| 1 | // Copyright (c) 2014, the Dart project authors.  Please see the AUTHORS file | 
| 2 | // for details. All rights reserved. Use of this source code is governed by a | 
| 3 | // BSD-style license that can be found in the LICENSE file. | 
| 4 |  | 
| 5 | #include <setjmp.h>  // NOLINT | 
| 6 | #include <stdlib.h> | 
| 7 |  | 
| 8 | #include "vm/globals.h" | 
| 9 | #if defined(TARGET_ARCH_ARM64) | 
| 10 |  | 
| 11 | // Only build the simulator if not compiling for real ARM hardware. | 
| 12 | #if defined(USING_SIMULATOR) | 
| 13 |  | 
| 14 | #include "vm/simulator.h" | 
| 15 |  | 
| 16 | #include "vm/compiler/assembler/disassembler.h" | 
| 17 | #include "vm/constants.h" | 
| 18 | #include "vm/native_arguments.h" | 
| 19 | #include "vm/os_thread.h" | 
| 20 | #include "vm/stack_frame.h" | 
| 21 |  | 
| 22 | namespace dart { | 
| 23 |  | 
| 24 | DEFINE_FLAG(uint64_t, | 
| 25 |             trace_sim_after, | 
| 26 |             ULLONG_MAX, | 
| 27 |             "Trace simulator execution after instruction count reached." ); | 
| 28 | DEFINE_FLAG(uint64_t, | 
| 29 |             stop_sim_at, | 
| 30 |             ULLONG_MAX, | 
| 31 |             "Instruction address or instruction count to stop simulator at." ); | 
| 32 |  | 
| 33 | DEFINE_FLAG(bool, | 
| 34 |             sim_allow_unaligned_accesses, | 
| 35 |             true, | 
| 36 |             "Allow unaligned accesses to Normal memory." ); | 
| 37 |  | 
| 38 | // This macro provides a platform independent use of sscanf. The reason for | 
| 39 | // SScanF not being implemented in a platform independent way through | 
| 40 | // OS in the same way as SNPrint is that the Windows C Run-Time | 
| 41 | // Library does not provide vsscanf. | 
| 42 | #define SScanF sscanf  // NOLINT | 
| 43 |  | 
| 44 | // SimulatorSetjmpBuffer are linked together, and the last created one | 
| 45 | // is referenced by the Simulator. When an exception is thrown, the exception | 
| 46 | // runtime looks at where to jump and finds the corresponding | 
| 47 | // SimulatorSetjmpBuffer based on the stack pointer of the exception handler. | 
| 48 | // The runtime then does a Longjmp on that buffer to return to the simulator. | 
| 49 | class SimulatorSetjmpBuffer { | 
| 50 |  public: | 
| 51 |   void Longjmp() { | 
| 52 |     // "This" is now the last setjmp buffer. | 
| 53 |     simulator_->set_last_setjmp_buffer(this); | 
| 54 |     longjmp(buffer_, 1); | 
| 55 |   } | 
| 56 |  | 
| 57 |   explicit SimulatorSetjmpBuffer(Simulator* sim) { | 
| 58 |     simulator_ = sim; | 
| 59 |     link_ = sim->last_setjmp_buffer(); | 
| 60 |     sim->set_last_setjmp_buffer(this); | 
| 61 |     sp_ = static_cast<uword>(sim->get_register(R31, R31IsSP)); | 
| 62 |   } | 
| 63 |  | 
| 64 |   ~SimulatorSetjmpBuffer() { | 
| 65 |     ASSERT(simulator_->last_setjmp_buffer() == this); | 
| 66 |     simulator_->set_last_setjmp_buffer(link_); | 
| 67 |   } | 
| 68 |  | 
| 69 |   SimulatorSetjmpBuffer* link() { return link_; } | 
| 70 |  | 
| 71 |   uword sp() { return sp_; } | 
| 72 |  | 
| 73 |  private: | 
| 74 |   uword sp_; | 
| 75 |   Simulator* simulator_; | 
| 76 |   SimulatorSetjmpBuffer* link_; | 
| 77 |   jmp_buf buffer_; | 
| 78 |  | 
| 79 |   friend class Simulator; | 
| 80 | }; | 
| 81 |  | 
| 82 | // The SimulatorDebugger class is used by the simulator while debugging | 
| 83 | // simulated ARM64 code. | 
| 84 | class SimulatorDebugger { | 
| 85 |  public: | 
| 86 |   explicit SimulatorDebugger(Simulator* sim); | 
| 87 |   ~SimulatorDebugger(); | 
| 88 |  | 
| 89 |   void Stop(Instr* instr, const char* message); | 
| 90 |   void Debug(); | 
| 91 |   char* ReadLine(const char* prompt); | 
| 92 |  | 
| 93 |  private: | 
| 94 |   Simulator* sim_; | 
| 95 |  | 
| 96 |   bool GetValue(char* desc, uint64_t* value); | 
| 97 |   bool GetSValue(char* desc, uint32_t* value); | 
| 98 |   bool GetDValue(char* desc, uint64_t* value); | 
| 99 |   bool GetQValue(char* desc, simd_value_t* value); | 
| 100 |  | 
| 101 |   static TokenPosition GetApproximateTokenIndex(const Code& code, uword pc); | 
| 102 |  | 
| 103 |   static void PrintDartFrame(uword pc, | 
| 104 |                              uword fp, | 
| 105 |                              uword sp, | 
| 106 |                              const Function& function, | 
| 107 |                              TokenPosition token_pos, | 
| 108 |                              bool is_optimized, | 
| 109 |                              bool is_inlined); | 
| 110 |   void PrintBacktrace(); | 
| 111 |  | 
| 112 |   // Set or delete a breakpoint. Returns true if successful. | 
| 113 |   bool SetBreakpoint(Instr* breakpc); | 
| 114 |   bool DeleteBreakpoint(Instr* breakpc); | 
| 115 |  | 
| 116 |   // Undo and redo all breakpoints. This is needed to bracket disassembly and | 
| 117 |   // execution to skip past breakpoints when run from the debugger. | 
| 118 |   void UndoBreakpoints(); | 
| 119 |   void RedoBreakpoints(); | 
| 120 | }; | 
| 121 |  | 
| 122 | SimulatorDebugger::SimulatorDebugger(Simulator* sim) { | 
| 123 |   sim_ = sim; | 
| 124 | } | 
| 125 |  | 
| 126 | SimulatorDebugger::~SimulatorDebugger() {} | 
| 127 |  | 
| 128 | void SimulatorDebugger::Stop(Instr* instr, const char* message) { | 
| 129 |   OS::PrintErr("Simulator hit %s\n" , message); | 
| 130 |   Debug(); | 
| 131 | } | 
| 132 |  | 
| 133 | static Register LookupCpuRegisterByName(const char* name) { | 
| 134 |   static const char* kNames[] = { | 
| 135 |       "r0" ,  "r1" ,  "r2" ,  "r3" ,  "r4" ,  "r5" ,  "r6" ,  "r7" , | 
| 136 |       "r8" ,  "r9" ,  "r10" , "r11" , "r12" , "r13" , "r14" , "r15" , | 
| 137 |       "r16" , "r17" , "r18" , "r19" , "r20" , "r21" , "r22" , "r23" , | 
| 138 |       "r24" , "r25" , "r26" , "r27" , "r28" , "r29" , "r30" , | 
| 139 |  | 
| 140 |       "ip0" , "ip1" , "pp" ,  "fp" ,  "lr" ,  "sp" ,  "zr" , | 
| 141 |   }; | 
| 142 |   static const Register kRegisters[] = { | 
| 143 |       R0,  R1,  R2,  R3,  R4,  R5,  R6,  R7,  R8,  R9,  R10, | 
| 144 |       R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, | 
| 145 |       R22, R23, R24, R25, R26, R27, R28, R29, R30, | 
| 146 |  | 
| 147 |       IP0, IP1, PP,  FP,  LR,  R31, ZR, | 
| 148 |   }; | 
| 149 |   ASSERT(ARRAY_SIZE(kNames) == ARRAY_SIZE(kRegisters)); | 
| 150 |   for (unsigned i = 0; i < ARRAY_SIZE(kNames); i++) { | 
| 151 |     if (strcmp(kNames[i], name) == 0) { | 
| 152 |       return kRegisters[i]; | 
| 153 |     } | 
| 154 |   } | 
| 155 |   return kNoRegister; | 
| 156 | } | 
| 157 |  | 
| 158 | static VRegister LookupVRegisterByName(const char* name) { | 
| 159 |   int reg_nr = -1; | 
| 160 |   bool ok = SScanF(name, "v%d" , ®_nr); | 
| 161 |   if (ok && (0 <= reg_nr) && (reg_nr < kNumberOfVRegisters)) { | 
| 162 |     return static_cast<VRegister>(reg_nr); | 
| 163 |   } | 
| 164 |   return kNoVRegister; | 
| 165 | } | 
| 166 |  | 
| 167 | bool SimulatorDebugger::GetValue(char* desc, uint64_t* value) { | 
| 168 |   Register reg = LookupCpuRegisterByName(desc); | 
| 169 |   if (reg != kNoRegister) { | 
| 170 |     if (reg == ZR) { | 
| 171 |       *value = 0; | 
| 172 |       return true; | 
| 173 |     } | 
| 174 |     *value = sim_->get_register(reg); | 
| 175 |     return true; | 
| 176 |   } | 
| 177 |   if (desc[0] == '*') { | 
| 178 |     uint64_t addr; | 
| 179 |     if (GetValue(desc + 1, &addr)) { | 
| 180 |       if (Simulator::IsIllegalAddress(addr)) { | 
| 181 |         return false; | 
| 182 |       } | 
| 183 |       *value = *(reinterpret_cast<int64_t*>(addr)); | 
| 184 |       return true; | 
| 185 |     } | 
| 186 |   } | 
| 187 |   if (strcmp("pc" , desc) == 0) { | 
| 188 |     *value = sim_->get_pc(); | 
| 189 |     return true; | 
| 190 |   } | 
| 191 |   bool retval = SScanF(desc, "0x%"  Px64, value) == 1; | 
| 192 |   if (!retval) { | 
| 193 |     retval = SScanF(desc, "%"  Px64, value) == 1; | 
| 194 |   } | 
| 195 |   return retval; | 
| 196 | } | 
| 197 |  | 
| 198 | bool SimulatorDebugger::GetSValue(char* desc, uint32_t* value) { | 
| 199 |   VRegister vreg = LookupVRegisterByName(desc); | 
| 200 |   if (vreg != kNoVRegister) { | 
| 201 |     *value = sim_->get_vregisters(vreg, 0); | 
| 202 |     return true; | 
| 203 |   } | 
| 204 |   if (desc[0] == '*') { | 
| 205 |     uint64_t addr; | 
| 206 |     if (GetValue(desc + 1, &addr)) { | 
| 207 |       if (Simulator::IsIllegalAddress(addr)) { | 
| 208 |         return false; | 
| 209 |       } | 
| 210 |       *value = *(reinterpret_cast<uint32_t*>(addr)); | 
| 211 |       return true; | 
| 212 |     } | 
| 213 |   } | 
| 214 |   return false; | 
| 215 | } | 
| 216 |  | 
| 217 | bool SimulatorDebugger::GetDValue(char* desc, uint64_t* value) { | 
| 218 |   VRegister vreg = LookupVRegisterByName(desc); | 
| 219 |   if (vreg != kNoVRegister) { | 
| 220 |     *value = sim_->get_vregisterd(vreg, 0); | 
| 221 |     return true; | 
| 222 |   } | 
| 223 |   if (desc[0] == '*') { | 
| 224 |     uint64_t addr; | 
| 225 |     if (GetValue(desc + 1, &addr)) { | 
| 226 |       if (Simulator::IsIllegalAddress(addr)) { | 
| 227 |         return false; | 
| 228 |       } | 
| 229 |       *value = *(reinterpret_cast<uint64_t*>(addr)); | 
| 230 |       return true; | 
| 231 |     } | 
| 232 |   } | 
| 233 |   return false; | 
| 234 | } | 
| 235 |  | 
| 236 | bool SimulatorDebugger::GetQValue(char* desc, simd_value_t* value) { | 
| 237 |   VRegister vreg = LookupVRegisterByName(desc); | 
| 238 |   if (vreg != kNoVRegister) { | 
| 239 |     sim_->get_vregister(vreg, value); | 
| 240 |     return true; | 
| 241 |   } | 
| 242 |   if (desc[0] == '*') { | 
| 243 |     uint64_t addr; | 
| 244 |     if (GetValue(desc + 1, &addr)) { | 
| 245 |       if (Simulator::IsIllegalAddress(addr)) { | 
| 246 |         return false; | 
| 247 |       } | 
| 248 |       *value = *(reinterpret_cast<simd_value_t*>(addr)); | 
| 249 |       return true; | 
| 250 |     } | 
| 251 |   } | 
| 252 |   return false; | 
| 253 | } | 
| 254 |  | 
| 255 | TokenPosition SimulatorDebugger::GetApproximateTokenIndex(const Code& code, | 
| 256 |                                                           uword pc) { | 
| 257 |   TokenPosition token_pos = TokenPosition::kNoSource; | 
| 258 |   uword pc_offset = pc - code.PayloadStart(); | 
| 259 |   const PcDescriptors& descriptors = | 
| 260 |       PcDescriptors::Handle(code.pc_descriptors()); | 
| 261 |   PcDescriptors::Iterator iter(descriptors, PcDescriptorsLayout::kAnyKind); | 
| 262 |   while (iter.MoveNext()) { | 
| 263 |     if (iter.PcOffset() == pc_offset) { | 
| 264 |       return iter.TokenPos(); | 
| 265 |     } else if (!token_pos.IsReal() && (iter.PcOffset() > pc_offset)) { | 
| 266 |       token_pos = iter.TokenPos(); | 
| 267 |     } | 
| 268 |   } | 
| 269 |   return token_pos; | 
| 270 | } | 
| 271 |  | 
| 272 | void SimulatorDebugger::PrintDartFrame(uword pc, | 
| 273 |                                        uword fp, | 
| 274 |                                        uword sp, | 
| 275 |                                        const Function& function, | 
| 276 |                                        TokenPosition token_pos, | 
| 277 |                                        bool is_optimized, | 
| 278 |                                        bool is_inlined) { | 
| 279 |   const Script& script = Script::Handle(function.script()); | 
| 280 |   const String& func_name = String::Handle(function.QualifiedScrubbedName()); | 
| 281 |   const String& url = String::Handle(script.url()); | 
| 282 |   intptr_t line = -1; | 
| 283 |   intptr_t column = -1; | 
| 284 |   if (token_pos.IsReal()) { | 
| 285 |     script.GetTokenLocation(token_pos, &line, &column); | 
| 286 |   } | 
| 287 |   OS::PrintErr( | 
| 288 |       "pc=0x%"  Px " fp=0x%"  Px " sp=0x%"  Px " %s%s (%s:%"  Pd ":%"  Pd ")\n" , pc, | 
| 289 |       fp, sp, is_optimized ? (is_inlined ? "inlined "  : "optimized " ) : "" , | 
| 290 |       func_name.ToCString(), url.ToCString(), line, column); | 
| 291 | } | 
| 292 |  | 
| 293 | void SimulatorDebugger::PrintBacktrace() { | 
| 294 |   StackFrameIterator frames( | 
| 295 |       sim_->get_register(FP), sim_->get_register(SP), sim_->get_pc(), | 
| 296 |       ValidationPolicy::kDontValidateFrames, Thread::Current(), | 
| 297 |       StackFrameIterator::kNoCrossThreadIteration); | 
| 298 |   StackFrame* frame = frames.NextFrame(); | 
| 299 |   ASSERT(frame != NULL); | 
| 300 |   Function& function = Function::Handle(); | 
| 301 |   Function& inlined_function = Function::Handle(); | 
| 302 |   Code& code = Code::Handle(); | 
| 303 |   Code& unoptimized_code = Code::Handle(); | 
| 304 |   while (frame != NULL) { | 
| 305 |     if (frame->IsDartFrame()) { | 
| 306 |       ASSERT(!frame->is_interpreted());  // Not yet supported. | 
| 307 |       code = frame->LookupDartCode(); | 
| 308 |       function = code.function(); | 
| 309 |       if (code.is_optimized()) { | 
| 310 |         // For optimized frames, extract all the inlined functions if any | 
| 311 |         // into the stack trace. | 
| 312 |         InlinedFunctionsIterator it(code, frame->pc()); | 
| 313 |         while (!it.Done()) { | 
| 314 |           // Print each inlined frame with its pc in the corresponding | 
| 315 |           // unoptimized frame. | 
| 316 |           inlined_function = it.function(); | 
| 317 |           unoptimized_code = it.code(); | 
| 318 |           uword unoptimized_pc = it.pc(); | 
| 319 |           it.Advance(); | 
| 320 |           if (!it.Done()) { | 
| 321 |             PrintDartFrame( | 
| 322 |                 unoptimized_pc, frame->fp(), frame->sp(), inlined_function, | 
| 323 |                 GetApproximateTokenIndex(unoptimized_code, unoptimized_pc), | 
| 324 |                 true, true); | 
| 325 |           } | 
| 326 |         } | 
| 327 |         // Print the optimized inlining frame below. | 
| 328 |       } | 
| 329 |       PrintDartFrame(frame->pc(), frame->fp(), frame->sp(), function, | 
| 330 |                      GetApproximateTokenIndex(code, frame->pc()), | 
| 331 |                      code.is_optimized(), false); | 
| 332 |     } else { | 
| 333 |       OS::PrintErr("pc=0x%"  Px " fp=0x%"  Px " sp=0x%"  Px " %s frame\n" , | 
| 334 |                    frame->pc(), frame->fp(), frame->sp(), | 
| 335 |                    frame->IsEntryFrame() | 
| 336 |                        ? "entry"  | 
| 337 |                        : frame->IsExitFrame() | 
| 338 |                              ? "exit"  | 
| 339 |                              : frame->IsStubFrame() ? "stub"  : "invalid" ); | 
| 340 |     } | 
| 341 |     frame = frames.NextFrame(); | 
| 342 |   } | 
| 343 | } | 
| 344 |  | 
| 345 | bool SimulatorDebugger::SetBreakpoint(Instr* breakpc) { | 
| 346 |   // Check if a breakpoint can be set. If not return without any side-effects. | 
| 347 |   if (sim_->break_pc_ != NULL) { | 
| 348 |     return false; | 
| 349 |   } | 
| 350 |  | 
| 351 |   // Set the breakpoint. | 
| 352 |   sim_->break_pc_ = breakpc; | 
| 353 |   sim_->break_instr_ = breakpc->InstructionBits(); | 
| 354 |   // Not setting the breakpoint instruction in the code itself. It will be set | 
| 355 |   // when the debugger shell continues. | 
| 356 |   return true; | 
| 357 | } | 
| 358 |  | 
| 359 | bool SimulatorDebugger::DeleteBreakpoint(Instr* breakpc) { | 
| 360 |   if (sim_->break_pc_ != NULL) { | 
| 361 |     sim_->break_pc_->SetInstructionBits(sim_->break_instr_); | 
| 362 |   } | 
| 363 |  | 
| 364 |   sim_->break_pc_ = NULL; | 
| 365 |   sim_->break_instr_ = 0; | 
| 366 |   return true; | 
| 367 | } | 
| 368 |  | 
| 369 | void SimulatorDebugger::UndoBreakpoints() { | 
| 370 |   if (sim_->break_pc_ != NULL) { | 
| 371 |     sim_->break_pc_->SetInstructionBits(sim_->break_instr_); | 
| 372 |   } | 
| 373 | } | 
| 374 |  | 
| 375 | void SimulatorDebugger::RedoBreakpoints() { | 
| 376 |   if (sim_->break_pc_ != NULL) { | 
| 377 |     sim_->break_pc_->SetInstructionBits(Instr::kSimulatorBreakpointInstruction); | 
| 378 |   } | 
| 379 | } | 
| 380 |  | 
| 381 | void SimulatorDebugger::Debug() { | 
| 382 |   uintptr_t last_pc = -1; | 
| 383 |   bool done = false; | 
| 384 |  | 
| 385 | #define COMMAND_SIZE 63 | 
| 386 | #define ARG_SIZE 255 | 
| 387 |  | 
| 388 | #define STR(a) #a | 
| 389 | #define XSTR(a) STR(a) | 
| 390 |  | 
| 391 |   char cmd[COMMAND_SIZE + 1]; | 
| 392 |   char arg1[ARG_SIZE + 1]; | 
| 393 |   char arg2[ARG_SIZE + 1]; | 
| 394 |  | 
| 395 |   // make sure to have a proper terminating character if reaching the limit | 
| 396 |   cmd[COMMAND_SIZE] = 0; | 
| 397 |   arg1[ARG_SIZE] = 0; | 
| 398 |   arg2[ARG_SIZE] = 0; | 
| 399 |  | 
| 400 |   // Undo all set breakpoints while running in the debugger shell. This will | 
| 401 |   // make them invisible to all commands. | 
| 402 |   UndoBreakpoints(); | 
| 403 |  | 
| 404 |   while (!done) { | 
| 405 |     if (last_pc != sim_->get_pc()) { | 
| 406 |       last_pc = sim_->get_pc(); | 
| 407 |       if (Simulator::IsIllegalAddress(last_pc)) { | 
| 408 |         OS::PrintErr("pc is out of bounds: 0x%"  Px "\n" , last_pc); | 
| 409 |       } else { | 
| 410 |         if (FLAG_support_disassembler) { | 
| 411 |           Disassembler::Disassemble(last_pc, last_pc + Instr::kInstrSize); | 
| 412 |         } else { | 
| 413 |           OS::PrintErr("Disassembler not supported in this mode.\n" ); | 
| 414 |         } | 
| 415 |       } | 
| 416 |     } | 
| 417 |     char* line = ReadLine("sim> " ); | 
| 418 |     if (line == NULL) { | 
| 419 |       FATAL("ReadLine failed" ); | 
| 420 |     } else { | 
| 421 |       // Use sscanf to parse the individual parts of the command line. At the | 
| 422 |       // moment no command expects more than two parameters. | 
| 423 |       int args = SScanF(line, | 
| 424 |                         "%"  XSTR(COMMAND_SIZE) "s "  | 
| 425 |                         "%"  XSTR(ARG_SIZE) "s "  | 
| 426 |                         "%"  XSTR(ARG_SIZE) "s" , | 
| 427 |                         cmd, arg1, arg2); | 
| 428 |       if ((strcmp(cmd, "h" ) == 0) || (strcmp(cmd, "help" ) == 0)) { | 
| 429 |         OS::PrintErr( | 
| 430 |             "c/cont -- continue execution\n"  | 
| 431 |             "disasm -- disassemble instrs at current pc location\n"  | 
| 432 |             "  other variants are:\n"  | 
| 433 |             "    disasm <address>\n"  | 
| 434 |             "    disasm <address> <number_of_instructions>\n"  | 
| 435 |             "  by default 10 instrs are disassembled\n"  | 
| 436 |             "del -- delete breakpoints\n"  | 
| 437 |             "flags -- print flag values\n"  | 
| 438 |             "gdb -- transfer control to gdb\n"  | 
| 439 |             "h/help -- print this help string\n"  | 
| 440 |             "break <address> -- set break point at specified address\n"  | 
| 441 |             "p/print <reg or icount or value or *addr> -- print integer\n"  | 
| 442 |             "pf/printfloat <vreg or *addr> --print float value\n"  | 
| 443 |             "pd/printdouble <vreg or *addr> -- print double value\n"  | 
| 444 |             "pq/printquad <vreg or *addr> -- print vector register\n"  | 
| 445 |             "po/printobject <*reg or *addr> -- print object\n"  | 
| 446 |             "si/stepi -- single step an instruction\n"  | 
| 447 |             "trace -- toggle execution tracing mode\n"  | 
| 448 |             "bt -- print backtrace\n"  | 
| 449 |             "unstop -- if current pc is a stop instr make it a nop\n"  | 
| 450 |             "q/quit -- Quit the debugger and exit the program\n" ); | 
| 451 |       } else if ((strcmp(cmd, "quit" ) == 0) || (strcmp(cmd, "q" ) == 0)) { | 
| 452 |         OS::PrintErr("Quitting\n" ); | 
| 453 |         OS::Exit(0); | 
| 454 |       } else if ((strcmp(cmd, "si" ) == 0) || (strcmp(cmd, "stepi" ) == 0)) { | 
| 455 |         sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); | 
| 456 |       } else if ((strcmp(cmd, "c" ) == 0) || (strcmp(cmd, "cont" ) == 0)) { | 
| 457 |         // Execute the one instruction we broke at with breakpoints disabled. | 
| 458 |         sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); | 
| 459 |         // Leave the debugger shell. | 
| 460 |         done = true; | 
| 461 |       } else if ((strcmp(cmd, "p" ) == 0) || (strcmp(cmd, "print" ) == 0)) { | 
| 462 |         if (args == 2) { | 
| 463 |           uint64_t value; | 
| 464 |           if (strcmp(arg1, "icount" ) == 0) { | 
| 465 |             value = sim_->get_icount(); | 
| 466 |             OS::PrintErr("icount: %"  Pu64 " 0x%"  Px64 "\n" , value, value); | 
| 467 |           } else if (GetValue(arg1, &value)) { | 
| 468 |             OS::PrintErr("%s: %"  Pu64 " 0x%"  Px64 "\n" , arg1, value, value); | 
| 469 |           } else { | 
| 470 |             OS::PrintErr("%s unrecognized\n" , arg1); | 
| 471 |           } | 
| 472 |         } else { | 
| 473 |           OS::PrintErr("print <reg or icount or value or *addr>\n" ); | 
| 474 |         } | 
| 475 |       } else if ((strcmp(cmd, "pf" ) == 0) || (strcmp(cmd, "printfloat" ) == 0)) { | 
