| 1 | /***************************************************************************/ |
| 2 | /* */ |
| 3 | /* ftgrays.c */ |
| 4 | /* */ |
| 5 | /* A new `perfect' anti-aliasing renderer (body). */ |
| 6 | /* */ |
| 7 | /* Copyright 2000-2018 by */ |
| 8 | /* David Turner, Robert Wilhelm, and Werner Lemberg. */ |
| 9 | /* */ |
| 10 | /* This file is part of the FreeType project, and may only be used, */ |
| 11 | /* modified, and distributed under the terms of the FreeType project */ |
| 12 | /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ |
| 13 | /* this file you indicate that you have read the license and */ |
| 14 | /* understand and accept it fully. */ |
| 15 | /* */ |
| 16 | /***************************************************************************/ |
| 17 | |
| 18 | /*************************************************************************/ |
| 19 | /* */ |
| 20 | /* This file can be compiled without the rest of the FreeType engine, by */ |
| 21 | /* defining the STANDALONE_ macro when compiling it. You also need to */ |
| 22 | /* put the files `ftgrays.h' and `ftimage.h' into the current */ |
| 23 | /* compilation directory. Typically, you could do something like */ |
| 24 | /* */ |
| 25 | /* - copy `src/smooth/ftgrays.c' (this file) to your current directory */ |
| 26 | /* */ |
| 27 | /* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the */ |
| 28 | /* same directory */ |
| 29 | /* */ |
| 30 | /* - compile `ftgrays' with the STANDALONE_ macro defined, as in */ |
| 31 | /* */ |
| 32 | /* cc -c -DSTANDALONE_ ftgrays.c */ |
| 33 | /* */ |
| 34 | /* The renderer can be initialized with a call to */ |
| 35 | /* `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated */ |
| 36 | /* with a call to `ft_gray_raster.raster_render'. */ |
| 37 | /* */ |
| 38 | /* See the comments and documentation in the file `ftimage.h' for more */ |
| 39 | /* details on how the raster works. */ |
| 40 | /* */ |
| 41 | /*************************************************************************/ |
| 42 | |
| 43 | /*************************************************************************/ |
| 44 | /* */ |
| 45 | /* This is a new anti-aliasing scan-converter for FreeType 2. The */ |
| 46 | /* algorithm used here is _very_ different from the one in the standard */ |
| 47 | /* `ftraster' module. Actually, `ftgrays' computes the _exact_ */ |
| 48 | /* coverage of the outline on each pixel cell. */ |
| 49 | /* */ |
| 50 | /* It is based on ideas that I initially found in Raph Levien's */ |
| 51 | /* excellent LibArt graphics library (see http://www.levien.com/libart */ |
| 52 | /* for more information, though the web pages do not tell anything */ |
| 53 | /* about the renderer; you'll have to dive into the source code to */ |
| 54 | /* understand how it works). */ |
| 55 | /* */ |
| 56 | /* Note, however, that this is a _very_ different implementation */ |
| 57 | /* compared to Raph's. Coverage information is stored in a very */ |
| 58 | /* different way, and I don't use sorted vector paths. Also, it doesn't */ |
| 59 | /* use floating point values. */ |
| 60 | /* */ |
| 61 | /* This renderer has the following advantages: */ |
| 62 | /* */ |
| 63 | /* - It doesn't need an intermediate bitmap. Instead, one can supply a */ |
| 64 | /* callback function that will be called by the renderer to draw gray */ |
| 65 | /* spans on any target surface. You can thus do direct composition on */ |
| 66 | /* any kind of bitmap, provided that you give the renderer the right */ |
| 67 | /* callback. */ |
| 68 | /* */ |
| 69 | /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on */ |
| 70 | /* each pixel cell. */ |
| 71 | /* */ |
| 72 | /* - It performs a single pass on the outline (the `standard' FT2 */ |
| 73 | /* renderer makes two passes). */ |
| 74 | /* */ |
| 75 | /* - It can easily be modified to render to _any_ number of gray levels */ |
| 76 | /* cheaply. */ |
| 77 | /* */ |
| 78 | /* - For small (< 20) pixel sizes, it is faster than the standard */ |
| 79 | /* renderer. */ |
| 80 | /* */ |
| 81 | /*************************************************************************/ |
| 82 | |
| 83 | |
| 84 | /*************************************************************************/ |
| 85 | /* */ |
| 86 | /* The macro FT_COMPONENT is used in trace mode. It is an implicit */ |
| 87 | /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */ |
| 88 | /* messages during execution. */ |
| 89 | /* */ |
| 90 | #undef FT_COMPONENT |
| 91 | #define FT_COMPONENT trace_smooth |
| 92 | |
| 93 | |
| 94 | #ifdef STANDALONE_ |
| 95 | |
| 96 | |
| 97 | /* The size in bytes of the render pool used by the scan-line converter */ |
| 98 | /* to do all of its work. */ |
| 99 | #define FT_RENDER_POOL_SIZE 16384L |
| 100 | |
| 101 | |
| 102 | /* Auxiliary macros for token concatenation. */ |
| 103 | #define FT_ERR_XCAT( x, y ) x ## y |
| 104 | #define FT_ERR_CAT( x, y ) FT_ERR_XCAT( x, y ) |
| 105 | |
| 106 | #define FT_BEGIN_STMNT do { |
| 107 | #define FT_END_STMNT } while ( 0 ) |
| 108 | |
| 109 | #define FT_MIN( a, b ) ( (a) < (b) ? (a) : (b) ) |
| 110 | #define FT_MAX( a, b ) ( (a) > (b) ? (a) : (b) ) |
| 111 | #define FT_ABS( a ) ( (a) < 0 ? -(a) : (a) ) |
| 112 | |
| 113 | |
| 114 | /* |
| 115 | * Approximate sqrt(x*x+y*y) using the `alpha max plus beta min' |
| 116 | * algorithm. We use alpha = 1, beta = 3/8, giving us results with a |
| 117 | * largest error less than 7% compared to the exact value. |
| 118 | */ |
| 119 | #define FT_HYPOT( x, y ) \ |
| 120 | ( x = FT_ABS( x ), \ |
| 121 | y = FT_ABS( y ), \ |
| 122 | x > y ? x + ( 3 * y >> 3 ) \ |
| 123 | : y + ( 3 * x >> 3 ) ) |
| 124 | |
| 125 | |
| 126 | /* define this to dump debugging information */ |
| 127 | /* #define FT_DEBUG_LEVEL_TRACE */ |
| 128 | |
| 129 | |
| 130 | #ifdef FT_DEBUG_LEVEL_TRACE |
| 131 | #include <stdio.h> |
| 132 | #include <stdarg.h> |
| 133 | #endif |
| 134 | |
| 135 | #include <stddef.h> |
| 136 | #include <string.h> |
| 137 | #include <setjmp.h> |
| 138 | #include <limits.h> |
| 139 | #define FT_CHAR_BIT CHAR_BIT |
| 140 | #define FT_UINT_MAX UINT_MAX |
| 141 | #define FT_INT_MAX INT_MAX |
| 142 | #define FT_ULONG_MAX ULONG_MAX |
| 143 | |
| 144 | #define ADD_LONG( a, b ) \ |
| 145 | (long)( (unsigned long)(a) + (unsigned long)(b) ) |
| 146 | #define SUB_LONG( a, b ) \ |
| 147 | (long)( (unsigned long)(a) - (unsigned long)(b) ) |
| 148 | #define MUL_LONG( a, b ) \ |
| 149 | (long)( (unsigned long)(a) * (unsigned long)(b) ) |
| 150 | #define NEG_LONG( a ) \ |
| 151 | (long)( -(unsigned long)(a) ) |
| 152 | |
| 153 | |
| 154 | #define ft_memset memset |
| 155 | |
| 156 | #define ft_setjmp setjmp |
| 157 | #define ft_longjmp longjmp |
| 158 | #define ft_jmp_buf jmp_buf |
| 159 | |
| 160 | typedef ptrdiff_t FT_PtrDist; |
| 161 | |
| 162 | |
| 163 | #define ErrRaster_Invalid_Mode -2 |
| 164 | #define ErrRaster_Invalid_Outline -1 |
| 165 | #define ErrRaster_Invalid_Argument -3 |
| 166 | #define ErrRaster_Memory_Overflow -4 |
| 167 | |
| 168 | #define FT_BEGIN_HEADER |
| 169 | #define FT_END_HEADER |
| 170 | |
| 171 | #include "ftimage.h" |
| 172 | #include "ftgrays.h" |
| 173 | |
| 174 | |
| 175 | /* This macro is used to indicate that a function parameter is unused. */ |
| 176 | /* Its purpose is simply to reduce compiler warnings. Note also that */ |
| 177 | /* simply defining it as `(void)x' doesn't avoid warnings with certain */ |
| 178 | /* ANSI compilers (e.g. LCC). */ |
| 179 | #define FT_UNUSED( x ) (x) = (x) |
| 180 | |
| 181 | |
| 182 | /* we only use level 5 & 7 tracing messages; cf. ftdebug.h */ |
| 183 | |
| 184 | #ifdef FT_DEBUG_LEVEL_TRACE |
| 185 | |
| 186 | void |
| 187 | FT_Message( const char* fmt, |
| 188 | ... ) |
| 189 | { |
| 190 | va_list ap; |
| 191 | |
| 192 | |
