull |
| 1587 | int64_t left_op = static_cast<int32_t>(rm_val); |
| 1588 | int64_t right_op = static_cast<int32_t>(rs_val); |
| 1589 | result = left_op * right_op; // Signed multiplication. |
| 1590 | } |
| 1591 | int32_t hi_res = Utils::High32Bits(result); |
| 1592 | int32_t lo_res = Utils::Low32Bits(result); |
| 1593 | set_register(rd, lo_res); |
| 1594 | set_register(rn, hi_res); |
| 1595 | if (instr->HasS()) { |
| 1596 | if (lo_res != 0) { |
| 1597 | // Collapse bits 0..31 into bit 32 so that 32-bit Z check works. |
| 1598 | hi_res |= 1; |
| 1599 | } |
| 1600 | ASSERT((result == 0) == (hi_res == 0)); // Z bit |
| 1601 | ASSERT(((result & (1LL << 63)) != 0) == (hi_res < 0)); // N bit |
| 1602 | SetNZFlags(hi_res); |
| 1603 | } |
| 1604 | break; |
| 1605 | } |
| 1606 | case 2: |
| 1607 | // Registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| 1608 | // Format(instr, "umaal'cond's 'rd, 'rn, 'rm, 'rs"); |
| 1609 | FALL_THROUGH; |
| 1610 | case 5: |
| 1611 | // Registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| 1612 | // Format(instr, "umlal'cond's 'rd, 'rn, 'rm, 'rs"); |
| 1613 | FALL_THROUGH; |
| 1614 | case 7: { |
| 1615 | // Registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| 1616 | // Format(instr, "smlal'cond's 'rd, 'rn, 'rm, 'rs"); |
| 1617 | int32_t rd_lo_val = get_register(rd); |
| 1618 | int32_t rd_hi_val = get_register(rn); |
| 1619 | uint32_t accum_lo = static_cast<uint32_t>(rd_lo_val); |
| 1620 | int32_t accum_hi = static_cast<int32_t>(rd_hi_val); |
| 1621 | int64_t accum = Utils::LowHighTo64Bits(accum_lo, accum_hi); |
| 1622 | int64_t result; |
| 1623 | if (instr->Bits(21, 3) == 5) { // umlal |
| 1624 | uint64_t left_op = static_cast<uint32_t>(rm_val); |
| 1625 | uint64_t right_op = static_cast<uint32_t>(rs_val); |
| 1626 | result = accum + left_op * right_op; // Unsigned multiplication. |
| 1627 | } else if (instr->Bits(21, 3) == 7) { // smlal |
| 1628 | int64_t left_op = static_cast<int32_t>(rm_val); |
| 1629 | int64_t right_op = static_cast<int32_t>(rs_val); |
| 1630 | result = accum + left_op * right_op; // Signed multiplication. |
| 1631 | } else { |
| 1632 | ASSERT(instr->Bits(21, 3) == 2); // umaal |
| 1633 | ASSERT(!instr->HasS()); |
| 1634 | uint64_t left_op = static_cast<uint32_t>(rm_val); |
| 1635 | uint64_t right_op = static_cast<uint32_t>(rs_val); |
| 1636 | result = left_op * right_op + // Unsigned multiplication. |
| 1637 | static_cast<uint32_t>(rd_lo_val) + |
| 1638 | static_cast<uint32_t>(rd_hi_val); |
| 1639 | } |
| 1640 | int32_t hi_res = Utils::High32Bits(result); |
| 1641 | int32_t lo_res = Utils::Low32Bits(result); |
| 1642 | set_register(rd, lo_res); |
| 1643 | set_register(rn, hi_res); |
| 1644 | if (instr->HasS()) { |
| 1645 | if (lo_res != 0) { |
| 1646 | // Collapse bits 0..31 into bit 32 so that 32-bit Z check works. |
| 1647 | hi_res |= 1; |
| 1648 | } |
| 1649 | ASSERT((result == 0) == (hi_res == 0)); // Z bit |
| 1650 | ASSERT(((result & (1LL << 63)) != 0) == (hi_res < 0)); // N bit |
| 1651 | SetNZFlags(hi_res); |
| 1652 | } |
| 1653 | break; |
| 1654 | } |
| 1655 | default: { |
| 1656 | UnimplementedInstruction(instr); |
| 1657 | break; |
| 1658 | } |
| 1659 | } |
| 1660 | } else { |
| 1661 | // synchronization primitives |
| 1662 | Register rd = instr->RdField(); |
| 1663 | Register rn = instr->RnField(); |
| 1664 | uword addr = get_register(rn); |
| 1665 | switch (instr->Bits(20, 4)) { |
| 1666 | case 8: { |
| 1667 | // Format(instr, "strex'cond 'rd, 'rm, ['rn]"); |
| 1668 | if (IsIllegalAddress(addr)) { |
| 1669 | HandleIllegalAccess(addr, instr); |
| 1670 | } else { |
| 1671 | Register rm = instr->RmField(); |
| 1672 | set_register(rd, WriteExclusiveW(addr, get_register(rm), instr)); |
| 1673 | } |
| 1674 | break; |
| 1675 | } |
| 1676 | case 9: { |
| 1677 | // Format(instr, "ldrex'cond 'rd, ['rn]"); |
| 1678 | if (IsIllegalAddress(addr)) { |
| 1679 | HandleIllegalAccess(addr, instr); |
| 1680 | } else { |
| 1681 | set_register(rd, ReadExclusiveW(addr, instr)); |
| 1682 | } |
| 1683 | break; |
| 1684 | } |
| 1685 | default: { |
| 1686 | UnimplementedInstruction(instr); |
| 1687 | break; |
| 1688 | } |
| 1689 | } |
| 1690 | } |
| 1691 | } else if (instr->Bit(25) == 1) { |
| 1692 | // 16-bit immediate loads, msr (immediate), and hints |
| 1693 | switch (instr->Bits(20, 5)) { |
| 1694 | case 16: |
| 1695 | case 20: { |
| 1696 | uint16_t imm16 = instr->MovwField(); |
| 1697 | Register rd = instr->RdField(); |
| 1698 | if (instr->Bit(22) == 0) { |
| 1699 | // Format(instr, "movw'cond 'rd, #'imm4_12"); |
| 1700 | set_register(rd, imm16); |
| 1701 | } else { |
| 1702 | // Format(instr, "movt'cond 'rd, #'imm4_12"); |
| 1703 | set_register(rd, (get_register(rd) & 0xffff) | (imm16 << 16)); |
| 1704 | } |
| 1705 | break; |
| 1706 | } |
| 1707 | case 18: { |
| 1708 | if ((instr->Bits(16, 4) == 0) && (instr->Bits(0, 8) == 0)) { |
| 1709 | // Format(instr, "nop'cond"); |
| 1710 | } else { |
| 1711 | UnimplementedInstruction(instr); |
| 1712 | } |
| 1713 | break; |
| 1714 | } |
| 1715 | default: { |
| 1716 | UnimplementedInstruction(instr); |
| 1717 | break; |
| 1718 | } |
| 1719 | } |
| 1720 | } else { |
| 1721 | // extra load/store instructions |
| 1722 | Register rd = instr->RdField(); |
| 1723 | Register rn = instr->RnField(); |
| 1724 | int32_t rn_val = get_register(rn); |
| 1725 | uword addr = 0; |
| 1726 | bool write_back = false; |
| 1727 | if (instr->Bit(22) == 0) { |
| 1728 | Register rm = instr->RmField(); |
| 1729 | int32_t rm_val = get_register(rm); |
| 1730 | switch (instr->PUField()) { |
| 1731 | case 0: { |
| 1732 | // Format(instr, "'memop'cond'x 'rd2, ['rn], -'rm"); |
| 1733 | ASSERT(!instr->HasW()); |
| 1734 | addr = rn_val; |
| 1735 | rn_val -= rm_val; |
| 1736 | write_back = true; |
| 1737 | break; |
| 1738 | } |
| 1739 | case 1: { |
| 1740 | // Format(instr, "'memop'cond'x 'rd2, ['rn], +'rm"); |
| 1741 | ASSERT(!instr->HasW()); |
| 1742 | addr = rn_val; |
| 1743 | rn_val += rm_val; |
| 1744 | write_back = true; |
| 1745 | break; |
| 1746 | } |
| 1747 | case 2: { |
| 1748 | // Format(instr, "'memop'cond'x 'rd2, ['rn, -'rm]'w"); |
| 1749 | rn_val -= rm_val; |
| 1750 | addr = rn_val; |
| 1751 | write_back = instr->HasW(); |
| 1752 | break; |
| 1753 | } |
| 1754 | case 3: { |
| 1755 | // Format(instr, "'memop'cond'x 'rd2, ['rn, +'rm]'w"); |
| 1756 | rn_val += rm_val; |
| 1757 | addr = rn_val; |
| 1758 | write_back = instr->HasW(); |
| 1759 | break; |
| 1760 | } |
| 1761 | default: { |
| 1762 | // The PU field is a 2-bit field. |
| 1763 | UNREACHABLE(); |
| 1764 | break; |
| 1765 | } |
| 1766 | } |
| 1767 | } else { |
| 1768 | int32_t imm_val = (instr->ImmedHField() << 4) | instr->ImmedLField(); |
| 1769 | switch (instr->PUField()) { |
| 1770 | case 0: { |
| 1771 | // Format(instr, "'memop'cond'x 'rd2, ['rn], #-'off8"); |
| 1772 | ASSERT(!instr->HasW()); |
| 1773 | addr = rn_val; |
| 1774 | rn_val -= imm_val; |
| 1775 | write_back = true; |
| 1776 | break; |
| 1777 | } |
| 1778 | case 1: { |
| 1779 | // Format(instr, "'memop'cond'x 'rd2, ['rn], #+'off8"); |
| 1780 | ASSERT(!instr->HasW()); |
| 1781 | addr = rn_val; |
| 1782 | rn_val += imm_val; |
| 1783 | write_back = true; |
| 1784 | break; |
| 1785 | } |
| 1786 | case 2: { |
| 1787 | // Format(instr, "'memop'cond'x 'rd2, ['rn, #-'off8]'w"); |
| 1788 | rn_val -= imm_val; |
| 1789 | addr = rn_val; |
| 1790 | write_back = instr->HasW(); |
| 1791 | break; |
| 1792 | } |
| 1793 | case 3: { |
| 1794 | // Format(instr, "'memop'cond'x 'rd2, ['rn, #+'off8]'w"); |
| 1795 | rn_val += imm_val; |
| 1796 | addr = rn_val; |
| 1797 | write_back = instr->HasW(); |
| 1798 | break; |
| 1799 | } |
| 1800 | default: { |
| 1801 | // The PU field is a 2-bit field. |
| 1802 | UNREACHABLE(); |
| 1803 | break; |
| 1804 | } |
| 1805 | } |
| 1806 | } |
| 1807 | if (IsIllegalAddress(addr)) { |
| 1808 | HandleIllegalAccess(addr, instr); |
| 1809 | } else { |
| 1810 | if (write_back) { |
| 1811 | ASSERT(rd != rn); // Unpredictable. |
| 1812 | set_register(rn, rn_val); |
| 1813 | } |
| 1814 | if (!instr->HasSign()) { |
| 1815 | if (instr->HasL()) { |
| 1816 | uint16_t val = ReadHU(addr, instr); |
| 1817 | set_register(rd, val); |
| 1818 | } else { |
| 1819 | uint16_t val = get_register(rd); |
| 1820 | WriteH(addr, val, instr); |
| 1821 | } |
| 1822 | } else if (instr->HasL()) { |
| 1823 | if (instr->HasH()) { |
| 1824 | int16_t val = ReadH(addr, instr); |
| 1825 | set_register(rd, val); |
| 1826 | } else { |
| 1827 | int8_t val = ReadB(addr); |
| 1828 | set_register(rd, val); |
| 1829 | } |
| 1830 | } else if ((rd & 1) == 0) { |
| 1831 | Register rd1 = static_cast<Register>(rd | 1); |
| 1832 | ASSERT(rd1 < kNumberOfCpuRegisters); |
| 1833 | if (instr->HasH()) { |
| 1834 | int32_t val_low = get_register(rd); |
| 1835 | int32_t val_high = get_register(rd1); |
| 1836 | WriteW(addr, val_low, instr); |
| 1837 | WriteW(addr + 4, val_high, instr); |
| 1838 | } else { |
| 1839 | int32_t val_low = ReadW(addr, instr); |
| 1840 | int32_t val_high = ReadW(addr + 4, instr); |
| 1841 | set_register(rd, val_low); |
| 1842 | set_register(rd1, val_high); |
| 1843 | } |
| 1844 | } else { |
| 1845 | UnimplementedInstruction(instr); |
| 1846 | } |
| 1847 | } |
| 1848 | } |
| 1849 | } else { |
| 1850 | Register rd = instr->RdField(); |
| 1851 | Register rn = instr->RnField(); |
| 1852 | uint32_t rn_val = get_register(rn); |
| 1853 | uint32_t shifter_operand = 0; |
| 1854 | bool shifter_carry_out = 0; |
| 1855 | if (instr->TypeField() == 0) { |
| 1856 | shifter_operand = GetShiftRm(instr, &shifter_carry_out); |
| 1857 | } else { |
| 1858 | ASSERT(instr->TypeField() == 1); |