| 476 |         if (args == 2) { | 
| 477 |           uint32_t value; | 
| 478 |           if (GetSValue(arg1, &value)) { | 
| 479 |             float svalue = bit_cast<float, uint32_t>(value); | 
| 480 |             OS::PrintErr("%s: %d 0x%x %.8g\n" , arg1, value, value, svalue); | 
| 481 |           } else { | 
| 482 |             OS::PrintErr("%s unrecognized\n" , arg1); | 
| 483 |           } | 
| 484 |         } else { | 
| 485 |           OS::PrintErr("printfloat <vreg or *addr>\n" ); | 
| 486 |         } | 
| 487 |       } else if ((strcmp(cmd, "pd" ) == 0) || | 
| 488 |                  (strcmp(cmd, "printdouble" ) == 0)) { | 
| 489 |         if (args == 2) { | 
| 490 |           uint64_t long_value; | 
| 491 |           if (GetDValue(arg1, &long_value)) { | 
| 492 |             double dvalue = bit_cast<double, uint64_t>(long_value); | 
| 493 |             OS::PrintErr("%s: %"  Pu64 " 0x%"  Px64 " %.8g\n" , arg1, long_value, | 
| 494 |                          long_value, dvalue); | 
| 495 |           } else { | 
| 496 |             OS::PrintErr("%s unrecognized\n" , arg1); | 
| 497 |           } | 
| 498 |         } else { | 
| 499 |           OS::PrintErr("printdouble <vreg or *addr>\n" ); | 
| 500 |         } | 
| 501 |       } else if ((strcmp(cmd, "pq" ) == 0) || (strcmp(cmd, "printquad" ) == 0)) { | 
| 502 |         if (args == 2) { | 
| 503 |           simd_value_t quad_value; | 
| 504 |           if (GetQValue(arg1, &quad_value)) { | 
| 505 |             const int64_t d0 = quad_value.bits.i64[0]; | 
| 506 |             const int64_t d1 = quad_value.bits.i64[1]; | 
| 507 |             const double dval0 = bit_cast<double, int64_t>(d0); | 
| 508 |             const double dval1 = bit_cast<double, int64_t>(d1); | 
| 509 |             const int32_t s0 = quad_value.bits.i32[0]; | 
| 510 |             const int32_t s1 = quad_value.bits.i32[1]; | 
| 511 |             const int32_t s2 = quad_value.bits.i32[2]; | 
| 512 |             const int32_t s3 = quad_value.bits.i32[3]; | 
| 513 |             const float sval0 = bit_cast<float, int32_t>(s0); | 
| 514 |             const float sval1 = bit_cast<float, int32_t>(s1); | 
| 515 |             const float sval2 = bit_cast<float, int32_t>(s2); | 
| 516 |             const float sval3 = bit_cast<float, int32_t>(s3); | 
| 517 |             OS::PrintErr("%s: %"  Pu64 " 0x%"  Px64 " %.8g\n" , arg1, d0, d0, | 
| 518 |                          dval0); | 
| 519 |             OS::PrintErr("%s: %"  Pu64 " 0x%"  Px64 " %.8g\n" , arg1, d1, d1, | 
| 520 |                          dval1); | 
| 521 |             OS::PrintErr("%s: %d 0x%x %.8g\n" , arg1, s0, s0, sval0); | 
| 522 |             OS::PrintErr("%s: %d 0x%x %.8g\n" , arg1, s1, s1, sval1); | 
| 523 |             OS::PrintErr("%s: %d 0x%x %.8g\n" , arg1, s2, s2, sval2); | 
| 524 |             OS::PrintErr("%s: %d 0x%x %.8g\n" , arg1, s3, s3, sval3); | 
| 525 |           } else { | 
| 526 |             OS::PrintErr("%s unrecognized\n" , arg1); | 
| 527 |           } | 
| 528 |         } else { | 
| 529 |           OS::PrintErr("printquad <vreg or *addr>\n" ); | 
| 530 |         } | 
| 531 |       } else if ((strcmp(cmd, "po" ) == 0) || | 
| 532 |                  (strcmp(cmd, "printobject" ) == 0)) { | 
| 533 |         if (args == 2) { | 
| 534 |           uint64_t value; | 
| 535 |           // Make the dereferencing '*' optional. | 
| 536 |           if (((arg1[0] == '*') && GetValue(arg1 + 1, &value)) || | 
| 537 |               GetValue(arg1, &value)) { | 
| 538 |             if (Isolate::Current()->heap()->Contains(value)) { | 
| 539 |               OS::PrintErr("%s: \n" , arg1); | 
| 540 | #if defined(DEBUG) | 
| 541 |               const Object& obj = Object::Handle(static_cast<ObjectPtr>(value)); | 
| 542 |               obj.Print(); | 
| 543 | #endif  // defined(DEBUG) | 
| 544 |             } else { | 
| 545 |               OS::PrintErr("0x%"  Px64 " is not an object reference\n" , value); | 
| 546 |             } | 
| 547 |           } else { | 
| 548 |             OS::PrintErr("%s unrecognized\n" , arg1); | 
| 549 |           } | 
| 550 |         } else { | 
| 551 |           OS::PrintErr("printobject <*reg or *addr>\n" ); | 
| 552 |         } | 
| 553 |       } else if (strcmp(cmd, "disasm" ) == 0) { | 
| 554 |         uint64_t start = 0; | 
| 555 |         uint64_t end = 0; | 
| 556 |         if (args == 1) { | 
| 557 |           start = sim_->get_pc(); | 
| 558 |           end = start + (10 * Instr::kInstrSize); | 
| 559 |         } else if (args == 2) { | 
| 560 |           if (GetValue(arg1, &start)) { | 
| 561 |             // No length parameter passed, assume 10 instructions. | 
| 562 |             if (Simulator::IsIllegalAddress(start)) { | 
| 563 |               // If start isn't a valid address, warn and use PC instead. | 
| 564 |               OS::PrintErr("First argument yields invalid address: 0x%"  Px64 | 
| 565 |                            "\n" , | 
| 566 |                            start); | 
| 567 |               OS::PrintErr("Using PC instead\n" ); | 
| 568 |               start = sim_->get_pc(); | 
| 569 |             } | 
| 570 |             end = start + (10 * Instr::kInstrSize); | 
| 571 |           } | 
| 572 |         } else { | 
| 573 |           uint64_t length; | 
| 574 |           if (GetValue(arg1, &start) && GetValue(arg2, &length)) { | 
| 575 |             if (Simulator::IsIllegalAddress(start)) { | 
| 576 |               // If start isn't a valid address, warn and use PC instead. | 
| 577 |               OS::PrintErr("First argument yields invalid address: 0x%"  Px64 | 
| 578 |                            "\n" , | 
| 579 |                            start); | 
| 580 |               OS::PrintErr("Using PC instead\n" ); | 
| 581 |               start = sim_->get_pc(); | 
| 582 |             } | 
| 583 |             end = start + (length * Instr::kInstrSize); | 
| 584 |           } | 
| 585 |         } | 
| 586 |         if ((start > 0) && (end > start)) { | 
| 587 |           if (FLAG_support_disassembler) { | 
| 588 |             Disassembler::Disassemble(start, end); | 
| 589 |           } else { | 
| 590 |             OS::PrintErr("Disassembler not supported in this mode.\n" ); | 
| 591 |           } | 
| 592 |         } else { | 
| 593 |           OS::PrintErr("disasm [<address> [<number_of_instructions>]]\n" ); | 
| 594 |         } | 
| 595 |       } else if (strcmp(cmd, "gdb" ) == 0) { | 
| 596 |         OS::PrintErr("relinquishing control to gdb\n" ); | 
| 597 |         OS::DebugBreak(); | 
| 598 |         OS::PrintErr("regaining control from gdb\n" ); | 
| 599 |       } else if (strcmp(cmd, "break" ) == 0) { | 
| 600 |         if (args == 2) { | 
| 601 |           uint64_t addr; | 
| 602 |           if (GetValue(arg1, &addr)) { | 
| 603 |             if (!SetBreakpoint(reinterpret_cast<Instr*>(addr))) { | 
| 604 |               OS::PrintErr("setting breakpoint failed\n" ); | 
| 605 |             } | 
| 606 |           } else { | 
| 607 |             OS::PrintErr("%s unrecognized\n" , arg1); | 
| 608 |           } | 
| 609 |         } else { | 
| 610 |           OS::PrintErr("break <addr>\n" ); | 
| 611 |         } | 
| 612 |       } else if (strcmp(cmd, "del" ) == 0) { | 
| 613 |         if (!DeleteBreakpoint(NULL)) { | 
| 614 |           OS::PrintErr("deleting breakpoint failed\n" ); | 
| 615 |         } | 
| 616 |       } else if (strcmp(cmd, "flags" ) == 0) { | 
| 617 |         OS::PrintErr("APSR: " ); | 
| 618 |         OS::PrintErr("N flag: %d; " , sim_->n_flag_); | 
| 619 |         OS::PrintErr("Z flag: %d; " , sim_->z_flag_); | 
| 620 |         OS::PrintErr("C flag: %d; " , sim_->c_flag_); | 
| 621 |         OS::PrintErr("V flag: %d\n" , sim_->v_flag_); | 
| 622 |       } else if (strcmp(cmd, "unstop" ) == 0) { | 
| 623 |         intptr_t stop_pc = sim_->get_pc() - Instr::kInstrSize; | 
| 624 |         Instr* stop_instr = reinterpret_cast<Instr*>(stop_pc); | 
| 625 |         if (stop_instr->IsExceptionGenOp()) { | 
| 626 |           stop_instr->SetInstructionBits(Instr::kNopInstruction); | 
| 627 |         } else { | 
| 628 |           OS::PrintErr("Not at debugger stop.\n" ); | 
| 629 |         } | 
| 630 |       } else if (strcmp(cmd, "trace" ) == 0) { | 
| 631 |         if (FLAG_trace_sim_after == ULLONG_MAX) { | 
| 632 |           FLAG_trace_sim_after = sim_->get_icount(); | 
| 633 |           OS::PrintErr("execution tracing on\n" ); | 
| 634 |         } else { | 
| 635 |           FLAG_trace_sim_after = ULLONG_MAX; | 
| 636 |           OS::PrintErr("execution tracing off\n" ); | 
| 637 |         } | 
| 638 |       } else if (strcmp(cmd, "bt" ) == 0) { | 
| 639 |         Thread* thread = reinterpret_cast<Thread*>(sim_->get_register(THR)); | 
| 640 |         thread->set_execution_state(Thread::kThreadInVM); | 
| 641 |         PrintBacktrace(); | 
| 642 |         thread->set_execution_state(Thread::kThreadInGenerated); | 
| 643 |       } else { | 
| 644 |         OS::PrintErr("Unknown command: %s\n" , cmd); | 
| 645 |       } | 
| 646 |     } | 
| 647 |     delete[] line; | 
| 648 |   } | 
| 649 |  | 
| 650 |   // Add all the breakpoints back to stop execution and enter the debugger | 
| 651 |   // shell when hit. | 
| 652 |   RedoBreakpoints(); | 
| 653 |  | 
| 654 | #undef COMMAND_SIZE | 
| 655 | #undef ARG_SIZE | 
| 656 |  | 
| 657 | #undef STR | 
| 658 | #undef XSTR | 
| 659 | } | 
| 660 |  | 
| 661 | char* SimulatorDebugger::ReadLine(const char* prompt) { | 
| 662 |   char* result = NULL; | 
| 663 |   char line_buf[256]; | 
| 664 |   intptr_t offset = 0; | 
| 665 |   bool keep_going = true; | 
| 666 |   OS::PrintErr("%s" , prompt); | 
| 667 |   while (keep_going) { | 
| 668 |     if (fgets(line_buf, sizeof(line_buf), stdin) == NULL) { | 
| 669 |       // fgets got an error. Just give up. | 
| 670 |       if (result != NULL) { | 
| 671 |         delete[] result; | 
| 672 |       } | 
| 673 |       return NULL; | 
| 674 |     } | 
| 675 |     intptr_t len = strlen(line_buf); | 
| 676 |     if (len > 1 && line_buf[len - 2] == '\\' && line_buf[len - 1] == '\n') { | 
| 677 |       // When we read a line that ends with a "\" we remove the escape and | 
| 678 |       // append the remainder. | 
| 679 |       line_buf[len - 2] = '\n'; | 
| 680 |       line_buf[len - 1] = 0; | 
| 681 |       len -= 1; | 
| 682 |     } else if ((len > 0) && (line_buf[len - 1] == '\n')) { | 
| 683 |       // Since we read a new line we are done reading the line. This | 
| 684 |       // will exit the loop after copying this buffer into the result. | 
| 685 |       keep_going = false; | 
| 686 |     } | 
| 687 |     if (result == NULL) { | 
| 688 |       // Allocate the initial result and make room for the terminating '\0' | 
| 689 |       result = new char[len + 1]; | 
| 690 |       if (result == NULL) { | 
| 691 |         // OOM, so cannot readline anymore. | 
| 692 |         return NULL; | 
| 693 |       } | 
| 694 |     } else { | 
| 695 |       // Allocate a new result with enough room for the new addition. | 
| 696 |       intptr_t new_len = offset + len + 1; | 
| 697 |       char* new_result = new char[new_len]; | 
| 698 |       if (new_result == NULL) { | 
| 699 |         // OOM, free the buffer allocated so far and return NULL. | 
| 700 |         delete[] result; | 
| 701 |         return NULL; | 
| 702 |       } else { | 
| 703 |         // Copy the existing input into the new array and set the new | 
| 704 |         // array as the result. | 
| 705 |         memmove(new_result, result, offset); | 
| 706 |         delete[] result; | 
| 707 |         result = new_result; | 
| 708 |       } | 
| 709 |     } | 
| 710 |     // Copy the newly read line into the result. | 
| 711 |     memmove(result + offset, line_buf, len); | 
| 712 |     offset += len; | 
| 713 |   } | 
| 714 |   ASSERT(result != NULL); | 
| 715 |   result[offset] = '\0'; | 
| 716 |   return result; | 
| 717 | } | 
| 718 |  | 
| 719 | void Simulator::Init() {} | 
| 720 |  | 
| 721 | Simulator::Simulator() : exclusive_access_addr_(0), exclusive_access_value_(0) { | 
| 722 |   // Setup simulator support first. Some of this information is needed to | 
| 723 |   // setup the architecture state. | 
| 724 |   // We allocate the stack here, the size is computed as the sum of | 
| 725 |   // the size specified by the user and the buffer space needed for | 
| 726 |   // handling stack overflow exceptions. To be safe in potential | 
| 727 |   // stack underflows we also add some underflow buffer space. | 
| 728 |   stack_ = | 
| 729 |       new char[(OSThread::GetSpecifiedStackSize() + | 
| 730 |                 OSThread::kStackSizeBufferMax + kSimulatorStackUnderflowSize)]; | 
| 731 |   // Low address. | 
| 732 |   stack_limit_ = reinterpret_cast<uword>(stack_); | 
| 733 |   // Limit for StackOverflowError. | 
| 734 |   overflow_stack_limit_ = stack_limit_ + OSThread::kStackSizeBufferMax; | 
| 735 |   // High address. | 
| 736 |   stack_base_ = overflow_stack_limit_ + OSThread::GetSpecifiedStackSize(); | 
| 737 |  | 
| 738 |   pc_modified_ = false; | 
| 739 |   icount_ = 0; | 
| 740 |   break_pc_ = NULL; | 
| 741 |   break_instr_ = 0; | 
| 742 |   last_setjmp_buffer_ = NULL; | 
| 743 |  | 
| 744 |   // Setup architecture state. | 
| 745 |   // All registers are initialized to zero to start with. | 
| 746 |   for (int i = 0; i < kNumberOfCpuRegisters; i++) { | 
| 747 |     registers_[i] = 0; | 
| 748 |   } | 
| 749 |   n_flag_ = false; | 
| 750 |   z_flag_ = false; | 
| 751 |   c_flag_ = false; | 
| 752 |   v_flag_ = false; | 
| 753 |  | 
| 754 |   for (int i = 0; i < kNumberOfVRegisters; i++) { | 
| 755 |     vregisters_[i].bits.i64[0] = 0; | 
| 756 |     vregisters_[i].bits.i64[1] = 0; | 
| 757 |   } | 
| 758 |  | 
| 759 |   // The sp is initialized to point to the bottom (high address) of the | 
| 760 |   // allocated stack area. | 
| 761 |   registers_[R31] = stack_base(); | 
| 762 |   // The lr and pc are initialized to a known bad value that will cause an | 
| 763 |   // access violation if the simulator ever tries to execute it. | 
| 764 |   registers_[LR] = kBadLR; | 
| 765 |   pc_ = kBadLR; | 
| 766 | } | 
| 767 |  | 
| 768 | Simulator::~Simulator() { | 
| 769 |   delete[] stack_; | 
| 770 |   Isolate* isolate = Isolate::Current(); | 
| 771 |   if (isolate != NULL) { | 
| 772 |     isolate->set_simulator(NULL); | 
| 773 |   } | 
| 774 | } | 
| 775 |  | 
| 776 | // When the generated code calls an external reference we need to catch that in | 
| 777 | // the simulator.  The external reference will be a function compiled for the | 
| 778 | // host architecture.  We need to call that function instead of trying to | 
| 779 | // execute it with the simulator.  We do that by redirecting the external | 
| 780 | // reference to a svc (supervisor call) instruction that is handled by | 
| 781 | // the simulator.  We write the original destination of the jump just at a known | 
| 782 | // offset from the svc instruction so the simulator knows what to call. | 
| 783 | class Redirection { | 
| 784 |  public: | 
| 785 |   uword address_of_hlt_instruction() { | 
| 786 |     return reinterpret_cast<uword>(&hlt_instruction_); | 
| 787 |   } | 
| 788 |  | 
| 789 |   uword external_function() const { return external_function_; } | 
| 790 |  | 
| 791 |   Simulator::CallKind call_kind() const { return call_kind_; } | 
| 792 |  | 
| 793 |   int argument_count() const { return argument_count_; } | 
| 794 |  | 
| 795 |   static Redirection* Get(uword external_function, | 
| 796 |                           Simulator::CallKind call_kind, | 
| 797 |                           int argument_count) { | 
| 798 |     MutexLocker ml(mutex_); | 
| 799 |  | 
| 800 |     Redirection* old_head = list_.load(std::memory_order_relaxed); | 
| 801 |     for (Redirection* current = old_head; current != nullptr; | 
| 802 |          current = current->next_) { | 
| 803 |       if (current->external_function_ == external_function) return current; | 
| 804 |     } | 
| 805 |  | 
| 806 |     Redirection* redirection = | 
| 807 |         new Redirection(external_function, call_kind, argument_count); | 
| 808 |     redirection->next_ = old_head; | 
| 809 |  | 
| 810 |     // Use a memory fence to ensure all pending writes are written at the time | 
| 811 |     // of updating the list head, so the profiling thread always has a valid | 
| 812 |     // list to look at. | 
| 813 |     list_.store(redirection, std::memory_order_release); | 
| 814 |  | 
| 815 |     return redirection; | 
| 816 |   } | 
| 817 |  | 
| 818 |   static Redirection* FromHltInstruction(Instr* hlt_instruction) { | 
| 819 |     char* addr_of_hlt = reinterpret_cast<char*>(hlt_instruction); | 
| 820 |     char* addr_of_redirection = | 
| 821 |         addr_of_hlt - OFFSET_OF(Redirection, hlt_instruction_); | 
| 822 |     return reinterpret_cast<Redirection*>(addr_of_redirection); | 
| 823 |   } | 
| 824 |  | 
| 825 |   // Please note that this function is called by the signal handler of the | 
| 826 |   // profiling thread.  It can therefore run at any point in time and is not | 
| 827 |   // allowed to hold any locks - which is precisely the reason why the list is | 
| 828 |   // prepend-only and a memory fence is used when writing the list head [list_]! | 
| 829 |   static uword FunctionForRedirect(uword address_of_hlt) { | 
| 830 |     for (Redirection* current = list_.load(std::memory_order_acquire); | 
| 831 |          current != nullptr; current = current->next_) { | 
| 832 |       if (current->address_of_hlt_instruction() == address_of_hlt) { | 
| 833 |         return current->external_function_; | 
| 834 |       } | 
| 835 |     } | 
| 836 |     return 0; | 
| 837 |   } | 
| 838 |  | 
| 839 |  private: | 
| 840 |   Redirection(uword external_function, | 
| 841 |               Simulator::CallKind call_kind, | 
| 842 |               int argument_count) | 
| 843 |       : external_function_(external_function), | 
| 844 |         call_kind_(call_kind), | 
| 845 |         argument_count_(argument_count), | 
| 846 |         hlt_instruction_(Instr::kSimulatorRedirectInstruction), | 
| 847 |         next_(NULL) {} | 
| 848 |  | 
| 849 |   uword external_function_; | 
| 850 |   Simulator::CallKind call_kind_; | 
| 851 |   int argument_count_; | 
| 852 |   uint32_t hlt_instruction_; | 
| 853 |   Redirection* next_; | 
| 854 |   static std::atomic<Redirection*> list_; | 
| 855 |   static Mutex* mutex_; | 
| 856 | }; | 
| 857 |  | 
| 858 | std::atomic<Redirection*> Redirection::list_ = {nullptr}; | 
| 859 | Mutex* Redirection::mutex_ = new Mutex(); | 
| 860 |  | 
| 861 | uword Simulator::RedirectExternalReference(uword function, | 
| 862 |                                            CallKind call_kind, | 
| 863 |                                            int argument_count) { | 
| 864 |   Redirection* redirection = | 
| 865 |       Redirection::Get(function, call_kind, argument_count); | 
| 866 |   return redirection->address_of_hlt_instruction(); | 
| 867 | } | 
| 868 |  | 
| 869 | uword Simulator::FunctionForRedirect(uword redirect) { | 
| 870 |   return Redirection::FunctionForRedirect(redirect); | 
| 871 | } | 
| 872 |  | 
| 873 | // Get the active Simulator for the current isolate. | 
| 874 | Simulator* Simulator::Current() { | 
| 875 |   Isolate* isolate = Isolate::Current(); | 
| 876 |   Simulator* simulator = isolate->simulator(); | 
| 877 |   if (simulator == NULL) { | 
| 878 |     NoSafepointScope no_safepoint; | 
| 879 |     simulator = new Simulator(); | 
| 880 |     isolate->set_simulator(simulator); | 
| 881 |   } | 
| 882 |   return simulator; | 
| 883 | } | 
| 884 |  | 
| 885 | // Sets the register in the architecture state. | 
| 886 | void Simulator::set_register(Instr* instr, | 
| 887 |                              Register reg, | 
| 888 |                              int64_t value, | 
| 889 |                              R31Type r31t) { | 
| 890 |   // Register is in range. | 
| 891 |   ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); | 
| 892 | #if !defined(TARGET_OS_FUCHSIA) | 
| 893 |   ASSERT(instr == NULL || reg != R18);  // R18 is globally reserved on iOS. | 
| 894 | #endif | 
| 895 |  | 
| 896 |   if ((reg != R31) || (r31t != R31IsZR)) { | 
| 897 |     registers_[reg] = value; | 
| 898 |     // If we're setting CSP, make sure it is 16-byte aligned. In truth, CSP | 
| 899 |     // can store addresses that are not 16-byte aligned, but loads and stores | 
| 900 |     // are not allowed through CSP when it is not aligned. Thus, this check is | 
| 901 |     // more conservative that necessary. However, it will likely be more | 
| 902 |     // useful to find the program locations where CSP is set to a bad value, | 
| 903 |     // than to find only the resulting loads/stores that would cause a fault on | 
| 904 |     // hardware. | 
| 905 |     if ((instr != NULL) && (reg == R31) && !Utils::IsAligned(value, 16)) { | 
| 906 |       UnalignedAccess("CSP set" , value, instr); | 
| 907 |     } | 
| 908 |   } | 
| 909 | } | 