| 193 | va_start( ap, fmt ); |
| 194 | vfprintf( stderr, fmt, ap ); |
| 195 | va_end( ap ); |
| 196 | } |
| 197 | |
| 198 | |
| 199 | /* empty function useful for setting a breakpoint to catch errors */ |
| 200 | int |
| 201 | FT_Throw( int error, |
| 202 | int line, |
| 203 | const char* file ) |
| 204 | { |
| 205 | FT_UNUSED( error ); |
| 206 | FT_UNUSED( line ); |
| 207 | FT_UNUSED( file ); |
| 208 | |
| 209 | return 0; |
| 210 | } |
| 211 | |
| 212 | |
| 213 | /* we don't handle tracing levels in stand-alone mode; */ |
| 214 | #ifndef FT_TRACE5 |
| 215 | #define FT_TRACE5( varformat ) FT_Message varformat |
| 216 | #endif |
| 217 | #ifndef FT_TRACE7 |
| 218 | #define FT_TRACE7( varformat ) FT_Message varformat |
| 219 | #endif |
| 220 | #ifndef FT_ERROR |
| 221 | #define FT_ERROR( varformat ) FT_Message varformat |
| 222 | #endif |
| 223 | |
| 224 | #define FT_THROW( e ) \ |
| 225 | ( FT_Throw( FT_ERR_CAT( ErrRaster, e ), \ |
| 226 | __LINE__, \ |
| 227 | __FILE__ ) | \ |
| 228 | FT_ERR_CAT( ErrRaster, e ) ) |
| 229 | |
| 230 | #else /* !FT_DEBUG_LEVEL_TRACE */ |
| 231 | |
| 232 | #define FT_TRACE5( x ) do { } while ( 0 ) /* nothing */ |
| 233 | #define FT_TRACE7( x ) do { } while ( 0 ) /* nothing */ |
| 234 | #define FT_ERROR( x ) do { } while ( 0 ) /* nothing */ |
| 235 | #define FT_THROW( e ) FT_ERR_CAT( ErrRaster_, e ) |
| 236 | |
| 237 | |
| 238 | #endif /* !FT_DEBUG_LEVEL_TRACE */ |
| 239 | |
| 240 | |
| 241 | #define FT_DEFINE_OUTLINE_FUNCS( class_, \ |
| 242 | move_to_, line_to_, \ |
| 243 | conic_to_, cubic_to_, \ |
| 244 | shift_, delta_ ) \ |
| 245 | static const FT_Outline_Funcs class_ = \ |
| 246 | { \ |
| 247 | move_to_, \ |
| 248 | line_to_, \ |
| 249 | conic_to_, \ |
| 250 | cubic_to_, \ |
| 251 | shift_, \ |
| 252 | delta_ \ |
| 253 | }; |
| 254 | |
| 255 | #define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_, \ |
| 256 | raster_new_, raster_reset_, \ |
| 257 | raster_set_mode_, raster_render_, \ |
| 258 | raster_done_ ) \ |
| 259 | const FT_Raster_Funcs class_ = \ |
| 260 | { \ |
| 261 | glyph_format_, \ |
| 262 | raster_new_, \ |
| 263 | raster_reset_, \ |
| 264 | raster_set_mode_, \ |
| 265 | raster_render_, \ |
| 266 | raster_done_ \ |
| 267 | }; |
| 268 | |
| 269 | |
| 270 | #else /* !STANDALONE_ */ |
| 271 | |
| 272 | |
| 273 | #include <ft2build.h> |
| 274 | #include "ftgrays.h" |
| 275 | #include FT_INTERNAL_OBJECTS_H |
| 276 | #include FT_INTERNAL_DEBUG_H |
| 277 | #include FT_INTERNAL_CALC_H |
| 278 | #include FT_OUTLINE_H |
| 279 | |
| 280 | #include "ftsmerrs.h" |
| 281 | |
| 282 | #include "ftspic.h" |
| 283 | |
| 284 | #define Smooth_Err_Invalid_Mode Smooth_Err_Cannot_Render_Glyph |
| 285 | #define Smooth_Err_Memory_Overflow Smooth_Err_Out_Of_Memory |
| 286 | #define ErrRaster_Memory_Overflow Smooth_Err_Out_Of_Memory |
| 287 | |
| 288 | |
| 289 | #endif /* !STANDALONE_ */ |
| 290 | |
| 291 | |
| 292 | #ifndef FT_MEM_SET |
| 293 | #define FT_MEM_SET( d, s, c ) ft_memset( d, s, c ) |
| 294 | #endif |
| 295 | |
| 296 | #ifndef FT_MEM_ZERO |
| 297 | #define FT_MEM_ZERO( dest, count ) FT_MEM_SET( dest, 0, count ) |
| 298 | #endif |
| 299 | |
| 300 | #ifndef FT_ZERO |
| 301 | #define FT_ZERO( p ) FT_MEM_ZERO( p, sizeof ( *(p) ) ) |
| 302 | #endif |
| 303 | |
| 304 | /* as usual, for the speed hungry :-) */ |
| 305 | |
| 306 | #undef RAS_ARG |
| 307 | #undef RAS_ARG_ |
| 308 | #undef RAS_VAR |
| 309 | #undef RAS_VAR_ |
| 310 | |
| 311 | #ifndef FT_STATIC_RASTER |
| 312 | |
| 313 | #define RAS_ARG gray_PWorker worker |
| 314 | #define RAS_ARG_ gray_PWorker worker, |
| 315 | |
| 316 | #define RAS_VAR worker |
| 317 | #define RAS_VAR_ worker, |
| 318 | |
| 319 | #else /* FT_STATIC_RASTER */ |
| 320 | |
| 321 | #define RAS_ARG void |
| 322 | #define RAS_ARG_ /* empty */ |
| 323 | #define RAS_VAR /* empty */ |
| 324 | #define RAS_VAR_ /* empty */ |
| 325 | |
| 326 | #endif /* FT_STATIC_RASTER */ |
| 327 | |
| 328 | |
| 329 | /* must be at least 6 bits! */ |
| 330 | #define PIXEL_BITS 8 |
| 331 | |
| 332 | #undef FLOOR |
| 333 | #undef CEILING |
| 334 | #undef TRUNC |
| 335 | #undef SCALED |
| 336 | |
| 337 | #define ONE_PIXEL ( 1 << PIXEL_BITS ) |
| 338 | #define TRUNC( x ) ( (TCoord)( (x) >> PIXEL_BITS ) ) |
| 339 | #define SUBPIXELS( x ) ( (TPos)(x) * ONE_PIXEL ) |
| 340 | #define FLOOR( x ) ( (x) & -ONE_PIXEL ) |
| 341 | #define CEILING( x ) ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL ) |
| 342 | #define ROUND( x ) ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL ) |
| 343 | |
| 344 | #if PIXEL_BITS >= 6 |
| 345 | #define UPSCALE( x ) ( (x) * ( ONE_PIXEL >> 6 ) ) |
| 346 | #define DOWNSCALE( x ) ( (x) >> ( PIXEL_BITS - 6 ) ) |
| 347 | #else |
| 348 | #define UPSCALE( x ) ( (x) >> ( 6 - PIXEL_BITS ) ) |
| 349 | #define DOWNSCALE( x ) ( (x) * ( 64 >> PIXEL_BITS ) ) |
| 350 | #endif |
| 351 | |
| 352 | |
| 353 | /* Compute `dividend / divisor' and return both its quotient and */ |
| 354 | /* remainder, cast to a specific type. This macro also ensures that */ |
| 355 | /* the remainder is always positive. We use the remainder to keep */ |
| 356 | /* track of accumulating errors and compensate for them. */ |
| 357 | #define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \ |
| 358 | FT_BEGIN_STMNT \ |
| 359 | (quotient) = (type)( (dividend) / (divisor) ); \ |
| 360 | (remainder) = (type)( (dividend) % (divisor) ); \ |
| 361 | if ( (remainder) < 0 ) \ |
| 362 | { \ |
| 363 | (quotient)--; \ |
| 364 | (remainder) += (type)(divisor); \ |
| 365 | } \ |
| 366 | FT_END_STMNT |
| 367 | |
| 368 | #ifdef __arm__ |
| 369 | /* Work around a bug specific to GCC which make the compiler fail to */ |
| 370 | /* optimize a division and modulo operation on the same parameters */ |
| 371 | /* into a single call to `__aeabi_idivmod'. See */ |
| 372 | /* */ |
| 373 | /* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721 */ |
| 374 | #undef FT_DIV_MOD |
| 375 | #define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \ |
| 376 | FT_BEGIN_STMNT \ |
| 377 | (quotient) = (type)( (dividend) / (divisor) ); \ |
| 378 | (remainder) = (type)( (dividend) - (quotient) * (divisor) ); \ |
| 379 | if ( (remainder) < 0 ) \ |
| 380 | { \ |
| 381 | (quotient)--; \ |
| 382 | (remainder) += (type)(divisor); \ |
| 383 | } \ |
| 384 | FT_END_STMNT |
| 385 | #endif /* __arm__ */ |
| 386 | |
| 387 | |
| 388 | /* These macros speed up repetitive divisions by replacing them */ |
| 389 | /* with multiplications and right shifts. */ |
| 390 | #define FT_UDIVPREP( c, b ) \ |
| 391 | long b ## _r = c ? (long)( FT_ULONG_MAX >> PIXEL_BITS ) / ( b ) \ |
| 392 | : 0 |
| 393 | #define FT_UDIV( a, b ) \ |
| 394 | ( ( (unsigned long)( a ) * (unsigned long)( b ## _r ) ) >> \ |
| 395 | ( sizeof( long ) * FT_CHAR_BIT - PIXEL_BITS ) ) |
| 396 | |
| 397 | |
| 398 | /*************************************************************************/ |
| 399 | /* */ |
| 400 | /* TYPE DEFINITIONS */ |
| 401 | /* */ |
| 402 | |
| 403 | /* don't change the following types to FT_Int or FT_Pos, since we might */ |
| 404 | /* need to define them to "float" or "double" when experimenting with */ |
| 405 | /* new algorithms */ |
| 406 | |
| 407 | typedef long TPos; /* subpixel coordinate */ |
| 408 | typedef int TCoord; /* integer scanline/pixel coordinate */ |
| 409 | typedef int TArea; /* cell areas, coordinate products */ |
| 410 | |
| 411 | |
| 412 | typedef struct TCell_* PCell; |
| 413 | |
| 414 | typedef struct TCell_ |
| 415 | { |
| 416 | TCoord x; /* same with gray_TWorker.ex */ |
| 417 | TCoord cover; /* same with gray_TWorker.cover */ |
| 418 | TArea area; |
| 419 | PCell next; |
| 420 | |
| 421 | } TCell; |
| 422 | |
| 423 | typedef struct TPixmap_ |
| 424 | { |
| 425 | unsigned char* origin; /* pixmap origin at the bottom-left */ |