| 1859 | shifter_operand = GetImm(instr, &shifter_carry_out); |
| 1860 | } |
| 1861 | uint32_t carry_in; |
| 1862 | uint32_t alu_out; |
| 1863 | |
| 1864 | switch (instr->OpcodeField()) { |
| 1865 | case AND: { |
| 1866 | // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm"); |
| 1867 | // Format(instr, "and'cond's 'rd, 'rn, 'imm"); |
| 1868 | alu_out = rn_val & shifter_operand; |
| 1869 | set_register(rd, alu_out); |
| 1870 | if (instr->HasS()) { |
| 1871 | SetNZFlags(alu_out); |
| 1872 | SetCFlag(shifter_carry_out); |
| 1873 | } |
| 1874 | break; |
| 1875 | } |
| 1876 | |
| 1877 | case EOR: { |
| 1878 | // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm"); |
| 1879 | // Format(instr, "eor'cond's 'rd, 'rn, 'imm"); |
| 1880 | alu_out = rn_val ^ shifter_operand; |
| 1881 | set_register(rd, alu_out); |
| 1882 | if (instr->HasS()) { |
| 1883 | SetNZFlags(alu_out); |
| 1884 | SetCFlag(shifter_carry_out); |
| 1885 | } |
| 1886 | break; |
| 1887 | } |
| 1888 | |
| 1889 | case SUB: { |
| 1890 | // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm"); |
| 1891 | // Format(instr, "sub'cond's 'rd, 'rn, 'imm"); |
| 1892 | alu_out = rn_val - shifter_operand; |
| 1893 | set_register(rd, alu_out); |
| 1894 | if (instr->HasS()) { |
| 1895 | SetNZFlags(alu_out); |
| 1896 | SetCFlag(CarryFrom(rn_val, ~shifter_operand, 1)); |
| 1897 | SetVFlag(OverflowFrom(rn_val, ~shifter_operand, 1)); |
| 1898 | } |
| 1899 | break; |
| 1900 | } |
| 1901 | |
| 1902 | case RSB: { |
| 1903 | // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm"); |
| 1904 | // Format(instr, "rsb'cond's 'rd, 'rn, 'imm"); |
| 1905 | alu_out = shifter_operand - rn_val; |
| 1906 | set_register(rd, alu_out); |
| 1907 | if (instr->HasS()) { |
| 1908 | SetNZFlags(alu_out); |
| 1909 | SetCFlag(CarryFrom(shifter_operand, ~rn_val, 1)); |
| 1910 | SetVFlag(OverflowFrom(shifter_operand, ~rn_val, 1)); |
| 1911 | } |
| 1912 | break; |
| 1913 | } |
| 1914 | |
| 1915 | case ADD: { |
| 1916 | // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm"); |
| 1917 | // Format(instr, "add'cond's 'rd, 'rn, 'imm"); |
| 1918 | alu_out = rn_val + shifter_operand; |
| 1919 | set_register(rd, alu_out); |
| 1920 | if (instr->HasS()) { |
| 1921 | SetNZFlags(alu_out); |
| 1922 | SetCFlag(CarryFrom(rn_val, shifter_operand, 0)); |
| 1923 | SetVFlag(OverflowFrom(rn_val, shifter_operand, 0)); |
| 1924 | } |
| 1925 | break; |
| 1926 | } |
| 1927 | |
| 1928 | case ADC: { |
| 1929 | // Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm"); |
| 1930 | // Format(instr, "adc'cond's 'rd, 'rn, 'imm"); |
| 1931 | carry_in = c_flag_ ? 1 : 0; |
| 1932 | alu_out = rn_val + shifter_operand + carry_in; |
| 1933 | set_register(rd, alu_out); |
| 1934 | if (instr->HasS()) { |
| 1935 | SetNZFlags(alu_out); |
| 1936 | SetCFlag(CarryFrom(rn_val, shifter_operand, carry_in)); |
| 1937 | SetVFlag(OverflowFrom(rn_val, shifter_operand, carry_in)); |
| 1938 | } |
| 1939 | break; |
| 1940 | } |
| 1941 | |
| 1942 | case SBC: { |
| 1943 | // Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm"); |
| 1944 | // Format(instr, "sbc'cond's 'rd, 'rn, 'imm"); |
| 1945 | carry_in = c_flag_ ? 1 : 0; |
| 1946 | alu_out = rn_val + ~shifter_operand + carry_in; |
| 1947 | set_register(rd, alu_out); |
| 1948 | if (instr->HasS()) { |
| 1949 | SetNZFlags(alu_out); |
| 1950 | SetCFlag(CarryFrom(rn_val, ~shifter_operand, carry_in)); |
| 1951 | SetVFlag(OverflowFrom(rn_val, ~shifter_operand, carry_in)); |
| 1952 | } |
| 1953 | break; |
| 1954 | } |
| 1955 | |
| 1956 | case RSC: { |
| 1957 | // Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm"); |
| 1958 | // Format(instr, "rsc'cond's 'rd, 'rn, 'imm"); |
| 1959 | carry_in = c_flag_ ? 1 : 0; |
| 1960 | alu_out = shifter_operand + ~rn_val + carry_in; |
| 1961 | set_register(rd, alu_out); |
| 1962 | if (instr->HasS()) { |
| 1963 | SetNZFlags(alu_out); |
| 1964 | SetCFlag(CarryFrom(shifter_operand, ~rn_val, carry_in)); |
| 1965 | SetVFlag(OverflowFrom(shifter_operand, ~rn_val, carry_in)); |
| 1966 | } |
| 1967 | break; |
| 1968 | } |
| 1969 | |
| 1970 | case TST: { |
| 1971 | if (instr->HasS()) { |
| 1972 | // Format(instr, "tst'cond 'rn, 'shift_rm"); |
| 1973 | // Format(instr, "tst'cond 'rn, 'imm"); |
| 1974 | alu_out = rn_val & shifter_operand; |
| 1975 | SetNZFlags(alu_out); |
| 1976 | SetCFlag(shifter_carry_out); |
| 1977 | } else { |
| 1978 | UnimplementedInstruction(instr); |
| 1979 | } |
| 1980 | break; |
| 1981 | } |
| 1982 | |
| 1983 | case TEQ: { |
| 1984 | if (instr->HasS()) { |
| 1985 | // Format(instr, "teq'cond 'rn, 'shift_rm"); |
| 1986 | // Format(instr, "teq'cond 'rn, 'imm"); |
| 1987 | alu_out = rn_val ^ shifter_operand; |
| 1988 | SetNZFlags(alu_out); |
| 1989 | SetCFlag(shifter_carry_out); |
| 1990 | } else { |
| 1991 | UnimplementedInstruction(instr); |
| 1992 | } |
| 1993 | break; |
| 1994 | } |
| 1995 | |
| 1996 | case CMP: { |
| 1997 | if (instr->HasS()) { |
| 1998 | // Format(instr, "cmp'cond 'rn, 'shift_rm"); |
| 1999 | // Format(instr, "cmp'cond 'rn, 'imm"); |
| 2000 | alu_out = rn_val - shifter_operand; |
| 2001 | SetNZFlags(alu_out); |
| 2002 | SetCFlag(CarryFrom(rn_val, ~shifter_operand, 1)); |
| 2003 | SetVFlag(OverflowFrom(rn_val, ~shifter_operand, 1)); |
| 2004 | } else { |
| 2005 | UnimplementedInstruction(instr); |
| 2006 | } |
| 2007 | break; |
| 2008 | } |
| 2009 | |
| 2010 | case CMN: { |
| 2011 | if (instr->HasS()) { |
| 2012 | // Format(instr, "cmn'cond 'rn, 'shift_rm"); |
| 2013 | // Format(instr, "cmn'cond 'rn, 'imm"); |
| 2014 | alu_out = rn_val + shifter_operand; |
| 2015 | SetNZFlags(alu_out); |
| 2016 | SetCFlag(CarryFrom(rn_val, shifter_operand, 0)); |
| 2017 | SetVFlag(OverflowFrom(rn_val, shifter_operand, 0)); |
| 2018 | } else { |
| 2019 | UnimplementedInstruction(instr); |
| 2020 | } |
| 2021 | break; |
| 2022 | } |
| 2023 | |
| 2024 | case ORR: { |
| 2025 | // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm"); |
| 2026 | // Format(instr, "orr'cond's 'rd, 'rn, 'imm"); |
| 2027 | alu_out = rn_val | shifter_operand; |
| 2028 | set_register(rd, alu_out); |
| 2029 | if (instr->HasS()) { |
| 2030 | SetNZFlags(alu_out); |
| 2031 | SetCFlag(shifter_carry_out); |
| 2032 | } |
| 2033 | break; |
| 2034 | } |
| 2035 | |
| 2036 | case MOV: { |
| 2037 | // Format(instr, "mov'cond's 'rd, 'shift_rm"); |
| 2038 | // Format(instr, "mov'cond's 'rd, 'imm"); |
| 2039 | alu_out = shifter_operand; |
| 2040 | set_register(rd, alu_out); |
| 2041 | if (instr->HasS()) { |
| 2042 | SetNZFlags(alu_out); |
| 2043 | SetCFlag(shifter_carry_out); |
| 2044 | } |
| 2045 | break; |
| 2046 | } |
| 2047 | |
| 2048 | case BIC: { |
| 2049 | // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm"); |
| 2050 | // Format(instr, "bic'cond's 'rd, 'rn, 'imm"); |
| 2051 | alu_out = rn_val & ~shifter_operand; |
| 2052 | set_register(rd, alu_out); |
| 2053 | if (instr->HasS()) { |
| 2054 | SetNZFlags(alu_out); |
| 2055 | SetCFlag(shifter_carry_out); |
| 2056 | } |
| 2057 | break; |
| 2058 | } |
| 2059 | |
| 2060 | case MVN: { |
| 2061 | // Format(instr, "mvn'cond's 'rd, 'shift_rm"); |
| 2062 | // Format(instr, "mvn'cond's 'rd, 'imm"); |
| 2063 | alu_out = ~shifter_operand; |
| 2064 | set_register(rd, alu_out); |
| 2065 | if (instr->HasS()) { |
| 2066 | SetNZFlags(alu_out); |
| 2067 | SetCFlag(shifter_carry_out); |
| 2068 | } |
| 2069 | break; |
| 2070 | } |
| 2071 | |
| 2072 | default: { |
| 2073 | UNREACHABLE(); |
| 2074 | break; |
| 2075 | } |
| 2076 | } |
| 2077 | } |
| 2078 | } |
| 2079 | |
| 2080 | DART_FORCE_INLINE void Simulator::DecodeType2(Instr* instr) { |
| 2081 | Register rd = instr->RdField(); |
| 2082 | Register rn = instr->RnField(); |
| 2083 | int32_t rn_val = get_register(rn); |
| 2084 | int32_t im_val = instr->Offset12Field(); |
| 2085 | uword addr = 0; |
| 2086 | bool write_back = false; |
| 2087 | switch (instr->PUField()) { |
| 2088 | case 0: { |
| 2089 | // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12"); |
| 2090 | ASSERT(!instr->HasW()); |
| 2091 | addr = rn_val; |
| 2092 | rn_val -= im_val; |
| 2093 | write_back = true; |
| 2094 | break; |
| 2095 | } |
| 2096 | case 1: { |
| 2097 | // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12"); |
| 2098 | ASSERT(!instr->HasW()); |
| 2099 | addr = rn_val; |
| 2100 | rn_val += im_val; |
| 2101 | write_back = true; |
| 2102 | break; |
| 2103 | } |
| 2104 | case 2: { |
| 2105 | // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w"); |
| 2106 | rn_val -= im_val; |
| 2107 | addr = rn_val; |
| 2108 | write_back = instr->HasW(); |
| 2109 | break; |
| 2110 | } |
| 2111 | case 3: { |
| 2112 | // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w"); |
| 2113 | rn_val += im_val; |
| 2114 | addr = rn_val; |
| 2115 | write_back = instr->HasW(); |
| 2116 | break; |
| 2117 | } |
| 2118 | default: { |
| 2119 | UNREACHABLE(); |
| 2120 | break; |
| 2121 | } |
| 2122 | } |
| 2123 | if (IsIllegalAddress(addr)) { |
| 2124 | HandleIllegalAccess(addr, instr); |
| 2125 | } else { |
| 2126 | if (write_back) { |
| 2127 | ASSERT(rd != rn); // Unpredictable. |
| 2128 | set_register(rn, rn_val); |
| 2129 | } |
| 2130 | if (instr->HasB()) { |
| 2131 | if (instr->HasL()) { |
| 2132 | unsigned char val = ReadBU(addr); |
| 2133 | set_register(rd, val); |
| 2134 | } else { |
| 2135 | unsigned char val = get_register(rd); |
| 2136 | WriteB(addr, val); |
| 2137 | } |
| 2138 | } else { |
| 2139 | if (instr->HasL()) { |
| 2140 | set_register(rd, ReadW(addr, instr)); |
| 2141 | } else { |
| 2142 | WriteW(addr, get_register(rd), instr); |
| 2143 | } |
| 2144 | } |
| 2145 | } |
| 2146 | } |
| 2147 | |
| 2148 | void Simulator::DoDivision(Instr* instr) { |
| 2149 | const Register rd = instr->DivRdField(); |