| 910 |  | 
| 911 | // Get the register from the architecture state. | 
| 912 | int64_t Simulator::get_register(Register reg, R31Type r31t) const { | 
| 913 |   ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); | 
| 914 |   if ((reg == R31) && (r31t == R31IsZR)) { | 
| 915 |     return 0; | 
| 916 |   } else { | 
| 917 |     return registers_[reg]; | 
| 918 |   } | 
| 919 | } | 
| 920 |  | 
| 921 | void Simulator::set_wregister(Register reg, int32_t value, R31Type r31t) { | 
| 922 |   ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); | 
| 923 |   // When setting in W mode, clear the high bits. | 
| 924 |   if ((reg != R31) || (r31t != R31IsZR)) { | 
| 925 |     registers_[reg] = Utils::LowHighTo64Bits(static_cast<uint32_t>(value), 0); | 
| 926 |   } | 
| 927 | } | 
| 928 |  | 
| 929 | // Get the register from the architecture state. | 
| 930 | int32_t Simulator::get_wregister(Register reg, R31Type r31t) const { | 
| 931 |   ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); | 
| 932 |   if ((reg == R31) && (r31t == R31IsZR)) { | 
| 933 |     return 0; | 
| 934 |   } else { | 
| 935 |     return static_cast<int32_t>(registers_[reg]); | 
| 936 |   } | 
| 937 | } | 
| 938 |  | 
| 939 | int32_t Simulator::get_vregisters(VRegister reg, int idx) const { | 
| 940 |   ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); | 
| 941 |   ASSERT((idx >= 0) && (idx <= 3)); | 
| 942 |   return vregisters_[reg].bits.i32[idx]; | 
| 943 | } | 
| 944 |  | 
| 945 | void Simulator::set_vregisters(VRegister reg, int idx, int32_t value) { | 
| 946 |   ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); | 
| 947 |   ASSERT((idx >= 0) && (idx <= 3)); | 
| 948 |   vregisters_[reg].bits.i32[idx] = value; | 
| 949 | } | 
| 950 |  | 
| 951 | int64_t Simulator::get_vregisterd(VRegister reg, int idx) const { | 
| 952 |   ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); | 
| 953 |   ASSERT((idx == 0) || (idx == 1)); | 
| 954 |   return vregisters_[reg].bits.i64[idx]; | 
| 955 | } | 
| 956 |  | 
| 957 | void Simulator::set_vregisterd(VRegister reg, int idx, int64_t value) { | 
| 958 |   ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); | 
| 959 |   ASSERT((idx == 0) || (idx == 1)); | 
| 960 |   vregisters_[reg].bits.i64[idx] = value; | 
| 961 | } | 
| 962 |  | 
| 963 | void Simulator::get_vregister(VRegister reg, simd_value_t* value) const { | 
| 964 |   ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); | 
| 965 |   value->bits.i64[0] = vregisters_[reg].bits.i64[0]; | 
| 966 |   value->bits.i64[1] = vregisters_[reg].bits.i64[1]; | 
| 967 | } | 
| 968 |  | 
| 969 | void Simulator::set_vregister(VRegister reg, const simd_value_t& value) { | 
| 970 |   ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); | 
| 971 |   vregisters_[reg].bits.i64[0] = value.bits.i64[0]; | 
| 972 |   vregisters_[reg].bits.i64[1] = value.bits.i64[1]; | 
| 973 | } | 
| 974 |  | 
| 975 | // Raw access to the PC register. | 
| 976 | void Simulator::set_pc(uint64_t value) { | 
| 977 |   pc_modified_ = true; | 
| 978 |   last_pc_ = pc_; | 
| 979 |   pc_ = value; | 
| 980 | } | 
| 981 |  | 
| 982 | // Raw access to the pc. | 
| 983 | uint64_t Simulator::get_pc() const { | 
| 984 |   return pc_; | 
| 985 | } | 
| 986 |  | 
| 987 | uint64_t Simulator::get_last_pc() const { | 
| 988 |   return last_pc_; | 
| 989 | } | 
| 990 |  | 
| 991 | void Simulator::HandleIllegalAccess(uword addr, Instr* instr) { | 
| 992 |   uword fault_pc = get_pc(); | 
| 993 |   uword last_pc = get_last_pc(); | 
| 994 |   char buffer[128]; | 
| 995 |   snprintf(buffer, sizeof(buffer), | 
| 996 |            "illegal memory access at 0x%"  Px ", pc=0x%"  Px ", last_pc=0x%"  Px | 
| 997 |            "\n" , | 
| 998 |            addr, fault_pc, last_pc); | 
| 999 |   SimulatorDebugger dbg(this); | 
| 1000 |   dbg.Stop(instr, buffer); | 
| 1001 |   // The debugger will return control in non-interactive mode. | 
| 1002 |   FATAL("Cannot continue execution after illegal memory access." ); | 
| 1003 | } | 
| 1004 |  | 
| 1005 | // ARMv8 supports unaligned memory accesses to normal memory without trapping | 
| 1006 | // for all instructions except Load-Exclusive/Store-Exclusive and | 
| 1007 | // Load-Acquire/Store-Release. | 
| 1008 | // See B2.4.2 "Alignment of data accesses" for more information. | 
| 1009 | void Simulator::UnalignedAccess(const char* msg, uword addr, Instr* instr) { | 
| 1010 |   char buffer[128]; | 
| 1011 |   snprintf(buffer, sizeof(buffer), "unaligned %s at 0x%"  Px ", pc=%p\n" , msg, | 
| 1012 |            addr, instr); | 
| 1013 |   SimulatorDebugger dbg(this); | 
| 1014 |   dbg.Stop(instr, buffer); | 
| 1015 |   // The debugger will not be able to single step past this instruction, but | 
| 1016 |   // it will be possible to disassemble the code and inspect registers. | 
| 1017 |   FATAL("Cannot continue execution after unaligned access." ); | 
| 1018 | } | 
| 1019 |  | 
| 1020 | void Simulator::UnimplementedInstruction(Instr* instr) { | 
| 1021 |   char buffer[128]; | 
| 1022 |   snprintf(buffer, sizeof(buffer), | 
| 1023 |            "Unimplemented instruction: at %p, last_pc=0x%"  Px64 "\n" , instr, | 
| 1024 |            get_last_pc()); | 
| 1025 |   SimulatorDebugger dbg(this); | 
| 1026 |   dbg.Stop(instr, buffer); | 
| 1027 |   FATAL("Cannot continue execution after unimplemented instruction." ); | 
| 1028 | } | 
| 1029 |  | 
| 1030 | bool Simulator::IsTracingExecution() const { | 
| 1031 |   return icount_ > FLAG_trace_sim_after; | 
| 1032 | } | 
| 1033 |  | 
| 1034 | intptr_t Simulator::ReadX(uword addr, | 
| 1035 |                           Instr* instr, | 
| 1036 |                           bool must_be_aligned /* = false */) { | 
| 1037 |   const bool allow_unaligned_access = | 
| 1038 |       FLAG_sim_allow_unaligned_accesses && !must_be_aligned; | 
| 1039 |   if (allow_unaligned_access || (addr & 7) == 0) { | 
| 1040 |     intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); | 
| 1041 |     return *ptr; | 
| 1042 |   } | 
| 1043 |   UnalignedAccess("read" , addr, instr); | 
| 1044 |   return 0; | 
| 1045 | } | 
| 1046 |  | 
| 1047 | void Simulator::WriteX(uword addr, intptr_t value, Instr* instr) { | 
| 1048 |   if (FLAG_sim_allow_unaligned_accesses || (addr & 7) == 0) { | 
| 1049 |     intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); | 
| 1050 |     *ptr = value; | 
| 1051 |     return; | 
| 1052 |   } | 
| 1053 |   UnalignedAccess("write" , addr, instr); | 
| 1054 | } | 
| 1055 |  | 
| 1056 | uint32_t Simulator::ReadWU(uword addr, | 
| 1057 |                            Instr* instr, | 
| 1058 |                            bool must_be_aligned /* = false */) { | 
| 1059 |   const bool allow_unaligned_access = | 
| 1060 |       FLAG_sim_allow_unaligned_accesses && !must_be_aligned; | 
| 1061 |   if (allow_unaligned_access || (addr & 3) == 0) { | 
| 1062 |     uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); | 
| 1063 |     return *ptr; | 
| 1064 |   } | 
| 1065 |   UnalignedAccess("read unsigned single word" , addr, instr); | 
| 1066 |   return 0; | 
| 1067 | } | 
| 1068 |  | 
| 1069 | int32_t Simulator::ReadW(uword addr, Instr* instr) { | 
| 1070 |   if (FLAG_sim_allow_unaligned_accesses || (addr & 3) == 0) { | 
| 1071 |     int32_t* ptr = reinterpret_cast<int32_t*>(addr); | 
| 1072 |     return *ptr; | 
| 1073 |   } | 
| 1074 |   UnalignedAccess("read single word" , addr, instr); | 
| 1075 |   return 0; | 
| 1076 | } | 
| 1077 |  | 
| 1078 | void Simulator::WriteW(uword addr, uint32_t value, Instr* instr) { | 
| 1079 |   if (FLAG_sim_allow_unaligned_accesses || (addr & 3) == 0) { | 
| 1080 |     uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); | 
| 1081 |     *ptr = value; | 
| 1082 |     return; | 
| 1083 |   } | 
| 1084 |   UnalignedAccess("write single word" , addr, instr); | 
| 1085 | } | 
| 1086 |  | 
| 1087 | uint16_t Simulator::ReadHU(uword addr, Instr* instr) { | 
| 1088 |   if (FLAG_sim_allow_unaligned_accesses || (addr & 1) == 0) { | 
| 1089 |     uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); | 
| 1090 |     return *ptr; | 
| 1091 |   } | 
| 1092 |   UnalignedAccess("unsigned halfword read" , addr, instr); | 
| 1093 |   return 0; | 
| 1094 | } | 
| 1095 |  | 
| 1096 | int16_t Simulator::ReadH(uword addr, Instr* instr) { | 
| 1097 |   if (FLAG_sim_allow_unaligned_accesses || (addr & 1) == 0) { | 
| 1098 |     int16_t* ptr = reinterpret_cast<int16_t*>(addr); | 
| 1099 |     return *ptr; | 
| 1100 |   } | 
| 1101 |   UnalignedAccess("signed halfword read" , addr, instr); | 
| 1102 |   return 0; | 
| 1103 | } | 
| 1104 |  | 
| 1105 | void Simulator::WriteH(uword addr, uint16_t value, Instr* instr) { | 
| 1106 |   if (FLAG_sim_allow_unaligned_accesses || (addr & 1) == 0) { | 
| 1107 |     uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); | 
| 1108 |     *ptr = value; | 
| 1109 |     return; | 
| 1110 |   } | 
| 1111 |   UnalignedAccess("halfword write" , addr, instr); | 
| 1112 | } | 
| 1113 |  | 
| 1114 | uint8_t Simulator::ReadBU(uword addr) { | 
| 1115 |   uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); | 
| 1116 |   return *ptr; | 
| 1117 | } | 
| 1118 |  | 
| 1119 | int8_t Simulator::ReadB(uword addr) { | 
| 1120 |   int8_t* ptr = reinterpret_cast<int8_t*>(addr); | 
| 1121 |   return *ptr; | 
| 1122 | } | 
| 1123 |  | 
| 1124 | void Simulator::WriteB(uword addr, uint8_t value) { | 
| 1125 |   uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); | 
| 1126 |   *ptr = value; | 
| 1127 | } | 
| 1128 |  | 
| 1129 | void Simulator::ClearExclusive() { | 
| 1130 |   exclusive_access_addr_ = 0; | 
| 1131 |   exclusive_access_value_ = 0; | 
| 1132 | } | 
| 1133 |  | 
| 1134 | intptr_t Simulator::ReadExclusiveX(uword addr, Instr* instr) { | 
| 1135 |   exclusive_access_addr_ = addr; | 
| 1136 |   exclusive_access_value_ = ReadX(addr, instr, /*must_be_aligned=*/true); | 
| 1137 |   return exclusive_access_value_; | 
| 1138 | } | 
| 1139 |  | 
| 1140 | intptr_t Simulator::ReadExclusiveW(uword addr, Instr* instr) { | 
| 1141 |   exclusive_access_addr_ = addr; | 
| 1142 |   exclusive_access_value_ = ReadWU(addr, instr, /*must_be_aligned=*/true); | 
| 1143 |   return exclusive_access_value_; | 
| 1144 | } | 
| 1145 |  | 
| 1146 | intptr_t Simulator::WriteExclusiveX(uword addr, intptr_t value, Instr* instr) { | 
| 1147 |   // In a well-formed code store-exclusive instruction should always follow | 
| 1148 |   // a corresponding load-exclusive instruction with the same address. | 
| 1149 |   ASSERT((exclusive_access_addr_ == 0) || (exclusive_access_addr_ == addr)); | 
| 1150 |   if (exclusive_access_addr_ != addr) { | 
| 1151 |     return 1;  // Failure. | 
| 1152 |   } | 
| 1153 |  | 
| 1154 |   int64_t old_value = exclusive_access_value_; | 
| 1155 |   ClearExclusive(); | 
| 1156 |  | 
| 1157 |   auto atomic_addr = reinterpret_cast<RelaxedAtomic<int64_t>*>(addr); | 
| 1158 |   if (atomic_addr->compare_exchange_weak(old_value, value)) { | 
| 1159 |     return 0;  // Success. | 
| 1160 |   } | 
| 1161 |   return 1;  // Failure. | 
| 1162 | } | 
| 1163 |  | 
| 1164 | intptr_t Simulator::WriteExclusiveW(uword addr, intptr_t value, Instr* instr) { | 
| 1165 |   // In a well-formed code store-exclusive instruction should always follow | 
| 1166 |   // a corresponding load-exclusive instruction with the same address. | 
| 1167 |   ASSERT((exclusive_access_addr_ == 0) || (exclusive_access_addr_ == addr)); | 
| 1168 |   if (exclusive_access_addr_ != addr) { | 
| 1169 |     return 1;  // Failure. | 
| 1170 |   } | 
| 1171 |  | 
| 1172 |   int32_t old_value = static_cast<uint32_t>(exclusive_access_value_); | 
| 1173 |   ClearExclusive(); | 
| 1174 |  | 
| 1175 |   auto atomic_addr = reinterpret_cast<RelaxedAtomic<int32_t>*>(addr); | 
| 1176 |   if (atomic_addr->compare_exchange_weak(old_value, value)) { | 
| 1177 |     return 0;  // Success. | 
| 1178 |   } | 
| 1179 |   return 1;  // Failure. | 
| 1180 | } | 
| 1181 |  | 
| 1182 | intptr_t Simulator::ReadAcquire(uword addr, Instr* instr) { | 
| 1183 |   // TODO(42074): Once we switch to C++20 we should change this to use use | 
| 1184 |   // `std::atomic_ref<T>` which supports performing atomic operations on | 
| 1185 |   // non-atomic data. | 
| 1186 |   COMPILE_ASSERT(sizeof(std::atomic<intptr_t>) == sizeof(intptr_t)); | 
| 1187 |   return reinterpret_cast<std::atomic<intptr_t>*>(addr)->load( | 
| 1188 |       std::memory_order_acquire); | 
| 1189 | } | 
| 1190 |  | 
| 1191 | uint32_t Simulator::ReadAcquireW(uword addr, Instr* instr) { | 
| 1192 |   // TODO(42074): Once we switch to C++20 we should change this to use use | 
| 1193 |   // `std::atomic_ref<T>` which supports performing atomic operations on | 
| 1194 |   // non-atomic data. | 
| 1195 |   COMPILE_ASSERT(sizeof(std::atomic<intptr_t>) == sizeof(intptr_t)); | 
| 1196 |   return reinterpret_cast<std::atomic<uint32_t>*>(addr)->load( | 
| 1197 |       std::memory_order_acquire); | 
| 1198 | } | 
| 1199 |  | 
| 1200 | void Simulator::WriteRelease(uword addr, intptr_t value, Instr* instr) { | 
| 1201 |   // TODO(42074): Once we switch to C++20 we should change this to use use | 
| 1202 |   // `std::atomic_ref<T>` which supports performing atomic operations on | 
| 1203 |   // non-atomic data. | 
| 1204 |   COMPILE_ASSERT(sizeof(std::atomic<intptr_t>) == sizeof(intptr_t)); | 
| 1205 |   reinterpret_cast<std::atomic<intptr_t>*>(addr)->store( | 
| 1206 |       value, std::memory_order_release); | 
| 1207 | } | 
| 1208 |  | 
| 1209 | void Simulator::WriteReleaseW(uword addr, uint32_t value, Instr* instr) { | 
| 1210 |   // TODO(42074): Once we switch to C++20 we should change this to use use | 
| 1211 |   // `std::atomic_ref<T>` which supports performing atomic operations on | 
| 1212 |   // non-atomic data. | 
| 1213 |   COMPILE_ASSERT(sizeof(std::atomic<intptr_t>) == sizeof(intptr_t)); | 
| 1214 |   reinterpret_cast<std::atomic<uint32_t>*>(addr)->store( | 
| 1215 |       value, std::memory_order_release); | 
| 1216 | } | 
| 1217 |  | 
| 1218 | // Unsupported instructions use Format to print an error and stop execution. | 
| 1219 | void Simulator::Format(Instr* instr, const char* format) { | 
| 1220 |   OS::PrintErr("Simulator found unsupported instruction:\n 0x%p: %s\n" , instr, | 
| 1221 |                format); | 
| 1222 |   UNIMPLEMENTED(); | 
| 1223 | } | 
| 1224 |  | 
| 1225 | // Calculate and set the Negative and Zero flags. | 
| 1226 | void Simulator::SetNZFlagsW(int32_t val) { | 
| 1227 |   n_flag_ = (val < 0); | 
| 1228 |   z_flag_ = (val == 0); | 
| 1229 | } | 
| 1230 |  | 
| 1231 | // Calculate C flag value for additions (and subtractions with adjusted args). | 
| 1232 | bool Simulator::CarryFromW(int32_t left, int32_t right, int32_t carry) { | 
| 1233 |   uint64_t uleft = static_cast<uint32_t>(left); | 
| 1234 |   uint64_t uright = static_cast<uint32_t>(right); | 
| 1235 |   uint64_t ucarry = static_cast<uint32_t>(carry); | 
| 1236 |   return ((uleft + uright + ucarry) >> 32) != 0; | 
| 1237 | } | 
| 1238 |  | 
| 1239 | // Calculate V flag value for additions (and subtractions with adjusted args). | 
| 1240 | bool Simulator::OverflowFromW(int32_t left, int32_t right, int32_t carry) { | 
| 1241 |   int64_t result = static_cast<int64_t>(left) + right + carry; | 
| 1242 |   return (result >> 31) != (result >> 32); | 
| 1243 | } | 
| 1244 |  | 
| 1245 | // Calculate and set the Negative and Zero flags. | 
| 1246 | void Simulator::SetNZFlagsX(int64_t val) { | 
| 1247 |   n_flag_ = (val < 0); | 
| 1248 |   z_flag_ = (val == 0); | 
| 1249 | } | 
| 1250 |  | 
| 1251 | // Calculate C flag value for additions and subtractions. | 
| 1252 | bool Simulator::CarryFromX(int64_t alu_out, | 
| 1253 |                            int64_t left, | 
| 1254 |                            int64_t right, | 
| 1255 |                            bool addition) { | 
| 1256 |   if (addition) { | 
| 1257 |     return (((left & right) | ((left | right) & ~alu_out)) >> 63) != 0; | 
| 1258 |   } else { | 
| 1259 |     return (((~left & right) | ((~left | right) & alu_out)) >> 63) == 0; | 
| 1260 |   } | 
| 1261 | } | 
| 1262 |  | 
| 1263 | // Calculate V flag value for additions and subtractions. | 
| 1264 | bool Simulator::OverflowFromX(int64_t alu_out, | 
| 1265 |                               int64_t left, | 
| 1266 |                               int64_t right, | 
| 1267 |                               bool addition) { | 
| 1268 |   if (addition) { | 
| 1269 |     return (((alu_out ^ left) & (alu_out ^ right)) >> 63) != 0; | 
| 1270 |   } else { | 
| 1271 |     return (((left ^ right) & (alu_out ^ left)) >> 63) != 0; | 
| 1272 |   } | 
| 1273 | } | 
| 1274 |  | 
| 1275 | // Set the Carry flag. | 
| 1276 | void Simulator::SetCFlag(bool val) { | 
| 1277 |   c_flag_ = val; | 
| 1278 | } | 
| 1279 |  | 
| 1280 | // Set the oVerflow flag. | 
| 1281 | void Simulator::SetVFlag(bool val) { | 
| 1282 |   v_flag_ = val; | 
| 1283 | } | 
| 1284 |  | 
| 1285 | void Simulator::DecodeMoveWide(Instr* instr) { | 
| 1286 |   const Register rd = instr->RdField(); | 
| 1287 |   const int hw = instr->HWField(); | 
| 1288 |   const int64_t shift = hw << 4; | 
| 1289 |   const int64_t shifted_imm = static_cast<int64_t>(instr->Imm16Field()) | 
| 1290 |                               << shift; | 
| 1291 |  | 
| 1292 |   if (instr->SFField()) { | 
| 1293 |     if (instr->Bits(29, 2) == 0) { | 
| 1294 |       // Format(instr, "movn'sf 'rd, 'imm16 'hw"); | 
| 1295 |       set_register(instr, rd, ~shifted_imm, instr->RdMode()); | 
| 1296 |     } else if (instr->Bits(29, 2) == 2) { | 
| 1297 |       // Format(instr, "movz'sf 'rd, 'imm16 'hw"); | 
| 1298 |       set_register(instr, rd, shifted_imm, instr->RdMode()); | 
| 1299 |     } else if (instr->Bits(29, 2) == 3) { | 
| 1300 |       // Format(instr, "movk'sf 'rd, 'imm16 'hw"); | 
| 1301 |       const int64_t rd_val = get_register(rd, instr->RdMode()); | 
| 1302 |       const int64_t result = (rd_val & ~(0xffffL << shift)) | shifted_imm; | 
| 1303 |       set_register(instr, rd, result, instr->RdMode()); | 
| 1304 |     } else { | 
| 1305 |       UnimplementedInstruction(instr); | 
| 1306 |     } | 
| 1307 |   } else if ((hw & 0x2) == 0) { | 
| 1308 |     if (instr->Bits(29, 2) == 0) { | 
| 1309 |       // Format(instr, "movn'sf 'rd, 'imm16 'hw"); | 
| 1310 |       set_wregister(rd, ~shifted_imm & kWRegMask, instr->RdMode()); | 
| 1311 |     } else if (instr->Bits(29, 2) == 2) { | 
| 1312 |       // Format(instr, "movz'sf 'rd, 'imm16 'hw"); | 
| 1313 |       set_wregister(rd, shifted_imm & kWRegMask, instr->RdMode()); | 
| 1314 |     } else if (instr->Bits(29, 2) == 3) { | 
| 1315 |       // Format(instr, "movk'sf 'rd, 'imm16 'hw"); | 
| 1316 |       const int32_t rd_val = get_wregister(rd, instr->RdMode()); | 
| 1317 |       const int32_t result = (rd_val & ~(0xffffL << shift)) | shifted_imm; | 
| 1318 |       set_wregister(rd, result, instr->RdMode()); | 
| 1319 |     } else { | 
| 1320 |       UnimplementedInstruction(instr); | 
| 1321 |     } | 
| 1322 |   } else { | 
| 1323 |     // Dest is 32 bits, but shift is more than 32. | 
| 1324 |     UnimplementedInstruction(instr); | 
| 1325 |   } | 
| 1326 | } | 
| 1327 |  | 
| 1328 | void Simulator::DecodeAddSubImm(Instr* instr) { | 
| 1329 |   const bool addition = (instr->Bit(30) == 0); | 
| 1330 |   // Format(instr, "addi'sf's 'rd, 'rn, 'imm12s"); | 
| 1331 |   // Format(instr, "subi'sf's 'rd, 'rn, 'imm12s"); | 
| 1332 |   const Register rd = instr->RdField(); | 
| 1333 |   const Register rn = instr->RnField(); | 
| 1334 |   uint32_t imm = (instr->Bit(22) == 1) ? (instr->Imm12Field() << 12) | 
| 1335 |                                        : (instr->Imm12Field()); | 
| 1336 |   if (instr->SFField()) { | 
| 1337 |     // 64-bit add. | 
| 1338 |     const uint64_t rn_val = get_register(rn, instr->RnMode()); | 
| 1339 |     const uint64_t alu_out = addition ? (rn_val + imm) : (rn_val - imm); | 
| 1340 |     set_register(instr, rd, alu_out, instr->RdMode()); | 
| 1341 |     if (instr->HasS()) { | 
| 1342 |       SetNZFlagsX(alu_out); | 
| 1343 |       SetCFlag(CarryFromX(alu_out, rn_val, imm, addition)); | 
| 1344 |       SetVFlag(OverflowFromX(alu_out, rn_val, imm, addition)); | 
| 1345 |     } | 
| 1346 |   } else { | 
| 1347 |     // 32-bit add. | 
| 1348 |     const uint32_t rn_val = get_wregister(rn, instr->RnMode()); | 
| 1349 |     uint32_t carry_in = 0; | 
| 1350 |     if (!addition) { | 
| 1351 |       carry_in = 1; | 
| 1352 |       imm = ~imm; | 
| 1353 |     } | 
| 1354 |     const uint32_t alu_out = rn_val + imm + carry_in; | 
| 1355 |     set_wregister(rd, alu_out, instr->RdMode()); | 
| 1356 |     if (instr->HasS()) { | 
| 1357 |       SetNZFlagsW(alu_out); | 
| 1358 |       SetCFlag(CarryFromW(rn_val, imm, carry_in)); | 
| 1359 |       SetVFlag(OverflowFromW(rn_val, imm, carry_in)); | 
| 1360 |     } | 
| 1361 |   } | 
| 1362 | } | 
| 1363 |  | 
| 1364 | void Simulator::DecodeBitfield(Instr* instr) { | 
| 1365 |   int bitwidth = instr->SFField() == 0 ? 32 : 64; | 
