| 1 | /***************************************************************************/ |
| 2 | /* */ |
| 3 | /* ftbbox.c */ |
| 4 | /* */ |
| 5 | /* FreeType bbox computation (body). */ |
| 6 | /* */ |
| 7 | /* Copyright 1996-2018 by */ |
| 8 | /* David Turner, Robert Wilhelm, and Werner Lemberg. */ |
| 9 | /* */ |
| 10 | /* This file is part of the FreeType project, and may only be used */ |
| 11 | /* modified and distributed under the terms of the FreeType project */ |
| 12 | /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ |
| 13 | /* this file you indicate that you have read the license and */ |
| 14 | /* understand and accept it fully. */ |
| 15 | /* */ |
| 16 | /***************************************************************************/ |
| 17 | |
| 18 | |
| 19 | /*************************************************************************/ |
| 20 | /* */ |
| 21 | /* This component has a _single_ role: to compute exact outline bounding */ |
| 22 | /* boxes. */ |
| 23 | /* */ |
| 24 | /*************************************************************************/ |
| 25 | |
| 26 | |
| 27 | #include <ft2build.h> |
| 28 | #include FT_INTERNAL_DEBUG_H |
| 29 | |
| 30 | #include FT_BBOX_H |
| 31 | #include FT_IMAGE_H |
| 32 | #include FT_OUTLINE_H |
| 33 | #include FT_INTERNAL_CALC_H |
| 34 | #include FT_INTERNAL_OBJECTS_H |
| 35 | |
| 36 | |
| 37 | typedef struct TBBox_Rec_ |
| 38 | { |
| 39 | FT_Vector last; |
| 40 | FT_BBox bbox; |
| 41 | |
| 42 | } TBBox_Rec; |
| 43 | |
| 44 | |
| 45 | #define FT_UPDATE_BBOX( p, bbox ) \ |
| 46 | FT_BEGIN_STMNT \ |
| 47 | if ( p->x < bbox.xMin ) \ |
| 48 | bbox.xMin = p->x; \ |
| 49 | if ( p->x > bbox.xMax ) \ |
| 50 | bbox.xMax = p->x; \ |
| 51 | if ( p->y < bbox.yMin ) \ |
| 52 | bbox.yMin = p->y; \ |
| 53 | if ( p->y > bbox.yMax ) \ |
| 54 | bbox.yMax = p->y; \ |
| 55 | FT_END_STMNT |
| 56 | |
| 57 | #define CHECK_X( p, bbox ) \ |
| 58 | ( p->x < bbox.xMin || p->x > bbox.xMax ) |
| 59 | |
| 60 | #define CHECK_Y( p, bbox ) \ |
| 61 | ( p->y < bbox.yMin || p->y > bbox.yMax ) |
| 62 | |
| 63 | |
| 64 | /*************************************************************************/ |
| 65 | /* */ |
| 66 | /* <Function> */ |
| 67 | /* BBox_Move_To */ |
| 68 | /* */ |
| 69 | /* <Description> */ |
| 70 | /* This function is used as a `move_to' emitter during */ |
| 71 | /* FT_Outline_Decompose(). It simply records the destination point */ |
| 72 | /* in `user->last'. We also update bbox in case contour starts with */ |
| 73 | /* an implicit `on' point. */ |
| 74 | /* */ |
| 75 | /* <Input> */ |
| 76 | /* to :: A pointer to the destination vector. */ |
| 77 | /* */ |
| 78 | /* <InOut> */ |
| 79 | /* user :: A pointer to the current walk context. */ |
| 80 | /* */ |
| 81 | /* <Return> */ |
| 82 | /* Always 0. Needed for the interface only. */ |
| 83 | /* */ |
| 84 | static int |
| 85 | BBox_Move_To( FT_Vector* to, |
| 86 | TBBox_Rec* user ) |
| 87 | { |
| 88 | FT_UPDATE_BBOX( to, user->bbox ); |
| 89 | |
| 90 | user->last = *to; |
| 91 | |
| 92 | return 0; |
| 93 | } |
| 94 | |
| 95 | |
| 96 | /*************************************************************************/ |
| 97 | /* */ |
| 98 | /* <Function> */ |
| 99 | /* BBox_Line_To */ |
| 100 | /* */ |
| 101 | /* <Description> */ |
| 102 | /* This function is used as a `line_to' emitter during */ |