| 426 | int pitch; /* pitch to go down one row */ |
| 427 | |
| 428 | } TPixmap; |
| 429 | |
| 430 | /* maximum number of gray cells in the buffer */ |
| 431 | #if FT_RENDER_POOL_SIZE > 2048 |
| 432 | #define FT_MAX_GRAY_POOL ( FT_RENDER_POOL_SIZE / sizeof ( TCell ) ) |
| 433 | #else |
| 434 | #define FT_MAX_GRAY_POOL ( 2048 / sizeof ( TCell ) ) |
| 435 | #endif |
| 436 | |
| 437 | |
| 438 | #if defined( _MSC_VER ) /* Visual C++ (and Intel C++) */ |
| 439 | /* We disable the warning `structure was padded due to */ |
| 440 | /* __declspec(align())' in order to compile cleanly with */ |
| 441 | /* the maximum level of warnings. */ |
| 442 | #pragma warning( push ) |
| 443 | #pragma warning( disable : 4324 ) |
| 444 | #endif /* _MSC_VER */ |
| 445 | |
| 446 | typedef struct gray_TWorker_ |
| 447 | { |
| 448 | ft_jmp_buf jump_buffer; |
| 449 | |
| 450 | TCoord ex, ey; |
| 451 | TCoord min_ex, max_ex; |
| 452 | TCoord min_ey, max_ey; |
| 453 | |
| 454 | TArea area; |
| 455 | TCoord cover; |
| 456 | int invalid; |
| 457 | |
| 458 | PCell* ycells; |
| 459 | PCell cells; |
| 460 | FT_PtrDist max_cells; |
| 461 | FT_PtrDist num_cells; |
| 462 | |
| 463 | TPos x, y; |
| 464 | |
| 465 | FT_Outline outline; |
| 466 | TPixmap target; |
| 467 | |
| 468 | FT_Raster_Span_Func render_span; |
| 469 | void* render_span_data; |
| 470 | |
| 471 | } gray_TWorker, *gray_PWorker; |
| 472 | |
| 473 | #if defined( _MSC_VER ) |
| 474 | #pragma warning( pop ) |
| 475 | #endif |
| 476 | |
| 477 | |
| 478 | #ifndef FT_STATIC_RASTER |
| 479 | #define ras (*worker) |
| 480 | #else |
| 481 | static gray_TWorker ras; |
| 482 | #endif |
| 483 | |
| 484 | |
| 485 | typedef struct gray_TRaster_ |
| 486 | { |
| 487 | void* memory; |
| 488 | |
| 489 | } gray_TRaster, *gray_PRaster; |
| 490 | |
| 491 | |
| 492 | #ifdef FT_DEBUG_LEVEL_TRACE |
| 493 | |
| 494 | /* to be called while in the debugger -- */ |
| 495 | /* this function causes a compiler warning since it is unused otherwise */ |
| 496 | static void |
| 497 | gray_dump_cells( RAS_ARG ) |
| 498 | { |
| 499 | int y; |
| 500 | |
| 501 | |
| 502 | for ( y = ras.min_ey; y < ras.max_ey; y++ ) |
| 503 | { |
| 504 | PCell cell = ras.ycells[y - ras.min_ey]; |
| 505 | |
| 506 | |
| 507 | printf( "%3d:" , y ); |
| 508 | |
| 509 | for ( ; cell != NULL; cell = cell->next ) |
| 510 | printf( " (%3d, c:%4d, a:%6d)" , |
| 511 | cell->x, cell->cover, cell->area ); |
| 512 | printf( "\n" ); |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | #endif /* FT_DEBUG_LEVEL_TRACE */ |
| 517 | |
| 518 | |
| 519 | /*************************************************************************/ |
| 520 | /* */ |
| 521 | /* Record the current cell in the table. */ |
| 522 | /* */ |
| 523 | static void |
| 524 | gray_record_cell( RAS_ARG ) |
| 525 | { |
| 526 | PCell *pcell, cell; |
| 527 | TCoord x = ras.ex; |
| 528 | |
| 529 | |
| 530 | pcell = &ras.ycells[ras.ey - ras.min_ey]; |
| 531 | for (;;) |
| 532 | { |
| 533 | cell = *pcell; |
| 534 | if ( !cell || cell->x > x ) |
| 535 | break; |
| 536 | |
| 537 | if ( cell->x == x ) |
| 538 | goto Found; |
| 539 | |
| 540 | pcell = &cell->next; |
| 541 | } |
| 542 | |
| 543 | if ( ras.num_cells >= ras.max_cells ) |
| 544 | ft_longjmp( ras.jump_buffer, 1 ); |
| 545 | |
| 546 | /* insert new cell */ |
| 547 | cell = ras.cells + ras.num_cells++; |
| 548 | cell->x = x; |
| 549 | cell->area = ras.area; |
| 550 | cell->cover = ras.cover; |
| 551 | |
| 552 | cell->next = *pcell; |
| 553 | *pcell = cell; |
| 554 | |
| 555 | return; |
| 556 | |
| 557 | Found: |
| 558 | /* update old cell */ |
| 559 | cell->area += ras.area; |
| 560 | cell->cover += ras.cover; |
| 561 | } |
| 562 | |
| 563 | |
| 564 | /*************************************************************************/ |
| 565 | /* */ |
| 566 | /* Set the current cell to a new position. */ |
| 567 | /* */ |
| 568 | static void |
| 569 | gray_set_cell( RAS_ARG_ TCoord ex, |
| 570 | TCoord ey ) |
| 571 | { |
| 572 | /* Move the cell pointer to a new position. We set the `invalid' */ |
| 573 | /* flag to indicate that the cell isn't part of those we're interested */ |
| 574 | /* in during the render phase. This means that: */ |
| 575 | /* */ |
| 576 | /* . the new vertical position must be within min_ey..max_ey-1. */ |
| 577 | /* . the new horizontal position must be strictly less than max_ex */ |
| 578 | /* */ |
| 579 | /* Note that if a cell is to the left of the clipping region, it is */ |
| 580 | /* actually set to the (min_ex-1) horizontal position. */ |
| 581 | |
| 582 | if ( ex < ras.min_ex ) |
| 583 | ex = ras.min_ex - 1; |
| 584 | |
| 585 | /* record the current one if it is valid and substantial */ |
| 586 | if ( !ras.invalid && ( ras.area || ras.cover ) ) |
| 587 | gray_record_cell( RAS_VAR ); |
| 588 | |
| 589 | ras.area = 0; |
| 590 | ras.cover = 0; |
| 591 | ras.ex = ex; |
| 592 | ras.ey = ey; |
| 593 | |
| 594 | ras.invalid = ( ey >= ras.max_ey || ey < ras.min_ey || |
| 595 | ex >= ras.max_ex ); |
| 596 | } |
| 597 | |
| 598 | |
| 599 | #ifndef FT_LONG64 |
| 600 | |
| 601 | /*************************************************************************/ |
| 602 | /* */ |
| 603 | /* Render a scanline as one or more cells. */ |
| 604 | /* */ |
| 605 | static void |
| 606 | gray_render_scanline( RAS_ARG_ TCoord ey, |
| 607 | TPos x1, |
| 608 | TCoord y1, |
| 609 | TPos x2, |
| 610 | TCoord y2 ) |
| 611 | { |
| 612 | TCoord ex1, ex2, fx1, fx2, first, dy, delta, mod; |
| 613 | TPos p, dx; |
| 614 | int incr; |
| 615 | |
| 616 | |
| 617 | ex1 = TRUNC( x1 ); |
| 618 | ex2 = TRUNC( x2 ); |
| 619 | |
| 620 | /* trivial case. Happens often */ |
| 621 | if ( y1 == y2 ) |
| 622 | { |
| 623 | gray_set_cell( RAS_VAR_ ex2, ey ); |
| 624 | return; |
| 625 | } |
| 626 | |
| 627 | fx1 = (TCoord)( x1 - SUBPIXELS( ex1 ) ); |
| 628 | fx2 = (TCoord)( x2 - SUBPIXELS( ex2 ) ); |
| 629 | |
| 630 | /* everything is located in a single cell. That is easy! */ |
| 631 | /* */ |
| 632 | if ( ex1 == ex2 ) |
| 633 | goto End; |
| 634 | |
| 635 | /* ok, we'll have to render a run of adjacent cells on the same */ |
| 636 | /* scanline... */ |
| 637 | /* */ |
| 638 | dx = x2 - x1; |
| 639 | dy = y2 - y1; |
| 640 | |
| 641 | if ( dx > 0 ) |
| 642 | { |
| 643 | p = ( ONE_PIXEL - fx1 ) * dy; |
| 644 | first = ONE_PIXEL; |
| 645 | incr = 1; |
| 646 | } |
| 647 | else |
| 648 | { |
| 649 | p = fx1 * dy; |
| 650 | first = 0; |
| 651 | incr = -1; |
| 652 | dx = -dx; |
| 653 | } |
| 654 | |
| 655 | FT_DIV_MOD( TCoord, p, dx, delta, mod ); |
| 656 | |
| 657 | ras.area += (TArea)( ( fx1 + first ) * delta ); |
| 658 | ras.cover += delta; |
| 659 | y1 += delta; |
| 660 | ex1 += incr; |
| 661 | gray_set_cell( RAS_VAR_ ex1, ey ); |
| 662 | |
| 663 | if ( ex1 != ex2 ) |
| 664 | { |
| 665 | TCoord lift, rem; |
| 666 | |
| 667 | |
| 668 | p = ONE_PIXEL * dy; |
| 669 | FT_DIV_MOD( TCoord, p, dx, lift, rem ); |
| 670 | |
| 671 | do |
| 672 | { |
| 673 | delta = lift; |
| 674 | mod += rem; |
| 675 | if ( mod >= (TCoord)dx ) |
| 676 | { |
| 677 | mod -= (TCoord)dx; |
| 678 | delta++; |
| 679 | } |
| 680 | |
| 681 | ras.area += (TArea)( ONE_PIXEL * delta ); |
| 682 | ras.cover += delta; |
| 683 | y1 += delta; |
| 684 | ex1 += incr; |
| 685 | gray_set_cell( RAS_VAR_ ex1, ey ); |
| 686 | } while ( ex1 != ex2 ); |
| 687 | } |
| 688 | |
| 689 | fx1 = ONE_PIXEL - first; |
| 690 | |
| 691 | End: |
| 692 | dy = y2 - y1; |
| 693 | |
| 694 | ras.area += (TArea)( ( fx1 + fx2 ) * dy ); |
| 695 | ras.cover += dy; |
| 696 | } |
| 697 | |
| 698 | |
| 699 | /*************************************************************************/ |
| 700 | /* */ |
| 701 | /* Render a given line as a series of scanlines. */ |
| 702 | /* */ |
| 703 | static void |
| 704 | gray_render_line( RAS_ARG_ TPos to_x, |