| 1366 |   unsigned op = instr->Bits(29, 2); | 
| 1367 |   ASSERT(op <= 2); | 
| 1368 |   bool sign_extend = op == 0; | 
| 1369 |   bool zero_extend = op == 2; | 
| 1370 |   ASSERT(instr->NField() == instr->SFField()); | 
| 1371 |   const Register rn = instr->RnField(); | 
| 1372 |   const Register rd = instr->RdField(); | 
| 1373 |   int64_t result = get_register(rn, instr->RnMode()); | 
| 1374 |   int r_bit = instr->ImmRField(); | 
| 1375 |   int s_bit = instr->ImmSField(); | 
| 1376 |   result &= Utils::NBitMask(bitwidth); | 
| 1377 |   ASSERT(s_bit < bitwidth && r_bit < bitwidth); | 
| 1378 |   // See ARM v8 Instruction set overview 5.4.5. | 
| 1379 |   // If s >= r then Rd[s-r:0] := Rn[s:r], else Rd[bitwidth+s-r:bitwidth-r] := | 
| 1380 |   // Rn[s:0]. | 
| 1381 |   uword mask = Utils::NBitMask(s_bit + 1); | 
| 1382 |   if (s_bit >= r_bit) { | 
| 1383 |     mask >>= r_bit; | 
| 1384 |     result >>= r_bit; | 
| 1385 |   } else { | 
| 1386 |     result = static_cast<uint64_t>(result) << (bitwidth - r_bit); | 
| 1387 |     mask <<= bitwidth - r_bit; | 
| 1388 |   } | 
| 1389 |   result &= mask; | 
| 1390 |   if (sign_extend) { | 
| 1391 |     int highest_bit = (s_bit - r_bit) & (bitwidth - 1); | 
| 1392 |     int shift = bitwidth - highest_bit - 1; | 
| 1393 |     result <<= shift; | 
| 1394 |     result = static_cast<word>(result) >> shift; | 
| 1395 |   } else if (!zero_extend) { | 
| 1396 |     const int64_t rd_val = get_register(rd, instr->RnMode()); | 
| 1397 |     result |= rd_val & ~mask; | 
| 1398 |   } | 
| 1399 |   if (bitwidth == 64) { | 
| 1400 |     set_register(instr, rd, result, instr->RdMode()); | 
| 1401 |   } else { | 
| 1402 |     set_wregister(rd, result, instr->RdMode()); | 
| 1403 |   } | 
| 1404 | } | 
| 1405 |  | 
| 1406 | void Simulator::DecodeLogicalImm(Instr* instr) { | 
| 1407 |   const int op = instr->Bits(29, 2); | 
| 1408 |   const bool set_flags = op == 3; | 
| 1409 |   const int out_size = ((instr->SFField() == 0) && (instr->NField() == 0)) | 
| 1410 |                            ? kWRegSizeInBits | 
| 1411 |                            : kXRegSizeInBits; | 
| 1412 |   const Register rn = instr->RnField(); | 
| 1413 |   const Register rd = instr->RdField(); | 
| 1414 |   const int64_t rn_val = get_register(rn, instr->RnMode()); | 
| 1415 |   const uint64_t imm = instr->ImmLogical(); | 
| 1416 |   if (imm == 0) { | 
| 1417 |     UnimplementedInstruction(instr); | 
| 1418 |   } | 
| 1419 |  | 
| 1420 |   int64_t alu_out = 0; | 
| 1421 |   switch (op) { | 
| 1422 |     case 0: | 
| 1423 |       alu_out = rn_val & imm; | 
| 1424 |       break; | 
| 1425 |     case 1: | 
| 1426 |       alu_out = rn_val | imm; | 
| 1427 |       break; | 
| 1428 |     case 2: | 
| 1429 |       alu_out = rn_val ^ imm; | 
| 1430 |       break; | 
| 1431 |     case 3: | 
| 1432 |       alu_out = rn_val & imm; | 
| 1433 |       break; | 
| 1434 |     default: | 
| 1435 |       UNREACHABLE(); | 
| 1436 |       break; | 
| 1437 |   } | 
| 1438 |  | 
| 1439 |   if (set_flags) { | 
| 1440 |     if (out_size == kXRegSizeInBits) { | 
| 1441 |       SetNZFlagsX(alu_out); | 
| 1442 |     } else { | 
| 1443 |       SetNZFlagsW(alu_out); | 
| 1444 |     } | 
| 1445 |     SetCFlag(false); | 
| 1446 |     SetVFlag(false); | 
| 1447 |   } | 
| 1448 |  | 
| 1449 |   if (out_size == kXRegSizeInBits) { | 
| 1450 |     set_register(instr, rd, alu_out, instr->RdMode()); | 
| 1451 |   } else { | 
| 1452 |     set_wregister(rd, alu_out, instr->RdMode()); | 
| 1453 |   } | 
| 1454 | } | 
| 1455 |  | 
| 1456 | void Simulator::DecodePCRel(Instr* instr) { | 
| 1457 |   const int op = instr->Bit(31); | 
| 1458 |   if (op == 0) { | 
| 1459 |     // Format(instr, "adr 'rd, 'pcrel") | 
| 1460 |     const Register rd = instr->RdField(); | 
| 1461 |     const uint64_t immhi = instr->SImm19Field(); | 
| 1462 |     const uint64_t immlo = instr->Bits(29, 2); | 
| 1463 |     const uint64_t off = (immhi << 2) | immlo; | 
| 1464 |     const uint64_t dest = get_pc() + off; | 
| 1465 |     set_register(instr, rd, dest, instr->RdMode()); | 
| 1466 |   } else { | 
| 1467 |     UnimplementedInstruction(instr); | 
| 1468 |   } | 
| 1469 | } | 
| 1470 |  | 
| 1471 | void Simulator::DecodeDPImmediate(Instr* instr) { | 
| 1472 |   if (instr->IsMoveWideOp()) { | 
| 1473 |     DecodeMoveWide(instr); | 
| 1474 |   } else if (instr->IsAddSubImmOp()) { | 
| 1475 |     DecodeAddSubImm(instr); | 
| 1476 |   } else if (instr->IsBitfieldOp()) { | 
| 1477 |     DecodeBitfield(instr); | 
| 1478 |   } else if (instr->IsLogicalImmOp()) { | 
| 1479 |     DecodeLogicalImm(instr); | 
| 1480 |   } else if (instr->IsPCRelOp()) { | 
| 1481 |     DecodePCRel(instr); | 
| 1482 |   } else { | 
| 1483 |     UnimplementedInstruction(instr); | 
| 1484 |   } | 
| 1485 | } | 
| 1486 |  | 
| 1487 | void Simulator::DecodeCompareAndBranch(Instr* instr) { | 
| 1488 |   const int op = instr->Bit(24); | 
| 1489 |   const Register rt = instr->RtField(); | 
| 1490 |   const uint64_t imm19 = instr->SImm19Field(); | 
| 1491 |   const uint64_t dest = get_pc() + (imm19 << 2); | 
| 1492 |   const uint64_t mask = instr->SFField() == 1 ? kXRegMask : kWRegMask; | 
| 1493 |   const uint64_t rt_val = get_register(rt, R31IsZR) & mask; | 
| 1494 |   if (op == 0) { | 
| 1495 |     // Format(instr, "cbz'sf 'rt, 'dest19"); | 
| 1496 |     if (rt_val == 0) { | 
| 1497 |       set_pc(dest); | 
| 1498 |     } | 
| 1499 |   } else { | 
| 1500 |     // Format(instr, "cbnz'sf 'rt, 'dest19"); | 
| 1501 |     if (rt_val != 0) { | 
| 1502 |       set_pc(dest); | 
| 1503 |     } | 
| 1504 |   } | 
| 1505 | } | 
| 1506 |  | 
| 1507 | bool Simulator::ConditionallyExecute(Instr* instr) { | 
| 1508 |   Condition cond; | 
| 1509 |   if (instr->IsConditionalSelectOp()) { | 
| 1510 |     cond = instr->SelectConditionField(); | 
| 1511 |   } else { | 
| 1512 |     cond = instr->ConditionField(); | 
| 1513 |   } | 
| 1514 |   switch (cond) { | 
| 1515 |     case EQ: | 
| 1516 |       return z_flag_; | 
| 1517 |     case NE: | 
| 1518 |       return !z_flag_; | 
| 1519 |     case CS: | 
| 1520 |       return c_flag_; | 
| 1521 |     case CC: | 
| 1522 |       return !c_flag_; | 
| 1523 |     case MI: | 
| 1524 |       return n_flag_; | 
| 1525 |     case PL: | 
| 1526 |       return !n_flag_; | 
| 1527 |     case VS: | 
| 1528 |       return v_flag_; | 
| 1529 |     case VC: | 
| 1530 |       return !v_flag_; | 
| 1531 |     case HI: | 
| 1532 |       return c_flag_ && !z_flag_; | 
| 1533 |     case LS: | 
| 1534 |       return !c_flag_ || z_flag_; | 
| 1535 |     case GE: | 
| 1536 |       return n_flag_ == v_flag_; | 
| 1537 |     case LT: | 
| 1538 |       return n_flag_ != v_flag_; | 
| 1539 |     case GT: | 
| 1540 |       return !z_flag_ && (n_flag_ == v_flag_); | 
| 1541 |     case LE: | 
| 1542 |       return z_flag_ || (n_flag_ != v_flag_); | 
| 1543 |     case AL: | 
| 1544 |       return true; | 
| 1545 |     default: | 
| 1546 |       UNREACHABLE(); | 
| 1547 |   } | 
| 1548 |   return false; | 
| 1549 | } | 
| 1550 |  | 
| 1551 | void Simulator::DecodeConditionalBranch(Instr* instr) { | 
| 1552 |   // Format(instr, "b'cond 'dest19"); | 
| 1553 |   if ((instr->Bit(24) != 0) || (instr->Bit(4) != 0)) { | 
| 1554 |     UnimplementedInstruction(instr); | 
| 1555 |   } | 
| 1556 |   const uint64_t imm19 = instr->SImm19Field(); | 
| 1557 |   const uint64_t dest = get_pc() + (imm19 << 2); | 
| 1558 |   if (ConditionallyExecute(instr)) { | 
| 1559 |     set_pc(dest); | 
| 1560 |   } | 
| 1561 | } | 
| 1562 |  | 
| 1563 | // Calls into the Dart runtime are based on this interface. | 
| 1564 | typedef void (*SimulatorRuntimeCall)(NativeArguments arguments); | 
| 1565 |  | 
| 1566 | // Calls to leaf Dart runtime functions are based on this interface. | 
| 1567 | typedef int64_t (*SimulatorLeafRuntimeCall)(int64_t r0, | 
| 1568 |                                             int64_t r1, | 
| 1569 |                                             int64_t r2, | 
| 1570 |                                             int64_t r3, | 
| 1571 |                                             int64_t r4, | 
| 1572 |                                             int64_t r5, | 
| 1573 |                                             int64_t r6, | 
| 1574 |                                             int64_t r7); | 
| 1575 |  | 
| 1576 | // [target] has several different signatures that differ from | 
| 1577 | // SimulatorLeafRuntimeCall. We can call them all from here only because in | 
| 1578 | // X64's calling conventions a function can be called with extra arguments | 
| 1579 | // and the callee will see the first arguments and won't unbalance the stack. | 
| 1580 | NO_SANITIZE_UNDEFINED("function" ) | 
| 1581 | static int64_t InvokeLeafRuntime(SimulatorLeafRuntimeCall target, | 
| 1582 |                                  int64_t r0, | 
| 1583 |                                  int64_t r1, | 
| 1584 |                                  int64_t r2, | 
| 1585 |                                  int64_t r3, | 
| 1586 |                                  int64_t r4, | 
| 1587 |                                  int64_t r5, | 
| 1588 |                                  int64_t r6, | 
| 1589 |                                  int64_t r7) { | 
| 1590 |   return target(r0, r1, r2, r3, r4, r5, r6, r7); | 
| 1591 | } | 
| 1592 |  | 
| 1593 | // Calls to leaf float Dart runtime functions are based on this interface. | 
| 1594 | typedef double (*SimulatorLeafFloatRuntimeCall)(double d0, | 
| 1595 |                                                 double d1, | 
| 1596 |                                                 double d2, | 
| 1597 |                                                 double d3, | 
| 1598 |                                                 double d4, | 
| 1599 |                                                 double d5, | 
| 1600 |                                                 double d6, | 
| 1601 |                                                 double d7); | 
| 1602 |  | 
| 1603 | // [target] has several different signatures that differ from | 
| 1604 | // SimulatorFloatLeafRuntimeCall. We can call them all from here only because in | 
| 1605 | // X64's calling conventions a function can be called with extra arguments | 
| 1606 | // and the callee will see the first arguments and won't unbalance the stack. | 
| 1607 | NO_SANITIZE_UNDEFINED("function" ) | 
| 1608 | static double InvokeFloatLeafRuntime(SimulatorLeafFloatRuntimeCall target, | 
| 1609 |                                      double d0, | 
| 1610 |                                      double d1, | 
| 1611 |                                      double d2, | 
| 1612 |                                      double d3, | 
| 1613 |                                      double d4, | 
| 1614 |                                      double d5, | 
| 1615 |                                      double d6, | 
| 1616 |                                      double d7) { | 
| 1617 |   return target(d0, d1, d2, d3, d4, d5, d6, d7); | 
| 1618 | } | 
| 1619 |  | 
| 1620 | // Calls to native Dart functions are based on this interface. | 
| 1621 | typedef void (*SimulatorNativeCallWrapper)(Dart_NativeArguments arguments, | 
| 1622 |                                            Dart_NativeFunction target); | 
| 1623 |  | 
| 1624 | void Simulator::DoRedirectedCall(Instr* instr) { | 
| 1625 |   SimulatorSetjmpBuffer buffer(this); | 
| 1626 |   if (!setjmp(buffer.buffer_)) { | 
| 1627 |     int64_t saved_lr = get_register(LR); | 
| 1628 |     Redirection* redirection = Redirection::FromHltInstruction(instr); | 
| 1629 |     uword external = redirection->external_function(); | 
| 1630 |     if (IsTracingExecution()) { | 
| 1631 |       THR_Print("Call to host function at 0x%"  Pd "\n" , external); | 
| 1632 |     } | 
| 1633 |  | 
| 1634 |     if (redirection->call_kind() == kRuntimeCall) { | 
| 1635 |       NativeArguments* arguments = | 
| 1636 |           reinterpret_cast<NativeArguments*>(get_register(R0)); | 
| 1637 |       SimulatorRuntimeCall target = | 
| 1638 |           reinterpret_cast<SimulatorRuntimeCall>(external); | 
| 1639 |       target(*arguments); | 
| 1640 |       // Zap result register from void function. | 
| 1641 |       set_register(instr, R0, icount_); | 
| 1642 |       set_register(instr, R1, icount_); | 
| 1643 |     } else if (redirection->call_kind() == kLeafRuntimeCall) { | 
| 1644 |       ASSERT((0 <= redirection->argument_count()) && | 
| 1645 |              (redirection->argument_count() <= 8)); | 
| 1646 |       SimulatorLeafRuntimeCall target = | 
| 1647 |           reinterpret_cast<SimulatorLeafRuntimeCall>(external); | 
| 1648 |       const int64_t r0 = get_register(R0); | 
| 1649 |       const int64_t r1 = get_register(R1); | 
| 1650 |       const int64_t r2 = get_register(R2); | 
| 1651 |       const int64_t r3 = get_register(R3); | 
| 1652 |       const int64_t r4 = get_register(R4); | 
| 1653 |       const int64_t r5 = get_register(R5); | 
| 1654 |       const int64_t r6 = get_register(R6); | 
| 1655 |       const int64_t r7 = get_register(R7); | 
| 1656 |       const int64_t res = | 
| 1657 |           InvokeLeafRuntime(target, r0, r1, r2, r3, r4, r5, r6, r7); | 
| 1658 |       set_register(instr, R0, res);      // Set returned result from function. | 
| 1659 |       set_register(instr, R1, icount_);  // Zap unused result register. | 
| 1660 |     } else if (redirection->call_kind() == kLeafFloatRuntimeCall) { | 
| 1661 |       ASSERT((0 <= redirection->argument_count()) && | 
| 1662 |              (redirection->argument_count() <= 8)); | 
| 1663 |       SimulatorLeafFloatRuntimeCall target = | 
| 1664 |           reinterpret_cast<SimulatorLeafFloatRuntimeCall>(external); | 
| 1665 |       const double d0 = bit_cast<double, int64_t>(get_vregisterd(V0, 0)); | 
| 1666 |       const double d1 = bit_cast<double, int64_t>(get_vregisterd(V1, 0)); | 
| 1667 |       const double d2 = bit_cast<double, int64_t>(get_vregisterd(V2, 0)); | 
| 1668 |       const double d3 = bit_cast<double, int64_t>(get_vregisterd(V3, 0)); | 
| 1669 |       const double d4 = bit_cast<double, int64_t>(get_vregisterd(V4, 0)); | 
| 1670 |       const double d5 = bit_cast<double, int64_t>(get_vregisterd(V5, 0)); | 
| 1671 |       const double d6 = bit_cast<double, int64_t>(get_vregisterd(V6, 0)); | 
| 1672 |       const double d7 = bit_cast<double, int64_t>(get_vregisterd(V7, 0)); | 
| 1673 |       const double res = | 
| 1674 |           InvokeFloatLeafRuntime(target, d0, d1, d2, d3, d4, d5, d6, d7); | 
| 1675 |       set_vregisterd(V0, 0, bit_cast<int64_t, double>(res)); | 
| 1676 |       set_vregisterd(V0, 1, 0); | 
| 1677 |     } else { | 
| 1678 |       ASSERT(redirection->call_kind() == kNativeCallWrapper); | 
| 1679 |       SimulatorNativeCallWrapper wrapper = | 
| 1680 |           reinterpret_cast<SimulatorNativeCallWrapper>(external); | 
| 1681 |       Dart_NativeArguments arguments = | 
| 1682 |           reinterpret_cast<Dart_NativeArguments>(get_register(R0)); | 
| 1683 |       Dart_NativeFunction target = | 
| 1684 |           reinterpret_cast<Dart_NativeFunction>(get_register(R1)); | 
| 1685 |       wrapper(arguments, target); | 
| 1686 |       // Zap result register from void function. | 
| 1687 |       set_register(instr, R0, icount_); | 
| 1688 |       set_register(instr, R1, icount_); | 
| 1689 |     } | 
| 1690 |  | 
| 1691 |     // Zap caller-saved registers, since the actual runtime call could have | 
| 1692 |     // used them. | 
| 1693 |     set_register(NULL, R2, icount_); | 
| 1694 |     set_register(NULL, R3, icount_); | 
| 1695 |     set_register(NULL, R4, icount_); | 
| 1696 |     set_register(NULL, R5, icount_); | 
| 1697 |     set_register(NULL, R6, icount_); | 
| 1698 |     set_register(NULL, R7, icount_); | 
| 1699 |     set_register(NULL, R8, icount_); | 
| 1700 |     set_register(NULL, R9, icount_); | 
| 1701 |     set_register(NULL, R10, icount_); | 
| 1702 |     set_register(NULL, R11, icount_); | 
| 1703 |     set_register(NULL, R12, icount_); | 
| 1704 |     set_register(NULL, R13, icount_); | 
| 1705 |     set_register(NULL, R14, icount_); | 
| 1706 |     set_register(NULL, R15, icount_); | 
| 1707 |     set_register(NULL, IP0, icount_); | 
| 1708 |     set_register(NULL, IP1, icount_); | 
| 1709 |     set_register(NULL, R18, icount_); | 
| 1710 |     set_register(NULL, LR, icount_); | 
| 1711 |  | 
| 1712 |     // TODO(zra): Zap caller-saved fpu registers. | 
| 1713 |  | 
| 1714 |     // Return. | 
| 1715 |     set_pc(saved_lr); | 
| 1716 |   } else { | 
| 1717 |     // Coming via long jump from a throw. Continue to exception handler. | 
| 1718 |   } | 
| 1719 | } | 
| 1720 |  | 
| 1721 | void Simulator::DecodeExceptionGen(Instr* instr) { | 
| 1722 |   if ((instr->Bits(0, 2) == 1) && (instr->Bits(2, 3) == 0) && | 
| 1723 |       (instr->Bits(21, 3) == 0)) { | 
| 1724 |     // Format(instr, "svc 'imm16"); | 
| 1725 |     UnimplementedInstruction(instr); | 
| 1726 |   } else if ((instr->Bits(0, 2) == 0) && (instr->Bits(2, 3) == 0) && | 
| 1727 |              (instr->Bits(21, 3) == 1)) { | 
| 1728 |     // Format(instr, "brk 'imm16"); | 
| 1729 |     SimulatorDebugger dbg(this); | 
| 1730 |     int32_t imm = instr->Imm16Field(); | 
| 1731 |     char buffer[32]; | 
| 1732 |     snprintf(buffer, sizeof(buffer), "brk #0x%x" , imm); | 
| 1733 |     set_pc(get_pc() + Instr::kInstrSize); | 
| 1734 |     dbg.Stop(instr, buffer); | 
| 1735 |   } else if ((instr->Bits(0, 2) == 0) && (instr->Bits(2, 3) == 0) && | 
| 1736 |              (instr->Bits(21, 3) == 2)) { | 
| 1737 |     // Format(instr, "hlt 'imm16"); | 
| 1738 |     uint16_t imm = static_cast<uint16_t>(instr->Imm16Field()); | 
| 1739 |     if (imm == Instr::kSimulatorBreakCode) { | 
| 1740 |       SimulatorDebugger dbg(this); | 
| 1741 |       dbg.Stop(instr, "breakpoint" ); | 
| 1742 |     } else if (imm == Instr::kSimulatorRedirectCode) { | 
| 1743 |       DoRedirectedCall(instr); | 
| 1744 |     } else { | 
| 1745 |       UnimplementedInstruction(instr); | 
| 1746 |     } | 
| 1747 |   } else { | 
| 1748 |     UnimplementedInstruction(instr); | 
| 1749 |   } | 
| 1750 | } | 
| 1751 |  | 
| 1752 | void Simulator::DecodeSystem(Instr* instr) { | 
| 1753 |   if (instr->InstructionBits() == CLREX) { | 
| 1754 |     // Format(instr, "clrex"); | 
| 1755 |     ClearExclusive(); | 
| 1756 |     return; | 
| 1757 |   } | 
| 1758 |  | 
| 1759 |   if ((instr->Bits(0, 8) == 0x1f) && (instr->Bits(12, 4) == 2) && | 
| 1760 |       (instr->Bits(16, 3) == 3) && (instr->Bits(19, 2) == 0) && | 
| 1761 |       (instr->Bit(21) == 0)) { | 
| 1762 |     if (instr->Bits(8, 4) == 0) { | 
| 1763 |       // Format(instr, "nop"); | 
| 1764 |     } else { | 
| 1765 |       UnimplementedInstruction(instr); | 
| 1766 |     } | 
| 1767 |   } else { | 
| 1768 |     UnimplementedInstruction(instr); | 
| 1769 |   } | 
| 1770 | } | 
| 1771 |  | 
| 1772 | void Simulator::DecodeTestAndBranch(Instr* instr) { | 
| 1773 |   const int op = instr->Bit(24); | 
| 1774 |   const int bitpos = instr->Bits(19, 5) | (instr->Bit(31) << 5); | 
| 1775 |   const uint64_t imm14 = instr->SImm14Field(); | 
| 1776 |   const uint64_t dest = get_pc() + (imm14 << 2); | 
| 1777 |   const Register rt = instr->RtField(); | 
| 1778 |   const uint64_t rt_val = get_register(rt, R31IsZR); | 
| 1779 |   if (op == 0) { | 
| 1780 |     // Format(instr, "tbz'sf 'rt, 'bitpos, 'dest14"); | 
| 1781 |     if ((rt_val & (1ull << bitpos)) == 0) { | 
| 1782 |       set_pc(dest); | 
| 1783 |     } | 
| 1784 |   } else { | 
| 1785 |     // Format(instr, "tbnz'sf 'rt, 'bitpos, 'dest14"); | 
| 1786 |     if ((rt_val & (1ull << bitpos)) != 0) { | 
| 1787 |       set_pc(dest); | 
| 1788 |     } | 
| 1789 |   } | 
| 1790 | } | 
| 1791 |  | 
| 1792 | void Simulator::DecodeUnconditionalBranch(Instr* instr) { | 
| 1793 |   const bool link = instr->Bit(31) == 1; | 
| 1794 |   const uint64_t imm26 = instr->SImm26Field(); | 
| 1795 |   const uint64_t dest = get_pc() + (imm26 << 2); | 
| 1796 |   const uint64_t ret = get_pc() + Instr::kInstrSize; | 
| 1797 |   set_pc(dest); | 
| 1798 |   if (link) { | 
| 1799 |     set_register(instr, LR, ret); | 
| 1800 |   } | 
| 1801 | } | 
| 1802 |  | 
| 1803 | void Simulator::DecodeUnconditionalBranchReg(Instr* instr) { | 
| 1804 |   if ((instr->Bits(0, 5) == 0) && (instr->Bits(10, 6) == 0) && | 
| 1805 |       (instr->Bits(16, 5) == 0x1f)) { | 
| 1806 |     switch (instr->Bits(21, 4)) { | 
| 1807 |       case 0: { | 
| 1808 |         // Format(instr, "br 'rn"); | 
| 1809 |         const Register rn = instr->RnField(); | 
| 1810 |         const int64_t dest = get_register(rn, instr->RnMode()); | 
| 1811 |         set_pc(dest); | 
| 1812 |         break; | 
| 1813 |       } | 
| 1814 |       case 1: { | 
| 1815 |         // Format(instr, "blr 'rn"); | 
| 1816 |         const Register rn = instr->RnField(); | 
| 1817 |         const int64_t dest = get_register(rn, instr->RnMode()); | 
| 1818 |         const int64_t ret = get_pc() + Instr::kInstrSize; | 