| 2150 | const Register rn = instr->DivRnField(); |
| 2151 | const Register rm = instr->DivRmField(); |
| 2152 | |
| 2153 | if (!TargetCPUFeatures::integer_division_supported()) { |
| 2154 | UnimplementedInstruction(instr); |
| 2155 | return; |
| 2156 | } |
| 2157 | |
| 2158 | // ARMv7-a does not trap on divide-by-zero. The destination register is just |
| 2159 | // set to 0. |
| 2160 | if (get_register(rm) == 0) { |
| 2161 | set_register(rd, 0); |
| 2162 | return; |
| 2163 | } |
| 2164 | |
| 2165 | if (instr->Bit(21) == 1) { |
| 2166 | // unsigned division. |
| 2167 | uint32_t rn_val = static_cast<uint32_t>(get_register(rn)); |
| 2168 | uint32_t rm_val = static_cast<uint32_t>(get_register(rm)); |
| 2169 | uint32_t result = rn_val / rm_val; |
| 2170 | set_register(rd, static_cast<int32_t>(result)); |
| 2171 | } else { |
| 2172 | // signed division. |
| 2173 | int32_t rn_val = get_register(rn); |
| 2174 | int32_t rm_val = get_register(rm); |
| 2175 | int32_t result; |
| 2176 | if ((rn_val == static_cast<int32_t>(0x80000000)) && |
| 2177 | (rm_val == static_cast<int32_t>(0xffffffff))) { |
| 2178 | result = 0x80000000; |
| 2179 | } else { |
| 2180 | result = rn_val / rm_val; |
| 2181 | } |
| 2182 | set_register(rd, result); |
| 2183 | } |
| 2184 | } |
| 2185 | |
| 2186 | void Simulator::DecodeType3(Instr* instr) { |
| 2187 | if (instr->IsDivision()) { |
| 2188 | DoDivision(instr); |
| 2189 | return; |
| 2190 | } else if (instr->IsRbit()) { |
| 2191 | // Format(instr, "rbit'cond 'rd, 'rm"); |
| 2192 | Register rm = instr->RmField(); |
| 2193 | Register rd = instr->RdField(); |
| 2194 | set_register(rd, Utils::ReverseBits32(get_register(rm))); |
| 2195 | return; |
| 2196 | } |
| 2197 | Register rd = instr->RdField(); |
| 2198 | Register rn = instr->RnField(); |
| 2199 | int32_t rn_val = get_register(rn); |
| 2200 | bool shifter_carry_out = 0; |
| 2201 | int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out); |
| 2202 | uword addr = 0; |
| 2203 | bool write_back = false; |
| 2204 | switch (instr->PUField()) { |
| 2205 | case 0: { |
| 2206 | // Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm"); |
| 2207 | ASSERT(!instr->HasW()); |
| 2208 | addr = rn_val; |
| 2209 | rn_val -= shifter_operand; |
| 2210 | write_back = true; |
| 2211 | break; |
| 2212 | } |
| 2213 | case 1: { |
| 2214 | // Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm"); |
| 2215 | ASSERT(!instr->HasW()); |
| 2216 | addr = rn_val; |
| 2217 | rn_val += shifter_operand; |
| 2218 | write_back = true; |
| 2219 | break; |
| 2220 | } |
| 2221 | case 2: { |
| 2222 | // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w"); |
| 2223 | rn_val -= shifter_operand; |
| 2224 | addr = rn_val; |
| 2225 | write_back = instr->HasW(); |
| 2226 | break; |
| 2227 | } |
| 2228 | case 3: { |
| 2229 | // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w"); |
| 2230 | rn_val += shifter_operand; |
| 2231 | addr = rn_val; |
| 2232 | write_back = instr->HasW(); |
| 2233 | break; |
| 2234 | } |
| 2235 | default: { |
| 2236 | UNREACHABLE(); |
| 2237 | break; |
| 2238 | } |
| 2239 | } |
| 2240 | if (IsIllegalAddress(addr)) { |
| 2241 | HandleIllegalAccess(addr, instr); |
| 2242 | } else { |
| 2243 | if (write_back) { |
| 2244 | ASSERT(rd != rn); // Unpredictable. |
| 2245 | set_register(rn, rn_val); |
| 2246 | } |
| 2247 | if (instr->HasB()) { |
| 2248 | if (instr->HasL()) { |
| 2249 | unsigned char val = ReadBU(addr); |
| 2250 | set_register(rd, val); |
| 2251 | } else { |
| 2252 | unsigned char val = get_register(rd); |
| 2253 | WriteB(addr, val); |
| 2254 | } |
| 2255 | } else { |
| 2256 | if (instr->HasL()) { |
| 2257 | set_register(rd, ReadW(addr, instr)); |
| 2258 | } else { |
| 2259 | WriteW(addr, get_register(rd), instr); |
| 2260 | } |
| 2261 | } |
| 2262 | } |
| 2263 | } |
| 2264 | |
| 2265 | void Simulator::DecodeType4(Instr* instr) { |
| 2266 | ASSERT(instr->Bit(22) == 0); // only allowed to be set in privileged mode |
| 2267 | if (instr->HasL()) { |
| 2268 | // Format(instr, "ldm'cond'pu 'rn'w, 'rlist"); |
| 2269 | HandleRList(instr, true); |
| 2270 | } else { |
| 2271 | // Format(instr, "stm'cond'pu 'rn'w, 'rlist"); |
| 2272 | HandleRList(instr, false); |
| 2273 | } |
| 2274 | } |
| 2275 | |
| 2276 | void Simulator::DecodeType5(Instr* instr) { |
| 2277 | // Format(instr, "b'l'cond 'target"); |
| 2278 | uint32_t off = (static_cast<uint32_t>(instr->SImmed24Field()) << 2) + 8; |
| 2279 | uint32_t pc = get_pc(); |
| 2280 | if (instr->HasLink()) { |
| 2281 | set_register(LR, pc + Instr::kInstrSize); |
| 2282 | } |
| 2283 | set_pc(pc + off); |
| 2284 | } |
| 2285 | |
| 2286 | void Simulator::DecodeType6(Instr* instr) { |
| 2287 | if (instr->IsVFPDoubleTransfer()) { |
| 2288 | Register rd = instr->RdField(); |
| 2289 | Register rn = instr->RnField(); |
| 2290 | if (instr->Bit(8) == 0) { |
| 2291 | SRegister sm = instr->SmField(); |
| 2292 | SRegister sm1 = static_cast<SRegister>(sm + 1); |
| 2293 | ASSERT(sm1 < kNumberOfSRegisters); |
| 2294 | if (instr->Bit(20) == 1) { |
| 2295 | // Format(instr, "vmovrrs'cond 'rd, 'rn, {'sm', 'sm1}"); |
| 2296 | set_register(rd, get_sregister_bits(sm)); |
| 2297 | set_register(rn, get_sregister_bits(sm1)); |
| 2298 | } else { |
| 2299 | // Format(instr, "vmovsrr'cond {'sm, 'sm1}, 'rd', 'rn"); |
| 2300 | set_sregister_bits(sm, get_register(rd)); |
| 2301 | set_sregister_bits(sm1, get_register(rn)); |
| 2302 | } |
| 2303 | } else { |
| 2304 | DRegister dm = instr->DmField(); |
| 2305 | if (instr->Bit(20) == 1) { |
| 2306 | // Format(instr, "vmovrrd'cond 'rd, 'rn, 'dm"); |
| 2307 | int64_t dm_val = get_dregister_bits(dm); |
| 2308 | set_register(rd, Utils::Low32Bits(dm_val)); |
| 2309 | set_register(rn, Utils::High32Bits(dm_val)); |
| 2310 | } else { |
| 2311 | // Format(instr, "vmovdrr'cond 'dm, 'rd, 'rn"); |
| 2312 | int64_t dm_val = |
| 2313 | Utils::LowHighTo64Bits(get_register(rd), get_register(rn)); |
| 2314 | set_dregister_bits(dm, dm_val); |
| 2315 | } |
| 2316 | } |
| 2317 | } else if (instr->IsVFPLoadStore()) { |
| 2318 | Register rn = instr->RnField(); |
| 2319 | int32_t addr = get_register(rn); |
| 2320 | int32_t imm_val = instr->Bits(0, 8) << 2; |
| 2321 | if (instr->Bit(23) == 1) { |
| 2322 | addr += imm_val; |
| 2323 | } else { |
| 2324 | addr -= imm_val; |
| 2325 | } |
| 2326 | if (IsIllegalAddress(addr)) { |
| 2327 | HandleIllegalAccess(addr, instr); |
| 2328 | } else { |
| 2329 | if (instr->Bit(8) == 0) { |
| 2330 | SRegister sd = instr->SdField(); |
| 2331 | if (instr->Bit(20) == 1) { // vldrs |
| 2332 | // Format(instr, "vldrs'cond 'sd, ['rn, #+'off10]"); |
| 2333 | // Format(instr, "vldrs'cond 'sd, ['rn, #-'off10]"); |
| 2334 | set_sregister_bits(sd, ReadW(addr, instr)); |
| 2335 | } else { // vstrs |
| 2336 | // Format(instr, "vstrs'cond 'sd, ['rn, #+'off10]"); |
| 2337 | // Format(instr, "vstrs'cond 'sd, ['rn, #-'off10]"); |
| 2338 | WriteW(addr, get_sregister_bits(sd), instr); |
| 2339 | } |
| 2340 | } else { |
| 2341 | DRegister dd = instr->DdField(); |
| 2342 | if (instr->Bit(20) == 1) { // vldrd |
| 2343 | // Format(instr, "vldrd'cond 'dd, ['rn, #+'off10]"); |
| 2344 | // Format(instr, "vldrd'cond 'dd, ['rn, #-'off10]"); |
| 2345 | int64_t dd_val = Utils::LowHighTo64Bits(ReadW(addr, instr), |
| 2346 | ReadW(addr + 4, instr)); |
| 2347 | set_dregister_bits(dd, dd_val); |
| 2348 | } else { // vstrd |
| 2349 | // Format(instr, "vstrd'cond 'dd, ['rn, #+'off10]"); |
| 2350 | // Format(instr, "vstrd'cond 'dd, ['rn, #-'off10]"); |
| 2351 | int64_t dd_val = get_dregister_bits(dd); |
| 2352 | WriteW(addr, Utils::Low32Bits(dd_val), instr); |
| 2353 | WriteW(addr + 4, Utils::High32Bits(dd_val), instr); |
| 2354 | } |
| 2355 | } |
| 2356 | } |
| 2357 | } else if (instr->IsVFPMultipleLoadStore()) { |
| 2358 | Register rn = instr->RnField(); |
| 2359 | int32_t addr = get_register(rn); |
| 2360 | int32_t imm_val = instr->Bits(0, 8); |
| 2361 | if (instr->Bit(23) == 0) { |
| 2362 | addr -= (imm_val << 2); |
| 2363 | } |
| 2364 | if (instr->HasW()) { |
| 2365 | if (instr->Bit(23) == 1) { |
| 2366 | set_register(rn, addr + (imm_val << 2)); |
| 2367 | } else { |
| 2368 | set_register(rn, addr); // already subtracted from addr |
| 2369 | } |
| 2370 | } |
| 2371 | if (IsIllegalAddress(addr)) { |
| 2372 | HandleIllegalAccess(addr, instr); |
| 2373 | } else { |
| 2374 | if (instr->Bit(8) == 0) { |
| 2375 | int32_t regs_cnt = imm_val; |
| 2376 | int32_t start = instr->Bit(22) | (instr->Bits(12, 4) << 1); |
| 2377 | for (int i = start; i < start + regs_cnt; i++) { |
| 2378 | SRegister sd = static_cast<SRegister>(i); |
| 2379 | if (instr->Bit(20) == 1) { |
| 2380 | // Format(instr, "vldms'cond'pu 'rn'w, 'slist"); |
| 2381 | set_sregister_bits(sd, ReadW(addr, instr)); |
| 2382 | } else { |
| 2383 | // Format(instr, "vstms'cond'pu 'rn'w, 'slist"); |
| 2384 | WriteW(addr, get_sregister_bits(sd), instr); |
| 2385 | } |
| 2386 | addr += 4; |
| 2387 | } |
| 2388 | } else { |
| 2389 | int32_t regs_cnt = imm_val >> 1; |
| 2390 | int32_t start = (instr->Bit(22) << 4) | instr->Bits(12, 4); |
| 2391 | if ((regs_cnt <= 16) && (start + regs_cnt <= kNumberOfDRegisters)) { |
| 2392 | for (int i = start; i < start + regs_cnt; i++) { |
| 2393 | DRegister dd = static_cast<DRegister>(i); |
| 2394 | if (instr->Bit(20) == 1) { |
| 2395 | // Format(instr, "vldmd'cond'pu 'rn'w, 'dlist"); |
| 2396 | int64_t dd_val = Utils::LowHighTo64Bits(ReadW(addr, instr), |
| 2397 | ReadW(addr + 4, instr)); |
| 2398 | set_dregister_bits(dd, dd_val); |
| 2399 | } else { |
| 2400 | // Format(instr, "vstmd'cond'pu 'rn'w, 'dlist"); |
| 2401 | int64_t dd_val = get_dregister_bits(dd); |