| 103 | /* FT_Outline_Decompose(). It simply records the destination point */ |
| 104 | /* in `user->last'; no further computations are necessary because */ |
| 105 | /* bbox already contains both explicit ends of the line segment. */ |
| 106 | /* */ |
| 107 | /* <Input> */ |
| 108 | /* to :: A pointer to the destination vector. */ |
| 109 | /* */ |
| 110 | /* <InOut> */ |
| 111 | /* user :: A pointer to the current walk context. */ |
| 112 | /* */ |
| 113 | /* <Return> */ |
| 114 | /* Always 0. Needed for the interface only. */ |
| 115 | /* */ |
| 116 | static int |
| 117 | BBox_Line_To( FT_Vector* to, |
| 118 | TBBox_Rec* user ) |
| 119 | { |
| 120 | user->last = *to; |
| 121 | |
| 122 | return 0; |
| 123 | } |
| 124 | |
| 125 | |
| 126 | /*************************************************************************/ |
| 127 | /* */ |
| 128 | /* <Function> */ |
| 129 | /* BBox_Conic_Check */ |
| 130 | /* */ |
| 131 | /* <Description> */ |
| 132 | /* Find the extrema of a 1-dimensional conic Bezier curve and update */ |
| 133 | /* a bounding range. This version uses direct computation, as it */ |
| 134 | /* doesn't need square roots. */ |
| 135 | /* */ |
| 136 | /* <Input> */ |
| 137 | /* y1 :: The start coordinate. */ |
| 138 | /* */ |
| 139 | /* y2 :: The coordinate of the control point. */ |
| 140 | /* */ |
| 141 | /* y3 :: The end coordinate. */ |
| 142 | /* */ |
| 143 | /* <InOut> */ |
| 144 | /* min :: The address of the current minimum. */ |
| 145 | /* */ |
| 146 | /* max :: The address of the current maximum. */ |
| 147 | /* */ |
| 148 | static void |
| 149 | BBox_Conic_Check( FT_Pos y1, |
| 150 | FT_Pos y2, |
| 151 | FT_Pos y3, |
| 152 | FT_Pos* min, |
| 153 | FT_Pos* max ) |
| 154 | { |
| 155 | /* This function is only called when a control off-point is outside */ |
| 156 | /* the bbox that contains all on-points. It finds a local extremum */ |
| 157 | /* within the segment, equal to (y1*y3 - y2*y2)/(y1 - 2*y2 + y3). */ |
| 158 | /* Or, offsetting from y2, we get */ |
| 159 | |
| 160 | y1 -= y2; |
| 161 | y3 -= y2; |
| 162 | y2 += FT_MulDiv( y1, y3, y1 + y3 ); |
| 163 | |
| 164 | if ( y2 < *min ) |
| 165 | *min = y2; |
| 166 | if ( y2 > *max ) |
| 167 | *max = y2; |
| 168 | } |
| 169 | |
| 170 | |
| 171 | /*************************************************************************/ |
| 172 | /* */ |
| 173 | /* <Function> */ |
| 174 | /* BBox_Conic_To */ |
| 175 | /* */ |
| 176 | /* <Description> */ |
| 177 | /* This function is used as a `conic_to' emitter during */ |
| 178 | /* FT_Outline_Decompose(). It checks a conic Bezier curve with the */ |
| 179 | /* current bounding box, and computes its extrema if necessary to */ |
| 180 | /* update it. */ |
| 181 | /* */ |
| 182 | /* <Input> */ |
| 183 | /* control :: A pointer to a control point. */ |
| 184 | /* */ |
| 185 | /* to :: A pointer to the destination vector. */ |
| 186 | /* */ |
| 187 | /* <InOut> */ |
| 188 | /* user :: The address of the current walk context. */ |
| 189 | /* */ |
| 190 | /* <Return> */ |
| 191 | /* Always 0. Needed for the interface only. */ |
| 192 | /* */ |
| 193 | /* <Note> */ |
| 194 | /* In the case of a non-monotonous arc, we compute directly the */ |
| 195 | /* extremum coordinates, as it is sufficiently fast. */ |
| 196 | /* */ |