| 1819 |         set_pc(dest); | 
| 1820 |         set_register(instr, LR, ret); | 
| 1821 |         break; | 
| 1822 |       } | 
| 1823 |       case 2: { | 
| 1824 |         // Format(instr, "ret 'rn"); | 
| 1825 |         const Register rn = instr->RnField(); | 
| 1826 |         const int64_t rn_val = get_register(rn, instr->RnMode()); | 
| 1827 |         set_pc(rn_val); | 
| 1828 |         break; | 
| 1829 |       } | 
| 1830 |       default: | 
| 1831 |         UnimplementedInstruction(instr); | 
| 1832 |         break; | 
| 1833 |     } | 
| 1834 |   } else { | 
| 1835 |     UnimplementedInstruction(instr); | 
| 1836 |   } | 
| 1837 | } | 
| 1838 |  | 
| 1839 | void Simulator::DecodeCompareBranch(Instr* instr) { | 
| 1840 |   if (instr->IsCompareAndBranchOp()) { | 
| 1841 |     DecodeCompareAndBranch(instr); | 
| 1842 |   } else if (instr->IsConditionalBranchOp()) { | 
| 1843 |     DecodeConditionalBranch(instr); | 
| 1844 |   } else if (instr->IsExceptionGenOp()) { | 
| 1845 |     DecodeExceptionGen(instr); | 
| 1846 |   } else if (instr->IsSystemOp()) { | 
| 1847 |     DecodeSystem(instr); | 
| 1848 |   } else if (instr->IsTestAndBranchOp()) { | 
| 1849 |     DecodeTestAndBranch(instr); | 
| 1850 |   } else if (instr->IsUnconditionalBranchOp()) { | 
| 1851 |     DecodeUnconditionalBranch(instr); | 
| 1852 |   } else if (instr->IsUnconditionalBranchRegOp()) { | 
| 1853 |     DecodeUnconditionalBranchReg(instr); | 
| 1854 |   } else { | 
| 1855 |     UnimplementedInstruction(instr); | 
| 1856 |   } | 
| 1857 | } | 
| 1858 |  | 
| 1859 | void Simulator::DecodeLoadStoreReg(Instr* instr) { | 
| 1860 |   // Calculate the address. | 
| 1861 |   const Register rn = instr->RnField(); | 
| 1862 |   const Register rt = instr->RtField(); | 
| 1863 |   const VRegister vt = instr->VtField(); | 
| 1864 |   const int64_t rn_val = get_register(rn, R31IsSP); | 
| 1865 |   const uint32_t size = (instr->Bit(26) == 1) | 
| 1866 |                             ? ((instr->Bit(23) << 2) | instr->SzField()) | 
| 1867 |                             : instr->SzField(); | 
| 1868 |   uword address = 0; | 
| 1869 |   uword wb_address = 0; | 
| 1870 |   bool wb = false; | 
| 1871 |   if (instr->Bit(24) == 1) { | 
| 1872 |     // addr = rn + scaled unsigned 12-bit immediate offset. | 
| 1873 |     const uint32_t imm12 = static_cast<uint32_t>(instr->Imm12Field()); | 
| 1874 |     const uint32_t offset = imm12 << size; | 
| 1875 |     address = rn_val + offset; | 
| 1876 |   } else if (instr->Bits(10, 2) == 0) { | 
| 1877 |     // addr = rn + signed 9-bit immediate offset. | 
| 1878 |     wb = false; | 
| 1879 |     const int64_t offset = static_cast<int64_t>(instr->SImm9Field()); | 
| 1880 |     address = rn_val + offset; | 
| 1881 |     wb_address = rn_val; | 
| 1882 |   } else if (instr->Bit(10) == 1) { | 
| 1883 |     // addr = rn + signed 9-bit immediate offset. | 
| 1884 |     wb = true; | 
| 1885 |     const int64_t offset = static_cast<int64_t>(instr->SImm9Field()); | 
| 1886 |     if (instr->Bit(11) == 1) { | 
| 1887 |       // Pre-index. | 
| 1888 |       address = rn_val + offset; | 
| 1889 |       wb_address = address; | 
| 1890 |     } else { | 
| 1891 |       // Post-index. | 
| 1892 |       address = rn_val; | 
| 1893 |       wb_address = rn_val + offset; | 
| 1894 |     } | 
| 1895 |   } else if (instr->Bits(10, 2) == 2) { | 
| 1896 |     // addr = rn + (rm EXT optionally scaled by operand instruction size). | 
| 1897 |     const Register rm = instr->RmField(); | 
| 1898 |     const Extend ext = instr->ExtendTypeField(); | 
| 1899 |     const uint8_t scale = (ext == UXTX) && (instr->Bit(12) == 1) ? size : 0; | 
| 1900 |     const int64_t rm_val = get_register(rm, R31IsZR); | 
| 1901 |     const int64_t offset = ExtendOperand(kXRegSizeInBits, rm_val, ext, scale); | 
| 1902 |     address = rn_val + offset; | 
| 1903 |   } else { | 
| 1904 |     UnimplementedInstruction(instr); | 
| 1905 |     return; | 
| 1906 |   } | 
| 1907 |  | 
| 1908 |   // Check the address. | 
| 1909 |   if (IsIllegalAddress(address)) { | 
| 1910 |     HandleIllegalAccess(address, instr); | 
| 1911 |     return; | 
| 1912 |   } | 
| 1913 |  | 
| 1914 |   // Do access. | 
| 1915 |   if (instr->Bit(26) == 1) { | 
| 1916 |     if (instr->Bit(22) == 0) { | 
| 1917 |       // Format(instr, "fstr'fsz 'vt, 'memop"); | 
| 1918 |       const int64_t vt_val = get_vregisterd(vt, 0); | 
| 1919 |       switch (size) { | 
| 1920 |         case 2: | 
| 1921 |           WriteW(address, vt_val & kWRegMask, instr); | 
| 1922 |           break; | 
| 1923 |         case 3: | 
| 1924 |           WriteX(address, vt_val, instr); | 
| 1925 |           break; | 
| 1926 |         case 4: { | 
| 1927 |           simd_value_t val; | 
| 1928 |           get_vregister(vt, &val); | 
| 1929 |           WriteX(address, val.bits.i64[0], instr); | 
| 1930 |           WriteX(address + kWordSize, val.bits.i64[1], instr); | 
| 1931 |           break; | 
| 1932 |         } | 
| 1933 |         default: | 
| 1934 |           UnimplementedInstruction(instr); | 
| 1935 |           return; | 
| 1936 |       } | 
| 1937 |     } else { | 
| 1938 |       // Format(instr, "fldr'fsz 'vt, 'memop"); | 
| 1939 |       switch (size) { | 
| 1940 |         case 2: | 
| 1941 |           set_vregisterd(vt, 0, static_cast<int64_t>(ReadWU(address, instr))); | 
| 1942 |           set_vregisterd(vt, 1, 0); | 
| 1943 |           break; | 
| 1944 |         case 3: | 
| 1945 |           set_vregisterd(vt, 0, ReadX(address, instr)); | 
| 1946 |           set_vregisterd(vt, 1, 0); | 
| 1947 |           break; | 
| 1948 |         case 4: { | 
| 1949 |           simd_value_t val; | 
| 1950 |           val.bits.i64[0] = ReadX(address, instr); | 
| 1951 |           val.bits.i64[1] = ReadX(address + kWordSize, instr); | 
| 1952 |           set_vregister(vt, val); | 
| 1953 |           break; | 
| 1954 |         } | 
| 1955 |         default: | 
| 1956 |           UnimplementedInstruction(instr); | 
| 1957 |           return; | 
| 1958 |       } | 
| 1959 |     } | 
| 1960 |   } else { | 
| 1961 |     if (instr->Bits(22, 2) == 0) { | 
| 1962 |       // Format(instr, "str'sz 'rt, 'memop"); | 
| 1963 |       const int32_t rt_val32 = get_wregister(rt, R31IsZR); | 
| 1964 |       switch (size) { | 
| 1965 |         case 0: { | 
| 1966 |           const uint8_t val = static_cast<uint8_t>(rt_val32); | 
| 1967 |           WriteB(address, val); | 
| 1968 |           break; | 
| 1969 |         } | 
| 1970 |         case 1: { | 
| 1971 |           const uint16_t val = static_cast<uint16_t>(rt_val32); | 
| 1972 |           WriteH(address, val, instr); | 
| 1973 |           break; | 
| 1974 |         } | 
| 1975 |         case 2: { | 
| 1976 |           const uint32_t val = static_cast<uint32_t>(rt_val32); | 
| 1977 |           WriteW(address, val, instr); | 
| 1978 |           break; | 
| 1979 |         } | 
| 1980 |         case 3: { | 
| 1981 |           const int64_t val = get_register(rt, R31IsZR); | 
| 1982 |           WriteX(address, val, instr); | 
| 1983 |           break; | 
| 1984 |         } | 
| 1985 |         default: | 
| 1986 |           UNREACHABLE(); | 
| 1987 |           break; | 
| 1988 |       } | 
| 1989 |     } else { | 
| 1990 |       // Format(instr, "ldr'sz 'rt, 'memop"); | 
| 1991 |       // Undefined case. | 
| 1992 |       if ((size == 3) && (instr->Bits(22, 2) == 3)) { | 
| 1993 |         UnimplementedInstruction(instr); | 
| 1994 |         return; | 
| 1995 |       } | 
| 1996 |  | 
| 1997 |       // Read the value. | 
| 1998 |       const bool signd = instr->Bit(23) == 1; | 
| 1999 |       // Write the W register for signed values when size < 2. | 
| 2000 |       // Write the W register for unsigned values when size == 2. | 
| 2001 |       const bool use_w = | 
| 2002 |           (signd && (instr->Bit(22) == 1)) || (!signd && (size == 2)); | 
| 2003 |       int64_t val = 0;  // Sign extend into an int64_t. | 
| 2004 |       switch (size) { | 
| 2005 |         case 0: { | 
| 2006 |           if (signd) { | 
| 2007 |             val = static_cast<int64_t>(ReadB(address)); | 
| 2008 |           } else { | 
| 2009 |             val = static_cast<int64_t>(ReadBU(address)); | 
| 2010 |           } | 
| 2011 |           break; | 
| 2012 |         } | 
| 2013 |         case 1: { | 
| 2014 |           if (signd) { | 
| 2015 |             val = static_cast<int64_t>(ReadH(address, instr)); | 
| 2016 |           } else { | 
| 2017 |             val = static_cast<int64_t>(ReadHU(address, instr)); | 
| 2018 |           } | 
| 2019 |           break; | 
| 2020 |         } | 
| 2021 |         case 2: { | 
| 2022 |           if (signd) { | 
| 2023 |             val = static_cast<int64_t>(ReadW(address, instr)); | 
| 2024 |           } else { | 
| 2025 |             val = static_cast<int64_t>(ReadWU(address, instr)); | 
| 2026 |           } | 
| 2027 |           break; | 
| 2028 |         } | 
| 2029 |         case 3: | 
| 2030 |           val = ReadX(address, instr); | 
| 2031 |           break; | 
| 2032 |         default: | 
| 2033 |           UNREACHABLE(); | 
| 2034 |           break; | 
| 2035 |       } | 
| 2036 |  | 
| 2037 |       // Write to register. | 
| 2038 |       if (use_w) { | 
| 2039 |         set_wregister(rt, static_cast<int32_t>(val), R31IsZR); | 
| 2040 |       } else { | 
| 2041 |         set_register(instr, rt, val, R31IsZR); | 
| 2042 |       } | 
| 2043 |     } | 
| 2044 |   } | 
| 2045 |  | 
| 2046 |   // Do writeback. | 
| 2047 |   if (wb) { | 
| 2048 |     set_register(instr, rn, wb_address, R31IsSP); | 
| 2049 |   } | 
| 2050 | } | 
| 2051 |  | 
| 2052 | void Simulator::DecodeLoadStoreRegPair(Instr* instr) { | 
| 2053 |   const int32_t opc = instr->Bits(23, 3); | 
| 2054 |   const Register rn = instr->RnField(); | 
| 2055 |   const Register rt = instr->RtField(); | 
| 2056 |   const Register rt2 = instr->Rt2Field(); | 
| 2057 |   const int64_t rn_val = get_register(rn, R31IsSP); | 
| 2058 |   const intptr_t shift = 2 + instr->SFField(); | 
| 2059 |   const intptr_t size = 1 << shift; | 
| 2060 |   const int32_t offset = (static_cast<uint32_t>(instr->SImm7Field()) << shift); | 
| 2061 |   uword address = 0; | 
| 2062 |   uword wb_address = 0; | 
| 2063 |   bool wb = false; | 
| 2064 |  | 
| 2065 |   if ((instr->Bits(30, 2) == 3) || (instr->Bit(26) != 0)) { | 
| 2066 |     UnimplementedInstruction(instr); | 
| 2067 |     return; | 
| 2068 |   } | 
| 2069 |  | 
| 2070 |   // Calculate address. | 
| 2071 |   switch (opc) { | 
| 2072 |     case 1: | 
| 2073 |       address = rn_val; | 
| 2074 |       wb_address = rn_val + offset; | 
| 2075 |       wb = true; | 
| 2076 |       break; | 
| 2077 |     case 2: | 
| 2078 |       address = rn_val + offset; | 
| 2079 |       break; | 
| 2080 |     case 3: | 
| 2081 |       address = rn_val + offset; | 
| 2082 |       wb_address = address; | 
| 2083 |       wb = true; | 
| 2084 |       break; | 
| 2085 |     default: | 
| 2086 |       UnimplementedInstruction(instr); | 
| 2087 |       return; | 
| 2088 |   } | 
| 2089 |  | 
| 2090 |   // Check the address. | 
| 2091 |   if (IsIllegalAddress(address)) { | 
| 2092 |     HandleIllegalAccess(address, instr); | 
| 2093 |     return; | 
| 2094 |   } | 
| 2095 |  | 
| 2096 |   // Do access. | 
| 2097 |   if (instr->Bit(22)) { | 
| 2098 |     // Format(instr, "ldp'sf 'rt, 'ra, 'memop"); | 
| 2099 |     const bool signd = instr->Bit(30) == 1; | 
| 2100 |     int64_t val1 = 0;  // Sign extend into an int64_t. | 
| 2101 |     int64_t val2 = 0; | 
| 2102 |     if (instr->Bit(31) == 1) { | 
| 2103 |       // 64-bit read. | 
| 2104 |       val1 = ReadX(address, instr); | 
| 2105 |       val2 = ReadX(address + size, instr); | 
| 2106 |     } else { | 
| 2107 |       if (signd) { | 
| 2108 |         val1 = static_cast<int64_t>(ReadW(address, instr)); | 
| 2109 |         val2 = static_cast<int64_t>(ReadW(address + size, instr)); | 
| 2110 |       } else { | 
| 2111 |         val1 = static_cast<int64_t>(ReadWU(address, instr)); | 
| 2112 |         val2 = static_cast<int64_t>(ReadWU(address + size, instr)); | 
| 2113 |       } | 
| 2114 |     } | 
| 2115 |  | 
| 2116 |     // Write to register. | 
| 2117 |     if (instr->Bit(31) == 1) { | 
| 2118 |       set_register(instr, rt, val1, R31IsZR); | 
| 2119 |       set_register(instr, rt2, val2, R31IsZR); | 
| 2120 |     } else { | 
| 2121 |       set_wregister(rt, static_cast<int32_t>(val1), R31IsZR); | 
| 2122 |       set_wregister(rt2, static_cast<int32_t>(val2), R31IsZR); | 
| 2123 |     } | 
| 2124 |   } else { | 
| 2125 |     // Format(instr, "stp'sf 'rt, 'ra, 'memop"); | 
| 2126 |     if (instr->Bit(31) == 1) { | 
| 2127 |       const int64_t val1 = get_register(rt, R31IsZR); | 
| 2128 |       const int64_t val2 = get_register(rt2, R31IsZR); | 
| 2129 |       WriteX(address, val1, instr); | 
| 2130 |       WriteX(address + size, val2, instr); | 
| 2131 |     } else { | 
| 2132 |       const int32_t val1 = get_wregister(rt, R31IsZR); | 
| 2133 |       const int32_t val2 = get_wregister(rt2, R31IsZR); | 
| 2134 |       WriteW(address, val1, instr); | 
| 2135 |       WriteW(address + size, val2, instr); | 
| 2136 |     } | 
| 2137 |   } | 
| 2138 |  | 
| 2139 |   // Do writeback. | 
| 2140 |   if (wb) { | 
| 2141 |     set_register(instr, rn, wb_address, R31IsSP); | 
| 2142 |   } | 
| 2143 | } | 
| 2144 |  | 
| 2145 | void Simulator::DecodeLoadRegLiteral(Instr* instr) { | 
| 2146 |   if ((instr->Bit(31) != 0) || (instr->Bit(29) != 0) || | 
| 2147 |       (instr->Bits(24, 3) != 0)) { | 
| 2148 |     UnimplementedInstruction(instr); | 
| 2149 |   } | 
| 2150 |  | 
| 2151 |   const Register rt = instr->RtField(); | 
| 2152 |   const int64_t off = instr->SImm19Field() << 2; | 
| 2153 |   const int64_t pc = reinterpret_cast<int64_t>(instr); | 
| 2154 |   const int64_t address = pc + off; | 
| 2155 |   const int64_t val = ReadX(address, instr); | 
| 2156 |   if (instr->Bit(30)) { | 
| 2157 |     // Format(instr, "ldrx 'rt, 'pcldr"); | 
| 2158 |     set_register(instr, rt, val, R31IsZR); | 
| 2159 |   } else { | 
| 2160 |     // Format(instr, "ldrw 'rt, 'pcldr"); | 
| 2161 |     set_wregister(rt, static_cast<int32_t>(val), R31IsZR); | 
| 2162 |   } | 
| 2163 | } | 
| 2164 |  | 
| 2165 | void Simulator::DecodeLoadStoreExclusive(Instr* instr) { | 
| 2166 |   if (instr->Bit(21) != 0 || instr->Bit(23) != instr->Bit(15)) { | 
| 2167 |     UNIMPLEMENTED(); | 
| 2168 |   } | 
| 2169 |   const int32_t size = instr->Bits(30, 2); | 
| 2170 |   if (size != 3 && size != 2) { | 
| 2171 |     UNIMPLEMENTED(); | 
| 2172 |   } | 
| 2173 |   const Register rs = instr->RsField(); | 
| 2174 |   const Register rn = instr->RnField(); | 
| 2175 |   const Register rt = instr->RtField(); | 
| 2176 |   ASSERT(instr->Rt2Field() == R31);  // Should-Be-One | 
| 2177 |   const bool is_load = instr->Bit(22) == 1; | 
| 2178 |   const bool is_exclusive = instr->Bit(23) == 0; | 
| 2179 |   const bool is_ordered = instr->Bit(15) == 1; | 
| 2180 |   if (is_load) { | 
| 2181 |     const bool is_load_acquire = !is_exclusive && is_ordered; | 
| 2182 |     if (is_load_acquire) { | 
| 2183 |       ASSERT(rs == R31);  // Should-Be-One | 
| 2184 |       // Format(instr, "ldar 'rt, 'rn"); | 
| 2185 |       const int64_t addr = get_register(rn, R31IsSP); | 
| 2186 |       const intptr_t value = | 
| 2187 |           (size == 3) ? ReadAcquire(addr, instr) : ReadAcquireW(addr, instr); | 
| 2188 |       set_register(instr, rt, value, R31IsSP); | 
| 2189 |     } else { | 
| 2190 |       ASSERT(rs == R31);  // Should-Be-One | 
| 2191 |       // Format(instr, "ldxr 'rt, 'rn"); | 
| 2192 |       const int64_t addr = get_register(rn, R31IsSP); | 
| 2193 |       const intptr_t value = (size == 3) ? ReadExclusiveX(addr, instr) | 
| 2194 |                                          : ReadExclusiveW(addr, instr); | 
| 2195 |       set_register(instr, rt, value, R31IsSP); | 
| 2196 |     } | 
| 2197 |   } else { | 
| 2198 |     const bool is_store_release = !is_exclusive && is_ordered; | 
| 2199 |     if (is_store_release) { | 
| 2200 |       ASSERT(rs == R31);  // Should-Be-One | 
| 2201 |       // Format(instr, "stlr 'rt, 'rn"); | 
| 2202 |       const uword value = get_register(rt, R31IsSP); | 
| 2203 |       const uword addr = get_register(rn, R31IsSP); | 
| 2204 |       if (size == 3) { | 
| 2205 |         WriteRelease(addr, value, instr); | 
| 2206 |       } else { | 
| 2207 |         WriteReleaseW(addr, static_cast<uint32_t>(value), instr); | 
| 2208 |       } | 
| 2209 |     } else { | 
| 2210 |       // Format(instr, "stxr 'rs, 'rt, 'rn"); | 
| 2211 |       const uword value = get_register(rt, R31IsSP); | 
| 2212 |       const uword addr = get_register(rn, R31IsSP); | 
| 2213 |       const intptr_t status = | 
| 2214 |           (size == 3) | 
| 2215 |               ? WriteExclusiveX(addr, value, instr) | 
| 2216 |               : WriteExclusiveW(addr, static_cast<uint32_t>(value), instr); | 
| 2217 |       set_register(instr, rs, status, R31IsSP); | 
| 2218 |     } | 
| 2219 |   } | 
| 2220 | } | 
| 2221 |  | 
| 2222 | void Simulator::DecodeLoadStore(Instr* instr) { | 
| 2223 |   if (instr->IsLoadStoreRegOp()) { | 
| 2224 |     DecodeLoadStoreReg(instr); | 
| 2225 |   } else if (instr->IsLoadStoreRegPairOp()) { | 
| 2226 |     DecodeLoadStoreRegPair(instr); | 
| 2227 |   } else if (instr->IsLoadRegLiteralOp()) { | 
| 2228 |     DecodeLoadRegLiteral(instr); | 
| 2229 |   } else if (instr->IsLoadStoreExclusiveOp()) { | 
| 2230 |     DecodeLoadStoreExclusive(instr); | 
| 2231 |   } else { | 
| 2232 |     UnimplementedInstruction(instr); | 
| 2233 |   } | 
| 2234 | } | 
| 2235 |  | 
| 2236 | int64_t Simulator::ShiftOperand(uint8_t reg_size, | 
| 2237 |                                 int64_t value, | 
| 2238 |                                 Shift shift_type, | 
| 2239 |                                 uint8_t amount) { | 
| 2240 |   if (amount == 0) { | 
| 2241 |     return value; | 
| 2242 |   } | 
| 2243 |   int64_t mask = reg_size == kXRegSizeInBits ? kXRegMask : kWRegMask; | 
| 2244 |   switch (shift_type) { | 
| 2245 |     case LSL: | 
| 2246 |       return (static_cast<uint64_t>(value) << amount) & mask; | 
| 2247 |     case LSR: | 
| 2248 |       return static_cast<uint64_t>(value) >> amount; | 
| 2249 |     case ASR: { | 
| 2250 |       // Shift used to restore the sign. | 
| 2251 |       uint8_t s_shift = kXRegSizeInBits - reg_size; | 
| 2252 |       // Value with its sign restored. | 
| 2253 |       int64_t s_value = (value << s_shift) >> s_shift; | 
| 2254 |       return (s_value >> amount) & mask; | 
| 2255 |     } | 
| 2256 |     case ROR: { | 
| 2257 |       if (reg_size == kWRegSizeInBits) { | 
| 2258 |         value &= kWRegMask; | 
| 2259 |       } | 
| 2260 |       return (static_cast<uint64_t>(value) >> amount) | | 
| 2261 |              ((static_cast<uint64_t>(value) & ((1ULL << amount) - 1ULL)) | 
| 2262 |               << (reg_size - amount)); | 
| 2263 |     } | 
| 2264 |     default: | 
| 2265 |       UNIMPLEMENTED(); | 
| 2266 |       return 0; | 
| 2267 |   } | 
| 2268 | } | 
| 2269 |  | 
| 2270 | int64_t Simulator::ExtendOperand(uint8_t reg_size, | 
| 2271 |                                  int64_t value, | 
| 2272 |                                  Extend extend_type, | 
| 2273 |                                  uint8_t amount) { | 
| 2274 |   switch (extend_type) { | 
| 2275 |     case UXTB: | 
| 2276 |       value &= 0xff; | 
| 2277 |       break; | 
| 2278 |     case UXTH: | 
| 2279 |       value &= 0xffff; | 
| 2280 |       break; | 
| 2281 |     case UXTW: | 
| 2282 |       value &= 0xffffffff; | 
| 2283 |       break; | 
| 2284 |     case SXTB: | 
| 2285 |       value = static_cast<int64_t>(static_cast<uint64_t>(value) << 56) >> 56; | 
| 2286 |       break; | 
| 2287 |     case SXTH: | 
| 2288 |       value = static_cast<int64_t>(static_cast<uint64_t>(value) << 48) >> 48; | 
| 2289 |       break; | 
| 2290 |     case SXTW: | 
| 2291 |       value = static_cast<int64_t>(static_cast<uint64_t>(value) << 32) >> 32; | 
| 2292 |       break; | 
| 2293 |     case UXTX: | 
| 2294 |     case SXTX: | 
| 2295 |       break; | 
| 2296 |     default: | 
| 2297 |       UNREACHABLE(); | 
| 2298 |       break; | 
| 2299 |   } | 
| 2300 |   int64_t mask = (reg_size == kXRegSizeInBits) ? kXRegMask : kWRegMask; | 
| 2301 |   return (static_cast<uint64_t>(value) << amount) & mask; | 
| 2302 | } | 
| 2303 |  | 
| 2304 | int64_t Simulator::DecodeShiftExtendOperand(Instr* instr) { | 
| 2305 |   const Register rm = instr->RmField(); | 
| 2306 |   const int64_t rm_val = get_register(rm, R31IsZR); | 
| 2307 |   const uint8_t size = instr->SFField() ? kXRegSizeInBits : kWRegSizeInBits; | 
| 2308 |   if (instr->IsShift()) { | 
| 2309 |     const Shift shift_type = instr->ShiftTypeField(); | 
| 2310 |     const uint8_t shift_amount = instr->Imm6Field(); | 
| 2311 |     return ShiftOperand(size, rm_val, shift_type, shift_amount); | 
| 2312 |   } else { | 
| 2313 |     ASSERT(instr->IsExtend()); | 