| 2402 | WriteW(addr, Utils::Low32Bits(dd_val), instr); |
| 2403 | WriteW(addr + 4, Utils::High32Bits(dd_val), instr); |
| 2404 | } |
| 2405 | addr += 8; |
| 2406 | } |
| 2407 | } else { |
| 2408 | UnimplementedInstruction(instr); |
| 2409 | } |
| 2410 | } |
| 2411 | } |
| 2412 | } else { |
| 2413 | UnimplementedInstruction(instr); |
| 2414 | } |
| 2415 | } |
| 2416 | |
| 2417 | void Simulator::DecodeType7(Instr* instr) { |
| 2418 | if (instr->Bit(24) == 1) { |
| 2419 | // Format(instr, "svc #'svc"); |
| 2420 | SupervisorCall(instr); |
| 2421 | } else if (instr->IsVFPDataProcessingOrSingleTransfer()) { |
| 2422 | if (instr->Bit(4) == 0) { |
| 2423 | // VFP Data Processing |
| 2424 | SRegister sd; |
| 2425 | SRegister sn; |
| 2426 | SRegister sm; |
| 2427 | DRegister dd; |
| 2428 | DRegister dn; |
| 2429 | DRegister dm; |
| 2430 | if (instr->Bit(8) == 0) { |
| 2431 | sd = instr->SdField(); |
| 2432 | sn = instr->SnField(); |
| 2433 | sm = instr->SmField(); |
| 2434 | dd = kNoDRegister; |
| 2435 | dn = kNoDRegister; |
| 2436 | dm = kNoDRegister; |
| 2437 | } else { |
| 2438 | sd = kNoSRegister; |
| 2439 | sn = kNoSRegister; |
| 2440 | sm = kNoSRegister; |
| 2441 | dd = instr->DdField(); |
| 2442 | dn = instr->DnField(); |
| 2443 | dm = instr->DmField(); |
| 2444 | } |
| 2445 | switch (instr->Bits(20, 4) & 0xb) { |
| 2446 | case 1: // vnmla, vnmls, vnmul |
| 2447 | default: { |
| 2448 | UnimplementedInstruction(instr); |
| 2449 | break; |
| 2450 | } |
| 2451 | case 0: { // vmla, vmls floating-point |
| 2452 | if (instr->Bit(8) == 0) { |
| 2453 | float addend = get_sregister(sn) * get_sregister(sm); |
| 2454 | float sd_val = get_sregister(sd); |
| 2455 | if (instr->Bit(6) == 0) { |
| 2456 | // Format(instr, "vmlas'cond 'sd, 'sn, 'sm"); |
| 2457 | } else { |
| 2458 | // Format(instr, "vmlss'cond 'sd, 'sn, 'sm"); |
| 2459 | addend = -addend; |
| 2460 | } |
| 2461 | set_sregister(sd, sd_val + addend); |
| 2462 | } else { |
| 2463 | double addend = get_dregister(dn) * get_dregister(dm); |
| 2464 | double dd_val = get_dregister(dd); |
| 2465 | if (instr->Bit(6) == 0) { |
| 2466 | // Format(instr, "vmlad'cond 'dd, 'dn, 'dm"); |
| 2467 | } else { |
| 2468 | // Format(instr, "vmlsd'cond 'dd, 'dn, 'dm"); |
| 2469 | addend = -addend; |
| 2470 | } |
| 2471 | set_dregister(dd, dd_val + addend); |
| 2472 | } |
| 2473 | break; |
| 2474 | } |
| 2475 | case 2: { // vmul |
| 2476 | if (instr->Bit(8) == 0) { |
| 2477 | // Format(instr, "vmuls'cond 'sd, 'sn, 'sm"); |
| 2478 | set_sregister(sd, get_sregister(sn) * get_sregister(sm)); |
| 2479 | } else { |
| 2480 | // Format(instr, "vmuld'cond 'dd, 'dn, 'dm"); |
| 2481 | set_dregister(dd, get_dregister(dn) * get_dregister(dm)); |
| 2482 | } |
| 2483 | break; |
| 2484 | } |
| 2485 | case 8: { // vdiv |
| 2486 | if (instr->Bit(8) == 0) { |
| 2487 | // Format(instr, "vdivs'cond 'sd, 'sn, 'sm"); |
| 2488 | set_sregister(sd, get_sregister(sn) / get_sregister(sm)); |
| 2489 | } else { |
| 2490 | // Format(instr, "vdivd'cond 'dd, 'dn, 'dm"); |
| 2491 | set_dregister(dd, get_dregister(dn) / get_dregister(dm)); |
| 2492 | } |
| 2493 | break; |
| 2494 | } |
| 2495 | case 3: { // vadd, vsub floating-point |
| 2496 | if (instr->Bit(8) == 0) { |
| 2497 | if (instr->Bit(6) == 0) { |
| 2498 | // Format(instr, "vadds'cond 'sd, 'sn, 'sm"); |
| 2499 | set_sregister(sd, get_sregister(sn) + get_sregister(sm)); |
| 2500 | } else { |
| 2501 | // Format(instr, "vsubs'cond 'sd, 'sn, 'sm"); |
| 2502 | set_sregister(sd, get_sregister(sn) - get_sregister(sm)); |
| 2503 | } |
| 2504 | } else { |
| 2505 | if (instr->Bit(6) == 0) { |
| 2506 | // Format(instr, "vaddd'cond 'dd, 'dn, 'dm"); |
| 2507 | set_dregister(dd, get_dregister(dn) + get_dregister(dm)); |
| 2508 | } else { |
| 2509 | // Format(instr, "vsubd'cond 'dd, 'dn, 'dm"); |
| 2510 | set_dregister(dd, get_dregister(dn) - get_dregister(dm)); |
| 2511 | } |
| 2512 | } |
| 2513 | break; |
| 2514 | } |
| 2515 | case 0xb: { // Other VFP data-processing instructions |
| 2516 | if (instr->Bit(6) == 0) { // vmov immediate |
| 2517 | if (instr->Bit(8) == 0) { |
| 2518 | // Format(instr, "vmovs'cond 'sd, #'immf"); |
| 2519 | set_sregister(sd, instr->ImmFloatField()); |
| 2520 | } else { |
| 2521 | // Format(instr, "vmovd'cond 'dd, #'immd"); |
| 2522 | set_dregister(dd, instr->ImmDoubleField()); |
| 2523 | } |
| 2524 | break; |
| 2525 | } |
| 2526 | switch (instr->Bits(16, 4)) { |
| 2527 | case 0: { // vmov immediate, vmov register, vabs |
| 2528 | switch (instr->Bits(6, 2)) { |
| 2529 | case 1: { // vmov register |
| 2530 | if (instr->Bit(8) == 0) { |
| 2531 | // Format(instr, "vmovs'cond 'sd, 'sm"); |
| 2532 | set_sregister(sd, get_sregister(sm)); |
| 2533 | } else { |
| 2534 | // Format(instr, "vmovd'cond 'dd, 'dm"); |
| 2535 | set_dregister(dd, get_dregister(dm)); |
| 2536 | } |
| 2537 | break; |
| 2538 | } |
| 2539 | case 3: { // vabs |
| 2540 | if (instr->Bit(8) == 0) { |
| 2541 | // Format(instr, "vabss'cond 'sd, 'sm"); |
| 2542 | set_sregister(sd, fabsf(get_sregister(sm))); |
| 2543 | } else { |
| 2544 | // Format(instr, "vabsd'cond 'dd, 'dm"); |
| 2545 | set_dregister(dd, fabs(get_dregister(dm))); |
| 2546 | } |
| 2547 | break; |
| 2548 | } |
| 2549 | default: { |
| 2550 | UnimplementedInstruction(instr); |
| 2551 | break; |
| 2552 | } |
| 2553 | } |
| 2554 | break; |
| 2555 | } |
| 2556 | case 1: { // vneg, vsqrt |
| 2557 | switch (instr->Bits(6, 2)) { |
| 2558 | case 1: { // vneg |
| 2559 | if (instr->Bit(8) == 0) { |
| 2560 | // Format(instr, "vnegs'cond 'sd, 'sm"); |
| 2561 | set_sregister(sd, -get_sregister(sm)); |
| 2562 | } else { |
| 2563 | // Format(instr, "vnegd'cond 'dd, 'dm"); |
| 2564 | set_dregister(dd, -get_dregister(dm)); |
| 2565 | } |
| 2566 | break; |
| 2567 | } |
| 2568 | case 3: { // vsqrt |
| 2569 | if (instr->Bit(8) == 0) { |
| 2570 | // Format(instr, "vsqrts'cond 'sd, 'sm"); |
| 2571 | set_sregister(sd, sqrtf(get_sregister(sm))); |
| 2572 | } else { |
| 2573 | // Format(instr, "vsqrtd'cond 'dd, 'dm"); |
| 2574 | set_dregister(dd, sqrt(get_dregister(dm))); |
| 2575 | } |
| 2576 | break; |
| 2577 | } |
| 2578 | default: { |
| 2579 | UnimplementedInstruction(instr); |
| 2580 | break; |
| 2581 | } |
| 2582 | } |
| 2583 | break; |
| 2584 | } |
| 2585 | case 4: // vcmp, vcmpe |
| 2586 | case 5: { // vcmp #0.0, vcmpe #0.0 |
| 2587 | if (instr->Bit(7) == 1) { // vcmpe |
| 2588 | UnimplementedInstruction(instr); |
| 2589 | } else { |
| 2590 | fp_n_flag_ = false; |
| 2591 | fp_z_flag_ = false; |
| 2592 | fp_c_flag_ = false; |
| 2593 | fp_v_flag_ = false; |
| 2594 | if (instr->Bit(8) == 0) { // vcmps |
| 2595 | float sd_val = get_sregister(sd); |
| 2596 | float sm_val; |
| 2597 | if (instr->Bit(16) == 0) { |
| 2598 | // Format(instr, "vcmps'cond 'sd, 'sm"); |
| 2599 | sm_val = get_sregister(sm); |
| 2600 | } else { |
| 2601 | // Format(instr, "vcmps'cond 'sd, #0.0"); |
| 2602 | sm_val = 0.0f; |
| 2603 | } |
| 2604 | if (isnan(sd_val) || isnan(sm_val)) { |
| 2605 | fp_c_flag_ = true; |
| 2606 | fp_v_flag_ = true; |
| 2607 | } else if (sd_val == sm_val) { |
| 2608 | fp_z_flag_ = true; |
| 2609 | fp_c_flag_ = true; |
| 2610 | } else if (sd_val < sm_val) { |
| 2611 | fp_n_flag_ = true; |
| 2612 | } else { |
| 2613 | fp_c_flag_ = true; |
| 2614 | } |
| 2615 | } else { // vcmpd |
| 2616 | double dd_val = get_dregister(dd); |
| 2617 | double dm_val; |
| 2618 | if (instr->Bit(16) == 0) { |
| 2619 | // Format(instr, "vcmpd'cond 'dd, 'dm"); |
| 2620 | dm_val = get_dregister(dm); |
| 2621 | } else { |
| 2622 | // Format(instr, "vcmpd'cond 'dd, #0.0"); |
| 2623 | dm_val = 0.0; |
| 2624 | } |
| 2625 | if (isnan(dd_val) || isnan(dm_val)) { |
| 2626 | fp_c_flag_ = true; |
| 2627 | fp_v_flag_ = true; |
| 2628 | } else if (dd_val == dm_val) { |
| 2629 | fp_z_flag_ = true; |
| 2630 | fp_c_flag_ = true; |
| 2631 | } else if (dd_val < dm_val) { |
| 2632 | fp_n_flag_ = true; |
| 2633 | } else { |
| 2634 | fp_c_flag_ = true; |
| 2635 | } |
| 2636 | } |
| 2637 | } |
| 2638 | break; |
| 2639 | } |
| 2640 | case 7: { // vcvt between double-precision and single-precision |
| 2641 | if (instr->Bit(8) == 0) { |
| 2642 | // Format(instr, "vcvtds'cond 'dd, 'sm"); |
| 2643 | dd = instr->DdField(); |
| 2644 | set_dregister(dd, static_cast<double>(get_sregister(sm))); |
| 2645 | } else { |
| 2646 | // Format(instr, "vcvtsd'cond 'sd, 'dm"); |
| 2647 | sd = instr->SdField(); |
| 2648 | set_sregister(sd, static_cast<float>(get_dregister(dm))); |
| 2649 | } |
| 2650 | break; |
| 2651 | } |
| 2652 | case 8: { // vcvt, vcvtr between floating-point and integer |
| 2653 | sm = instr->SmField(); |
| 2654 | int32_t sm_int = get_sregister_bits(sm); |
| 2655 | uint32_t ud_val = 0; |
| 2656 | int32_t id_val = 0; |
| 2657 | if (instr->Bit(7) == 0) { // vcvtsu, vcvtdu |
| 2658 | ud_val = static_cast<uint32_t>(sm_int); |
| 2659 | } else { // vcvtsi, vcvtdi |
| 2660 | id_val = sm_int; |
| 2661 | } |
| 2662 | if (instr->Bit(8) == 0) { |
| 2663 | float sd_val; |
| 2664 | if (instr->Bit(7) == 0) { |
| 2665 | // Format(instr, "vcvtsu'cond 'sd, 'sm"); |
| 2666 | sd_val = static_cast<float>(ud_val); |
| 2667 | } else { |
| 2668 | // Format(instr, "vcvtsi'cond 'sd, 'sm"); |
| 2669 | sd_val = static_cast<float>(id_val); |
| 2670 | } |
| 2671 | set_sregister(sd, sd_val); |
| 2672 | } else { |
| 2673 | double dd_val; |
| 2674 | if (instr->Bit(7) == 0) { |
| 2675 | // Format(instr, "vcvtdu'cond 'dd, 'sm"); |
| 2676 | dd_val = static_cast<double>(ud_val); |
| 2677 | } else { |
| 2678 | // Format(instr, "vcvtdi'cond 'dd, 'sm"); |
| 2679 | dd_val = static_cast<double>(id_val); |
| 2680 | } |
| 2681 | set_dregister(dd, dd_val); |
| 2682 | } |
| 2683 | break; |
| 2684 | } |