| 705 | TPos to_y ) |
| 706 | { |
| 707 | TCoord ey1, ey2, fy1, fy2, first, delta, mod; |
| 708 | TPos p, dx, dy, x, x2; |
| 709 | int incr; |
| 710 | |
| 711 | |
| 712 | ey1 = TRUNC( ras.y ); |
| 713 | ey2 = TRUNC( to_y ); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */ |
| 714 | |
| 715 | /* perform vertical clipping */ |
| 716 | if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) || |
| 717 | ( ey1 < ras.min_ey && ey2 < ras.min_ey ) ) |
| 718 | goto End; |
| 719 | |
| 720 | fy1 = (TCoord)( ras.y - SUBPIXELS( ey1 ) ); |
| 721 | fy2 = (TCoord)( to_y - SUBPIXELS( ey2 ) ); |
| 722 | |
| 723 | /* everything is on a single scanline */ |
| 724 | if ( ey1 == ey2 ) |
| 725 | { |
| 726 | gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 ); |
| 727 | goto End; |
| 728 | } |
| 729 | |
| 730 | dx = to_x - ras.x; |
| 731 | dy = to_y - ras.y; |
| 732 | |
| 733 | /* vertical line - avoid calling gray_render_scanline */ |
| 734 | if ( dx == 0 ) |
| 735 | { |
| 736 | TCoord ex = TRUNC( ras.x ); |
| 737 | TCoord two_fx = (TCoord)( ( ras.x - SUBPIXELS( ex ) ) << 1 ); |
| 738 | TArea area; |
| 739 | |
| 740 | |
| 741 | if ( dy > 0) |
| 742 | { |
| 743 | first = ONE_PIXEL; |
| 744 | incr = 1; |
| 745 | } |
| 746 | else |
| 747 | { |
| 748 | first = 0; |
| 749 | incr = -1; |
| 750 | } |
| 751 | |
| 752 | delta = first - fy1; |
| 753 | ras.area += (TArea)two_fx * delta; |
| 754 | ras.cover += delta; |
| 755 | ey1 += incr; |
| 756 | |
| 757 | gray_set_cell( RAS_VAR_ ex, ey1 ); |
| 758 | |
| 759 | delta = first + first - ONE_PIXEL; |
| 760 | area = (TArea)two_fx * delta; |
| 761 | while ( ey1 != ey2 ) |
| 762 | { |
| 763 | ras.area += area; |
| 764 | ras.cover += delta; |
| 765 | ey1 += incr; |
| 766 | |
| 767 | gray_set_cell( RAS_VAR_ ex, ey1 ); |
| 768 | } |
| 769 | |
| 770 | delta = fy2 - ONE_PIXEL + first; |
| 771 | ras.area += (TArea)two_fx * delta; |
| 772 | ras.cover += delta; |
| 773 | |
| 774 | goto End; |
| 775 | } |
| 776 | |
| 777 | /* ok, we have to render several scanlines */ |
| 778 | if ( dy > 0) |
| 779 | { |
| 780 | p = ( ONE_PIXEL - fy1 ) * dx; |
| 781 | first = ONE_PIXEL; |
| 782 | incr = 1; |
| 783 | } |
| 784 | else |
| 785 | { |
| 786 | p = fy1 * dx; |
| 787 | first = 0; |
| 788 | incr = -1; |
| 789 | dy = -dy; |
| 790 | } |
| 791 | |
| 792 | FT_DIV_MOD( TCoord, p, dy, delta, mod ); |
| 793 | |
| 794 | x = ras.x + delta; |
| 795 | gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first ); |
| 796 | |
| 797 | ey1 += incr; |
| 798 | gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 ); |
| 799 | |
| 800 | if ( ey1 != ey2 ) |
| 801 | { |
| 802 | TCoord lift, rem; |
| 803 | |
| 804 | |
| 805 | p = ONE_PIXEL * dx; |
| 806 | FT_DIV_MOD( TCoord, p, dy, lift, rem ); |
| 807 | |
| 808 | do |
| 809 | { |
| 810 | delta = lift; |
| 811 | mod += rem; |
| 812 | if ( mod >= (TCoord)dy ) |
| 813 | { |
| 814 | mod -= (TCoord)dy; |
| 815 | delta++; |
| 816 | } |
| 817 | |
| 818 | x2 = x + delta; |
| 819 | gray_render_scanline( RAS_VAR_ ey1, |
| 820 | x, ONE_PIXEL - first, |
| 821 | x2, first ); |
| 822 | x = x2; |
| 823 | |
| 824 | ey1 += incr; |
| 825 | gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 ); |
| 826 | } while ( ey1 != ey2 ); |
| 827 | } |
| 828 | |
| 829 | gray_render_scanline( RAS_VAR_ ey1, |
| 830 | x, ONE_PIXEL - first, |
| 831 | to_x, fy2 ); |
| 832 | |
| 833 | End: |
| 834 | ras.x = to_x; |
| 835 | ras.y = to_y; |
| 836 | } |
| 837 | |
| 838 | #else |
| 839 | |
| 840 | /*************************************************************************/ |
| 841 | /* */ |
| 842 | /* Render a straight line across multiple cells in any direction. */ |
| 843 | /* */ |
| 844 | static void |
| 845 | gray_render_line( RAS_ARG_ TPos to_x, |
| 846 | TPos to_y ) |
| 847 | { |
| 848 | TPos dx, dy, fx1, fy1, fx2, fy2; |
| 849 | TCoord ex1, ex2, ey1, ey2; |
| 850 | |
| 851 | |
| 852 | ey1 = TRUNC( ras.y ); |
| 853 | ey2 = TRUNC( to_y ); |
| 854 | |
| 855 | /* perform vertical clipping */ |
| 856 | if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) || |
| 857 | ( ey1 < ras.min_ey && ey2 < ras.min_ey ) ) |
| 858 | goto End; |
| 859 | |
| 860 | ex1 = TRUNC( ras.x ); |
| 861 | ex2 = TRUNC( to_x ); |
| 862 | |
| 863 | fx1 = ras.x - SUBPIXELS( ex1 ); |
| 864 | fy1 = ras.y - SUBPIXELS( ey1 ); |
| 865 | |
| 866 | dx = to_x - ras.x; |
| 867 | dy = to_y - ras.y; |
| 868 | |
| 869 | if ( ex1 == ex2 && ey1 == ey2 ) /* inside one cell */ |
| 870 | ; |
| 871 | else if ( dy == 0 ) /* ex1 != ex2 */ /* any horizontal line */ |
| 872 | { |
| 873 | ex1 = ex2; |
| 874 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
| 875 | } |
| 876 | else if ( dx == 0 ) |
| 877 | { |
| 878 | if ( dy > 0 ) /* vertical line up */ |
| 879 | do |
| 880 | { |
| 881 | fy2 = ONE_PIXEL; |
| 882 | ras.cover += ( fy2 - fy1 ); |
| 883 | ras.area += ( fy2 - fy1 ) * fx1 * 2; |
| 884 | fy1 = 0; |
| 885 | ey1++; |
| 886 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
| 887 | } while ( ey1 != ey2 ); |
| 888 | else /* vertical line down */ |
| 889 | do |
| 890 | { |
| 891 | fy2 = 0; |
| 892 | ras.cover += ( fy2 - fy1 ); |
| 893 | ras.area += ( fy2 - fy1 ) * fx1 * 2; |
| 894 | fy1 = ONE_PIXEL; |
| 895 | ey1--; |
| 896 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
| 897 | } while ( ey1 != ey2 ); |
| 898 | } |
| 899 | else /* any other line */ |
| 900 | { |
| 901 | TPos prod = dx * fy1 - dy * fx1; |
| 902 | FT_UDIVPREP( ex1 != ex2, dx ); |
| 903 | FT_UDIVPREP( ey1 != ey2, dy ); |
| 904 | |
| 905 | |
| 906 | /* The fundamental value `prod' determines which side and the */ |
| 907 | /* exact coordinate where the line exits current cell. It is */ |
| 908 | /* also easily updated when moving from one cell to the next. */ |
| 909 | do |
| 910 | { |
| 911 | if ( prod <= 0 && |
| 912 | prod - dx * ONE_PIXEL > 0 ) /* left */ |
| 913 | { |
| 914 | fx2 = 0; |
| 915 | fy2 = (TPos)FT_UDIV( -prod, -dx ); |
| 916 | prod -= dy * ONE_PIXEL; |
| 917 | ras.cover += ( fy2 - fy1 ); |
| 918 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
| 919 | fx1 = ONE_PIXEL; |
| 920 | fy1 = fy2; |
| 921 | ex1--; |
| 922 | } |
| 923 | else if ( prod - dx * ONE_PIXEL <= 0 && |
| 924 | prod - dx * ONE_PIXEL + dy * ONE_PIXEL > 0 ) /* up */ |
| 925 | { |
| 926 | prod -= dx * ONE_PIXEL; |
| 927 | fx2 = (TPos)FT_UDIV( -prod, dy ); |
| 928 | fy2 = ONE_PIXEL; |
| 929 | ras.cover += ( fy2 - fy1 ); |
| 930 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
| 931 | fx1 = fx2; |
| 932 | fy1 = 0; |
| 933 | ey1++; |
| 934 | } |
| 935 | else if ( prod - dx * ONE_PIXEL + dy * ONE_PIXEL <= 0 && |
| 936 | prod + dy * ONE_PIXEL >= 0 ) /* right */ |
| 937 | { |
| 938 | prod += dy * ONE_PIXEL; |
| 939 | fx2 = ONE_PIXEL; |
| 940 | fy2 = (TPos)FT_UDIV( prod, dx ); |
| 941 | ras.cover += ( fy2 - fy1 ); |
| 942 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
| 943 | fx1 = 0; |
| 944 | fy1 = fy2; |
| 945 | ex1++; |
| 946 | } |
| 947 | else /* ( prod + dy * ONE_PIXEL < 0 && |
| 948 | prod > 0 ) down */ |
| 949 | { |
| 950 | fx2 = (TPos)FT_UDIV( prod, -dy ); |
| 951 | fy2 = 0; |
| 952 | prod += dx * ONE_PIXEL; |
| 953 | ras.cover += ( fy2 - fy1 ); |
| 954 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
| 955 | fx1 = fx2; |
| 956 | fy1 = ONE_PIXEL; |
| 957 | ey1--; |
| 958 | } |
| 959 | |
| 960 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
| 961 | } while ( ex1 != ex2 || ey1 != ey2 ); |
| 962 | } |
| 963 | |
| 964 | fx2 = to_x - SUBPIXELS( ex2 ); |
| 965 | fy2 = to_y - SUBPIXELS( ey2 ); |
| 966 | |
| 967 | ras.cover += ( fy2 - fy1 ); |
| 968 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
| 969 | |
| 970 | End: |
| 971 | ras.x = to_x; |
| 972 | ras.y = to_y; |
| 973 | } |
| 974 | |
| 975 | #endif |
| 976 | |
| 977 | static void |
| 978 | gray_split_conic( FT_Vector* base ) |