| 2314 |     const Extend extend_type = instr->ExtendTypeField(); | 
| 2315 |     const uint8_t shift_amount = instr->Imm3Field(); | 
| 2316 |     return ExtendOperand(size, rm_val, extend_type, shift_amount); | 
| 2317 |   } | 
| 2318 |   UNREACHABLE(); | 
| 2319 |   return -1; | 
| 2320 | } | 
| 2321 |  | 
| 2322 | void Simulator::DecodeAddSubShiftExt(Instr* instr) { | 
| 2323 |   // Format(instr, "add'sf's 'rd, 'rn, 'shift_op"); | 
| 2324 |   // also, sub, cmp, etc. | 
| 2325 |   const bool addition = (instr->Bit(30) == 0); | 
| 2326 |   const Register rd = instr->RdField(); | 
| 2327 |   const Register rn = instr->RnField(); | 
| 2328 |   const uint64_t rm_val = DecodeShiftExtendOperand(instr); | 
| 2329 |   if (instr->SFField()) { | 
| 2330 |     // 64-bit add. | 
| 2331 |     const uint64_t rn_val = get_register(rn, instr->RnMode()); | 
| 2332 |     const uint64_t alu_out = rn_val + (addition ? rm_val : -rm_val); | 
| 2333 |     set_register(instr, rd, alu_out, instr->RdMode()); | 
| 2334 |     if (instr->HasS()) { | 
| 2335 |       SetNZFlagsX(alu_out); | 
| 2336 |       SetCFlag(CarryFromX(alu_out, rn_val, rm_val, addition)); | 
| 2337 |       SetVFlag(OverflowFromX(alu_out, rn_val, rm_val, addition)); | 
| 2338 |     } | 
| 2339 |   } else { | 
| 2340 |     // 32-bit add. | 
| 2341 |     const uint32_t rn_val = get_wregister(rn, instr->RnMode()); | 
| 2342 |     uint32_t rm_val32 = static_cast<uint32_t>(rm_val & kWRegMask); | 
| 2343 |     uint32_t carry_in = 0; | 
| 2344 |     if (!addition) { | 
| 2345 |       carry_in = 1; | 
| 2346 |       rm_val32 = ~rm_val32; | 
| 2347 |     } | 
| 2348 |     const uint32_t alu_out = rn_val + rm_val32 + carry_in; | 
| 2349 |     set_wregister(rd, alu_out, instr->RdMode()); | 
| 2350 |     if (instr->HasS()) { | 
| 2351 |       SetNZFlagsW(alu_out); | 
| 2352 |       SetCFlag(CarryFromW(rn_val, rm_val32, carry_in)); | 
| 2353 |       SetVFlag(OverflowFromW(rn_val, rm_val32, carry_in)); | 
| 2354 |     } | 
| 2355 |   } | 
| 2356 | } | 
| 2357 |  | 
| 2358 | void Simulator::DecodeAddSubWithCarry(Instr* instr) { | 
| 2359 |   // Format(instr, "adc'sf's 'rd, 'rn, 'rm"); | 
| 2360 |   // Format(instr, "sbc'sf's 'rd, 'rn, 'rm"); | 
| 2361 |   const bool addition = (instr->Bit(30) == 0); | 
| 2362 |   const Register rd = instr->RdField(); | 
| 2363 |   const Register rn = instr->RnField(); | 
| 2364 |   const Register rm = instr->RmField(); | 
| 2365 |   const uint64_t rn_val64 = get_register(rn, R31IsZR); | 
| 2366 |   const uint32_t rn_val32 = get_wregister(rn, R31IsZR); | 
| 2367 |   const uint64_t rm_val64 = get_register(rm, R31IsZR); | 
| 2368 |   uint32_t rm_val32 = get_wregister(rm, R31IsZR); | 
| 2369 |   const uint32_t carry_in = c_flag_ ? 1 : 0; | 
| 2370 |   if (instr->SFField()) { | 
| 2371 |     // 64-bit add. | 
| 2372 |     const uint64_t alu_out = | 
| 2373 |         rn_val64 + (addition ? rm_val64 : ~rm_val64) + carry_in; | 
| 2374 |     set_register(instr, rd, alu_out, R31IsZR); | 
| 2375 |     if (instr->HasS()) { | 
| 2376 |       SetNZFlagsX(alu_out); | 
| 2377 |       SetCFlag(CarryFromX(alu_out, rn_val64, rm_val64, addition)); | 
| 2378 |       SetVFlag(OverflowFromX(alu_out, rn_val64, rm_val64, addition)); | 
| 2379 |     } | 
| 2380 |   } else { | 
| 2381 |     // 32-bit add. | 
| 2382 |     if (!addition) { | 
| 2383 |       rm_val32 = ~rm_val32; | 
| 2384 |     } | 
| 2385 |     const uint32_t alu_out = rn_val32 + rm_val32 + carry_in; | 
| 2386 |     set_wregister(rd, alu_out, R31IsZR); | 
| 2387 |     if (instr->HasS()) { | 
| 2388 |       SetNZFlagsW(alu_out); | 
| 2389 |       SetCFlag(CarryFromW(rn_val32, rm_val32, carry_in)); | 
| 2390 |       SetVFlag(OverflowFromW(rn_val32, rm_val32, carry_in)); | 
| 2391 |     } | 
| 2392 |   } | 
| 2393 | } | 
| 2394 |  | 
| 2395 | void Simulator::DecodeLogicalShift(Instr* instr) { | 
| 2396 |   const int op = (instr->Bits(29, 2) << 1) | instr->Bit(21); | 
| 2397 |   const Register rd = instr->RdField(); | 
| 2398 |   const Register rn = instr->RnField(); | 
| 2399 |   const int64_t rn_val = get_register(rn, instr->RnMode()); | 
| 2400 |   const int64_t rm_val = DecodeShiftExtendOperand(instr); | 
| 2401 |   int64_t alu_out = 0; | 
| 2402 |   switch (op) { | 
| 2403 |     case 0: | 
| 2404 |       // Format(instr, "and'sf 'rd, 'rn, 'shift_op"); | 
| 2405 |       alu_out = rn_val & rm_val; | 
| 2406 |       break; | 
| 2407 |     case 1: | 
| 2408 |       // Format(instr, "bic'sf 'rd, 'rn, 'shift_op"); | 
| 2409 |       alu_out = rn_val & (~rm_val); | 
| 2410 |       break; | 
| 2411 |     case 2: | 
| 2412 |       // Format(instr, "orr'sf 'rd, 'rn, 'shift_op"); | 
| 2413 |       alu_out = rn_val | rm_val; | 
| 2414 |       break; | 
| 2415 |     case 3: | 
| 2416 |       // Format(instr, "orn'sf 'rd, 'rn, 'shift_op"); | 
| 2417 |       alu_out = rn_val | (~rm_val); | 
| 2418 |       break; | 
| 2419 |     case 4: | 
| 2420 |       // Format(instr, "eor'sf 'rd, 'rn, 'shift_op"); | 
| 2421 |       alu_out = rn_val ^ rm_val; | 
| 2422 |       break; | 
| 2423 |     case 5: | 
| 2424 |       // Format(instr, "eon'sf 'rd, 'rn, 'shift_op"); | 
| 2425 |       alu_out = rn_val ^ (~rm_val); | 
| 2426 |       break; | 
| 2427 |     case 6: | 
| 2428 |       // Format(instr, "and'sfs 'rd, 'rn, 'shift_op"); | 
| 2429 |       alu_out = rn_val & rm_val; | 
| 2430 |       break; | 
| 2431 |     case 7: | 
| 2432 |       // Format(instr, "bic'sfs 'rd, 'rn, 'shift_op"); | 
| 2433 |       alu_out = rn_val & (~rm_val); | 
| 2434 |       break; | 
| 2435 |     default: | 
| 2436 |       UNREACHABLE(); | 
| 2437 |       break; | 
| 2438 |   } | 
| 2439 |  | 
| 2440 |   // Set flags if ands or bics. | 
| 2441 |   if ((op == 6) || (op == 7)) { | 
| 2442 |     if (instr->SFField() == 1) { | 
| 2443 |       SetNZFlagsX(alu_out); | 
| 2444 |     } else { | 
| 2445 |       SetNZFlagsW(alu_out); | 
| 2446 |     } | 
| 2447 |     SetCFlag(false); | 
| 2448 |     SetVFlag(false); | 
| 2449 |   } | 
| 2450 |  | 
| 2451 |   if (instr->SFField() == 1) { | 
| 2452 |     set_register(instr, rd, alu_out, instr->RdMode()); | 
| 2453 |   } else { | 
| 2454 |     set_wregister(rd, alu_out & kWRegMask, instr->RdMode()); | 
| 2455 |   } | 
| 2456 | } | 
| 2457 |  | 
| 2458 | static int64_t divide64(int64_t top, int64_t bottom, bool signd) { | 
| 2459 |   // ARM64 does not trap on integer division by zero. The destination register | 
| 2460 |   // is instead set to 0. | 
| 2461 |   if (bottom == 0) { | 
| 2462 |     return 0; | 
| 2463 |   } | 
| 2464 |  | 
| 2465 |   if (signd) { | 
| 2466 |     // INT_MIN / -1 = INT_MIN. | 
| 2467 |     if ((top == static_cast<int64_t>(0x8000000000000000LL)) && | 
| 2468 |         (bottom == static_cast<int64_t>(0xffffffffffffffffLL))) { | 
| 2469 |       return static_cast<int64_t>(0x8000000000000000LL); | 
| 2470 |     } else { | 
| 2471 |       return top / bottom; | 
| 2472 |     } | 
| 2473 |   } else { | 
| 2474 |     const uint64_t utop = static_cast<uint64_t>(top); | 
| 2475 |     const uint64_t ubottom = static_cast<uint64_t>(bottom); | 
| 2476 |     return static_cast<int64_t>(utop / ubottom); | 
| 2477 |   } | 
| 2478 | } | 
| 2479 |  | 
| 2480 | static int32_t divide32(int32_t top, int32_t bottom, bool signd) { | 
| 2481 |   // ARM64 does not trap on integer division by zero. The destination register | 
| 2482 |   // is instead set to 0. | 
| 2483 |   if (bottom == 0) { | 
| 2484 |     return 0; | 
| 2485 |   } | 
| 2486 |  | 
| 2487 |   if (signd) { | 
| 2488 |     // INT_MIN / -1 = INT_MIN. | 
| 2489 |     if ((top == static_cast<int32_t>(0x80000000)) && | 
| 2490 |         (bottom == static_cast<int32_t>(0xffffffff))) { | 
| 2491 |       return static_cast<int32_t>(0x80000000); | 
| 2492 |     } else { | 
| 2493 |       return top / bottom; | 
| 2494 |     } | 
| 2495 |   } else { | 
| 2496 |     const uint32_t utop = static_cast<uint32_t>(top); | 
| 2497 |     const uint32_t ubottom = static_cast<uint32_t>(bottom); | 
| 2498 |     return static_cast<int32_t>(utop / ubottom); | 
| 2499 |   } | 
| 2500 | } | 
| 2501 |  | 
| 2502 | void Simulator::DecodeMiscDP1Source(Instr* instr) { | 
| 2503 |   if (instr->Bit(29) != 0) { | 
| 2504 |     UnimplementedInstruction(instr); | 
| 2505 |   } | 
| 2506 |  | 
| 2507 |   const Register rd = instr->RdField(); | 
| 2508 |   const Register rn = instr->RnField(); | 
| 2509 |   const int op = instr->Bits(10, 10); | 
| 2510 |   const int64_t rn_val64 = get_register(rn, R31IsZR); | 
| 2511 |   const int32_t rn_val32 = get_wregister(rn, R31IsZR); | 
| 2512 |   switch (op) { | 
| 2513 |     case 4: { | 
| 2514 |       // Format(instr, "clz'sf 'rd, 'rn"); | 
| 2515 |       int64_t rd_val = 0; | 
| 2516 |       int64_t rn_val = (instr->SFField() == 1) ? rn_val64 : rn_val32; | 
| 2517 |       if (rn_val != 0) { | 
| 2518 |         while (rn_val > 0) { | 
| 2519 |           rd_val++; | 
| 2520 |           rn_val <<= 1; | 
| 2521 |         } | 
| 2522 |       } else { | 
| 2523 |         rd_val = (instr->SFField() == 1) ? 64 : 32; | 
| 2524 |       } | 
| 2525 |       if (instr->SFField() == 1) { | 
| 2526 |         set_register(instr, rd, rd_val, R31IsZR); | 
| 2527 |       } else { | 
| 2528 |         set_wregister(rd, rd_val, R31IsZR); | 
| 2529 |       } | 
| 2530 |       break; | 
| 2531 |     } | 
| 2532 |     case 0: { | 
| 2533 |       // Format(instr, "rbit'sf 'rd, 'rn"); | 
| 2534 |       if (instr->SFField() == 1) { | 
| 2535 |         const uint64_t rd_val = Utils::ReverseBits64(rn_val64); | 
| 2536 |         set_register(instr, rd, rd_val, R31IsZR); | 
| 2537 |       } else { | 
| 2538 |         const uint32_t rd_val = Utils::ReverseBits32(rn_val32); | 
| 2539 |         set_wregister(rd, rd_val, R31IsZR); | 
| 2540 |       } | 
| 2541 |       break; | 
| 2542 |     } | 
| 2543 |     default: | 
| 2544 |       UnimplementedInstruction(instr); | 
| 2545 |       break; | 
| 2546 |   } | 
| 2547 | } | 
| 2548 |  | 
| 2549 | void Simulator::DecodeMiscDP2Source(Instr* instr) { | 
| 2550 |   if (instr->Bit(29) != 0) { | 
| 2551 |     UnimplementedInstruction(instr); | 
| 2552 |   } | 
| 2553 |  | 
| 2554 |   const Register rd = instr->RdField(); | 
| 2555 |   const Register rn = instr->RnField(); | 
| 2556 |   const Register rm = instr->RmField(); | 
| 2557 |   const int op = instr->Bits(10, 5); | 
| 2558 |   const int64_t rn_val64 = get_register(rn, R31IsZR); | 
| 2559 |   const int64_t rm_val64 = get_register(rm, R31IsZR); | 
| 2560 |   const int32_t rn_val32 = get_wregister(rn, R31IsZR); | 
| 2561 |   const int32_t rm_val32 = get_wregister(rm, R31IsZR); | 
| 2562 |   switch (op) { | 
| 2563 |     case 2: | 
| 2564 |     case 3: { | 
| 2565 |       // Format(instr, "udiv'sf 'rd, 'rn, 'rm"); | 
| 2566 |       // Format(instr, "sdiv'sf 'rd, 'rn, 'rm"); | 
| 2567 |       const bool signd = instr->Bit(10) == 1; | 
| 2568 |       if (instr->SFField() == 1) { | 
| 2569 |         set_register(instr, rd, divide64(rn_val64, rm_val64, signd), R31IsZR); | 
| 2570 |       } else { | 
| 2571 |         set_wregister(rd, divide32(rn_val32, rm_val32, signd), R31IsZR); | 
| 2572 |       } | 
| 2573 |       break; | 
| 2574 |     } | 
| 2575 |     case 8: { | 
| 2576 |       // Format(instr, "lsl'sf 'rd, 'rn, 'rm"); | 
| 2577 |       if (instr->SFField() == 1) { | 
| 2578 |         const uint64_t rn_u64 = static_cast<uint64_t>(rn_val64); | 
| 2579 |         const int64_t alu_out = rn_u64 << (rm_val64 & (kXRegSizeInBits - 1)); | 
| 2580 |         set_register(instr, rd, alu_out, R31IsZR); | 
| 2581 |       } else { | 
| 2582 |         const uint32_t rn_u32 = static_cast<uint32_t>(rn_val32); | 
| 2583 |         const int32_t alu_out = rn_u32 << (rm_val32 & (kXRegSizeInBits - 1)); | 
| 2584 |         set_wregister(rd, alu_out, R31IsZR); | 
| 2585 |       } | 
| 2586 |       break; | 
| 2587 |     } | 
| 2588 |     case 9: { | 
| 2589 |       // Format(instr, "lsr'sf 'rd, 'rn, 'rm"); | 
| 2590 |       if (instr->SFField() == 1) { | 
| 2591 |         const uint64_t rn_u64 = static_cast<uint64_t>(rn_val64); | 
| 2592 |         const int64_t alu_out = rn_u64 >> (rm_val64 & (kXRegSizeInBits - 1)); | 
| 2593 |         set_register(instr, rd, alu_out, R31IsZR); | 
| 2594 |       } else { | 
| 2595 |         const uint32_t rn_u32 = static_cast<uint32_t>(rn_val32); | 
| 2596 |         const int32_t alu_out = rn_u32 >> (rm_val32 & (kXRegSizeInBits - 1)); | 
| 2597 |         set_wregister(rd, alu_out, R31IsZR); | 
| 2598 |       } | 
| 2599 |       break; | 
| 2600 |     } | 
| 2601 |     case 10: { | 
| 2602 |       // Format(instr, "asr'sf 'rd, 'rn, 'rm"); | 
| 2603 |       if (instr->SFField() == 1) { | 
| 2604 |         const int64_t alu_out = rn_val64 >> (rm_val64 & (kXRegSizeInBits - 1)); | 
| 2605 |         set_register(instr, rd, alu_out, R31IsZR); | 
| 2606 |       } else { | 
| 2607 |         const int32_t alu_out = rn_val32 >> (rm_val32 & (kXRegSizeInBits - 1)); | 
| 2608 |         set_wregister(rd, alu_out, R31IsZR); | 
| 2609 |       } | 
| 2610 |       break; | 
| 2611 |     } | 
| 2612 |     default: | 
| 2613 |       UnimplementedInstruction(instr); | 
| 2614 |       break; | 
| 2615 |   } | 
| 2616 | } | 
| 2617 |  | 
| 2618 | void Simulator::DecodeMiscDP3Source(Instr* instr) { | 
| 2619 |   const Register rd = instr->RdField(); | 
| 2620 |   const Register rn = instr->RnField(); | 
| 2621 |   const Register rm = instr->RmField(); | 
| 2622 |   const Register ra = instr->RaField(); | 
| 2623 |   if ((instr->Bits(29, 2) == 0) && (instr->Bits(21, 3) == 0) && | 
| 2624 |       (instr->Bit(15) == 0)) { | 
| 2625 |     // Format(instr, "madd'sf 'rd, 'rn, 'rm, 'ra"); | 
| 2626 |     if (instr->SFField() == 1) { | 
| 2627 |       const uint64_t rn_val = get_register(rn, R31IsZR); | 
| 2628 |       const uint64_t rm_val = get_register(rm, R31IsZR); | 
| 2629 |       const uint64_t ra_val = get_register(ra, R31IsZR); | 
| 2630 |       const uint64_t alu_out = ra_val + (rn_val * rm_val); | 
| 2631 |       set_register(instr, rd, alu_out, R31IsZR); | 
| 2632 |     } else { | 
| 2633 |       const uint32_t rn_val = get_wregister(rn, R31IsZR); | 
| 2634 |       const uint32_t rm_val = get_wregister(rm, R31IsZR); | 
| 2635 |       const uint32_t ra_val = get_wregister(ra, R31IsZR); | 
| 2636 |       const uint32_t alu_out = ra_val + (rn_val * rm_val); | 
| 2637 |       set_wregister(rd, alu_out, R31IsZR); | 
| 2638 |     } | 
| 2639 |   } else if ((instr->Bits(29, 2) == 0) && (instr->Bits(21, 3) == 0) && | 
| 2640 |              (instr->Bit(15) == 1)) { | 
| 2641 |     // Format(instr, "msub'sf 'rd, 'rn, 'rm, 'ra"); | 
| 2642 |     if (instr->SFField() == 1) { | 
| 2643 |       const uint64_t rn_val = get_register(rn, R31IsZR); | 
| 2644 |       const uint64_t rm_val = get_register(rm, R31IsZR); | 
| 2645 |       const uint64_t ra_val = get_register(ra, R31IsZR); | 
| 2646 |       const uint64_t alu_out = ra_val - (rn_val * rm_val); | 
| 2647 |       set_register(instr, rd, alu_out, R31IsZR); | 
| 2648 |     } else { | 
| 2649 |       const uint32_t rn_val = get_wregister(rn, R31IsZR); | 
| 2650 |       const uint32_t rm_val = get_wregister(rm, R31IsZR); | 
| 2651 |       const uint32_t ra_val = get_wregister(ra, R31IsZR); | 
| 2652 |       const uint32_t alu_out = ra_val - (rn_val * rm_val); | 
| 2653 |       set_wregister(rd, alu_out, R31IsZR); | 
| 2654 |     } | 
| 2655 |   } else if ((instr->Bits(29, 3) == 4) && (instr->Bits(21, 3) == 2) && | 
| 2656 |              (instr->Bit(15) == 0)) { | 
| 2657 |     ASSERT(ra == R31);  // Should-Be-One | 
| 2658 |     // Format(instr, "smulh 'rd, 'rn, 'rm"); | 
| 2659 |     const int64_t rn_val = get_register(rn, R31IsZR); | 
| 2660 |     const int64_t rm_val = get_register(rm, R31IsZR); | 
| 2661 | #if defined(HOST_OS_WINDOWS) | 
| 2662 |     // Visual Studio does not support __int128. | 
| 2663 |     int64_t alu_out; | 
| 2664 |     Multiply128(rn_val, rm_val, &alu_out); | 
| 2665 | #else | 
| 2666 |     const __int128 res = | 
| 2667 |         static_cast<__int128>(rn_val) * static_cast<__int128>(rm_val); | 
| 2668 |     const int64_t alu_out = static_cast<int64_t>(res >> 64); | 
| 2669 | #endif  // HOST_OS_WINDOWS | 
| 2670 |     set_register(instr, rd, alu_out, R31IsZR); | 
| 2671 |   } else if ((instr->Bits(29, 3) == 4) && (instr->Bits(21, 3) == 6) && | 
| 2672 |              (instr->Bit(15) == 0)) { | 
| 2673 |     ASSERT(ra == R31);  // Should-Be-One | 
| 2674 |     // Format(instr, "umulh 'rd, 'rn, 'rm"); | 
| 2675 |     const uint64_t rn_val = get_register(rn, R31IsZR); | 
| 2676 |     const uint64_t rm_val = get_register(rm, R31IsZR); | 
| 2677 | #if defined(HOST_OS_WINDOWS) | 
| 2678 |     // Visual Studio does not support __int128. | 
| 2679 |     uint64_t alu_out; | 
| 2680 |     UnsignedMultiply128(rn_val, rm_val, &alu_out); | 
| 2681 | #else | 
| 2682 |     const unsigned __int128 res = static_cast<unsigned __int128>(rn_val) * | 
| 2683 |                                   static_cast<unsigned __int128>(rm_val); | 
| 2684 |     const uint64_t alu_out = static_cast<uint64_t>(res >> 64); | 
| 2685 | #endif  // HOST_OS_WINDOWS | 
| 2686 |     set_register(instr, rd, alu_out, R31IsZR); | 
| 2687 |   } else if ((instr->Bits(29, 3) == 4) && (instr->Bit(15) == 0)) { | 
| 2688 |     if (instr->Bits(21, 3) == 5) { | 
| 2689 |       // Format(instr, "umaddl 'rd, 'rn, 'rm, 'ra"); | 
| 2690 |       const uint64_t rn_val = static_cast<uint32_t>(get_wregister(rn, R31IsZR)); | 
| 2691 |       const uint64_t rm_val = static_cast<uint32_t>(get_wregister(rm, R31IsZR)); | 
| 2692 |       const uint64_t ra_val = get_register(ra, R31IsZR); | 
| 2693 |       const uint64_t alu_out = ra_val + (rn_val * rm_val); | 
| 2694 |       set_register(instr, rd, alu_out, R31IsZR); | 
| 2695 |     } else { | 
| 2696 |       // Format(instr, "smaddl 'rd, 'rn, 'rm, 'ra"); | 
| 2697 |       const int64_t rn_val = static_cast<int32_t>(get_wregister(rn, R31IsZR)); | 
| 2698 |       const int64_t rm_val = static_cast<int32_t>(get_wregister(rm, R31IsZR)); | 
| 2699 |       const int64_t ra_val = get_register(ra, R31IsZR); | 
| 2700 |       const int64_t alu_out = ra_val + (rn_val * rm_val); | 
| 2701 |       set_register(instr, rd, alu_out, R31IsZR); | 
| 2702 |     } | 
| 2703 |   } else { | 
| 2704 |     UnimplementedInstruction(instr); | 
| 2705 |   } | 
| 2706 | } | 
| 2707 |  | 
| 2708 | void Simulator::DecodeConditionalSelect(Instr* instr) { | 
| 2709 |   const Register rd = instr->RdField(); | 
| 2710 |   const Register rn = instr->RnField(); | 
| 2711 |   const Register rm = instr->RmField(); | 
| 2712 |   const int64_t rm_val64 = get_register(rm, R31IsZR); | 
| 2713 |   const int32_t rm_val32 = get_wregister(rm, R31IsZR); | 
| 2714 |   const int64_t rn_val64 = get_register(rn, instr->RnMode()); | 
| 2715 |   const int32_t rn_val32 = get_wregister(rn, instr->RnMode()); | 
| 2716 |   int64_t result64 = 0; | 
| 2717 |   int32_t result32 = 0; | 
| 2718 |  | 
| 2719 |   if ((instr->Bits(29, 2) == 0) && (instr->Bits(10, 2) == 0)) { | 
| 2720 |     // Format(instr, "mov'sf'cond 'rd, 'rn, 'rm"); | 
| 2721 |     result64 = rm_val64; | 
| 2722 |     result32 = rm_val32; | 
| 2723 |     if (ConditionallyExecute(instr)) { | 
| 2724 |       result64 = rn_val64; | 
| 2725 |       result32 = rn_val32; | 
| 2726 |     } | 
| 2727 |   } else if ((instr->Bits(29, 2) == 0) && (instr->Bits(10, 2) == 1)) { | 
| 2728 |     // Format(instr, "csinc'sf'cond 'rd, 'rn, 'rm"); | 
| 2729 |     result64 = rm_val64 + 1; | 
| 2730 |     result32 = rm_val32 + 1; | 
| 2731 |     if (ConditionallyExecute(instr)) { | 
| 2732 |       result64 = rn_val64; | 
| 2733 |       result32 = rn_val32; | 
| 2734 |     } | 
| 2735 |   } else if ((instr->Bits(29, 2) == 2) && (instr->Bits(10, 2) == 0)) { | 
| 2736 |     // Format(instr, "csinv'sf'cond 'rd, 'rn, 'rm"); | 
| 2737 |     result64 = ~rm_val64; | 
| 2738 |     result32 = ~rm_val32; | 
| 2739 |     if (ConditionallyExecute(instr)) { | 
| 2740 |       result64 = rn_val64; | 
| 2741 |       result32 = rn_val32; | 
| 2742 |     } | 
| 2743 |   } else if ((instr->Bits(29, 2) == 2) && (instr->Bits(10, 2) == 1)) { | 
| 2744 |     // Format(instr, "csneg'sf'cond 'rd, 'rn, 'rm"); | 
| 2745 |     result64 = -rm_val64; | 
| 2746 |     result32 = -rm_val32; | 
| 2747 |     if (ConditionallyExecute(instr)) { | 
| 2748 |       result64 = rn_val64; | 
| 2749 |       result32 = rn_val32; | 
| 2750 |     } | 
| 2751 |   } else { | 
| 2752 |     UnimplementedInstruction(instr); | 
| 2753 |     return; | 
| 2754 |   } | 
| 2755 |  | 
| 2756 |   if (instr->SFField() == 1) { | 
| 2757 |     set_register(instr, rd, result64, instr->RdMode()); | 
| 2758 |   } else { | 
| 2759 |     set_wregister(rd, result32, instr->RdMode()); | 
| 2760 |   } | 
| 2761 | } | 
| 2762 |  | 
| 2763 | void Simulator::DecodeDPRegister(Instr* instr) { | 
| 2764 |   if (instr->IsAddSubShiftExtOp()) { | 
| 2765 |     DecodeAddSubShiftExt(instr); | 
| 2766 |   } else if (instr->IsAddSubWithCarryOp()) { | 
| 2767 |     DecodeAddSubWithCarry(instr); | 