| 197 | static int |
| 198 | BBox_Conic_To( FT_Vector* control, |
| 199 | FT_Vector* to, |
| 200 | TBBox_Rec* user ) |
| 201 | { |
| 202 | /* in case `to' is implicit and not included in bbox yet */ |
| 203 | FT_UPDATE_BBOX( to, user->bbox ); |
| 204 | |
| 205 | if ( CHECK_X( control, user->bbox ) ) |
| 206 | BBox_Conic_Check( user->last.x, |
| 207 | control->x, |
| 208 | to->x, |
| 209 | &user->bbox.xMin, |
| 210 | &user->bbox.xMax ); |
| 211 | |
| 212 | if ( CHECK_Y( control, user->bbox ) ) |
| 213 | BBox_Conic_Check( user->last.y, |
| 214 | control->y, |
| 215 | to->y, |
| 216 | &user->bbox.yMin, |
| 217 | &user->bbox.yMax ); |
| 218 | |
| 219 | user->last = *to; |
| 220 | |
| 221 | return 0; |
| 222 | } |
| 223 | |
| 224 | |
| 225 | /*************************************************************************/ |
| 226 | /* */ |
| 227 | /* <Function> */ |
| 228 | /* BBox_Cubic_Check */ |
| 229 | /* */ |
| 230 | /* <Description> */ |
| 231 | /* Find the extrema of a 1-dimensional cubic Bezier curve and */ |
| 232 | /* update a bounding range. This version uses iterative splitting */ |
| 233 | /* because it is faster than the exact solution with square roots. */ |
| 234 | /* */ |
| 235 | /* <Input> */ |
| 236 | /* p1 :: The start coordinate. */ |
| 237 | /* */ |
| 238 | /* p2 :: The coordinate of the first control point. */ |
| 239 | /* */ |
| 240 | /* p3 :: The coordinate of the second control point. */ |
| 241 | /* */ |
| 242 | /* p4 :: The end coordinate. */ |
| 243 | /* */ |
| 244 | /* <InOut> */ |
| 245 | /* min :: The address of the current minimum. */ |
| 246 | /* */ |
| 247 | /* max :: The address of the current maximum. */ |
| 248 | /* */ |
| 249 | static FT_Pos |
| 250 | cubic_peak( FT_Pos q1, |
| 251 | FT_Pos q2, |
| 252 | FT_Pos q3, |
| 253 | FT_Pos q4 ) |
| 254 | { |
| 255 | FT_Pos peak = 0; |
| 256 | FT_Int shift; |
| 257 | |
| 258 | |
| 259 | /* This function finds a peak of a cubic segment if it is above 0 */ |
| 260 | /* using iterative bisection of the segment, or returns 0. */ |
| 261 | /* The fixed-point arithmetic of bisection is inherently stable */ |
| 262 | /* but may loose accuracy in the two lowest bits. To compensate, */ |
| 263 | /* we upscale the segment if there is room. Large values may need */ |
| 264 | /* to be downscaled to avoid overflows during bisection. */ |
| 265 | /* It is called with either q2 or q3 positive, which is necessary */ |
| 266 | /* for the peak to exist and avoids undefined FT_MSB. */ |
| 267 | |
| 268 | shift = 27 - FT_MSB( (FT_UInt32)( FT_ABS( q1 ) | |
| 269 | FT_ABS( q2 ) | |
| 270 | FT_ABS( q3 ) | |
| 271 | FT_ABS( q4 ) ) ); |
| 272 | |
| 273 | if ( shift > 0 ) |
| 274 | { |
| 275 | /* upscaling too much just wastes time */ |
| 276 | if ( shift > 2 ) |
| 277 | shift = 2; |
| 278 | |
| 279 | q1 <<= shift; |
| 280 | q2 <<= shift; |
| 281 | q3 <<= shift; |
| 282 | q4 <<= shift; |
| 283 | } |
| 284 | else |
| 285 | { |
| 286 | q1 >>= -shift; |
| 287 | q2 >>= -shift; |
| 288 | q3 >>= -shift; |
| 289 | q4 >>= -shift; |
| 290 | } |
| 291 | |
| 292 | /* for a peak to exist above 0, the cubic segment must have */ |
| 293 | /* at least one of its control off-points above 0. */ |
| 294 | while ( q2 > 0 || q3 > 0 ) |
| 295 | { |
| 296 | /* determine which half contains the maximum and split */ |