| 979 | { |
| 980 | TPos a, b; |
| 981 | |
| 982 | |
| 983 | base[4].x = base[2].x; |
| 984 | b = base[1].x; |
| 985 | a = base[3].x = ( base[2].x + b ) / 2; |
| 986 | b = base[1].x = ( base[0].x + b ) / 2; |
| 987 | base[2].x = ( a + b ) / 2; |
| 988 | |
| 989 | base[4].y = base[2].y; |
| 990 | b = base[1].y; |
| 991 | a = base[3].y = ( base[2].y + b ) / 2; |
| 992 | b = base[1].y = ( base[0].y + b ) / 2; |
| 993 | base[2].y = ( a + b ) / 2; |
| 994 | } |
| 995 | |
| 996 | |
| 997 | static void |
| 998 | gray_render_conic( RAS_ARG_ const FT_Vector* control, |
| 999 | const FT_Vector* to ) |
| 1000 | { |
| 1001 | FT_Vector bez_stack[16 * 2 + 1]; /* enough to accommodate bisections */ |
| 1002 | FT_Vector* arc = bez_stack; |
| 1003 | TPos dx, dy; |
| 1004 | int draw, split; |
| 1005 | |
| 1006 | |
| 1007 | arc[0].x = UPSCALE( to->x ); |
| 1008 | arc[0].y = UPSCALE( to->y ); |
| 1009 | arc[1].x = UPSCALE( control->x ); |
| 1010 | arc[1].y = UPSCALE( control->y ); |
| 1011 | arc[2].x = ras.x; |
| 1012 | arc[2].y = ras.y; |
| 1013 | |
| 1014 | /* short-cut the arc that crosses the current band */ |
| 1015 | if ( ( TRUNC( arc[0].y ) >= ras.max_ey && |
| 1016 | TRUNC( arc[1].y ) >= ras.max_ey && |
| 1017 | TRUNC( arc[2].y ) >= ras.max_ey ) || |
| 1018 | ( TRUNC( arc[0].y ) < ras.min_ey && |
| 1019 | TRUNC( arc[1].y ) < ras.min_ey && |
| 1020 | TRUNC( arc[2].y ) < ras.min_ey ) ) |
| 1021 | { |
| 1022 | ras.x = arc[0].x; |
| 1023 | ras.y = arc[0].y; |
| 1024 | return; |
| 1025 | } |
| 1026 | |
| 1027 | dx = FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x ); |
| 1028 | dy = FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y ); |
| 1029 | if ( dx < dy ) |
| 1030 | dx = dy; |
| 1031 | |
| 1032 | /* We can calculate the number of necessary bisections because */ |
| 1033 | /* each bisection predictably reduces deviation exactly 4-fold. */ |
| 1034 | /* Even 32-bit deviation would vanish after 16 bisections. */ |
| 1035 | draw = 1; |
| 1036 | while ( dx > ONE_PIXEL / 4 ) |
| 1037 | { |
| 1038 | dx >>= 2; |
| 1039 | draw <<= 1; |
| 1040 | } |
| 1041 | |
| 1042 | /* We use decrement counter to count the total number of segments */ |
| 1043 | /* to draw starting from 2^level. Before each draw we split as */ |
| 1044 | /* many times as there are trailing zeros in the counter. */ |
| 1045 | do |
| 1046 | { |
| 1047 | split = 1; |
| 1048 | while ( ( draw & split ) == 0 ) |
| 1049 | { |
| 1050 | gray_split_conic( arc ); |
| 1051 | arc += 2; |
| 1052 | split <<= 1; |
| 1053 | } |
| 1054 | |
| 1055 | gray_render_line( RAS_VAR_ arc[0].x, arc[0].y ); |
| 1056 | arc -= 2; |
| 1057 | |
| 1058 | } while ( --draw ); |
| 1059 | } |
| 1060 | |
| 1061 | |
| 1062 | static void |
| 1063 | gray_split_cubic( FT_Vector* base ) |
| 1064 | { |
| 1065 | TPos a, b, c, d; |
| 1066 | |
| 1067 | |
| 1068 | base[6].x = base[3].x; |
| 1069 | c = base[1].x; |
| 1070 | d = base[2].x; |
| 1071 | base[1].x = a = ( base[0].x + c ) / 2; |
| 1072 | base[5].x = b = ( base[3].x + d ) / 2; |
| 1073 | c = ( c + d ) / 2; |
| 1074 | base[2].x = a = ( a + c ) / 2; |
| 1075 | base[4].x = b = ( b + c ) / 2; |
| 1076 | base[3].x = ( a + b ) / 2; |
| 1077 | |
| 1078 | base[6].y = base[3].y; |
| 1079 | c = base[1].y; |
| 1080 | d = base[2].y; |
| 1081 | base[1].y = a = ( base[0].y + c ) / 2; |
| 1082 | base[5].y = b = ( base[3].y + d ) / 2; |
| 1083 | c = ( c + d ) / 2; |
| 1084 | base[2].y = a = ( a + c ) / 2; |
| 1085 | base[4].y = b = ( b + c ) / 2; |
| 1086 | base[3].y = ( a + b ) / 2; |
| 1087 | } |
| 1088 | |
| 1089 | |
| 1090 | static void |
| 1091 | gray_render_cubic( RAS_ARG_ const FT_Vector* control1, |
| 1092 | const FT_Vector* control2, |
| 1093 | const FT_Vector* to ) |
| 1094 | { |
| 1095 | FT_Vector bez_stack[16 * 3 + 1]; /* enough to accommodate bisections */ |
| 1096 | FT_Vector* arc = bez_stack; |
| 1097 | TPos dx, dy, dx_, dy_; |
| 1098 | TPos dx1, dy1, dx2, dy2; |
| 1099 | TPos L, s, s_limit; |
| 1100 | |
| 1101 | |
| 1102 | arc[0].x = UPSCALE( to->x ); |
| 1103 | arc[0].y = UPSCALE( to->y ); |
| 1104 | arc[1].x = UPSCALE( control2->x ); |
| 1105 | arc[1].y = UPSCALE( control2->y ); |
| 1106 | arc[2].x = UPSCALE( control1->x ); |
| 1107 | arc[2].y = UPSCALE( control1->y ); |
| 1108 | arc[3].x = ras.x; |
| 1109 | arc[3].y = ras.y; |
| 1110 | |
| 1111 | /* short-cut the arc that crosses the current band */ |
| 1112 | if ( ( TRUNC( arc[0].y ) >= ras.max_ey && |
| 1113 | TRUNC( arc[1].y ) >= ras.max_ey && |
| 1114 | TRUNC( arc[2].y ) >= ras.max_ey && |
| 1115 | TRUNC( arc[3].y ) >= ras.max_ey ) || |
| 1116 | ( TRUNC( arc[0].y ) < ras.min_ey && |
| 1117 | TRUNC( arc[1].y ) < ras.min_ey && |
| 1118 | TRUNC( arc[2].y ) < ras.min_ey && |
| 1119 | TRUNC( arc[3].y ) < ras.min_ey ) ) |
| 1120 | { |
| 1121 | ras.x = arc[0].x; |
| 1122 | ras.y = arc[0].y; |
| 1123 | return; |
| 1124 | } |
| 1125 | |
| 1126 | for (;;) |
| 1127 | { |
| 1128 | /* Decide whether to split or draw. See `Rapid Termination */ |
| 1129 | /* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */ |
| 1130 | /* F. Hain, at */ |
| 1131 | /* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */ |
| 1132 | |
| 1133 | /* dx and dy are x and y components of the P0-P3 chord vector. */ |
| 1134 | dx = dx_ = arc[3].x - arc[0].x; |
| 1135 | dy = dy_ = arc[3].y - arc[0].y; |
| 1136 | |
| 1137 | L = FT_HYPOT( dx_, dy_ ); |
| 1138 | |
| 1139 | /* Avoid possible arithmetic overflow below by splitting. */ |
| 1140 | if ( L > 32767 ) |
| 1141 | goto Split; |
| 1142 | |
| 1143 | /* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */ |
| 1144 | s_limit = L * (TPos)( ONE_PIXEL / 6 ); |
| 1145 | |
| 1146 | /* s is L * the perpendicular distance from P1 to the line P0-P3. */ |
| 1147 | dx1 = arc[1].x - arc[0].x; |
| 1148 | dy1 = arc[1].y - arc[0].y; |
| 1149 | s = FT_ABS( SUB_LONG( MUL_LONG( dy, dx1 ), MUL_LONG( dx, dy1 ) ) ); |
| 1150 | |
| 1151 | if ( s > s_limit ) |
| 1152 | goto Split; |
| 1153 | |
| 1154 | /* s is L * the perpendicular distance from P2 to the line P0-P3. */ |
| 1155 | dx2 = arc[2].x - arc[0].x; |
| 1156 | dy2 = arc[2].y - arc[0].y; |
| 1157 | s = FT_ABS( SUB_LONG( MUL_LONG( dy, dx2 ), MUL_LONG( dx, dy2 ) ) ); |
| 1158 | |
| 1159 | if ( s > s_limit ) |
| 1160 | goto Split; |
| 1161 | |
| 1162 | /* Split super curvy segments where the off points are so far |
| 1163 | from the chord that the angles P0-P1-P3 or P0-P2-P3 become |
| 1164 | acute as detected by appropriate dot products. */ |
| 1165 | if ( dx1 * ( dx1 - dx ) + dy1 * ( dy1 - dy ) > 0 || |
| 1166 | dx2 * ( dx2 - dx ) + dy2 * ( dy2 - dy ) > 0 ) |
| 1167 | goto Split; |
| 1168 | |
| 1169 | gray_render_line( RAS_VAR_ arc[0].x, arc[0].y ); |
| 1170 | |
| 1171 | if ( arc == bez_stack ) |
| 1172 | return; |
| 1173 | |
| 1174 | arc -= 3; |
| 1175 | continue; |
| 1176 | |
| 1177 | Split: |
| 1178 | gray_split_cubic( arc ); |
| 1179 | arc += 3; |
| 1180 | } |
| 1181 | } |
| 1182 | |
| 1183 | |
| 1184 | static int |
| 1185 | gray_move_to( const FT_Vector* to, |
| 1186 | gray_PWorker worker ) |
| 1187 | { |
| 1188 | TPos x, y; |
| 1189 | |
| 1190 | |
| 1191 | /* start to a new position */ |
| 1192 | x = UPSCALE( to->x ); |
| 1193 | y = UPSCALE( to->y ); |
| 1194 | |
| 1195 | gray_set_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) ); |
| 1196 | |
| 1197 | ras.x = x; |
| 1198 | ras.y = y; |
| 1199 | return 0; |
| 1200 | } |
| 1201 | |
| 1202 | |
| 1203 | static int |
| 1204 | gray_line_to( const FT_Vector* to, |
| 1205 | gray_PWorker worker ) |
| 1206 | { |
| 1207 | gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) ); |
| 1208 | return 0; |
| 1209 | } |
| 1210 | |
| 1211 | |
| 1212 | static int |
| 1213 | gray_conic_to( const FT_Vector* control, |
| 1214 | const FT_Vector* to, |
| 1215 | gray_PWorker worker ) |
| 1216 | { |