| 2768 |   } else if (instr->IsLogicalShiftOp()) { | 
| 2769 |     DecodeLogicalShift(instr); | 
| 2770 |   } else if (instr->IsMiscDP1SourceOp()) { | 
| 2771 |     DecodeMiscDP1Source(instr); | 
| 2772 |   } else if (instr->IsMiscDP2SourceOp()) { | 
| 2773 |     DecodeMiscDP2Source(instr); | 
| 2774 |   } else if (instr->IsMiscDP3SourceOp()) { | 
| 2775 |     DecodeMiscDP3Source(instr); | 
| 2776 |   } else if (instr->IsConditionalSelectOp()) { | 
| 2777 |     DecodeConditionalSelect(instr); | 
| 2778 |   } else { | 
| 2779 |     UnimplementedInstruction(instr); | 
| 2780 |   } | 
| 2781 | } | 
| 2782 |  | 
| 2783 | void Simulator::DecodeSIMDCopy(Instr* instr) { | 
| 2784 |   const int32_t Q = instr->Bit(30); | 
| 2785 |   const int32_t op = instr->Bit(29); | 
| 2786 |   const int32_t imm4 = instr->Bits(11, 4); | 
| 2787 |   const int32_t imm5 = instr->Bits(16, 5); | 
| 2788 |  | 
| 2789 |   int32_t idx4 = -1; | 
| 2790 |   int32_t idx5 = -1; | 
| 2791 |   int32_t element_bytes; | 
| 2792 |   if (imm5 & 0x1) { | 
| 2793 |     idx4 = imm4; | 
| 2794 |     idx5 = imm5 >> 1; | 
| 2795 |     element_bytes = 1; | 
| 2796 |   } else if (imm5 & 0x2) { | 
| 2797 |     idx4 = imm4 >> 1; | 
| 2798 |     idx5 = imm5 >> 2; | 
| 2799 |     element_bytes = 2; | 
| 2800 |   } else if (imm5 & 0x4) { | 
| 2801 |     idx4 = imm4 >> 2; | 
| 2802 |     idx5 = imm5 >> 3; | 
| 2803 |     element_bytes = 4; | 
| 2804 |   } else if (imm5 & 0x8) { | 
| 2805 |     idx4 = imm4 >> 3; | 
| 2806 |     idx5 = imm5 >> 4; | 
| 2807 |     element_bytes = 8; | 
| 2808 |   } else { | 
| 2809 |     UnimplementedInstruction(instr); | 
| 2810 |     return; | 
| 2811 |   } | 
| 2812 |   ASSERT((idx4 != -1) && (idx5 != -1)); | 
| 2813 |  | 
| 2814 |   const VRegister vd = instr->VdField(); | 
| 2815 |   const VRegister vn = instr->VnField(); | 
| 2816 |   const Register rn = instr->RnField(); | 
| 2817 |   const Register rd = instr->RdField(); | 
| 2818 |   if ((op == 0) && (imm4 == 7)) { | 
| 2819 |     if (Q == 0) { | 
| 2820 |       // Format(instr, "vmovrs 'rd, 'vn'idx5"); | 
| 2821 |       set_wregister(rd, get_vregisters(vn, idx5), R31IsZR); | 
| 2822 |     } else { | 
| 2823 |       // Format(instr, "vmovrd 'rd, 'vn'idx5"); | 
| 2824 |       set_register(instr, rd, get_vregisterd(vn, idx5), R31IsZR); | 
| 2825 |     } | 
| 2826 |   } else if ((Q == 1) && (op == 0) && (imm4 == 0)) { | 
| 2827 |     // Format(instr, "vdup'csz 'vd, 'vn'idx5"); | 
| 2828 |     if (element_bytes == 4) { | 
| 2829 |       for (int i = 0; i < 4; i++) { | 
| 2830 |         set_vregisters(vd, i, get_vregisters(vn, idx5)); | 
| 2831 |       } | 
| 2832 |     } else if (element_bytes == 8) { | 
| 2833 |       for (int i = 0; i < 2; i++) { | 
| 2834 |         set_vregisterd(vd, i, get_vregisterd(vn, idx5)); | 
| 2835 |       } | 
| 2836 |     } else { | 
| 2837 |       UnimplementedInstruction(instr); | 
| 2838 |       return; | 
| 2839 |     } | 
| 2840 |   } else if ((Q == 1) && (op == 0) && (imm4 == 3)) { | 
| 2841 |     // Format(instr, "vins'csz 'vd'idx5, 'rn"); | 
| 2842 |     if (element_bytes == 4) { | 
| 2843 |       set_vregisters(vd, idx5, get_wregister(rn, R31IsZR)); | 
| 2844 |     } else if (element_bytes == 8) { | 
| 2845 |       set_vregisterd(vd, idx5, get_register(rn, R31IsZR)); | 
| 2846 |     } else { | 
| 2847 |       UnimplementedInstruction(instr); | 
| 2848 |     } | 
| 2849 |   } else if ((Q == 1) && (op == 0) && (imm4 == 1)) { | 
| 2850 |     // Format(instr, "vdup'csz 'vd, 'rn"); | 
| 2851 |     if (element_bytes == 4) { | 
| 2852 |       for (int i = 0; i < 4; i++) { | 
| 2853 |         set_vregisters(vd, i, get_wregister(rn, R31IsZR)); | 
| 2854 |       } | 
| 2855 |     } else if (element_bytes == 8) { | 
| 2856 |       for (int i = 0; i < 2; i++) { | 
| 2857 |         set_vregisterd(vd, i, get_register(rn, R31IsZR)); | 
| 2858 |       } | 
| 2859 |     } else { | 
| 2860 |       UnimplementedInstruction(instr); | 
| 2861 |       return; | 
| 2862 |     } | 
| 2863 |   } else if ((Q == 1) && (op == 1)) { | 
| 2864 |     // Format(instr, "vins'csz 'vd'idx5, 'vn'idx4"); | 
| 2865 |     if (element_bytes == 4) { | 
| 2866 |       set_vregisters(vd, idx5, get_vregisters(vn, idx4)); | 
| 2867 |     } else if (element_bytes == 8) { | 
| 2868 |       set_vregisterd(vd, idx5, get_vregisterd(vn, idx4)); | 
| 2869 |     } else { | 
| 2870 |       UnimplementedInstruction(instr); | 
| 2871 |     } | 
| 2872 |   } else { | 
| 2873 |     UnimplementedInstruction(instr); | 
| 2874 |   } | 
| 2875 | } | 
| 2876 |  | 
| 2877 | void Simulator::DecodeSIMDThreeSame(Instr* instr) { | 
| 2878 |   const int Q = instr->Bit(30); | 
| 2879 |   const int U = instr->Bit(29); | 
| 2880 |   const int opcode = instr->Bits(11, 5); | 
| 2881 |  | 
| 2882 |   if (Q == 0) { | 
| 2883 |     UnimplementedInstruction(instr); | 
| 2884 |     return; | 
| 2885 |   } | 
| 2886 |  | 
| 2887 |   const VRegister vd = instr->VdField(); | 
| 2888 |   const VRegister vn = instr->VnField(); | 
| 2889 |   const VRegister vm = instr->VmField(); | 
| 2890 |   if (instr->Bit(22) == 0) { | 
| 2891 |     // f32 case. | 
| 2892 |     for (int idx = 0; idx < 4; idx++) { | 
| 2893 |       const int32_t vn_val = get_vregisters(vn, idx); | 
| 2894 |       const int32_t vm_val = get_vregisters(vm, idx); | 
| 2895 |       const float vn_flt = bit_cast<float, int32_t>(vn_val); | 
| 2896 |       const float vm_flt = bit_cast<float, int32_t>(vm_val); | 
| 2897 |       int32_t res = 0.0; | 
| 2898 |       if ((U == 0) && (opcode == 0x3)) { | 
| 2899 |         if (instr->Bit(23) == 0) { | 
| 2900 |           // Format(instr, "vand 'vd, 'vn, 'vm"); | 
| 2901 |           res = vn_val & vm_val; | 
| 2902 |         } else { | 
| 2903 |           // Format(instr, "vorr 'vd, 'vn, 'vm"); | 
| 2904 |           res = vn_val | vm_val; | 
| 2905 |         } | 
| 2906 |       } else if ((U == 1) && (opcode == 0x3)) { | 
| 2907 |         // Format(instr, "veor 'vd, 'vn, 'vm"); | 
| 2908 |         res = vn_val ^ vm_val; | 
| 2909 |       } else if ((U == 0) && (opcode == 0x10)) { | 
| 2910 |         // Format(instr, "vadd'vsz 'vd, 'vn, 'vm"); | 
| 2911 |         res = vn_val + vm_val; | 
| 2912 |       } else if ((U == 1) && (opcode == 0x10)) { | 
| 2913 |         // Format(instr, "vsub'vsz 'vd, 'vn, 'vm"); | 
| 2914 |         res = vn_val - vm_val; | 
| 2915 |       } else if ((U == 0) && (opcode == 0x1a)) { | 
| 2916 |         if (instr->Bit(23) == 0) { | 
| 2917 |           // Format(instr, "vadd'vsz 'vd, 'vn, 'vm"); | 
| 2918 |           res = bit_cast<int32_t, float>(vn_flt + vm_flt); | 
| 2919 |         } else { | 
| 2920 |           // Format(instr, "vsub'vsz 'vd, 'vn, 'vm"); | 
| 2921 |           res = bit_cast<int32_t, float>(vn_flt - vm_flt); | 
| 2922 |         } | 
| 2923 |       } else if ((U == 1) && (opcode == 0x1b)) { | 
| 2924 |         // Format(instr, "vmul'vsz 'vd, 'vn, 'vm"); | 
| 2925 |         res = bit_cast<int32_t, float>(vn_flt * vm_flt); | 
| 2926 |       } else if ((U == 1) && (opcode == 0x1f)) { | 
| 2927 |         // Format(instr, "vdiv'vsz 'vd, 'vn, 'vm"); | 
| 2928 |         res = bit_cast<int32_t, float>(vn_flt / vm_flt); | 
| 2929 |       } else if ((U == 0) && (opcode == 0x1c)) { | 
| 2930 |         // Format(instr, "vceq'vsz 'vd, 'vn, 'vm"); | 
| 2931 |         res = (vn_flt == vm_flt) ? 0xffffffff : 0; | 
| 2932 |       } else if ((U == 1) && (opcode == 0x1c)) { | 
| 2933 |         if (instr->Bit(23) == 1) { | 
| 2934 |           // Format(instr, "vcgt'vsz 'vd, 'vn, 'vm"); | 
| 2935 |           res = (vn_flt > vm_flt) ? 0xffffffff : 0; | 
| 2936 |         } else { | 
| 2937 |           // Format(instr, "vcge'vsz 'vd, 'vn, 'vm"); | 
| 2938 |           res = (vn_flt >= vm_flt) ? 0xffffffff : 0; | 
| 2939 |         } | 
| 2940 |       } else if ((U == 0) && (opcode == 0x1e)) { | 
| 2941 |         if (instr->Bit(23) == 1) { | 
| 2942 |           // Format(instr, "vmin'vsz 'vd, 'vn, 'vm"); | 
| 2943 |           const float m = fminf(vn_flt, vm_flt); | 
| 2944 |           res = bit_cast<int32_t, float>(m); | 
| 2945 |         } else { | 
| 2946 |           // Format(instr, "vmax'vsz 'vd, 'vn, 'vm"); | 
| 2947 |           const float m = fmaxf(vn_flt, vm_flt); | 
| 2948 |           res = bit_cast<int32_t, float>(m); | 
| 2949 |         } | 
| 2950 |       } else if ((U == 0) && (opcode == 0x1f)) { | 
| 2951 |         if (instr->Bit(23) == 0) { | 
| 2952 |           // Format(instr, "vrecps'vsz 'vd, 'vn, 'vm"); | 
| 2953 |           res = bit_cast<int32_t, float>(2.0 - (vn_flt * vm_flt)); | 
| 2954 |         } else { | 
| 2955 |           // Format(instr, "vrsqrt'vsz 'vd, 'vn, 'vm"); | 
| 2956 |           res = bit_cast<int32_t, float>((3.0 - vn_flt * vm_flt) / 2.0); | 
| 2957 |         } | 
| 2958 |       } else { | 
| 2959 |         UnimplementedInstruction(instr); | 
| 2960 |         return; | 
| 2961 |       } | 
| 2962 |       set_vregisters(vd, idx, res); | 
| 2963 |     } | 
| 2964 |   } else { | 
| 2965 |     // f64 case. | 
| 2966 |     for (int idx = 0; idx < 2; idx++) { | 
| 2967 |       const int64_t vn_val = get_vregisterd(vn, idx); | 
| 2968 |       const int64_t vm_val = get_vregisterd(vm, idx); | 
| 2969 |       const double vn_dbl = bit_cast<double, int64_t>(vn_val); | 
| 2970 |       const double vm_dbl = bit_cast<double, int64_t>(vm_val); | 
| 2971 |       int64_t res = 0.0; | 
| 2972 |       if ((U == 0) && (opcode == 0x3)) { | 
| 2973 |         if (instr->Bit(23) == 0) { | 
| 2974 |           // Format(instr, "vand 'vd, 'vn, 'vm"); | 
| 2975 |           res = vn_val & vm_val; | 
| 2976 |         } else { | 
| 2977 |           // Format(instr, "vorr 'vd, 'vn, 'vm"); | 
| 2978 |           res = vn_val | vm_val; | 
| 2979 |         } | 
| 2980 |       } else if ((U == 1) && (opcode == 0x3)) { | 
| 2981 |         // Format(instr, "veor 'vd, 'vn, 'vm"); | 
| 2982 |         res = vn_val ^ vm_val; | 
| 2983 |       } else if ((U == 0) && (opcode == 0x10)) { | 
| 2984 |         // Format(instr, "vadd'vsz 'vd, 'vn, 'vm"); | 
| 2985 |         res = vn_val + vm_val; | 
| 2986 |       } else if ((U == 1) && (opcode == 0x10)) { | 
| 2987 |         // Format(instr, "vsub'vsz 'vd, 'vn, 'vm"); | 
| 2988 |         res = vn_val - vm_val; | 
| 2989 |       } else if ((U == 0) && (opcode == 0x1a)) { | 
| 2990 |         if (instr->Bit(23) == 0) { | 
| 2991 |           // Format(instr, "vadd'vsz 'vd, 'vn, 'vm"); | 
| 2992 |           res = bit_cast<int64_t, double>(vn_dbl + vm_dbl); | 
| 2993 |         } else { | 
| 2994 |           // Format(instr, "vsub'vsz 'vd, 'vn, 'vm"); | 
| 2995 |           res = bit_cast<int64_t, double>(vn_dbl - vm_dbl); | 
| 2996 |         } | 
| 2997 |       } else if ((U == 1) && (opcode == 0x1b)) { | 
| 2998 |         // Format(instr, "vmul'vsz 'vd, 'vn, 'vm"); | 
| 2999 |         res = bit_cast<int64_t, double>(vn_dbl * vm_dbl); | 
| 3000 |       } else if ((U == 1) && (opcode == 0x1f)) { | 
| 3001 |         // Format(instr, "vdiv'vsz 'vd, 'vn, 'vm"); | 
| 3002 |         res = bit_cast<int64_t, double>(vn_dbl / vm_dbl); | 
| 3003 |       } else if ((U == 0) && (opcode == 0x1c)) { | 
| 3004 |         // Format(instr, "vceq'vsz 'vd, 'vn, 'vm"); | 
| 3005 |         res = (vn_dbl == vm_dbl) ? 0xffffffffffffffffLL : 0; | 
| 3006 |       } else if ((U == 1) && (opcode == 0x1c)) { | 
| 3007 |         if (instr->Bit(23) == 1) { | 
| 3008 |           // Format(instr, "vcgt'vsz 'vd, 'vn, 'vm"); | 
| 3009 |           res = (vn_dbl > vm_dbl) ? 0xffffffffffffffffLL : 0; | 
| 3010 |         } else { | 
| 3011 |           // Format(instr, "vcge'vsz 'vd, 'vn, 'vm"); | 
| 3012 |           res = (vn_dbl >= vm_dbl) ? 0xffffffffffffffffLL : 0; | 
| 3013 |         } | 
| 3014 |       } else if ((U == 0) && (opcode == 0x1e)) { | 
| 3015 |         if (instr->Bit(23) == 1) { | 
| 3016 |           // Format(instr, "vmin'vsz 'vd, 'vn, 'vm"); | 
| 3017 |           const double m = fmin(vn_dbl, vm_dbl); | 
| 3018 |           res = bit_cast<int64_t, double>(m); | 
| 3019 |         } else { | 
| 3020 |           // Format(instr, "vmax'vsz 'vd, 'vn, 'vm"); | 
| 3021 |           const double m = fmax(vn_dbl, vm_dbl); | 
| 3022 |           res = bit_cast<int64_t, double>(m); | 
| 3023 |         } | 
| 3024 |       } else { | 
| 3025 |         UnimplementedInstruction(instr); | 
| 3026 |         return; | 
| 3027 |       } | 
| 3028 |       set_vregisterd(vd, idx, res); | 
| 3029 |     } | 
| 3030 |   } | 
| 3031 | } | 
| 3032 |  | 
| 3033 | static float arm_reciprocal_sqrt_estimate(float a) { | 
| 3034 |   // From the ARM Architecture Reference Manual A2-87. | 
| 3035 |   if (isinf(a) || (fabs(a) >= exp2f(126))) | 
| 3036 |     return 0.0; | 
| 3037 |   else if (a == 0.0) | 
| 3038 |     return kPosInfinity; | 
| 3039 |   else if (isnan(a)) | 
| 3040 |     return a; | 
| 3041 |  | 
| 3042 |   uint32_t a_bits = bit_cast<uint32_t, float>(a); | 
| 3043 |   uint64_t scaled; | 
| 3044 |   if (((a_bits >> 23) & 1) != 0) { | 
| 3045 |     // scaled = '0 01111111101' : operand<22:0> : Zeros(29) | 
| 3046 |     scaled = (static_cast<uint64_t>(0x3fd) << 52) | | 
| 3047 |              ((static_cast<uint64_t>(a_bits) & 0x7fffff) << 29); | 
| 3048 |   } else { | 
| 3049 |     // scaled = '0 01111111110' : operand<22:0> : Zeros(29) | 
| 3050 |     scaled = (static_cast<uint64_t>(0x3fe) << 52) | | 
| 3051 |              ((static_cast<uint64_t>(a_bits) & 0x7fffff) << 29); | 
| 3052 |   } | 
| 3053 |   // result_exp = (380 - UInt(operand<30:23>) DIV 2; | 
| 3054 |   int32_t result_exp = (380 - ((a_bits >> 23) & 0xff)) / 2; | 
| 3055 |  | 
| 3056 |   double scaled_d = bit_cast<double, uint64_t>(scaled); | 
| 3057 |   ASSERT((scaled_d >= 0.25) && (scaled_d < 1.0)); | 
| 3058 |  | 
| 3059 |   double r; | 
| 3060 |   if (scaled_d < 0.5) { | 
| 3061 |     // range 0.25 <= a < 0.5 | 
| 3062 |  | 
| 3063 |     // a in units of 1/512 rounded down. | 
| 3064 |     int32_t q0 = static_cast<int32_t>(scaled_d * 512.0); | 
| 3065 |     // reciprocal root r. | 
| 3066 |     r = 1.0 / sqrt((static_cast<double>(q0) + 0.5) / 512.0); | 
| 3067 |   } else { | 
| 3068 |     // range 0.5 <= a < 1.0 | 
| 3069 |  | 
| 3070 |     // a in units of 1/256 rounded down. | 
| 3071 |     int32_t q1 = static_cast<int32_t>(scaled_d * 256.0); | 
| 3072 |     // reciprocal root r. | 
| 3073 |     r = 1.0 / sqrt((static_cast<double>(q1) + 0.5) / 256.0); | 
| 3074 |   } | 
| 3075 |   // r in units of 1/256 rounded to nearest. | 
| 3076 |   int32_t s = static_cast<int>(256.0 * r + 0.5); | 
| 3077 |   double estimate = static_cast<double>(s) / 256.0; | 
| 3078 |   ASSERT((estimate >= 1.0) && (estimate <= (511.0 / 256.0))); | 
| 3079 |  | 
| 3080 |   // result = 0 : result_exp<7:0> : estimate<51:29> | 
| 3081 |   int32_t result_bits = | 
| 3082 |       ((result_exp & 0xff) << 23) | | 
| 3083 |       ((bit_cast<uint64_t, double>(estimate) >> 29) & 0x7fffff); | 
| 3084 |   return bit_cast<float, int32_t>(result_bits); | 
| 3085 | } | 
| 3086 |  | 
| 3087 | static float arm_recip_estimate(float a) { | 
| 3088 |   // From the ARM Architecture Reference Manual A2-85. | 
| 3089 |   if (isinf(a) || (fabs(a) >= exp2f(126))) | 
| 3090 |     return 0.0; | 
| 3091 |   else if (a == 0.0) | 
| 3092 |     return kPosInfinity; | 
| 3093 |   else if (isnan(a)) | 
| 3094 |     return a; | 
| 3095 |  | 
| 3096 |   uint32_t a_bits = bit_cast<uint32_t, float>(a); | 
| 3097 |   // scaled = '0011 1111 1110' : a<22:0> : Zeros(29) | 
| 3098 |   uint64_t scaled = (static_cast<uint64_t>(0x3fe) << 52) | | 
| 3099 |                     ((static_cast<uint64_t>(a_bits) & 0x7fffff) << 29); | 
| 3100 |   // result_exp = 253 - UInt(a<30:23>) | 
| 3101 |   int32_t result_exp = 253 - ((a_bits >> 23) & 0xff); | 
| 3102 |   ASSERT((result_exp >= 1) && (result_exp <= 252)); | 
| 3103 |  | 
| 3104 |   double scaled_d = bit_cast<double, uint64_t>(scaled); | 
| 3105 |   ASSERT((scaled_d >= 0.5) && (scaled_d < 1.0)); | 
| 3106 |  | 
| 3107 |   // a in units of 1/512 rounded down. | 
| 3108 |   int32_t q = static_cast<int32_t>(scaled_d * 512.0); | 
| 3109 |   // reciprocal r. | 
| 3110 |   double r = 1.0 / ((static_cast<double>(q) + 0.5) / 512.0); | 
| 3111 |   // r in units of 1/256 rounded to nearest. | 
| 3112 |   int32_t s = static_cast<int32_t>(256.0 * r + 0.5); | 
| 3113 |   double estimate = static_cast<double>(s) / 256.0; | 
| 3114 |   ASSERT((estimate >= 1.0) && (estimate <= (511.0 / 256.0))); | 
| 3115 |  | 
| 3116 |   // result = sign : result_exp<7:0> : estimate<51:29> | 
| 3117 |   int32_t result_bits = | 
| 3118 |       (a_bits & 0x80000000) | ((result_exp & 0xff) << 23) | | 
| 3119 |       ((bit_cast<uint64_t, double>(estimate) >> 29) & 0x7fffff); | 
| 3120 |   return bit_cast<float, int32_t>(result_bits); | 
| 3121 | } | 
| 3122 |  | 
| 3123 | void Simulator::DecodeSIMDTwoReg(Instr* instr) { | 
| 3124 |   const int32_t Q = instr->Bit(30); | 
| 3125 |   const int32_t U = instr->Bit(29); | 
| 3126 |   const int32_t op = instr->Bits(12, 5); | 
| 3127 |   const int32_t sz = instr->Bits(22, 2); | 
| 3128 |   const VRegister vd = instr->VdField(); | 
| 3129 |   const VRegister vn = instr->VnField(); | 
| 3130 |  | 
| 3131 |   if (Q != 1) { | 
| 3132 |     UnimplementedInstruction(instr); | 
| 3133 |     return; | 
| 3134 |   } | 
| 3135 |  | 
| 3136 |   if ((U == 1) && (op == 5)) { | 
| 3137 |     // Format(instr, "vnot 'vd, 'vn"); | 
| 3138 |     for (int i = 0; i < 2; i++) { | 
| 3139 |       set_vregisterd(vd, i, ~get_vregisterd(vn, i)); | 
| 3140 |     } | 
| 3141 |   } else if ((U == 0) && (op == 0xf)) { | 
| 3142 |     if (sz == 2) { | 
| 3143 |       // Format(instr, "vabss 'vd, 'vn"); | 
| 3144 |       for (int i = 0; i < 4; i++) { | 
| 3145 |         const int32_t vn_val = get_vregisters(vn, i); | 
| 3146 |         const float vn_flt = bit_cast<float, int32_t>(vn_val); | 
| 3147 |         set_vregisters(vd, i, bit_cast<int32_t, float>(fabsf(vn_flt))); | 
| 3148 |       } | 
| 3149 |     } else if (sz == 3) { | 
| 3150 |       // Format(instr, "vabsd 'vd, 'vn"); | 
| 3151 |       for (int i = 0; i < 2; i++) { | 
| 3152 |         const int64_t vn_val = get_vregisterd(vn, i); | 
| 3153 |         const double vn_dbl = bit_cast<double, int64_t>(vn_val); | 
| 3154 |         set_vregisterd(vd, i, bit_cast<int64_t, double>(fabs(vn_dbl))); | 
| 3155 |       } | 
| 3156 |     } else { | 
| 3157 |       UnimplementedInstruction(instr); | 
| 3158 |     } | 
| 3159 |   } else if ((U == 1) && (op == 0xf)) { | 
| 3160 |     if (sz == 2) { | 
| 3161 |       // Format(instr, "vnegs 'vd, 'vn"); | 
| 3162 |       for (int i = 0; i < 4; i++) { | 
| 3163 |         const int32_t vn_val = get_vregisters(vn, i); | 
| 3164 |         const float vn_flt = bit_cast<float, int32_t>(vn_val); | 
| 3165 |         set_vregisters(vd, i, bit_cast<int32_t, float>(-vn_flt)); | 
| 3166 |       } | 
| 3167 |     } else if (sz == 3) { | 
| 3168 |       // Format(instr, "vnegd 'vd, 'vn"); | 
| 3169 |       for (int i = 0; i < 2; i++) { | 
| 3170 |         const int64_t vn_val = get_vregisterd(vn, i); | 
| 3171 |         const double vn_dbl = bit_cast<double, int64_t>(vn_val); | 
| 3172 |         set_vregisterd(vd, i, bit_cast<int64_t, double>(-vn_dbl)); | 
| 3173 |       } | 
| 3174 |     } else { | 
| 3175 |       UnimplementedInstruction(instr); | 
| 3176 |     } | 
| 3177 |   } else if ((U == 1) && (op == 0x1f)) { | 
| 3178 |     if (sz == 2) { | 
| 3179 |       // Format(instr, "vsqrts 'vd, 'vn"); | 
| 3180 |       for (int i = 0; i < 4; i++) { | 
| 3181 |         const int32_t vn_val = get_vregisters(vn, i); | 
| 3182 |         const float vn_flt = bit_cast<float, int32_t>(vn_val); | 
| 3183 |         set_vregisters(vd, i, bit_cast<int32_t, float>(sqrtf(vn_flt))); | 
| 3184 |       } | 
| 3185 |     } else if (sz == 3) { | 
| 3186 |       // Format(instr, "vsqrtd 'vd, 'vn"); | 
| 3187 |       for (int i = 0; i < 2; i++) { | 
| 3188 |         const int64_t vn_val = get_vregisterd(vn, i); | 
| 3189 |         const double vn_dbl = bit_cast<double, int64_t>(vn_val); | 
| 3190 |         set_vregisterd(vd, i, bit_cast<int64_t, double>(sqrt(vn_dbl))); | 
| 3191 |       } | 
| 3192 |     } else { | 
| 3193 |       UnimplementedInstruction(instr); | 
| 3194 |     } | 
| 3195 |   } else if ((U == 0) && (op == 0x1d)) { | 
| 3196 |     if (sz != 2) { | 
| 3197 |       UnimplementedInstruction(instr); | 
| 3198 |       return; | 
| 3199 |     } | 
| 3200 |     // Format(instr, "vrecpes 'vd, 'vn"); | 
| 3201 |     for (int i = 0; i < 4; i++) { | 
| 3202 |       const int32_t vn_val = get_vregisters(vn, i); | 
| 3203 |       const float vn_flt = bit_cast<float, int32_t>(vn_val); | 
| 3204 |       const float re = arm_recip_estimate(vn_flt); | 
| 3205 |       set_vregisters(vd, i, bit_cast<int32_t, float>(re)); | 
| 3206 |     } | 
| 3207 |   } else if ((U == 1) && (op == 0x1d)) { | 
| 3208 |     if (sz != 2) { | 
| 3209 |       UnimplementedInstruction(instr); | 
| 3210 |       return; | 
| 3211 |     } | 
| 3212 |     // Format(instr, "vrsqrtes 'vd, 'vn"); | 
| 3213 |     for (int i = 0; i < 4; i++) { | 