| 297 | if ( q1 + q2 > q3 + q4 ) /* first half */ |
| 298 | { |
| 299 | q4 = q4 + q3; |
| 300 | q3 = q3 + q2; |
| 301 | q2 = q2 + q1; |
| 302 | q4 = q4 + q3; |
| 303 | q3 = q3 + q2; |
| 304 | q4 = ( q4 + q3 ) / 8; |
| 305 | q3 = q3 / 4; |
| 306 | q2 = q2 / 2; |
| 307 | } |
| 308 | else /* second half */ |
| 309 | { |
| 310 | q1 = q1 + q2; |
| 311 | q2 = q2 + q3; |
| 312 | q3 = q3 + q4; |
| 313 | q1 = q1 + q2; |
| 314 | q2 = q2 + q3; |
| 315 | q1 = ( q1 + q2 ) / 8; |
| 316 | q2 = q2 / 4; |
| 317 | q3 = q3 / 2; |
| 318 | } |
| 319 | |
| 320 | /* check whether either end reached the maximum */ |
| 321 | if ( q1 == q2 && q1 >= q3 ) |
| 322 | { |
| 323 | peak = q1; |
| 324 | break; |
| 325 | } |
| 326 | if ( q3 == q4 && q2 <= q4 ) |
| 327 | { |
| 328 | peak = q4; |
| 329 | break; |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | if ( shift > 0 ) |
| 334 | peak >>= shift; |
| 335 | else |
| 336 | peak <<= -shift; |
| 337 | |
| 338 | return peak; |
| 339 | } |
| 340 | |
| 341 | |
| 342 | static void |
| 343 | BBox_Cubic_Check( FT_Pos p1, |
| 344 | FT_Pos p2, |
| 345 | FT_Pos p3, |
| 346 | FT_Pos p4, |
| 347 | FT_Pos* min, |
| 348 | FT_Pos* max ) |
| 349 | { |
| 350 | /* This function is only called when a control off-point is outside */ |
| 351 | /* the bbox that contains all on-points. So at least one of the */ |
| 352 | /* conditions below holds and cubic_peak is called with at least one */ |
| 353 | /* non-zero argument. */ |
| 354 | |
| 355 | if ( p2 > *max || p3 > *max ) |
| 356 | *max += cubic_peak( p1 - *max, p2 - *max, p3 - *max, p4 - *max ); |
| 357 | |
| 358 | /* now flip the signs to update the minimum */ |
| 359 | if ( p2 < *min || p3 < *min ) |
| 360 | *min -= cubic_peak( *min - p1, *min - p2, *min - p3, *min - p4 ); |
| 361 | } |
| 362 | |
| 363 | |
| 364 | /*************************************************************************/ |
| 365 | /* */ |
| 366 | /* <Function> */ |
| 367 | /* BBox_Cubic_To */ |
| 368 | /* */ |
| 369 | /* <Description> */ |
| 370 | /* This function is used as a `cubic_to' emitter during */ |
| 371 | /* FT_Outline_Decompose(). It checks a cubic Bezier curve with the */ |
| 372 | /* current bounding box, and computes its extrema if necessary to */ |
| 373 | /* update it. */ |
| 374 | /* */ |
| 375 | /* <Input> */ |
| 376 | /* control1 :: A pointer to the first control point. */ |
| 377 | /* */ |
| 378 | /* control2 :: A pointer to the second control point. */ |
| 379 | /* */ |
| 380 | /* to :: A pointer to the destination vector. */ |
| 381 | /* */ |
| 382 | /* <InOut> */ |
| 383 | /* user :: The address of the current walk context. */ |
| 384 | /* */ |
| 385 | /* <Return> */ |
| 386 | /* Always 0. Needed for the interface only. */ |
| 387 | /* */ |
| 388 | /* <Note> */ |
| 389 | /* In the case of a non-monotonous arc, we don't compute directly */ |
| 390 | /* extremum coordinates, we subdivide instead. */ |
| 391 | /* */ |
| 392 | static int |
| 393 | BBox_Cubic_To( FT_Vector* control1, |
| 394 | FT_Vector* control2, |
| 395 | FT_Vector* to, |
| 396 | TBBox_Rec* user ) |
| 397 | { |
| 398 | /* We don't need to check `to' since it is always an on-point, */ |
| 399 | /* thus within the bbox. Only segments with an off-point outside */ |
| 400 | /* the bbox can possibly reach new extreme values. */ |
| 401 | |