| 2685 | case 12: |
| 2686 | case 13: { // vcvt, vcvtr between floating-point and integer |
| 2687 | // We do not need to record exceptions in the FPSCR cumulative |
| 2688 | // flags, because we do not use them. |
| 2689 | if (instr->Bit(7) == 0) { |
| 2690 | // We only support round-to-zero mode |
| 2691 | UnimplementedInstruction(instr); |
| 2692 | break; |
| 2693 | } |
| 2694 | int32_t id_val = 0; |
| 2695 | uint32_t ud_val = 0; |
| 2696 | if (instr->Bit(8) == 0) { |
| 2697 | float sm_val = get_sregister(sm); |
| 2698 | if (instr->Bit(16) == 0) { |
| 2699 | // Format(instr, "vcvtus'cond 'sd, 'sm"); |
| 2700 | if (sm_val >= static_cast<float>(INT32_MAX)) { |
| 2701 | ud_val = INT32_MAX; |
| 2702 | } else if (sm_val > 0.0) { |
| 2703 | ud_val = static_cast<uint32_t>(sm_val); |
| 2704 | } |
| 2705 | } else { |
| 2706 | // Format(instr, "vcvtis'cond 'sd, 'sm"); |
| 2707 | if (sm_val <= static_cast<float>(INT32_MIN)) { |
| 2708 | id_val = INT32_MIN; |
| 2709 | } else if (sm_val >= static_cast<float>(INT32_MAX)) { |
| 2710 | id_val = INT32_MAX; |
| 2711 | } else { |
| 2712 | id_val = static_cast<int32_t>(sm_val); |
| 2713 | } |
| 2714 | ASSERT((id_val >= 0) || !(sm_val >= 0.0)); |
| 2715 | } |
| 2716 | } else { |
| 2717 | sd = instr->SdField(); |
| 2718 | double dm_val = get_dregister(dm); |
| 2719 | if (instr->Bit(16) == 0) { |
| 2720 | // Format(instr, "vcvtud'cond 'sd, 'dm"); |
| 2721 | if (dm_val >= static_cast<double>(INT32_MAX)) { |
| 2722 | ud_val = INT32_MAX; |
| 2723 | } else if (dm_val > 0.0) { |
| 2724 | ud_val = static_cast<uint32_t>(dm_val); |
| 2725 | } |
| 2726 | } else { |
| 2727 | // Format(instr, "vcvtid'cond 'sd, 'dm"); |
| 2728 | if (dm_val <= static_cast<double>(INT32_MIN)) { |
| 2729 | id_val = INT32_MIN; |
| 2730 | } else if (dm_val >= static_cast<double>(INT32_MAX)) { |
| 2731 | id_val = INT32_MAX; |
| 2732 | } else if (isnan(dm_val)) { |
| 2733 | id_val = 0; |
| 2734 | } else { |
| 2735 | id_val = static_cast<int32_t>(dm_val); |
| 2736 | } |
| 2737 | ASSERT((id_val >= 0) || !(dm_val >= 0.0)); |
| 2738 | } |
| 2739 | } |
| 2740 | int32_t sd_val; |
| 2741 | if (instr->Bit(16) == 0) { |
| 2742 | sd_val = static_cast<int32_t>(ud_val); |
| 2743 | } else { |
| 2744 | sd_val = id_val; |
| 2745 | } |
| 2746 | set_sregister_bits(sd, sd_val); |
| 2747 | break; |
| 2748 | } |
| 2749 | case 2: // vcvtb, vcvtt |
| 2750 | case 3: // vcvtb, vcvtt |
| 2751 | case 9: // undefined |
| 2752 | case 10: // vcvt between floating-point and fixed-point |
| 2753 | case 11: // vcvt between floating-point and fixed-point |
| 2754 | case 14: // vcvt between floating-point and fixed-point |
| 2755 | case 15: // vcvt between floating-point and fixed-point |
| 2756 | default: { |
| 2757 | UnimplementedInstruction(instr); |
| 2758 | break; |
| 2759 | } |
| 2760 | } |
| 2761 | } break; |
| 2762 | } |
| 2763 | } else { |
| 2764 | // 8, 16, or 32-bit Transfer between ARM Core and VFP |
| 2765 | if ((instr->Bits(21, 3) == 0) && (instr->Bit(8) == 0)) { |
| 2766 | Register rd = instr->RdField(); |
| 2767 | SRegister sn = instr->SnField(); |
| 2768 | if (instr->Bit(20) == 0) { |
| 2769 | // Format(instr, "vmovs'cond 'sn, 'rd"); |
| 2770 | set_sregister_bits(sn, get_register(rd)); |
| 2771 | } else { |
| 2772 | // Format(instr, "vmovr'cond 'rd, 'sn"); |
| 2773 | set_register(rd, get_sregister_bits(sn)); |
| 2774 | } |
| 2775 | } else if ((instr->Bits(22, 3) == 0) && (instr->Bit(20) == 0) && |
| 2776 | (instr->Bit(8) == 1) && (instr->Bits(5, 2) == 0)) { |
| 2777 | DRegister dn = instr->DnField(); |
| 2778 | Register rd = instr->RdField(); |
| 2779 | if (instr->Bit(21) == 0) { |
| 2780 | // Format(instr, "vmovd'cond 'dd[0], 'rd"); |
| 2781 | SRegister sd = EvenSRegisterOf(dn); |
| 2782 | set_sregister_bits(sd, get_register(rd)); |
| 2783 | } else { |
| 2784 | // Format(instr, "vmovd'cond 'dd[1], 'rd"); |
| 2785 | SRegister sd = OddSRegisterOf(dn); |
| 2786 | set_sregister_bits(sd, get_register(rd)); |
| 2787 | } |
| 2788 | } else if ((instr->Bits(20, 4) == 0xf) && (instr->Bit(8) == 0)) { |
| 2789 | if (instr->Bits(12, 4) == 0xf) { |
| 2790 | // Format(instr, "vmrs'cond APSR, FPSCR"); |
| 2791 | n_flag_ = fp_n_flag_; |
| 2792 | z_flag_ = fp_z_flag_; |
| 2793 | c_flag_ = fp_c_flag_; |
| 2794 | v_flag_ = fp_v_flag_; |
| 2795 | } else { |
| 2796 | // Format(instr, "vmrs'cond 'rd, FPSCR"); |
| 2797 | const int32_t n_flag = fp_n_flag_ ? (1 << 31) : 0; |
| 2798 | const int32_t z_flag = fp_z_flag_ ? (1 << 30) : 0; |
| 2799 | const int32_t c_flag = fp_c_flag_ ? (1 << 29) : 0; |
| 2800 | const int32_t v_flag = fp_v_flag_ ? (1 << 28) : 0; |
| 2801 | set_register(instr->RdField(), n_flag | z_flag | c_flag | v_flag); |
| 2802 | } |
| 2803 | } else { |
| 2804 | UnimplementedInstruction(instr); |
| 2805 | } |
| 2806 | } |
| 2807 | } else { |
| 2808 | UnimplementedInstruction(instr); |
| 2809 | } |
| 2810 | } |
| 2811 | |
| 2812 | static void simd_value_swap(simd_value_t* s1, |
| 2813 | int i1, |
| 2814 | simd_value_t* s2, |
| 2815 | int i2) { |
| 2816 | uint32_t tmp; |
| 2817 | tmp = s1->data_[i1].u; |
| 2818 | s1->data_[i1].u = s2->data_[i2].u; |
| 2819 | s2->data_[i2].u = tmp; |
| 2820 | } |
| 2821 | |
| 2822 | void Simulator::DecodeSIMDDataProcessing(Instr* instr) { |
| 2823 | ASSERT(instr->ConditionField() == kSpecialCondition); |
| 2824 | |
| 2825 | if (instr->Bit(6) == 1) { |
| 2826 | // Q = 1, Using 128-bit Q registers. |
| 2827 | const QRegister qd = instr->QdField(); |
| 2828 | const QRegister qn = instr->QnField(); |
| 2829 | const QRegister qm = instr->QmField(); |
| 2830 | simd_value_t s8d; |
| 2831 | simd_value_t s8n; |
| 2832 | simd_value_t s8m; |
| 2833 | |
| 2834 | get_qregister(qn, &s8n); |
| 2835 | get_qregister(qm, &s8m); |
| 2836 | int8_t* s8d_8 = reinterpret_cast<int8_t*>(&s8d); |
| 2837 | int8_t* s8n_8 = reinterpret_cast<int8_t*>(&s8n); |
| 2838 | int8_t* s8m_8 = reinterpret_cast<int8_t*>(&s8m); |
| 2839 | uint8_t* s8d_u8 = reinterpret_cast<uint8_t*>(&s8d); |
| 2840 | uint8_t* s8n_u8 = reinterpret_cast<uint8_t*>(&s8n); |
| 2841 | uint8_t* s8m_u8 = reinterpret_cast<uint8_t*>(&s8m); |
| 2842 | int16_t* s8d_16 = reinterpret_cast<int16_t*>(&s8d); |
| 2843 | int16_t* s8n_16 = reinterpret_cast<int16_t*>(&s8n); |
| 2844 | int16_t* s8m_16 = reinterpret_cast<int16_t*>(&s8m); |
| 2845 | uint16_t* s8d_u16 = reinterpret_cast<uint16_t*>(&s8d); |
| 2846 | uint16_t* s8n_u16 = reinterpret_cast<uint16_t*>(&s8n); |
| 2847 | uint16_t* s8m_u16 = reinterpret_cast<uint16_t*>(&s8m); |
| 2848 | int32_t* s8d_32 = reinterpret_cast<int32_t*>(&s8d); |
| 2849 | int32_t* s8n_32 = reinterpret_cast<int32_t*>(&s8n); |
| 2850 | int32_t* s8m_32 = reinterpret_cast<int32_t*>(&s8m); |
| 2851 | uint32_t* s8d_u32 = reinterpret_cast<uint32_t*>(&s8d); |
| 2852 | uint32_t* s8m_u32 = reinterpret_cast<uint32_t*>(&s8m); |
| 2853 | int64_t* s8d_64 = reinterpret_cast<int64_t*>(&s8d); |
| 2854 | int64_t* s8n_64 = reinterpret_cast<int64_t*>(&s8n); |
| 2855 | int64_t* s8m_64 = reinterpret_cast<int64_t*>(&s8m); |
| 2856 | uint64_t* s8d_u64 = reinterpret_cast<uint64_t*>(&s8d); |
| 2857 | uint64_t* s8m_u64 = reinterpret_cast<uint64_t*>(&s8m); |
| 2858 | |
| 2859 | if ((instr->Bits(8, 4) == 8) && (instr->Bit(4) == 0) && |
| 2860 | (instr->Bits(23, 2) == 0)) { |
| 2861 | // Uses q registers. |
| 2862 | // Format(instr, "vadd.'sz 'qd, 'qn, 'qm"); |
| 2863 | const int size = instr->Bits(20, 2); |
| 2864 | if (size == 0) { |
| 2865 | for (int i = 0; i < 16; i++) { |
| 2866 | s8d_8[i] = s8n_8[i] + s8m_8[i]; |
| 2867 | } |
| 2868 | } else if (size == 1) { |
| 2869 | for (int i = 0; i < 8; i++) { |
| 2870 | s8d_16[i] = s8n_16[i] + s8m_16[i]; |
| 2871 | } |
| 2872 | } else if (size == 2) { |
| 2873 | for (int i = 0; i < 4; i++) { |
| 2874 | s8d.data_[i].u = s8n.data_[i].u + s8m.data_[i].u; |
| 2875 | } |
| 2876 | } else if (size == 3) { |
| 2877 | for (int i = 0; i < 2; i++) { |
| 2878 | s8d_64[i] = s8n_64[i] + s8m_64[i]; |
| 2879 | } |
| 2880 | } else { |
| 2881 | UNREACHABLE(); |
| 2882 | } |
| 2883 | } else if ((instr->Bits(8, 4) == 13) && (instr->Bit(4) == 0) && |
| 2884 | (instr->Bits(23, 2) == 0) && (instr->Bit(21) == 0)) { |
| 2885 | // Format(instr, "vadd.F32 'qd, 'qn, 'qm"); |
| 2886 | for (int i = 0; i < 4; i++) { |
| 2887 | s8d.data_[i].f = s8n.data_[i].f + s8m.data_[i].f; |
| 2888 | } |
| 2889 | } else if ((instr->Bits(8, 4) == 8) && (instr->Bit(4) == 0) && |
| 2890 | (instr->Bits(23, 2) == 2)) { |
| 2891 | // Format(instr, "vsub.'sz 'qd, 'qn, 'qm"); |
| 2892 | const int size = instr->Bits(20, 2); |
| 2893 | if (size == 0) { |
| 2894 | for (int i = 0; i < 16; i++) { |
| 2895 | s8d_8[i] = s8n_8[i] - s8m_8[i]; |
| 2896 | } |
| 2897 | } else if (size == 1) { |
| 2898 | for (int i = 0; i < 8; i++) { |
| 2899 | s8d_16[i] = s8n_16[i] - s8m_16[i]; |
| 2900 | } |
| 2901 | } else if (size == 2) { |
| 2902 | for (int i = 0; i < 4; i++) { |
| 2903 | s8d.data_[i].u = s8n.data_[i].u - s8m.data_[i].u; |
| 2904 | } |
| 2905 | } else if (size == 3) { |
| 2906 | for (int i = 0; i < 2; i++) { |
| 2907 | s8d_64[i] = s8n_64[i] - s8m_64[i]; |
| 2908 | } |
| 2909 | } else { |
| 2910 | UNREACHABLE(); |
| 2911 | } |
| 2912 | } else if ((instr->Bits(8, 4) == 13) && (instr->Bit(4) == 0) && |
| 2913 | (instr->Bits(23, 2) == 0) && (instr->Bit(21) == 1)) { |
| 2914 | // Format(instr, "vsub.F32 'qd, 'qn, 'qm"); |
| 2915 | for (int i = 0; i < 4; i++) { |
| 2916 | s8d.data_[i].f = s8n.data_[i].f - s8m.data_[i].f; |
| 2917 | } |
| 2918 | } else if ((instr->Bits(8, 4) == 9) && (instr->Bit(4) == 1) && |
| 2919 | (instr->Bits(23, 2) == 0)) { |
| 2920 | // Format(instr, "vmul.'sz 'qd, 'qn, 'qm"); |
| 2921 | const int size = instr->Bits(20, 2); |