| 1217 | gray_render_conic( RAS_VAR_ control, to ); |
| 1218 | return 0; |
| 1219 | } |
| 1220 | |
| 1221 | |
| 1222 | static int |
| 1223 | gray_cubic_to( const FT_Vector* control1, |
| 1224 | const FT_Vector* control2, |
| 1225 | const FT_Vector* to, |
| 1226 | gray_PWorker worker ) |
| 1227 | { |
| 1228 | gray_render_cubic( RAS_VAR_ control1, control2, to ); |
| 1229 | return 0; |
| 1230 | } |
| 1231 | |
| 1232 | |
| 1233 | static void |
| 1234 | gray_hline( RAS_ARG_ TCoord x, |
| 1235 | TCoord y, |
| 1236 | TArea coverage, |
| 1237 | TCoord acount ) |
| 1238 | { |
| 1239 | /* scale the coverage from 0..(ONE_PIXEL*ONE_PIXEL*2) to 0..256 */ |
| 1240 | coverage >>= PIXEL_BITS * 2 + 1 - 8; |
| 1241 | if ( coverage < 0 ) |
| 1242 | coverage = -coverage - 1; |
| 1243 | |
| 1244 | /* compute the line's coverage depending on the outline fill rule */ |
| 1245 | if ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL ) |
| 1246 | { |
| 1247 | coverage &= 511; |
| 1248 | |
| 1249 | if ( coverage >= 256 ) |
| 1250 | coverage = 511 - coverage; |
| 1251 | } |
| 1252 | else |
| 1253 | { |
| 1254 | /* normal non-zero winding rule */ |
| 1255 | if ( coverage >= 256 ) |
| 1256 | coverage = 255; |
| 1257 | } |
| 1258 | |
| 1259 | if ( ras.render_span ) /* for FT_RASTER_FLAG_DIRECT only */ |
| 1260 | { |
| 1261 | FT_Span span; |
| 1262 | |
| 1263 | |
| 1264 | span.x = (short)x; |
| 1265 | span.len = (unsigned short)acount; |
| 1266 | span.coverage = (unsigned char)coverage; |
| 1267 | |
| 1268 | ras.render_span( y, 1, &span, ras.render_span_data ); |
| 1269 | } |
| 1270 | else |
| 1271 | { |
| 1272 | unsigned char* q = ras.target.origin - ras.target.pitch * y + x; |
| 1273 | unsigned char c = (unsigned char)coverage; |
| 1274 | |
| 1275 | |
| 1276 | /* For small-spans it is faster to do it by ourselves than |
| 1277 | * calling `memset'. This is mainly due to the cost of the |
| 1278 | * function call. |
| 1279 | */ |
| 1280 | switch ( acount ) |
| 1281 | { |
| 1282 | case 7: *q++ = c; |
| 1283 | case 6: *q++ = c; |
| 1284 | case 5: *q++ = c; |
| 1285 | case 4: *q++ = c; |
| 1286 | case 3: *q++ = c; |
| 1287 | case 2: *q++ = c; |
| 1288 | case 1: *q = c; |
| 1289 | case 0: break; |
| 1290 | default: |
| 1291 | FT_MEM_SET( q, c, acount ); |
| 1292 | } |
| 1293 | } |
| 1294 | } |
| 1295 | |
| 1296 | |
| 1297 | static void |
| 1298 | gray_sweep( RAS_ARG ) |
| 1299 | { |
| 1300 | int y; |
| 1301 | |
| 1302 | |
| 1303 | for ( y = ras.min_ey; y < ras.max_ey; y++ ) |
| 1304 | { |
| 1305 | PCell cell = ras.ycells[y - ras.min_ey]; |
| 1306 | TCoord x = ras.min_ex; |
| 1307 | TArea cover = 0; |
| 1308 | TArea area; |
| 1309 | |
| 1310 | |
| 1311 | for ( ; cell != NULL; cell = cell->next ) |
| 1312 | { |
| 1313 | if ( cover != 0 && cell->x > x ) |
| 1314 | gray_hline( RAS_VAR_ x, y, cover, cell->x - x ); |
| 1315 | |
| 1316 | cover += (TArea)cell->cover * ( ONE_PIXEL * 2 ); |
| 1317 | area = cover - cell->area; |
| 1318 | |
| 1319 | if ( area != 0 && cell->x >= ras.min_ex ) |
| 1320 | gray_hline( RAS_VAR_ cell->x, y, area, 1 ); |
| 1321 | |
| 1322 | x = cell->x + 1; |
| 1323 | } |
| 1324 | |
| 1325 | if ( cover != 0 ) |
| 1326 | gray_hline( RAS_VAR_ x, y, cover, ras.max_ex - x ); |
| 1327 | } |
| 1328 | } |
| 1329 | |
| 1330 | |
| 1331 | #ifdef STANDALONE_ |
| 1332 | |
| 1333 | /*************************************************************************/ |
| 1334 | /* */ |
| 1335 | /* The following functions should only compile in stand-alone mode, */ |
| 1336 | /* i.e., when building this component without the rest of FreeType. */ |
| 1337 | /* */ |
| 1338 | /*************************************************************************/ |
| 1339 | |
| 1340 | /*************************************************************************/ |
| 1341 | /* */ |
| 1342 | /* <Function> */ |
| 1343 | /* FT_Outline_Decompose */ |
| 1344 | /* */ |
| 1345 | /* <Description> */ |
| 1346 | /* Walk over an outline's structure to decompose it into individual */ |
| 1347 | /* segments and Bézier arcs. This function is also able to emit */ |
| 1348 | /* `move to' and `close to' operations to indicate the start and end */ |
| 1349 | /* of new contours in the outline. */ |
| 1350 | /* */ |
| 1351 | /* <Input> */ |
| 1352 | /* outline :: A pointer to the source target. */ |
| 1353 | /* */ |
| 1354 | /* func_interface :: A table of `emitters', i.e., function pointers */ |
| 1355 | /* called during decomposition to indicate path */ |
| 1356 | /* operations. */ |
| 1357 | /* */ |
| 1358 | /* <InOut> */ |
| 1359 | /* user :: A typeless pointer which is passed to each */ |
| 1360 | /* emitter during the decomposition. It can be */ |
| 1361 | /* used to store the state during the */ |
| 1362 | /* decomposition. */ |
| 1363 | /* */ |
| 1364 | /* <Return> */ |
| 1365 | /* Error code. 0 means success. */ |
| 1366 | /* */ |
| 1367 | static int |
| 1368 | FT_Outline_Decompose( const FT_Outline* outline, |
| 1369 | const FT_Outline_Funcs* func_interface, |
| 1370 | void* user ) |
| 1371 | { |
| 1372 | #undef SCALED |
| 1373 | #define SCALED( x ) ( ( (x) << shift ) - delta ) |
| 1374 | |
| 1375 | FT_Vector v_last; |
| 1376 | FT_Vector v_control; |
| 1377 | FT_Vector v_start; |
| 1378 | |
| 1379 | FT_Vector* point; |
| 1380 | FT_Vector* limit; |
| 1381 | char* tags; |
| 1382 | |
| 1383 | int error; |
| 1384 | |
| 1385 | int n; /* index of contour in outline */ |
| 1386 | int first; /* index of first point in contour */ |
| 1387 | char tag; /* current point's state */ |
| 1388 | |
| 1389 | int shift; |
| 1390 | TPos delta; |
| 1391 | |
| 1392 | |
| 1393 | if ( !outline ) |
| 1394 | return FT_THROW( Invalid_Outline ); |
| 1395 | |
| 1396 | if ( !func_interface ) |
| 1397 | return FT_THROW( Invalid_Argument ); |
| 1398 | |
| 1399 | shift = func_interface->shift; |
| 1400 | delta = func_interface->delta; |
| 1401 | first = 0; |
| 1402 | |
| 1403 | for ( n = 0; n < outline->n_contours; n++ ) |
| 1404 | { |
| 1405 | int last; /* index of last point in contour */ |
| 1406 | |
| 1407 | |
| 1408 | FT_TRACE5(( "FT_Outline_Decompose: Outline %d\n" , n )); |
| 1409 | |
| 1410 | last = outline->contours[n]; |
| 1411 | if ( last < 0 ) |
| 1412 | goto Invalid_Outline; |
| 1413 | limit = outline->points + last; |
| 1414 | |
| 1415 | v_start = outline->points[first]; |
| 1416 | v_start.x = SCALED( v_start.x ); |
| 1417 | v_start.y = SCALED( v_start.y ); |
| 1418 | |
| 1419 | v_last = outline->points[last]; |
| 1420 | v_last.x = SCALED( v_last.x ); |
| 1421 | v_last.y = SCALED( v_last.y ); |
| 1422 | |
| 1423 | v_control = v_start; |
| 1424 | |
| 1425 | point = outline->points + first; |
| 1426 | tags = outline->tags + first; |
| 1427 | tag = FT_CURVE_TAG( tags[0] ); |
| 1428 | |
| 1429 | /* A contour cannot start with a cubic control point! */ |
| 1430 | if ( tag == FT_CURVE_TAG_CUBIC ) |
| 1431 | goto Invalid_Outline; |
| 1432 | |
| 1433 | /* check first point to determine origin */ |
| 1434 | if ( tag == FT_CURVE_TAG_CONIC ) |
| 1435 | { |
| 1436 | /* first point is conic control. Yes, this happens. */ |
| 1437 | if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON ) |
| 1438 | { |
| 1439 | /* start at last point if it is on the curve */ |
| 1440 | v_start = v_last; |
| 1441 | limit--; |
| 1442 | } |
| 1443 | else |
| 1444 | { |
| 1445 | /* if both first and last points are conic, */ |
| 1446 | /* start at their middle and record its position */ |
| 1447 | /* for closure */ |
| 1448 | v_start.x = ( v_start.x + v_last.x ) / 2; |
| 1449 | v_start.y = ( v_start.y + v_last.y ) / 2; |
| 1450 | |
| 1451 | v_last = v_start; |
| 1452 | } |
| 1453 | point--; |
| 1454 | tags--; |
| 1455 | } |
| 1456 | |
| 1457 | FT_TRACE5(( " move to (%.2f, %.2f)\n" , |
| 1458 | v_start.x / 64.0, v_start.y / 64.0 )); |