| 3214 |       const int32_t vn_val = get_vregisters(vn, i); | 
| 3215 |       const float vn_flt = bit_cast<float, int32_t>(vn_val); | 
| 3216 |       const float re = arm_reciprocal_sqrt_estimate(vn_flt); | 
| 3217 |       set_vregisters(vd, i, bit_cast<int32_t, float>(re)); | 
| 3218 |     } | 
| 3219 |   } else { | 
| 3220 |     UnimplementedInstruction(instr); | 
| 3221 |   } | 
| 3222 | } | 
| 3223 |  | 
| 3224 | void Simulator::DecodeDPSimd1(Instr* instr) { | 
| 3225 |   if (instr->IsSIMDCopyOp()) { | 
| 3226 |     DecodeSIMDCopy(instr); | 
| 3227 |   } else if (instr->IsSIMDThreeSameOp()) { | 
| 3228 |     DecodeSIMDThreeSame(instr); | 
| 3229 |   } else if (instr->IsSIMDTwoRegOp()) { | 
| 3230 |     DecodeSIMDTwoReg(instr); | 
| 3231 |   } else { | 
| 3232 |     UnimplementedInstruction(instr); | 
| 3233 |   } | 
| 3234 | } | 
| 3235 |  | 
| 3236 | void Simulator::DecodeFPImm(Instr* instr) { | 
| 3237 |   if ((instr->Bit(31) != 0) || (instr->Bit(29) != 0) || (instr->Bit(23) != 0) || | 
| 3238 |       (instr->Bits(5, 5) != 0)) { | 
| 3239 |     UnimplementedInstruction(instr); | 
| 3240 |     return; | 
| 3241 |   } | 
| 3242 |   if (instr->Bit(22) == 1) { | 
| 3243 |     // Double. | 
| 3244 |     // Format(instr, "fmovd 'vd, #'immd"); | 
| 3245 |     const VRegister vd = instr->VdField(); | 
| 3246 |     const int64_t immd = Instr::VFPExpandImm(instr->Imm8Field()); | 
| 3247 |     set_vregisterd(vd, 0, immd); | 
| 3248 |     set_vregisterd(vd, 1, 0); | 
| 3249 |   } else { | 
| 3250 |     // Single. | 
| 3251 |     UnimplementedInstruction(instr); | 
| 3252 |   } | 
| 3253 | } | 
| 3254 |  | 
| 3255 | void Simulator::DecodeFPIntCvt(Instr* instr) { | 
| 3256 |   const VRegister vd = instr->VdField(); | 
| 3257 |   const VRegister vn = instr->VnField(); | 
| 3258 |   const Register rd = instr->RdField(); | 
| 3259 |   const Register rn = instr->RnField(); | 
| 3260 |  | 
| 3261 |   if (instr->Bit(29) != 0) { | 
| 3262 |     UnimplementedInstruction(instr); | 
| 3263 |     return; | 
| 3264 |   } | 
| 3265 |  | 
| 3266 |   if ((instr->SFField() == 0) && (instr->Bits(22, 2) == 0)) { | 
| 3267 |     if (instr->Bits(16, 5) == 6) { | 
| 3268 |       // Format(instr, "fmovrs'sf 'rd, 'vn"); | 
| 3269 |       const int32_t vn_val = get_vregisters(vn, 0); | 
| 3270 |       set_wregister(rd, vn_val, R31IsZR); | 
| 3271 |     } else if (instr->Bits(16, 5) == 7) { | 
| 3272 |       // Format(instr, "fmovsr'sf 'vd, 'rn"); | 
| 3273 |       const int32_t rn_val = get_wregister(rn, R31IsZR); | 
| 3274 |       set_vregisters(vd, 0, rn_val); | 
| 3275 |       set_vregisters(vd, 1, 0); | 
| 3276 |       set_vregisters(vd, 2, 0); | 
| 3277 |       set_vregisters(vd, 3, 0); | 
| 3278 |     } else { | 
| 3279 |       UnimplementedInstruction(instr); | 
| 3280 |     } | 
| 3281 |   } else if (instr->Bits(22, 2) == 1) { | 
| 3282 |     if (instr->Bits(16, 5) == 2) { | 
| 3283 |       // Format(instr, "scvtfd'sf 'vd, 'rn"); | 
| 3284 |       const int64_t rn_val64 = get_register(rn, instr->RnMode()); | 
| 3285 |       const int32_t rn_val32 = get_wregister(rn, instr->RnMode()); | 
| 3286 |       const double vn_dbl = (instr->SFField() == 1) | 
| 3287 |                                 ? static_cast<double>(rn_val64) | 
| 3288 |                                 : static_cast<double>(rn_val32); | 
| 3289 |       set_vregisterd(vd, 0, bit_cast<int64_t, double>(vn_dbl)); | 
| 3290 |       set_vregisterd(vd, 1, 0); | 
| 3291 |     } else if (instr->Bits(16, 5) == 6) { | 
| 3292 |       // Format(instr, "fmovrd'sf 'rd, 'vn"); | 
| 3293 |       const int64_t vn_val = get_vregisterd(vn, 0); | 
| 3294 |       set_register(instr, rd, vn_val, R31IsZR); | 
| 3295 |     } else if (instr->Bits(16, 5) == 7) { | 
| 3296 |       // Format(instr, "fmovdr'sf 'vd, 'rn"); | 
| 3297 |       const int64_t rn_val = get_register(rn, R31IsZR); | 
| 3298 |       set_vregisterd(vd, 0, rn_val); | 
| 3299 |       set_vregisterd(vd, 1, 0); | 
| 3300 |     } else if (instr->Bits(16, 5) == 24) { | 
| 3301 |       // Format(instr, "fcvtzds'sf 'rd, 'vn"); | 
| 3302 |       const double vn_val = bit_cast<double, int64_t>(get_vregisterd(vn, 0)); | 
| 3303 |       if (vn_val >= static_cast<double>(INT64_MAX)) { | 
| 3304 |         set_register(instr, rd, INT64_MAX, instr->RdMode()); | 
| 3305 |       } else if (vn_val <= static_cast<double>(INT64_MIN)) { | 
| 3306 |         set_register(instr, rd, INT64_MIN, instr->RdMode()); | 
| 3307 |       } else { | 
| 3308 |         set_register(instr, rd, static_cast<int64_t>(vn_val), instr->RdMode()); | 
| 3309 |       } | 
| 3310 |     } else { | 
| 3311 |       UnimplementedInstruction(instr); | 
| 3312 |     } | 
| 3313 |   } else { | 
| 3314 |     UnimplementedInstruction(instr); | 
| 3315 |   } | 
| 3316 | } | 
| 3317 |  | 
| 3318 | void Simulator::DecodeFPOneSource(Instr* instr) { | 
| 3319 |   const int opc = instr->Bits(15, 6); | 
| 3320 |   const VRegister vd = instr->VdField(); | 
| 3321 |   const VRegister vn = instr->VnField(); | 
| 3322 |   const int64_t vn_val = get_vregisterd(vn, 0); | 
| 3323 |   const int32_t vn_val32 = vn_val & kWRegMask; | 
| 3324 |   const double vn_dbl = bit_cast<double, int64_t>(vn_val); | 
| 3325 |   const float vn_flt = bit_cast<float, int32_t>(vn_val32); | 
| 3326 |  | 
| 3327 |   if ((opc != 5) && (instr->Bit(22) != 1)) { | 
| 3328 |     // Source is interpreted as single-precision only if we're doing a | 
| 3329 |     // conversion from single -> double. | 
| 3330 |     UnimplementedInstruction(instr); | 
| 3331 |     return; | 
| 3332 |   } | 
| 3333 |  | 
| 3334 |   int64_t res_val = 0; | 
| 3335 |   switch (opc) { | 
| 3336 |     case 0: | 
| 3337 |       // Format("fmovdd 'vd, 'vn"); | 
| 3338 |       res_val = get_vregisterd(vn, 0); | 
| 3339 |       break; | 
| 3340 |     case 1: | 
| 3341 |       // Format("fabsd 'vd, 'vn"); | 
| 3342 |       res_val = bit_cast<int64_t, double>(fabs(vn_dbl)); | 
| 3343 |       break; | 
| 3344 |     case 2: | 
| 3345 |       // Format("fnegd 'vd, 'vn"); | 
| 3346 |       res_val = bit_cast<int64_t, double>(-vn_dbl); | 
| 3347 |       break; | 
| 3348 |     case 3: | 
| 3349 |       // Format("fsqrtd 'vd, 'vn"); | 
| 3350 |       res_val = bit_cast<int64_t, double>(sqrt(vn_dbl)); | 
| 3351 |       break; | 
| 3352 |     case 4: { | 
| 3353 |       // Format(instr, "fcvtsd 'vd, 'vn"); | 
| 3354 |       const uint32_t val = | 
| 3355 |           bit_cast<uint32_t, float>(static_cast<float>(vn_dbl)); | 
| 3356 |       res_val = static_cast<int64_t>(val); | 
| 3357 |       break; | 
| 3358 |     } | 
| 3359 |     case 5: | 
| 3360 |       // Format(instr, "fcvtds 'vd, 'vn"); | 
| 3361 |       res_val = bit_cast<int64_t, double>(static_cast<double>(vn_flt)); | 
| 3362 |       break; | 
| 3363 |     default: | 
| 3364 |       UnimplementedInstruction(instr); | 
| 3365 |       break; | 
| 3366 |   } | 
| 3367 |  | 
| 3368 |   set_vregisterd(vd, 0, res_val); | 
| 3369 |   set_vregisterd(vd, 1, 0); | 
| 3370 | } | 
| 3371 |  | 
| 3372 | void Simulator::DecodeFPTwoSource(Instr* instr) { | 
| 3373 |   if (instr->Bits(22, 2) != 1) { | 
| 3374 |     UnimplementedInstruction(instr); | 
| 3375 |     return; | 
| 3376 |   } | 
| 3377 |   const VRegister vd = instr->VdField(); | 
| 3378 |   const VRegister vn = instr->VnField(); | 
| 3379 |   const VRegister vm = instr->VmField(); | 
| 3380 |   const double vn_val = bit_cast<double, int64_t>(get_vregisterd(vn, 0)); | 
| 3381 |   const double vm_val = bit_cast<double, int64_t>(get_vregisterd(vm, 0)); | 
| 3382 |   const int opc = instr->Bits(12, 4); | 
| 3383 |   double result; | 
| 3384 |  | 
| 3385 |   switch (opc) { | 
| 3386 |     case 0: | 
| 3387 |       // Format(instr, "fmuld 'vd, 'vn, 'vm"); | 
| 3388 |       result = vn_val * vm_val; | 
| 3389 |       break; | 
| 3390 |     case 1: | 
| 3391 |       // Format(instr, "fdivd 'vd, 'vn, 'vm"); | 
| 3392 |       result = vn_val / vm_val; | 
| 3393 |       break; | 
| 3394 |     case 2: | 
| 3395 |       // Format(instr, "faddd 'vd, 'vn, 'vm"); | 
| 3396 |       result = vn_val + vm_val; | 
| 3397 |       break; | 
| 3398 |     case 3: | 
| 3399 |       // Format(instr, "fsubd 'vd, 'vn, 'vm"); | 
| 3400 |       result = vn_val - vm_val; | 
| 3401 |       break; | 
| 3402 |     default: | 
| 3403 |       UnimplementedInstruction(instr); | 
| 3404 |       return; | 
| 3405 |   } | 
| 3406 |  | 
| 3407 |   set_vregisterd(vd, 0, bit_cast<int64_t, double>(result)); | 
| 3408 |   set_vregisterd(vd, 1, 0); | 
| 3409 | } | 
| 3410 |  | 
| 3411 | void Simulator::DecodeFPCompare(Instr* instr) { | 
| 3412 |   const VRegister vn = instr->VnField(); | 
| 3413 |   const VRegister vm = instr->VmField(); | 
| 3414 |   const double vn_val = bit_cast<double, int64_t>(get_vregisterd(vn, 0)); | 
| 3415 |   double vm_val; | 
| 3416 |  | 
| 3417 |   if ((instr->Bit(22) == 1) && (instr->Bits(3, 2) == 0)) { | 
| 3418 |     // Format(instr, "fcmpd 'vn, 'vm"); | 
| 3419 |     vm_val = bit_cast<double, int64_t>(get_vregisterd(vm, 0)); | 
| 3420 |   } else if ((instr->Bit(22) == 1) && (instr->Bits(3, 2) == 1)) { | 
| 3421 |     if (instr->VmField() == V0) { | 
| 3422 |       // Format(instr, "fcmpd 'vn, #0.0"); | 
| 3423 |       vm_val = 0.0; | 
| 3424 |     } else { | 
| 3425 |       UnimplementedInstruction(instr); | 
| 3426 |       return; | 
| 3427 |     } | 
| 3428 |   } else { | 
| 3429 |     UnimplementedInstruction(instr); | 
| 3430 |     return; | 
| 3431 |   } | 
| 3432 |  | 
| 3433 |   n_flag_ = false; | 
| 3434 |   z_flag_ = false; | 
| 3435 |   c_flag_ = false; | 
| 3436 |   v_flag_ = false; | 
| 3437 |  | 
| 3438 |   if (isnan(vn_val) || isnan(vm_val)) { | 
| 3439 |     c_flag_ = true; | 
| 3440 |     v_flag_ = true; | 
| 3441 |   } else if (vn_val == vm_val) { | 
| 3442 |     z_flag_ = true; | 
| 3443 |     c_flag_ = true; | 
| 3444 |   } else if (vn_val < vm_val) { | 
| 3445 |     n_flag_ = true; | 
| 3446 |   } else { | 
| 3447 |     c_flag_ = true; | 
| 3448 |   } | 
| 3449 | } | 
| 3450 |  | 
| 3451 | void Simulator::DecodeFP(Instr* instr) { | 
| 3452 |   if (instr->IsFPImmOp()) { | 
| 3453 |     DecodeFPImm(instr); | 
| 3454 |   } else if (instr->IsFPIntCvtOp()) { | 
| 3455 |     DecodeFPIntCvt(instr); | 
| 3456 |   } else if (instr->IsFPOneSourceOp()) { | 
| 3457 |     DecodeFPOneSource(instr); | 
| 3458 |   } else if (instr->IsFPTwoSourceOp()) { | 
| 3459 |     DecodeFPTwoSource(instr); | 
| 3460 |   } else if (instr->IsFPCompareOp()) { | 
| 3461 |     DecodeFPCompare(instr); | 
| 3462 |   } else { | 
| 3463 |     UnimplementedInstruction(instr); | 
| 3464 |   } | 
| 3465 | } | 
| 3466 |  | 
| 3467 | void Simulator::DecodeDPSimd2(Instr* instr) { | 
| 3468 |   if (instr->IsFPOp()) { | 
| 3469 |     DecodeFP(instr); | 
| 3470 |   } else { | 
| 3471 |     UnimplementedInstruction(instr); | 
| 3472 |   } | 
| 3473 | } | 
| 3474 |  | 
| 3475 | // Executes the current instruction. | 
| 3476 | void Simulator::InstructionDecode(Instr* instr) { | 
| 3477 |   pc_modified_ = false; | 
| 3478 |   if (IsTracingExecution()) { | 
| 3479 |     THR_Print("%"  Pu64 " " , icount_); | 
| 3480 |     const uword start = reinterpret_cast<uword>(instr); | 
| 3481 |     const uword end = start + Instr::kInstrSize; | 
| 3482 |     if (FLAG_support_disassembler) { | 
| 3483 |       Disassembler::Disassemble(start, end); | 
| 3484 |     } else { | 
| 3485 |       THR_Print("Disassembler not supported in this mode.\n" ); | 
| 3486 |     } | 
| 3487 |   } | 
| 3488 |  | 
| 3489 |   if (instr->IsDPImmediateOp()) { | 
| 3490 |     DecodeDPImmediate(instr); | 
| 3491 |   } else if (instr->IsCompareBranchOp()) { | 
| 3492 |     DecodeCompareBranch(instr); | 
| 3493 |   } else if (instr->IsLoadStoreOp()) { | 
| 3494 |     DecodeLoadStore(instr); | 
| 3495 |   } else if (instr->IsDPRegisterOp()) { | 
| 3496 |     DecodeDPRegister(instr); | 
| 3497 |   } else if (instr->IsDPSimd1Op()) { | 
| 3498 |     DecodeDPSimd1(instr); | 
| 3499 |   } else if (instr->IsDPSimd2Op()) { | 
| 3500 |     DecodeDPSimd2(instr); | 
| 3501 |   } else { | 
| 3502 |     UnimplementedInstruction(instr); | 
| 3503 |   } | 
| 3504 |  | 
| 3505 |   if (!pc_modified_) { | 
| 3506 |     set_pc(reinterpret_cast<int64_t>(instr) + Instr::kInstrSize); | 
| 3507 |   } | 
| 3508 | } | 
| 3509 |  | 
| 3510 | void Simulator::Execute() { | 
| 3511 |   // Get the PC to simulate. Cannot use the accessor here as we need the | 
| 3512 |   // raw PC value and not the one used as input to arithmetic instructions. | 
| 3513 |   uword program_counter = get_pc(); | 
| 3514 |  | 
| 3515 |   if (FLAG_stop_sim_at == ULLONG_MAX) { | 
| 3516 |     // Fast version of the dispatch loop without checking whether the simulator | 
| 3517 |     // should be stopping at a particular executed instruction. | 
| 3518 |     while (program_counter != kEndSimulatingPC) { | 
| 3519 |       Instr* instr = reinterpret_cast<Instr*>(program_counter); | 
| 3520 |       icount_++; | 
| 3521 |       if (IsIllegalAddress(program_counter)) { | 
| 3522 |         HandleIllegalAccess(program_counter, instr); | 
| 3523 |       } else { | 
| 3524 |         InstructionDecode(instr); | 
| 3525 |       } | 
| 3526 |       program_counter = get_pc(); | 
| 3527 |     } | 
| 3528 |   } else { | 
| 3529 |     // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when | 
| 3530 |     // we reach the particular instruction count or address. | 
| 3531 |     while (program_counter != kEndSimulatingPC) { | 
| 3532 |       Instr* instr = reinterpret_cast<Instr*>(program_counter); | 
| 3533 |       icount_++; | 
| 3534 |       if (icount_ == FLAG_stop_sim_at) { | 
| 3535 |         SimulatorDebugger dbg(this); | 
| 3536 |         dbg.Stop(instr, "Instruction count reached" ); | 
| 3537 |       } else if (reinterpret_cast<uint64_t>(instr) == FLAG_stop_sim_at) { | 
| 3538 |         SimulatorDebugger dbg(this); | 
| 3539 |         dbg.Stop(instr, "Instruction address reached" ); | 
| 3540 |       } else if (IsIllegalAddress(program_counter)) { | 
| 3541 |         HandleIllegalAccess(program_counter, instr); | 
| 3542 |       } else { | 
| 3543 |         InstructionDecode(instr); | 
| 3544 |       } | 
| 3545 |       program_counter = get_pc(); | 
| 3546 |     } | 
| 3547 |   } | 
| 3548 | } | 
| 3549 |  | 
| 3550 | int64_t Simulator::Call(int64_t entry, | 
| 3551 |                         int64_t parameter0, | 
| 3552 |                         int64_t parameter1, | 
| 3553 |                         int64_t parameter2, | 
| 3554 |                         int64_t parameter3, | 
| 3555 |                         bool fp_return, | 
| 3556 |                         bool fp_args) { | 
| 3557 |   // Save the SP register before the call so we can restore it. | 
| 3558 |   const intptr_t sp_before_call = get_register(R31, R31IsSP); | 
| 3559 |  | 
| 3560 |   // Setup parameters. | 
| 3561 |   if (fp_args) { | 
| 3562 |     set_vregisterd(V0, 0, parameter0); | 
| 3563 |     set_vregisterd(V0, 1, 0); | 
| 3564 |     set_vregisterd(V1, 0, parameter1); | 
| 3565 |     set_vregisterd(V1, 1, 0); | 
| 3566 |     set_vregisterd(V2, 0, parameter2); | 
| 3567 |     set_vregisterd(V2, 1, 0); | 
| 3568 |     set_vregisterd(V3, 0, parameter3); | 
| 3569 |     set_vregisterd(V3, 1, 0); | 
| 3570 |   } else { | 
| 3571 |     set_register(NULL, R0, parameter0); | 
| 3572 |     set_register(NULL, R1, parameter1); | 
| 3573 |     set_register(NULL, R2, parameter2); | 
| 3574 |     set_register(NULL, R3, parameter3); | 
| 3575 |   } | 
| 3576 |  | 
| 3577 |   // Make sure the activation frames are properly aligned. | 
| 3578 |   intptr_t stack_pointer = sp_before_call; | 
| 3579 |   if (OS::ActivationFrameAlignment() > 1) { | 
| 3580 |     stack_pointer = | 
| 3581 |         Utils::RoundDown(stack_pointer, OS::ActivationFrameAlignment()); | 
| 3582 |   } | 
| 3583 |   set_register(NULL, R31, stack_pointer, R31IsSP); | 
| 3584 |  | 
| 3585 |   // Prepare to execute the code at entry. | 
| 3586 |   set_pc(entry); | 
| 3587 |   // Put down marker for end of simulation. The simulator will stop simulation | 
| 3588 |   // when the PC reaches this value. By saving the "end simulation" value into | 
| 3589 |   // the LR the simulation stops when returning to this call point. | 
| 3590 |   set_register(NULL, LR, kEndSimulatingPC); | 
| 3591 |  | 
| 3592 |   // Remember the values of callee-saved registers, and set them up with a | 
| 3593 |   // known value so that we are able to check that they are preserved | 
| 3594 |   // properly across Dart execution. | 
| 3595 |   int64_t preserved_vals[kAbiPreservedCpuRegCount]; | 
| 3596 |   const double dicount = static_cast<double>(icount_); | 
| 3597 |   const int64_t callee_saved_value = bit_cast<int64_t, double>(dicount); | 
| 3598 |   for (int i = kAbiFirstPreservedCpuReg; i <= kAbiLastPreservedCpuReg; i++) { | 
| 3599 |     const Register r = static_cast<Register>(i); | 
| 3600 |     preserved_vals[i - kAbiFirstPreservedCpuReg] = get_register(r); | 
| 3601 |     set_register(NULL, r, callee_saved_value); | 
| 3602 |   } | 
| 3603 |  | 
| 3604 |   // Only the bottom half of the V registers must be preserved. | 
| 3605 |   int64_t preserved_dvals[kAbiPreservedFpuRegCount]; | 
| 3606 |   for (int i = kAbiFirstPreservedFpuReg; i <= kAbiLastPreservedFpuReg; i++) { | 
| 3607 |     const VRegister r = static_cast<VRegister>(i); | 
| 3608 |     preserved_dvals[i - kAbiFirstPreservedFpuReg] = get_vregisterd(r, 0); | 
| 3609 |     set_vregisterd(r, 0, callee_saved_value); | 
| 3610 |     set_vregisterd(r, 1, 0); | 
| 3611 |   } | 
| 3612 |  | 
| 3613 |   // Start the simulation. | 
| 3614 |   Execute(); | 
| 3615 |  | 
| 3616 |   // Check that the callee-saved registers have been preserved, | 
| 3617 |   // and restore them with the original value. | 
| 3618 |   for (int i = kAbiFirstPreservedCpuReg; i <= kAbiLastPreservedCpuReg; i++) { | 
| 3619 |     const Register r = static_cast<Register>(i); | 
| 3620 |     ASSERT(callee_saved_value == get_register(r)); | 
| 3621 |     set_register(NULL, r, preserved_vals[i - kAbiFirstPreservedCpuReg]); | 
| 3622 |   } | 
| 3623 |  | 
| 3624 |   for (int i = kAbiFirstPreservedFpuReg; i <= kAbiLastPreservedFpuReg; i++) { | 
| 3625 |     const VRegister r = static_cast<VRegister>(i); | 
| 3626 |     ASSERT(callee_saved_value == get_vregisterd(r, 0)); | 
| 3627 |     set_vregisterd(r, 0, preserved_dvals[i - kAbiFirstPreservedFpuReg]); | 
| 3628 |     set_vregisterd(r, 1, 0); | 
| 3629 |   } | 
| 3630 |  | 
| 3631 |   // Restore the SP register and return R0. | 
| 3632 |   set_register(NULL, R31, sp_before_call, R31IsSP); | 
| 3633 |   int64_t return_value; | 
| 3634 |   if (fp_return) { | 
| 3635 |     return_value = get_vregisterd(V0, 0); | 
| 3636 |   } else { | 
| 3637 |     return_value = get_register(R0); | 
| 3638 |   } | 
| 3639 |   return return_value; | 
| 3640 | } | 
| 3641 |  | 
| 3642 | void Simulator::JumpToFrame(uword pc, uword sp, uword fp, Thread* thread) { | 
| 3643 |   // Walk over all setjmp buffers (simulated --> C++ transitions) | 
| 3644 |   // and try to find the setjmp associated with the simulated stack pointer. | 
| 3645 |   SimulatorSetjmpBuffer* buf = last_setjmp_buffer(); | 
| 3646 |   while (buf->link() != NULL && buf->link()->sp() <= sp) { | 
| 3647 |     buf = buf->link(); | 
| 3648 |   } | 
| 3649 |   ASSERT(buf != NULL); | 
| 3650 |  | 
| 3651 |   // The C++ caller has not cleaned up the stack memory of C++ frames. | 
| 3652 |   // Prepare for unwinding frames by destroying all the stack resources | 
| 3653 |   // in the previous C++ frames. | 
| 3654 |   StackResource::Unwind(thread); | 
| 3655 |  | 
| 3656 |   // Unwind the C++ stack and continue simulation in the target frame. | 
| 3657 |   set_pc(static_cast<int64_t>(pc)); | 
| 3658 |   set_register(NULL, SP, static_cast<int64_t>(sp)); | 
| 3659 |   set_register(NULL, FP, static_cast<int64_t>(fp)); | 
| 3660 |   set_register(NULL, THR, reinterpret_cast<int64_t>(thread)); | 
| 3661 |   // Set the tag. | 
| 3662 |   thread->set_vm_tag(VMTag::kDartCompiledTagId); | 
| 3663 |   // Clear top exit frame. | 
| 3664 |   thread->set_top_exit_frame_info(0); | 
| 3665 |   // Restore pool pointer. | 
| 3666 |   int64_t code = | 
| 3667 |       *reinterpret_cast<int64_t*>(fp + kPcMarkerSlotFromFp * kWordSize); | 
| 3668 |   int64_t pp = (FLAG_precompiled_mode && FLAG_use_bare_instructions) | 
| 3669 |                    ? static_cast<int64_t>(thread->global_object_pool()) | 
| 3670 |                    : *reinterpret_cast<int64_t*>( | 
| 3671 |                          code + Code::object_pool_offset() - kHeapObjectTag); | 
| 3672 |   pp -= kHeapObjectTag;  // In the PP register, the pool pointer is untagged. | 
| 3673 |   set_register(NULL, CODE_REG, code); | 
| 3674 |   set_register(NULL, PP, pp); | 
| 3675 |   buf->Longjmp(); | 
| 3676 | } | 
| 3677 |  | 
| 3678 | }  // namespace dart | 
| 3679 |  | 
| 3680 | #endif  // !defined(USING_SIMULATOR) | 
| 3681 |  | 
| 3682 | #endif  // defined TARGET_ARCH_ARM64 | 
| 3683 |  |