| 2922 | if (size == 0) { |
| 2923 | for (int i = 0; i < 16; i++) { |
| 2924 | s8d_8[i] = s8n_8[i] * s8m_8[i]; |
| 2925 | } |
| 2926 | } else if (size == 1) { |
| 2927 | for (int i = 0; i < 8; i++) { |
| 2928 | s8d_16[i] = s8n_16[i] * s8m_16[i]; |
| 2929 | } |
| 2930 | } else if (size == 2) { |
| 2931 | for (int i = 0; i < 4; i++) { |
| 2932 | s8d.data_[i].u = s8n.data_[i].u * s8m.data_[i].u; |
| 2933 | } |
| 2934 | } else if (size == 3) { |
| 2935 | UnimplementedInstruction(instr); |
| 2936 | } else { |
| 2937 | UNREACHABLE(); |
| 2938 | } |
| 2939 | } else if ((instr->Bits(8, 4) == 13) && (instr->Bit(4) == 1) && |
| 2940 | (instr->Bits(23, 2) == 2) && (instr->Bit(21) == 0)) { |
| 2941 | // Format(instr, "vmul.F32 'qd, 'qn, 'qm"); |
| 2942 | for (int i = 0; i < 4; i++) { |
| 2943 | s8d.data_[i].f = s8n.data_[i].f * s8m.data_[i].f; |
| 2944 | } |
| 2945 | } else if ((instr->Bits(8, 4) == 4) && (instr->Bit(4) == 0) && |
| 2946 | (instr->Bit(23) == 0) && (instr->Bits(25, 3) == 1)) { |
| 2947 | // Format(instr, "vshlqu'sz 'qd, 'qm, 'qn"); |
| 2948 | // Format(instr, "vshlqi'sz 'qd, 'qm, 'qn"); |
| 2949 | const bool signd = instr->Bit(24) == 0; |
| 2950 | const int size = instr->Bits(20, 2); |
| 2951 | if (size == 0) { |
| 2952 | for (int i = 0; i < 16; i++) { |
| 2953 | int8_t shift = s8n_8[i]; |
| 2954 | if (shift > 0) { |
| 2955 | s8d_u8[i] = s8m_u8[i] << shift; |
| 2956 | } else if (shift < 0) { |
| 2957 | if (signd) { |
| 2958 | s8d_8[i] = s8m_8[i] >> (-shift); |
| 2959 | } else { |
| 2960 | s8d_u8[i] = s8m_u8[i] >> (-shift); |
| 2961 | } |
| 2962 | } |
| 2963 | } |
| 2964 | } else if (size == 1) { |
| 2965 | for (int i = 0; i < 8; i++) { |
| 2966 | int8_t shift = s8n_8[i * 2]; |
| 2967 | if (shift > 0) { |
| 2968 | s8d_u16[i] = s8m_u16[i] << shift; |
| 2969 | } else if (shift < 0) { |
| 2970 | if (signd) { |
| 2971 | s8d_16[i] = s8m_16[i] >> (-shift); |
| 2972 | } else { |
| 2973 | s8d_u16[i] = s8m_u16[i] >> (-shift); |
| 2974 | } |
| 2975 | } |
| 2976 | } |
| 2977 | } else if (size == 2) { |
| 2978 | for (int i = 0; i < 4; i++) { |
| 2979 | int8_t shift = s8n_8[i * 4]; |
| 2980 | if (shift > 0) { |
| 2981 | s8d_u32[i] = s8m_u32[i] << shift; |
| 2982 | } else if (shift < 0) { |
| 2983 | if (signd) { |
| 2984 | s8d_32[i] = s8m_32[i] >> (-shift); |
| 2985 | } else { |
| 2986 | s8d_u32[i] = s8m_u32[i] >> (-shift); |
| 2987 | } |
| 2988 | } |
| 2989 | } |
| 2990 | } else { |
| 2991 | ASSERT(size == 3); |
| 2992 | for (int i = 0; i < 2; i++) { |
| 2993 | int8_t shift = s8n_8[i * 8]; |
| 2994 | if (shift > 0) { |
| 2995 | s8d_u64[i] = s8m_u64[i] << shift; |
| 2996 | } else if (shift < 0) { |
| 2997 | if (signd) { |
| 2998 | s8d_64[i] = s8m_64[i] >> (-shift); |
| 2999 | } else { |
| 3000 | s8d_u64[i] = s8m_u64[i] >> (-shift); |
| 3001 | } |
| 3002 | } |
| 3003 | } |
| 3004 | } |
| 3005 | } else if ((instr->Bits(8, 4) == 1) && (instr->Bit(4) == 1) && |
| 3006 | (instr->Bits(20, 2) == 0) && (instr->Bits(23, 2) == 2)) { |
| 3007 | // Format(instr, "veorq 'qd, 'qn, 'qm"); |
| 3008 | for (int i = 0; i < 4; i++) { |
| 3009 | s8d.data_[i].u = s8n.data_[i].u ^ s8m.data_[i].u; |
| 3010 | } |
| 3011 | } else if ((instr->Bits(8, 4) == 1) && (instr->Bit(4) == 1) && |
| 3012 | (instr->Bits(20, 2) == 3) && (instr->Bits(23, 2) == 0)) { |
| 3013 | // Format(instr, "vornq 'qd, 'qn, 'qm"); |
| 3014 | for (int i = 0; i < 4; i++) { |
| 3015 | s8d.data_[i].u = s8n.data_[i].u | ~s8m.data_[i].u; |
| 3016 | } |
| 3017 | } else if ((instr->Bits(8, 4) == 1) && (instr->Bit(4) == 1) && |
| 3018 | (instr->Bits(20, 2) == 2) && (instr->Bits(23, 2) == 0)) { |
| 3019 | if (qm == qn) { |
| 3020 | // Format(instr, "vmovq 'qd, 'qm"); |
| 3021 | for (int i = 0; i < 4; i++) { |
| 3022 | s8d.data_[i].u = s8m.data_[i].u; |
| 3023 | } |
| 3024 | } else { |
| 3025 | // Format(instr, "vorrq 'qd, 'qm"); |
| 3026 | for (int i = 0; i < 4; i++) { |
| 3027 | s8d.data_[i].u = s8n.data_[i].u | s8m.data_[i].u; |
| 3028 | } |
| 3029 | } |
| 3030 | } else if ((instr->Bits(8, 4) == 1) && (instr->Bit(4) == 1) && |
| 3031 | (instr->Bits(20, 2) == 0) && (instr->Bits(23, 2) == 0)) { |
| 3032 | // Format(instr, "vandq 'qd, 'qn, 'qm"); |
| 3033 | for (int i = 0; i < 4; i++) { |
| 3034 | s8d.data_[i].u = s8n.data_[i].u & s8m.data_[i].u; |
| 3035 | } |
| 3036 | } else if ((instr->Bits(7, 5) == 11) && (instr->Bit(4) == 0) && |
| 3037 | (instr->Bits(20, 2) == 3) && (instr->Bits(23, 5) == 7) && |
| 3038 | (instr->Bits(16, 4) == 0)) { |
| 3039 | // Format(instr, "vmvnq 'qd, 'qm"); |
| 3040 | for (int i = 0; i < 4; i++) { |
| 3041 | s8d.data_[i].u = ~s8m.data_[i].u; |
| 3042 | } |
| 3043 | } else if ((instr->Bits(8, 4) == 15) && (instr->Bit(4) == 0) && |
| 3044 | (instr->Bits(20, 2) == 2) && (instr->Bits(23, 2) == 0)) { |
| 3045 | // Format(instr, "vminqs 'qd, 'qn, 'qm"); |
| 3046 | for (int i = 0; i < 4; i++) { |
| 3047 | s8d.data_[i].f = fminf(s8n.data_[i].f, s8m.data_[i].f); |
| 3048 | } |
| 3049 | } else if ((instr->Bits(8, 4) == 15) && (instr->Bit(4) == 0) && |
| 3050 | (instr->Bits(20, 2) == 0) && (instr->Bits(23, 2) == 0)) { |
| 3051 | // Format(instr, "vmaxqs 'qd, 'qn, 'qm"); |
| 3052 | for (int i = 0; i < 4; i++) { |
| 3053 | s8d.data_[i].f = fmaxf(s8n.data_[i].f, s8m.data_[i].f); |
| 3054 | } |
| 3055 | } else if ((instr->Bits(8, 4) == 7) && (instr->Bit(4) == 0) && |
| 3056 | (instr->Bits(20, 2) == 3) && (instr->Bits(23, 2) == 3) && |
| 3057 | (instr->Bit(7) == 0) && (instr->Bits(16, 4) == 9)) { |
| 3058 | // Format(instr, "vabsqs 'qd, 'qm"); |
| 3059 | for (int i = 0; i < 4; i++) { |
| 3060 | s8d.data_[i].f = fabsf(s8m.data_[i].f); |
| 3061 | } |
| 3062 | } else if ((instr->Bits(8, 4) == 7) && (instr->Bit(4) == 0) && |
| 3063 | (instr->Bits(20, 2) == 3) && (instr->Bits(23, 2) == 3) && |
| 3064 | (instr->Bit(7) == 1) && (instr->Bits(16, 4) == 9)) { |
| 3065 | // Format(instr, "vnegqs 'qd, 'qm"); |
| 3066 | for (int i = 0; i < 4; i++) { |
| 3067 | s8d.data_[i].f = -s8m.data_[i].f; |
| 3068 | } |
| 3069 | } else if ((instr->Bits(7, 5) == 10) && (instr->Bit(4) == 0) && |
| 3070 | (instr->Bits(20, 2) == 3) && (instr->Bits(23, 2) == 3) && |
| 3071 | (instr->Bits(16, 4) == 11)) { |
| 3072 | // Format(instr, "vrecpeq 'qd, 'qm"); |
| 3073 | for (int i = 0; i < 4; i++) { |
| 3074 | s8d.data_[i].f = ReciprocalEstimate(s8m.data_[i].f); |
| 3075 | } |
| 3076 | } else if ((instr->Bits(8, 4) == 15) && (instr->Bit(4) == 1) && |
| 3077 | (instr->Bits(20, 2) == 0) && (instr->Bits(23, 2) == 0)) { |
| 3078 | // Format(instr, "vrecpsq 'qd, 'qn, 'qm"); |
| 3079 | for (int i = 0; i < 4; i++) { |
| 3080 | s8d.data_[i].f = ReciprocalStep(s8n.data_[i].f, s8m.data_[i].f); |
| 3081 | } |
| 3082 | } else if ((instr->Bits(8, 4) == 5) && (instr->Bit(4) == 0) && |
| 3083 | (instr->Bits(20, 2) == 3) && (instr->Bits(23, 2) == 3) && |
| 3084 | (instr->Bit(7) == 1) && (instr->Bits(16, 4) == 11)) { |
| 3085 | // Format(instr, "vrsqrteqs 'qd, 'qm"); |
| 3086 | for (int i = 0; i < 4; i++) { |
| 3087 | s8d.data_[i].f = ReciprocalSqrtEstimate(s8m.data_[i].f); |
| 3088 | } |
| 3089 | } else if ((instr->Bits(8, 4) == 15) && (instr->Bit(4) == 1) && |
| 3090 | (instr->Bits(20, 2) == 2) && (instr->Bits(23, 2) == 0)) { |
| 3091 | // Format(instr, "vrsqrtsqs 'qd, 'qn, 'qm"); |
| 3092 | for (int i = 0; i < 4; i++) { |
| 3093 | s8d.data_[i].f = ReciprocalSqrtStep(s8n.data_[i].f, s8m.data_[i].f); |
| 3094 | } |
| 3095 | } else if ((instr->Bits(8, 4) == 12) && (instr->Bit(4) == 0) && |
| 3096 | (instr->Bits(20, 2) == 3) && (instr->Bits(23, 2) == 3) && |
| 3097 | (instr->Bit(7) == 0)) { |
| 3098 | DRegister dm = instr->DmField(); |
| 3099 | int64_t dm_value = get_dregister_bits(dm); |
| 3100 | int32_t imm4 = instr->Bits(16, 4); |
| 3101 | int32_t idx; |
| 3102 | if ((imm4 & 1) != 0) { |
| 3103 | // Format(instr, "vdupb 'qd, 'dm['imm4_vdup]"); |
| 3104 | int8_t* dm_b = reinterpret_cast<int8_t*>(&dm_value); |
| 3105 | idx = imm4 >> 1; |
| 3106 | int8_t val = dm_b[idx]; |
| 3107 | for (int i = 0; i < 16; i++) { |
| 3108 | s8d_8[i] = val; |
| 3109 | } |
| 3110 | } else if ((imm4 & 2) != 0) { |
| 3111 | // Format(instr, "vduph 'qd, 'dm['imm4_vdup]"); |
| 3112 | int16_t* dm_h = reinterpret_cast<int16_t*>(&dm_value); |
| 3113 | idx = imm4 >> 2; |
| 3114 | int16_t val = dm_h[idx]; |
| 3115 | for (int i = 0; i < 8; i++) { |
| 3116 | s8d_16[i] = val; |
| 3117 | } |
| 3118 | } else if ((imm4 & 4) != 0) { |
| 3119 | // Format(instr, "vdupw 'qd, 'dm['imm4_vdup]"); |
| 3120 | int32_t* dm_w = reinterpret_cast<int32_t*>(&dm_value); |
| 3121 | idx = imm4 >> 3; |
| 3122 | int32_t val = dm_w[idx]; |
| 3123 | for (int i = 0; i < 4; i++) { |
| 3124 | s8d.data_[i].u = val; |
| 3125 | } |
| 3126 | } else { |
| 3127 | UnimplementedInstruction(instr); |
| 3128 | } |
| 3129 | } else if ((instr->Bits(8, 4) == 1) && (instr->Bit(4) == 0) && |
| 3130 | (instr->Bits(20, 2) == 3) && (instr->Bits(23, 2) == 3) && |
| 3131 | (instr->Bit(7) == 1) && (instr->Bits(16, 4) == 10)) { |
| 3132 | // Format(instr, "vzipqw 'qd, 'qm"); |
| 3133 | get_qregister(qd, &s8d); |
| 3134 | |
| 3135 | // Interleave the elements with the low words in qd, and the high words |
| 3136 | // in qm. |
| 3137 | simd_value_swap(&s8d, 3, &s8m, 2); |
| 3138 | simd_value_swap(&s8d, 3, &s8m, 1); |
| 3139 | simd_value_swap(&s8d, 2, &s8m, 0); |
| 3140 | simd_value_swap(&s8d, 2, &s8d, 1); |
| 3141 | |
| 3142 | set_qregister(qm, s8m); // Writes both qd and qm. |
| 3143 | } else if ((instr->Bits(8, 4) == 8) && (instr->Bit(4) == 1) && |
| 3144 | (instr->Bits(23, 2) == 2)) { |
| 3145 | // Format(instr, "vceqq'sz 'qd, 'qn, 'qm"); |
| 3146 | const int size = instr->Bits(20, 2); |
| 3147 | if (size == 0) { |
| 3148 | for (int i = 0; i < 16; i++) { |