| 1459 | error = func_interface->move_to( &v_start, user ); |
| 1460 | if ( error ) |
| 1461 | goto Exit; |
| 1462 | |
| 1463 | while ( point < limit ) |
| 1464 | { |
| 1465 | point++; |
| 1466 | tags++; |
| 1467 | |
| 1468 | tag = FT_CURVE_TAG( tags[0] ); |
| 1469 | switch ( tag ) |
| 1470 | { |
| 1471 | case FT_CURVE_TAG_ON: /* emit a single line_to */ |
| 1472 | { |
| 1473 | FT_Vector vec; |
| 1474 | |
| 1475 | |
| 1476 | vec.x = SCALED( point->x ); |
| 1477 | vec.y = SCALED( point->y ); |
| 1478 | |
| 1479 | FT_TRACE5(( " line to (%.2f, %.2f)\n" , |
| 1480 | vec.x / 64.0, vec.y / 64.0 )); |
| 1481 | error = func_interface->line_to( &vec, user ); |
| 1482 | if ( error ) |
| 1483 | goto Exit; |
| 1484 | continue; |
| 1485 | } |
| 1486 | |
| 1487 | case FT_CURVE_TAG_CONIC: /* consume conic arcs */ |
| 1488 | v_control.x = SCALED( point->x ); |
| 1489 | v_control.y = SCALED( point->y ); |
| 1490 | |
| 1491 | Do_Conic: |
| 1492 | if ( point < limit ) |
| 1493 | { |
| 1494 | FT_Vector vec; |
| 1495 | FT_Vector v_middle; |
| 1496 | |
| 1497 | |
| 1498 | point++; |
| 1499 | tags++; |
| 1500 | tag = FT_CURVE_TAG( tags[0] ); |
| 1501 | |
| 1502 | vec.x = SCALED( point->x ); |
| 1503 | vec.y = SCALED( point->y ); |
| 1504 | |
| 1505 | if ( tag == FT_CURVE_TAG_ON ) |
| 1506 | { |
| 1507 | FT_TRACE5(( " conic to (%.2f, %.2f)" |
| 1508 | " with control (%.2f, %.2f)\n" , |
| 1509 | vec.x / 64.0, vec.y / 64.0, |
| 1510 | v_control.x / 64.0, v_control.y / 64.0 )); |
| 1511 | error = func_interface->conic_to( &v_control, &vec, user ); |
| 1512 | if ( error ) |
| 1513 | goto Exit; |
| 1514 | continue; |
| 1515 | } |
| 1516 | |
| 1517 | if ( tag != FT_CURVE_TAG_CONIC ) |
| 1518 | goto Invalid_Outline; |
| 1519 | |
| 1520 | v_middle.x = ( v_control.x + vec.x ) / 2; |
| 1521 | v_middle.y = ( v_control.y + vec.y ) / 2; |
| 1522 | |
| 1523 | FT_TRACE5(( " conic to (%.2f, %.2f)" |
| 1524 | " with control (%.2f, %.2f)\n" , |
| 1525 | v_middle.x / 64.0, v_middle.y / 64.0, |
| 1526 | v_control.x / 64.0, v_control.y / 64.0 )); |
| 1527 | error = func_interface->conic_to( &v_control, &v_middle, user ); |
| 1528 | if ( error ) |
| 1529 | goto Exit; |
| 1530 | |
| 1531 | v_control = vec; |
| 1532 | goto Do_Conic; |
| 1533 | } |
| 1534 | |
| 1535 | FT_TRACE5(( " conic to (%.2f, %.2f)" |
| 1536 | " with control (%.2f, %.2f)\n" , |
| 1537 | v_start.x / 64.0, v_start.y / 64.0, |
| 1538 | v_control.x / 64.0, v_control.y / 64.0 )); |
| 1539 | error = func_interface->conic_to( &v_control, &v_start, user ); |
| 1540 | goto Close; |
| 1541 | |
| 1542 | default: /* FT_CURVE_TAG_CUBIC */ |
| 1543 | { |
| 1544 | FT_Vector vec1, vec2; |
| 1545 | |
| 1546 | |
| 1547 | if ( point + 1 > limit || |
| 1548 | FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC ) |
| 1549 | goto Invalid_Outline; |
| 1550 | |
| 1551 | point += 2; |
| 1552 | tags += 2; |
| 1553 | |
| 1554 | vec1.x = SCALED( point[-2].x ); |
| 1555 | vec1.y = SCALED( point[-2].y ); |
| 1556 | |
| 1557 | vec2.x = SCALED( point[-1].x ); |
| 1558 | vec2.y = SCALED( point[-1].y ); |
| 1559 | |
| 1560 | if ( point <= limit ) |
| 1561 | { |
| 1562 | FT_Vector vec; |
| 1563 | |
| 1564 | |
| 1565 | vec.x = SCALED( point->x ); |
| 1566 | vec.y = SCALED( point->y ); |
| 1567 | |
| 1568 | FT_TRACE5(( " cubic to (%.2f, %.2f)" |
| 1569 | " with controls (%.2f, %.2f) and (%.2f, %.2f)\n" , |
| 1570 | vec.x / 64.0, vec.y / 64.0, |
| 1571 | vec1.x / 64.0, vec1.y / 64.0, |
| 1572 | vec2.x / 64.0, vec2.y / 64.0 )); |
| 1573 | error = func_interface->cubic_to( &vec1, &vec2, &vec, user ); |
| 1574 | if ( error ) |
| 1575 | goto Exit; |
| 1576 | continue; |
| 1577 | } |
| 1578 | |
| 1579 | FT_TRACE5(( " cubic to (%.2f, %.2f)" |
| 1580 | " with controls (%.2f, %.2f) and (%.2f, %.2f)\n" , |
| 1581 | v_start.x / 64.0, v_start.y / 64.0, |
| 1582 | vec1.x / 64.0, vec1.y / 64.0, |
| 1583 | vec2.x / 64.0, vec2.y / 64.0 )); |
| 1584 | error = func_interface->cubic_to( &vec1, &vec2, &v_start, user ); |
| 1585 | goto Close; |
| 1586 | } |
| 1587 | } |
| 1588 | } |
| 1589 | |
| 1590 | /* close the contour with a line segment */ |
| 1591 | FT_TRACE5(( " line to (%.2f, %.2f)\n" , |
| 1592 | v_start.x / 64.0, v_start.y / 64.0 )); |
| 1593 | error = func_interface->line_to( &v_start, user ); |
| 1594 | |
| 1595 | Close: |
| 1596 | if ( error ) |
| 1597 | goto Exit; |
| 1598 | |
| 1599 | first = last + 1; |
| 1600 | } |
| 1601 | |
| 1602 | FT_TRACE5(( "FT_Outline_Decompose: Done\n" , n )); |
| 1603 | return 0; |
| 1604 | |
| 1605 | Exit: |
| 1606 | FT_TRACE5(( "FT_Outline_Decompose: Error 0x%x\n" , error )); |
| 1607 | return error; |
| 1608 | |
| 1609 | Invalid_Outline: |
| 1610 | return FT_THROW( Invalid_Outline ); |
| 1611 | } |
| 1612 | |
| 1613 | |
| 1614 | /*************************************************************************/ |
| 1615 | /* */ |
| 1616 | /* <Function> */ |
| 1617 | /* FT_Outline_Get_CBox */ |
| 1618 | /* */ |
| 1619 | /* <Description> */ |
| 1620 | /* Return an outline's `control box'. The control box encloses all */ |
| 1621 | /* the outline's points, including Bézier control points. Though it */ |
| 1622 | /* coincides with the exact bounding box for most glyphs, it can be */ |
| 1623 | /* slightly larger in some situations (like when rotating an outline */ |
| 1624 | /* that contains Bézier outside arcs). */ |
| 1625 | /* */ |
| 1626 | /* Computing the control box is very fast, while getting the bounding */ |
| 1627 | /* box can take much more time as it needs to walk over all segments */ |
| 1628 | /* and arcs in the outline. To get the latter, you can use the */ |
| 1629 | /* `ftbbox' component, which is dedicated to this single task. */ |
| 1630 | /* */ |
| 1631 | /* <Input> */ |
| 1632 | /* outline :: A pointer to the source outline descriptor. */ |
| 1633 | /* */ |
| 1634 | /* <Output> */ |
| 1635 | /* acbox :: The outline's control box. */ |
| 1636 | /* */ |
| 1637 | /* <Note> */ |
| 1638 | /* See @FT_Glyph_Get_CBox for a discussion of tricky fonts. */ |
| 1639 | /* */ |
| 1640 | |
| 1641 | static void |
| 1642 | FT_Outline_Get_CBox( const FT_Outline* outline, |
| 1643 | FT_BBox *acbox ) |
| 1644 | { |
| 1645 | TPos xMin, yMin, xMax, yMax; |
| 1646 | |
| 1647 | |
| 1648 | if ( outline && acbox ) |
| 1649 | { |
| 1650 | if ( outline->n_points == 0 ) |
| 1651 | { |
| 1652 | xMin = 0; |
| 1653 | yMin = 0; |
| 1654 | xMax = 0; |
| 1655 | yMax = 0; |
| 1656 | } |
| 1657 | else |
| 1658 | { |
| 1659 | FT_Vector* vec = outline->points; |
| 1660 | FT_Vector* limit = vec + outline->n_points; |
| 1661 | |
| 1662 | |
| 1663 | xMin = xMax = vec->x; |
| 1664 | yMin = yMax = vec->y; |
| 1665 | vec++; |
| 1666 | |
| 1667 | for ( ; vec < limit; vec++ ) |
| 1668 | { |
| 1669 | TPos x, y; |
| 1670 | |
| 1671 | |
| 1672 | x = vec->x; |
| 1673 | if ( x < xMin ) xMin = x; |
| 1674 | if ( x > xMax ) xMax = x; |
| 1675 | |
| 1676 | y = vec->y; |
| 1677 | if ( y < yMin ) yMin = y; |
| 1678 | if ( y > yMax ) yMax = y; |
| 1679 | } |
| 1680 | } |
| 1681 | acbox->xMin = xMin; |
| 1682 | acbox->xMax = xMax; |
| 1683 | acbox->yMin = yMin; |
| 1684 | acbox->yMax = yMax; |
| 1685 | } |
| 1686 | } |
| 1687 | |
| 1688 | #endif /* STANDALONE_ */ |
| 1689 | |
| 1690 | |
| 1691 | FT_DEFINE_OUTLINE_FUNCS( |
| 1692 | func_interface, |
| 1693 | |
| 1694 | (FT_Outline_MoveTo_Func) gray_move_to, /* move_to */ |
| 1695 | (FT_Outline_LineTo_Func) gray_line_to, /* line_to */ |
| 1696 | (FT_Outline_ConicTo_Func)gray_conic_to, /* conic_to */ |
| 1697 | (FT_Outline_CubicTo_Func)gray_cubic_to, /* cubic_to */ |
| 1698 | |
| 1699 | 0, /* shift */ |
| 1700 | 0 /* delta */ |
| 1701 | ) |
| 1702 | |
| 1703 | |
| 1704 | static int |
| 1705 | gray_convert_glyph_inner( RAS_ARG ) |
| 1706 | { |
| 1707 | |
| 1708 | volatile int error = 0; |
| 1709 | |