| 402 | if ( CHECK_X( control1, user->bbox ) || |
| 403 | CHECK_X( control2, user->bbox ) ) |
| 404 | BBox_Cubic_Check( user->last.x, |
| 405 | control1->x, |
| 406 | control2->x, |
| 407 | to->x, |
| 408 | &user->bbox.xMin, |
| 409 | &user->bbox.xMax ); |
| 410 | |
| 411 | if ( CHECK_Y( control1, user->bbox ) || |
| 412 | CHECK_Y( control2, user->bbox ) ) |
| 413 | BBox_Cubic_Check( user->last.y, |
| 414 | control1->y, |
| 415 | control2->y, |
| 416 | to->y, |
| 417 | &user->bbox.yMin, |
| 418 | &user->bbox.yMax ); |
| 419 | |
| 420 | user->last = *to; |
| 421 | |
| 422 | return 0; |
| 423 | } |
| 424 | |
| 425 | |
| 426 | FT_DEFINE_OUTLINE_FUNCS( |
| 427 | bbox_interface, |
| 428 | |
| 429 | (FT_Outline_MoveTo_Func) BBox_Move_To, /* move_to */ |
| 430 | (FT_Outline_LineTo_Func) BBox_Line_To, /* line_to */ |
| 431 | (FT_Outline_ConicTo_Func)BBox_Conic_To, /* conic_to */ |
| 432 | (FT_Outline_CubicTo_Func)BBox_Cubic_To, /* cubic_to */ |
| 433 | 0, /* shift */ |
| 434 | 0 /* delta */ |
| 435 | ) |
| 436 | |
| 437 | |
| 438 | /* documentation is in ftbbox.h */ |
| 439 | |
| 440 | FT_EXPORT_DEF( FT_Error ) |
| 441 | FT_Outline_Get_BBox( FT_Outline* outline, |
| 442 | FT_BBox *abbox ) |
| 443 | { |
| 444 | FT_BBox cbox = { 0x7FFFFFFFL, 0x7FFFFFFFL, |
| 445 | -0x7FFFFFFFL, -0x7FFFFFFFL }; |
| 446 | FT_BBox bbox = { 0x7FFFFFFFL, 0x7FFFFFFFL, |
| 447 | -0x7FFFFFFFL, -0x7FFFFFFFL }; |
| 448 | FT_Vector* vec; |
| 449 | FT_UShort n; |
| 450 | |
| 451 | |
| 452 | if ( !abbox ) |
| 453 | return FT_THROW( Invalid_Argument ); |
| 454 | |
| 455 | if ( !outline ) |
| 456 | return FT_THROW( Invalid_Outline ); |
| 457 | |
| 458 | /* if outline is empty, return (0,0,0,0) */ |
| 459 | if ( outline->n_points == 0 || outline->n_contours <= 0 ) |
| 460 | { |
| 461 | abbox->xMin = abbox->xMax = 0; |
| 462 | abbox->yMin = abbox->yMax = 0; |
| 463 | |
| 464 | return 0; |
| 465 | } |
| 466 | |
| 467 | /* We compute the control box as well as the bounding box of */ |
| 468 | /* all `on' points in the outline. Then, if the two boxes */ |
| 469 | /* coincide, we exit immediately. */ |
| 470 | |
| 471 | vec = outline->points; |
| 472 | |
| 473 | for ( n = 0; n < outline->n_points; n++ ) |
| 474 | { |
| 475 | FT_UPDATE_BBOX( vec, cbox ); |
| 476 | |
| 477 | if ( FT_CURVE_TAG( outline->tags[n] ) == FT_CURVE_TAG_ON ) |
| 478 | FT_UPDATE_BBOX( vec, bbox ); |
| 479 | |
| 480 | vec++; |
| 481 | } |
| 482 | |
| 483 | /* test two boxes for equality */ |
| 484 | if ( cbox.xMin < bbox.xMin || cbox.xMax > bbox.xMax || |
| 485 | cbox.yMin < bbox.yMin || cbox.yMax > bbox.yMax ) |
| 486 | { |
| 487 | /* the two boxes are different, now walk over the outline to */ |
| 488 | /* get the Bezier arc extrema. */ |
| 489 | |
| 490 | FT_Error error; |
| 491 | TBBox_Rec user; |
| 492 | |
| 493 | #ifdef FT_CONFIG_OPTION_PIC |
| 494 | FT_Outline_Funcs bbox_interface; |
| 495 | |
| 496 | |
| 497 | Init_Class_bbox_interface( &bbox_interface ); |
| 498 | #endif |
| 499 | |
| 500 | user.bbox = bbox; |
| 501 | |
| 502 | error = FT_Outline_Decompose( outline, &bbox_interface, &user ); |
| 503 | if ( error ) |
| 504 | return error; |
| 505 | |
| 506 | *abbox = user.bbox; |
| 507 | } |
| 508 | else |
| 509 | *abbox = bbox; |
| 510 | |
| 511 | return FT_Err_Ok; |
| 512 | } |
| 513 | |
| 514 | |
| 515 | /* END */ |
| 516 | |