| 3149 | s8d_8[i] = s8n_8[i] == s8m_8[i] ? 0xff : 0; |
| 3150 | } |
| 3151 | } else if (size == 1) { |
| 3152 | for (int i = 0; i < 8; i++) { |
| 3153 | s8d_16[i] = s8n_16[i] == s8m_16[i] ? 0xffff : 0; |
| 3154 | } |
| 3155 | } else if (size == 2) { |
| 3156 | for (int i = 0; i < 4; i++) { |
| 3157 | s8d.data_[i].u = s8n.data_[i].u == s8m.data_[i].u ? 0xffffffff : 0; |
| 3158 | } |
| 3159 | } else if (size == 3) { |
| 3160 | UnimplementedInstruction(instr); |
| 3161 | } else { |
| 3162 | UNREACHABLE(); |
| 3163 | } |
| 3164 | } else if ((instr->Bits(8, 4) == 14) && (instr->Bit(4) == 0) && |
| 3165 | (instr->Bits(20, 2) == 0) && (instr->Bits(23, 2) == 0)) { |
| 3166 | // Format(instr, "vceqqs 'qd, 'qn, 'qm"); |
| 3167 | for (int i = 0; i < 4; i++) { |
| 3168 | s8d.data_[i].u = s8n.data_[i].f == s8m.data_[i].f ? 0xffffffff : 0; |
| 3169 | } |
| 3170 | } else if ((instr->Bits(8, 4) == 3) && (instr->Bit(4) == 1) && |
| 3171 | (instr->Bits(23, 2) == 0)) { |
| 3172 | // Format(instr, "vcgeq'sz 'qd, 'qn, 'qm"); |
| 3173 | const int size = instr->Bits(20, 2); |
| 3174 | if (size == 0) { |
| 3175 | for (int i = 0; i < 16; i++) { |
| 3176 | s8d_8[i] = s8n_8[i] >= s8m_8[i] ? 0xff : 0; |
| 3177 | } |
| 3178 | } else if (size == 1) { |
| 3179 | for (int i = 0; i < 8; i++) { |
| 3180 | s8d_16[i] = s8n_16[i] >= s8m_16[i] ? 0xffff : 0; |
| 3181 | } |
| 3182 | } else if (size == 2) { |
| 3183 | for (int i = 0; i < 4; i++) { |
| 3184 | s8d.data_[i].u = s8n_32[i] >= s8m_32[i] ? 0xffffffff : 0; |
| 3185 | } |
| 3186 | } else if (size == 3) { |
| 3187 | UnimplementedInstruction(instr); |
| 3188 | } else { |
| 3189 | UNREACHABLE(); |
| 3190 | } |
| 3191 | } else if ((instr->Bits(8, 4) == 3) && (instr->Bit(4) == 1) && |
| 3192 | (instr->Bits(23, 2) == 2)) { |
| 3193 | // Format(instr, "vcugeq'sz 'qd, 'qn, 'qm"); |
| 3194 | const int size = instr->Bits(20, 2); |
| 3195 | if (size == 0) { |
| 3196 | for (int i = 0; i < 16; i++) { |
| 3197 | s8d_8[i] = s8n_u8[i] >= s8m_u8[i] ? 0xff : 0; |
| 3198 | } |
| 3199 | } else if (size == 1) { |
| 3200 | for (int i = 0; i < 8; i++) { |
| 3201 | s8d_16[i] = s8n_u16[i] >= s8m_u16[i] ? 0xffff : 0; |
| 3202 | } |
| 3203 | } else if (size == 2) { |
| 3204 | for (int i = 0; i < 4; i++) { |
| 3205 | s8d.data_[i].u = s8n.data_[i].u >= s8m.data_[i].u ? 0xffffffff : 0; |
| 3206 | } |
| 3207 | } else if (size == 3) { |
| 3208 | UnimplementedInstruction(instr); |
| 3209 | } else { |
| 3210 | UNREACHABLE(); |
| 3211 | } |
| 3212 | } else if ((instr->Bits(8, 4) == 14) && (instr->Bit(4) == 0) && |
| 3213 | (instr->Bits(20, 2) == 0) && (instr->Bits(23, 2) == 2)) { |
| 3214 | // Format(instr, "vcgeqs 'qd, 'qn, 'qm"); |
| 3215 | for (int i = 0; i < 4; i++) { |
| 3216 | s8d.data_[i].u = s8n.data_[i].f >= s8m.data_[i].f ? 0xffffffff : 0; |
| 3217 | } |
| 3218 | } else if ((instr->Bits(8, 4) == 3) && (instr->Bit(4) == 0) && |
| 3219 | (instr->Bits(23, 2) == 0)) { |
| 3220 | // Format(instr, "vcgtq'sz 'qd, 'qn, 'qm"); |
| 3221 | const int size = instr->Bits(20, 2); |
| 3222 | if (size == 0) { |
| 3223 | for (int i = 0; i < 16; i++) { |
| 3224 | s8d_8[i] = s8n_8[i] > s8m_8[i] ? 0xff : 0; |
| 3225 | } |
| 3226 | } else if (size == 1) { |
| 3227 | for (int i = 0; i < 8; i++) { |
| 3228 | s8d_16[i] = s8n_16[i] > s8m_16[i] ? 0xffff : 0; |
| 3229 | } |
| 3230 | } else if (size == 2) { |
| 3231 | for (int i = 0; i < 4; i++) { |
| 3232 | s8d.data_[i].u = s8n_32[i] > s8m_32[i] ? 0xffffffff : 0; |
| 3233 | } |
| 3234 | } else if (size == 3) { |
| 3235 | UnimplementedInstruction(instr); |
| 3236 | } else { |
| 3237 | UNREACHABLE(); |
| 3238 | } |
| 3239 | } else if ((instr->Bits(8, 4) == 3) && (instr->Bit(4) == 0) && |
| 3240 | (instr->Bits(23, 2) == 2)) { |
| 3241 | // Format(instr, "vcugtq'sz 'qd, 'qn, 'qm"); |
| 3242 | const int size = instr->Bits(20, 2); |
| 3243 | if (size == 0) { |
| 3244 | for (int i = 0; i < 16; i++) { |
| 3245 | s8d_8[i] = s8n_u8[i] > s8m_u8[i] ? 0xff : 0; |
| 3246 | } |
| 3247 | } else if (size == 1) { |
| 3248 | for (int i = 0; i < 8; i++) { |
| 3249 | s8d_16[i] = s8n_u16[i] > s8m_u16[i] ? 0xffff : 0; |
| 3250 | } |
| 3251 | } else if (size == 2) { |
| 3252 | for (int i = 0; i < 4; i++) { |
| 3253 | s8d.data_[i].u = s8n.data_[i].u > s8m.data_[i].u ? 0xffffffff : 0; |
| 3254 | } |
| 3255 | } else if (size == 3) { |
| 3256 | UnimplementedInstruction(instr); |
| 3257 | } else { |
| 3258 | UNREACHABLE(); |
| 3259 | } |
| 3260 | } else if ((instr->Bits(8, 4) == 14) && (instr->Bit(4) == 0) && |
| 3261 | (instr->Bits(20, 2) == 2) && (instr->Bits(23, 2) == 2)) { |
| 3262 | // Format(instr, "vcgtqs 'qd, 'qn, 'qm"); |
| 3263 | for (int i = 0; i < 4; i++) { |
| 3264 | s8d.data_[i].u = s8n.data_[i].f > s8m.data_[i].f ? 0xffffffff : 0; |
| 3265 | } |
| 3266 | } else { |
| 3267 | UnimplementedInstruction(instr); |
| 3268 | } |
| 3269 | |
| 3270 | set_qregister(qd, s8d); |
| 3271 | } else { |
| 3272 | // Q == 0, Uses 64-bit D registers. |
| 3273 | if ((instr->Bits(23, 2) == 3) && (instr->Bits(20, 2) == 3) && |
| 3274 | (instr->Bits(10, 2) == 2) && (instr->Bit(4) == 0)) { |
| 3275 | // Format(instr, "vtbl 'dd, 'dtbllist, 'dm"); |
| 3276 | DRegister dd = instr->DdField(); |
| 3277 | DRegister dm = instr->DmField(); |
| 3278 | int reg_count = instr->Bits(8, 2) + 1; |
| 3279 | int start = (instr->Bit(7) << 4) | instr->Bits(16, 4); |
| 3280 | int64_t table[4]; |
| 3281 | |
| 3282 | for (int i = 0; i < reg_count; i++) { |
| 3283 | DRegister d = static_cast<DRegister>(start + i); |
| 3284 | table[i] = get_dregister_bits(d); |
| 3285 | } |
| 3286 | for (int i = reg_count; i < 4; i++) { |
| 3287 | table[i] = 0; |
| 3288 | } |
| 3289 | |
| 3290 | int64_t dm_value = get_dregister_bits(dm); |
| 3291 | int64_t result; |
| 3292 | int8_t* dm_bytes = reinterpret_cast<int8_t*>(&dm_value); |
| 3293 | int8_t* result_bytes = reinterpret_cast<int8_t*>(&result); |
| 3294 | int8_t* table_bytes = reinterpret_cast<int8_t*>(&table[0]); |
| 3295 | for (int i = 0; i < 8; i++) { |
| 3296 | int idx = dm_bytes[i]; |
| 3297 | if ((idx >= 0) && (idx < 256)) { |
| 3298 | result_bytes[i] = table_bytes[idx]; |
| 3299 | } else { |
| 3300 | result_bytes[i] = 0; |
| 3301 | } |
| 3302 | } |
| 3303 | |
| 3304 | set_dregister_bits(dd, result); |
| 3305 | } else { |
| 3306 | UnimplementedInstruction(instr); |
| 3307 | } |
| 3308 | } |
| 3309 | } |
| 3310 | |
| 3311 | // Executes the current instruction. |
| 3312 | DART_FORCE_INLINE void Simulator::InstructionDecodeImpl(Instr* instr) { |
| 3313 | pc_modified_ = false; |
| 3314 | if (instr->ConditionField() == kSpecialCondition) { |
| 3315 | if (instr->InstructionBits() == static_cast<int32_t>(0xf57ff01f)) { |
| 3316 | // Format(instr, "clrex"); |
| 3317 | ClearExclusive(); |
| 3318 | } else if (instr->InstructionBits() == |
| 3319 | static_cast<int32_t>(kDataMemoryBarrier)) { |
| 3320 | // Format(instr, "dmb ish"); |
| 3321 | std::atomic_thread_fence(std::memory_order_seq_cst); |
| 3322 | } else { |
| 3323 | if (instr->IsSIMDDataProcessing()) { |
| 3324 | DecodeSIMDDataProcessing(instr); |
| 3325 | } else { |
| 3326 | UnimplementedInstruction(instr); |
| 3327 | } |
| 3328 | } |
| 3329 | } else if (ConditionallyExecute(instr)) { |
| 3330 | switch (instr->TypeField()) { |
| 3331 | case 0: |
| 3332 | case 1: { |
| 3333 | DecodeType01(instr); |
| 3334 | break; |
| 3335 | } |
| 3336 | case 2: { |
| 3337 | DecodeType2(instr); |
| 3338 | break; |
| 3339 | } |
| 3340 | case 3: { |
| 3341 | DecodeType3(instr); |
| 3342 | break; |
| 3343 | } |
| 3344 | case 4: { |
| 3345 | DecodeType4(instr); |
| 3346 | break; |
| 3347 | } |
| 3348 | case 5: { |
| 3349 | DecodeType5(instr); |
| 3350 | break; |
| 3351 | } |
| 3352 | case 6: { |
| 3353 | DecodeType6(instr); |
| 3354 | break; |
| 3355 | } |
| 3356 | case 7: { |
| 3357 | DecodeType7(instr); |
| 3358 | break; |
| 3359 | } |
| 3360 | default: { |
| 3361 | // Type field is three bits. |
| 3362 | UNREACHABLE(); |
| 3363 | break; |
| 3364 | } |
| 3365 | } |
| 3366 | } |
| 3367 | if (!pc_modified_) { |
| 3368 | set_register(PC, reinterpret_cast<int32_t>(instr) + Instr::kInstrSize); |
| 3369 | } |
| 3370 | } |
| 3371 | |
| 3372 | void Simulator::InstructionDecode(Instr* instr) { |
| 3373 | if (IsTracingExecution()) { |
| 3374 | THR_Print("%" Pu64 " " , icount_); |
| 3375 | const uword start = reinterpret_cast<uword>(instr); |
| 3376 | const uword end = start + Instr::kInstrSize; |
| 3377 | if (FLAG_support_disassembler) { |
| 3378 | Disassembler::Disassemble(start, end); |
| 3379 | } else { |
| 3380 | THR_Print("Disassembler not supported in this mode.\n" ); |
| 3381 | } |
| 3382 | } |
| 3383 | InstructionDecodeImpl(instr); |
| 3384 | } |
| 3385 | |
| 3386 | void Simulator::Execute() { |
| 3387 | // Get the PC to simulate. Cannot use the accessor here as we need the |
| 3388 | // raw PC value and not the one used as input to arithmetic instructions. |
| 3389 | uword program_counter = get_pc(); |
| 3390 | |
| 3391 | if (FLAG_stop_sim_at == ULLONG_MAX && FLAG_trace_sim_after == ULLONG_MAX) { |
| 3392 | // Fast version of the dispatch loop without checking whether the simulator |
| 3393 | // should be stopping at a particular executed instruction. |
| 3394 | while (program_counter != kEndSimulatingPC) { |
| 3395 | Instr* instr = reinterpret_cast<Instr*>(program_counter); |
| 3396 | icount_++; |
| 3397 | if (IsIllegalAddress(program_counter)) { |
| 3398 | HandleIllegalAccess(program_counter, instr); |
| 3399 | } else { |
| 3400 | InstructionDecodeImpl(instr); |
| 3401 | } |
| 3402 | program_counter = get_pc(); |
| 3403 | } |
| 3404 | } else { |
| 3405 | // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when |
| 3406 | // we reach the particular instruction count or address. |
| 3407 | while (program_counter != kEndSimulatingPC) { |
| 3408 | Instr* instr = reinterpret_cast<Instr*>(program_counter); |
| 3409 | icount_++; |
| 3410 | if (icount_ == FLAG_stop_sim_at) { |
| 3411 | SimulatorDebugger dbg(this); |
| 3412 | dbg.Stop(instr, "Instruction count reached" ); |
| 3413 | } else if (reinterpret_cast<uint64_t>(instr) == FLAG_stop_sim_at) { |
| 3414 | SimulatorDebugger dbg(this); |
| 3415 | dbg.Stop(instr, "Instruction address reached" ); |
| 3416 | } else if (IsIllegalAddress(program_counter)) { |
| 3417 | HandleIllegalAccess(program_counter, instr); |
| 3418 | } else { |
| 3419 | InstructionDecode(instr); |
| 3420 | } |
| 3421 | program_counter = get_pc(); |
| 3422 | } |
| 3423 | } |
| 3424 | } |
| 3425 | |
| 3426 | int64_t Simulator::Call(int32_t entry, |
| 3427 | int32_t parameter0, |
| 3428 | int32_t parameter1, |
| 3429 | int32_t parameter2, |
| 3430 | int32_t parameter3, |
| 3431 | bool fp_return, |
| 3432 | bool fp_args) { |
| 3433 | // Save the SP register before the call so we can restore it. |
| 3434 | int32_t sp_before_call = get_register(SP); |
| 3435 | |
| 3436 | // Setup parameters. |
| 3437 | if (fp_args) { |
| 3438 | ASSERT(TargetCPUFeatures::vfp_supported()); |
| 3439 | set_sregister(S0, bit_cast<float, int32_t>(parameter0)); |
| 3440 | set_sregister(S1, bit_cast<float, int32_t>(parameter1)); |
| 3441 | set_sregister(S2, bit_cast<float, int32_t>(parameter2)); |
| 3442 | set_sregister(S3, bit_cast<float, int32_t>(parameter3)); |
| 3443 | } else { |
| 3444 | set_register(R0, parameter0); |
| 3445 | set_register(R1, parameter1); |
| 3446 | set_register(R2, parameter2); |
| 3447 | set_register(R3, parameter3); |
| 3448 | } |
| 3449 | |
| 3450 | // Make sure the activation frames are properly aligned. |
| 3451 | int32_t stack_pointer = sp_before_call; |
| 3452 | if (OS::ActivationFrameAlignment() > 1) { |
| 3453 | stack_pointer = |
| 3454 | Utils::RoundDown(stack_pointer, OS::ActivationFrameAlignment()); |
| 3455 | } |
| 3456 | set_register(SP, stack_pointer); |
| 3457 | |
| 3458 | // Prepare to execute the code at entry. |
| 3459 | set_register(PC, entry); |
| 3460 | // Put down marker for end of simulation. The simulator will stop simulation |
| 3461 | // when the PC reaches this value. By saving the "end simulation" value into |
| 3462 | // the LR the simulation stops when returning to this call point. |
| 3463 | set_register(LR, kEndSimulatingPC); |
| 3464 | |
| 3465 | // Remember the values of callee-saved registers. |
| 3466 | // The code below assumes that r9 is not used as sb (static base) in |
| 3467 | // simulator code and therefore is regarded as a callee-saved register. |
| 3468 | int32_t r4_val = get_register(R4); |
| 3469 | int32_t r5_val = get_register(R5); |
| 3470 | int32_t r6_val = get_register(R6); |
| 3471 | int32_t r7_val = get_register(R7); |
| 3472 | int32_t r8_val = get_register(R8); |
| 3473 | #if !defined(TARGET_OS_MACOS) && !defined(TARGET_OS_MACOS_IOS) |
| 3474 | int32_t r9_val = get_register(R9); |
| 3475 | #endif |
| 3476 | int32_t r10_val = get_register(R10); |
| 3477 | int32_t r11_val = get_register(R11); |
| 3478 | |
| 3479 | double d8_val = 0.0; |
| 3480 | double d9_val = 0.0; |
| 3481 | double d10_val = 0.0; |
| 3482 | double d11_val = 0.0; |
| 3483 | double d12_val = 0.0; |
| 3484 | double d13_val = 0.0; |
| 3485 | double d14_val = 0.0; |
| 3486 | double d15_val = 0.0; |
| 3487 | |
| 3488 | if (TargetCPUFeatures::vfp_supported()) { |
| 3489 | d8_val = get_dregister(D8); |
| 3490 | d9_val = get_dregister(D9); |
| 3491 | d10_val = get_dregister(D10); |
| 3492 | d11_val = get_dregister(D11); |
| 3493 | d12_val = get_dregister(D12); |
| 3494 | d13_val = get_dregister(D13); |
| 3495 | d14_val = get_dregister(D14); |
| 3496 | d15_val = get_dregister(D15); |
| 3497 | } |
| 3498 | |
| 3499 | // Setup the callee-saved registers with a known value. To be able to check |
| 3500 | // that they are preserved properly across dart execution. |
| 3501 | int32_t callee_saved_value = icount_; |
| 3502 | set_register(R4, callee_saved_value); |
| 3503 | set_register(R5, callee_saved_value); |
| 3504 | set_register(R6, callee_saved_value); |
| 3505 | set_register(R7, callee_saved_value); |
| 3506 | set_register(R8, callee_saved_value); |
| 3507 | #if !defined(TARGET_OS_MACOS) && !defined(TARGET_OS_MACOS_IOS) |
| 3508 | set_register(R9, callee_saved_value); |
| 3509 | #endif |
| 3510 | set_register(R10, callee_saved_value); |
| 3511 | set_register(R11, callee_saved_value); |
| 3512 | |
| 3513 | double callee_saved_dvalue = 0.0; |
| 3514 | if (TargetCPUFeatures::vfp_supported()) { |
| 3515 | callee_saved_dvalue = static_cast<double>(icount_); |
| 3516 | set_dregister(D8, callee_saved_dvalue); |
| 3517 | set_dregister(D9, callee_saved_dvalue); |
| 3518 | set_dregister(D10, callee_saved_dvalue); |
| 3519 | set_dregister(D11, callee_saved_dvalue); |
| 3520 | set_dregister(D12, callee_saved_dvalue); |
| 3521 | set_dregister(D13, callee_saved_dvalue); |
| 3522 | set_dregister(D14, callee_saved_dvalue); |
| 3523 | set_dregister(D15, callee_saved_dvalue); |
| 3524 | } |
| 3525 | |
| 3526 | // Start the simulation |
| 3527 | Execute(); |
| 3528 | |
| 3529 | // Check that the callee-saved registers have been preserved. |
| 3530 | ASSERT(callee_saved_value == get_register(R4)); |
| 3531 | ASSERT(callee_saved_value == get_register(R5)); |
| 3532 | ASSERT(callee_saved_value == get_register(R6)); |
| 3533 | ASSERT(callee_saved_value == get_register(R7)); |
| 3534 | ASSERT(callee_saved_value == get_register(R8)); |
| 3535 | #if !defined(TARGET_OS_MACOS) && !defined(TARGET_OS_MACOS_IOS) |
| 3536 | ASSERT(callee_saved_value == get_register(R9)); |
| 3537 | #endif |
| 3538 | ASSERT(callee_saved_value == get_register(R10)); |
| 3539 | ASSERT(callee_saved_value == get_register(R11)); |
| 3540 | |
| 3541 | if (TargetCPUFeatures::vfp_supported()) { |
| 3542 | ASSERT(callee_saved_dvalue == get_dregister(D8)); |
| 3543 | ASSERT(callee_saved_dvalue == get_dregister(D9)); |
| 3544 | ASSERT(callee_saved_dvalue == get_dregister(D10)); |
| 3545 | ASSERT(callee_saved_dvalue == get_dregister(D11)); |
| 3546 | ASSERT(callee_saved_dvalue == get_dregister(D12)); |
| 3547 | ASSERT(callee_saved_dvalue == get_dregister(D13)); |
| 3548 | ASSERT(callee_saved_dvalue == get_dregister(D14)); |
| 3549 | ASSERT(callee_saved_dvalue == get_dregister(D15)); |
| 3550 | } |
| 3551 | |
| 3552 | // Restore callee-saved registers with the original value. |
| 3553 | set_register(R4, r4_val); |
| 3554 | set_register(R5, r5_val); |
| 3555 | set_register(R6, r6_val); |
| 3556 | set_register(R7, r7_val); |
| 3557 | set_register(R8, r8_val); |
| 3558 | #if !defined(TARGET_OS_MACOS) && !defined(TARGET_OS_MACOS_IOS) |
| 3559 | set_register(R9, r9_val); |
| 3560 | #endif |
| 3561 | set_register(R10, r10_val); |
| 3562 | set_register(R11, r11_val); |
| 3563 | |
| 3564 | if (TargetCPUFeatures::vfp_supported()) { |
| 3565 | set_dregister(D8, d8_val); |
| 3566 | set_dregister(D9, d9_val); |
| 3567 | set_dregister(D10, d10_val); |
| 3568 | set_dregister(D11, d11_val); |
| 3569 | set_dregister(D12, d12_val); |
| 3570 | set_dregister(D13, d13_val); |
| 3571 | set_dregister(D14, d14_val); |
| 3572 | set_dregister(D15, d15_val); |
| 3573 | } |
| 3574 | |
| 3575 | // Restore the SP register and return R1:R0. |
| 3576 | set_register(SP, sp_before_call); |
| 3577 | int64_t return_value; |
| 3578 | if (fp_return) { |
| 3579 | ASSERT(TargetCPUFeatures::vfp_supported()); |
| 3580 | return_value = bit_cast<int64_t, double>(get_dregister(D0)); |
| 3581 | } else { |
| 3582 | return_value = Utils::LowHighTo64Bits(get_register(R0), get_register(R1)); |
| 3583 | } |
| 3584 | return return_value; |
| 3585 | } |
| 3586 | |
| 3587 | void Simulator::JumpToFrame(uword pc, uword sp, uword fp, Thread* thread) { |
| 3588 | // Walk over all setjmp buffers (simulated --> C++ transitions) |
| 3589 | // and try to find the setjmp associated with the simulated stack pointer. |
| 3590 | SimulatorSetjmpBuffer* buf = last_setjmp_buffer(); |
| 3591 | while (buf->link() != NULL && buf->link()->sp() <= sp) { |
| 3592 | buf = buf->link(); |
| 3593 | } |
| 3594 | ASSERT(buf != NULL); |
| 3595 | |
| 3596 | // The C++ caller has not cleaned up the stack memory of C++ frames. |
| 3597 | // Prepare for unwinding frames by destroying all the stack resources |
| 3598 | // in the previous C++ frames. |
| 3599 | StackResource::Unwind(thread); |
| 3600 | |
| 3601 | // Unwind the C++ stack and continue simulation in the target frame. |
| 3602 | set_register(PC, static_cast<int32_t>(pc)); |
| 3603 | set_register(SP, static_cast<int32_t>(sp)); |
| 3604 | set_register(FP, static_cast<int32_t>(fp)); |
| 3605 | set_register(THR, reinterpret_cast<uword>(thread)); |
| 3606 | // Set the tag. |
| 3607 | thread->set_vm_tag(VMTag::kDartCompiledTagId); |
| 3608 | // Clear top exit frame. |
| 3609 | thread->set_top_exit_frame_info(0); |
| 3610 | // Restore pool pointer. |
| 3611 | int32_t code = |
| 3612 | *reinterpret_cast<int32_t*>(fp + kPcMarkerSlotFromFp * kWordSize); |
| 3613 | int32_t pp = (FLAG_precompiled_mode && FLAG_use_bare_instructions) |
| 3614 | ? static_cast<int32_t>(thread->global_object_pool()) |
| 3615 | : *reinterpret_cast<int32_t*>( |
| 3616 | (code + Code::object_pool_offset() - kHeapObjectTag)); |
| 3617 | |
| 3618 | set_register(CODE_REG, code); |
| 3619 | set_register(PP, pp); |
| 3620 | buf->Longjmp(); |
| 3621 | } |
| 3622 | |
| 3623 | } // namespace dart |
| 3624 | |
| 3625 | #endif // defined(USING_SIMULATOR) |
| 3626 | |
| 3627 | #endif // defined TARGET_ARCH_ARM |
| 3628 | |