| 1710 | #ifdef FT_CONFIG_OPTION_PIC |
| 1711 | FT_Outline_Funcs func_interface; |
| 1712 | Init_Class_func_interface(&func_interface); |
| 1713 | #endif |
| 1714 | |
| 1715 | if ( ft_setjmp( ras.jump_buffer ) == 0 ) |
| 1716 | { |
| 1717 | error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras ); |
| 1718 | if ( !ras.invalid ) |
| 1719 | gray_record_cell( RAS_VAR ); |
| 1720 | |
| 1721 | FT_TRACE7(( "band [%d..%d]: %d cell%s\n" , |
| 1722 | ras.min_ey, |
| 1723 | ras.max_ey, |
| 1724 | ras.num_cells, |
| 1725 | ras.num_cells == 1 ? "" : "s" )); |
| 1726 | } |
| 1727 | else |
| 1728 | { |
| 1729 | error = FT_THROW( Memory_Overflow ); |
| 1730 | |
| 1731 | FT_TRACE7(( "band [%d..%d]: to be bisected\n" , |
| 1732 | ras.min_ey, ras.max_ey )); |
| 1733 | } |
| 1734 | |
| 1735 | return error; |
| 1736 | } |
| 1737 | |
| 1738 | |
| 1739 | static int |
| 1740 | gray_convert_glyph( RAS_ARG ) |
| 1741 | { |
| 1742 | const TCoord yMin = ras.min_ey; |
| 1743 | const TCoord yMax = ras.max_ey; |
| 1744 | const TCoord xMin = ras.min_ex; |
| 1745 | const TCoord xMax = ras.max_ex; |
| 1746 | |
| 1747 | TCell buffer[FT_MAX_GRAY_POOL]; |
| 1748 | size_t height = (size_t)( yMax - yMin ); |
| 1749 | size_t n = FT_MAX_GRAY_POOL / 8; |
| 1750 | TCoord y; |
| 1751 | TCoord bands[32]; /* enough to accommodate bisections */ |
| 1752 | TCoord* band; |
| 1753 | |
| 1754 | |
| 1755 | /* set up vertical bands */ |
| 1756 | if ( height > n ) |
| 1757 | { |
| 1758 | /* two divisions rounded up */ |
| 1759 | n = ( height + n - 1 ) / n; |
| 1760 | height = ( height + n - 1 ) / n; |
| 1761 | } |
| 1762 | |
| 1763 | /* memory management */ |
| 1764 | n = ( height * sizeof ( PCell ) + sizeof ( TCell ) - 1 ) / sizeof ( TCell ); |
| 1765 | |
| 1766 | ras.cells = buffer + n; |
| 1767 | ras.max_cells = (FT_PtrDist)( FT_MAX_GRAY_POOL - n ); |
| 1768 | ras.ycells = (PCell*)buffer; |
| 1769 | |
| 1770 | for ( y = yMin; y < yMax; ) |
| 1771 | { |
| 1772 | ras.min_ey = y; |
| 1773 | y += height; |
| 1774 | ras.max_ey = FT_MIN( y, yMax ); |
| 1775 | |
| 1776 | band = bands; |
| 1777 | band[1] = xMin; |
| 1778 | band[0] = xMax; |
| 1779 | |
| 1780 | do |
| 1781 | { |
| 1782 | TCoord width = band[0] - band[1]; |
| 1783 | int error; |
| 1784 | |
| 1785 | |
| 1786 | FT_MEM_ZERO( ras.ycells, height * sizeof ( PCell ) ); |
| 1787 | |
| 1788 | ras.num_cells = 0; |
| 1789 | ras.invalid = 1; |
| 1790 | ras.min_ex = band[1]; |
| 1791 | ras.max_ex = band[0]; |
| 1792 | |
| 1793 | error = gray_convert_glyph_inner( RAS_VAR ); |
| 1794 | |
| 1795 | if ( !error ) |
| 1796 | { |
| 1797 | gray_sweep( RAS_VAR ); |
| 1798 | band--; |
| 1799 | continue; |
| 1800 | } |
| 1801 | else if ( error != ErrRaster_Memory_Overflow ) |
| 1802 | return 1; |
| 1803 | |
| 1804 | /* render pool overflow; we will reduce the render band by half */ |
| 1805 | width >>= 1; |
| 1806 | |
| 1807 | /* this should never happen even with tiny rendering pool */ |
| 1808 | if ( width == 0 ) |
| 1809 | { |
| 1810 | FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" )); |
| 1811 | return 1; |
| 1812 | } |
| 1813 | |
| 1814 | band++; |
| 1815 | band[1] = band[0]; |
| 1816 | band[0] += width; |
| 1817 | } while ( band >= bands ); |
| 1818 | } |
| 1819 | |
| 1820 | return 0; |
| 1821 | } |
| 1822 | |
| 1823 | |
| 1824 | static int |
| 1825 | gray_raster_render( FT_Raster raster, |
| 1826 | const FT_Raster_Params* params ) |
| 1827 | { |
| 1828 | const FT_Outline* outline = (const FT_Outline*)params->source; |
| 1829 | const FT_Bitmap* target_map = params->target; |
| 1830 | FT_BBox cbox, clip; |
| 1831 | |
| 1832 | #ifndef FT_STATIC_RASTER |
| 1833 | gray_TWorker worker[1]; |
| 1834 | #endif |
| 1835 | |
| 1836 | |
| 1837 | if ( !raster ) |
| 1838 | return FT_THROW( Invalid_Argument ); |
| 1839 | |
| 1840 | /* this version does not support monochrome rendering */ |
| 1841 | if ( !( params->flags & FT_RASTER_FLAG_AA ) ) |
| 1842 | return FT_THROW( Invalid_Mode ); |
| 1843 | |
| 1844 | if ( !outline ) |
| 1845 | return FT_THROW( Invalid_Outline ); |
| 1846 | |
| 1847 | /* return immediately if the outline is empty */ |
| 1848 | if ( outline->n_points == 0 || outline->n_contours <= 0 ) |
| 1849 | return 0; |
| 1850 | |
| 1851 | if ( !outline->contours || !outline->points ) |
| 1852 | return FT_THROW( Invalid_Outline ); |
| 1853 | |
| 1854 | if ( outline->n_points != |
| 1855 | outline->contours[outline->n_contours - 1] + 1 ) |
| 1856 | return FT_THROW( Invalid_Outline ); |
| 1857 | |
| 1858 | ras.outline = *outline; |
| 1859 | |
| 1860 | if ( params->flags & FT_RASTER_FLAG_DIRECT ) |
| 1861 | { |
| 1862 | if ( !params->gray_spans ) |
| 1863 | return 0; |
| 1864 | |
| 1865 | ras.render_span = (FT_Raster_Span_Func)params->gray_spans; |
| 1866 | ras.render_span_data = params->user; |
| 1867 | } |
| 1868 | else |
| 1869 | { |
| 1870 | /* if direct mode is not set, we must have a target bitmap */ |
| 1871 | if ( !target_map ) |
| 1872 | return FT_THROW( Invalid_Argument ); |
| 1873 | |
| 1874 | /* nothing to do */ |
| 1875 | if ( !target_map->width || !target_map->rows ) |
| 1876 | return 0; |
| 1877 | |
| 1878 | if ( !target_map->buffer ) |
| 1879 | return FT_THROW( Invalid_Argument ); |
| 1880 | |
| 1881 | if ( target_map->pitch < 0 ) |
| 1882 | ras.target.origin = target_map->buffer; |
| 1883 | else |
| 1884 | ras.target.origin = target_map->buffer |
| 1885 | + ( target_map->rows - 1 ) * (unsigned int)target_map->pitch; |
| 1886 | |
| 1887 | ras.target.pitch = target_map->pitch; |
| 1888 | |
| 1889 | ras.render_span = (FT_Raster_Span_Func)NULL; |
| 1890 | ras.render_span_data = NULL; |
| 1891 | } |
| 1892 | |
| 1893 | FT_Outline_Get_CBox( outline, &cbox ); |
| 1894 | |
| 1895 | /* reject too large outline coordinates */ |
| 1896 | if ( cbox.xMin < -0x1000000L || cbox.xMax > 0x1000000L || |
| 1897 | cbox.yMin < -0x1000000L || cbox.yMax > 0x1000000L ) |
| 1898 | return FT_THROW( Invalid_Outline ); |
| 1899 | |
| 1900 | /* truncate the bounding box to integer pixels */ |
| 1901 | cbox.xMin = cbox.xMin >> 6; |
| 1902 | cbox.yMin = cbox.yMin >> 6; |
| 1903 | cbox.xMax = ( cbox.xMax + 63 ) >> 6; |
| 1904 | cbox.yMax = ( cbox.yMax + 63 ) >> 6; |
| 1905 | |
| 1906 | /* compute clipping box */ |
| 1907 | if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) ) |
| 1908 | { |
| 1909 | /* compute clip box from target pixmap */ |
| 1910 | clip.xMin = 0; |
| 1911 | clip.yMin = 0; |
| 1912 | clip.xMax = (FT_Pos)target_map->width; |
| 1913 | clip.yMax = (FT_Pos)target_map->rows; |
| 1914 | } |
| 1915 | else if ( params->flags & FT_RASTER_FLAG_CLIP ) |
| 1916 | clip = params->clip_box; |
| 1917 | else |
| 1918 | { |
| 1919 | clip.xMin = -32768L; |
| 1920 | clip.yMin = -32768L; |
| 1921 | clip.xMax = 32767L; |
| 1922 | clip.yMax = 32767L; |
| 1923 | } |
| 1924 | |
| 1925 | /* clip to target bitmap, exit if nothing to do */ |
| 1926 | ras.min_ex = FT_MAX( cbox.xMin, clip.xMin ); |
| 1927 | ras.min_ey = FT_MAX( cbox.yMin, clip.yMin ); |
| 1928 | ras.max_ex = FT_MIN( cbox.xMax, clip.xMax ); |
| 1929 | ras.max_ey = FT_MIN( cbox.yMax, clip.yMax ); |
| 1930 | |
| 1931 | if ( ras.max_ex <= ras.min_ex || ras.max_ey <= ras.min_ey ) |
| 1932 | return 0; |
| 1933 | |
| 1934 | return gray_convert_glyph( RAS_VAR ); |
| 1935 | } |
| 1936 | |
| 1937 | |
| 1938 | /**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/ |
| 1939 | /**** a static object. *****/ |
| 1940 | |
| 1941 | #ifdef STANDALONE_ |
| 1942 | |
| 1943 | static int |
| 1944 | gray_raster_new( void* memory, |
| 1945 | FT_Raster* araster ) |
| 1946 | { |
| 1947 | static gray_TRaster the_raster; |
| 1948 | |
| 1949 | FT_UNUSED( memory ); |
| 1950 | |
| 1951 | |
| 1952 | *araster = (FT_Raster)&the_raster; |
| 1953 | FT_ZERO( &the_raster ); |
| 1954 | |
| 1955 | return 0; |
| 1956 | } |
| 1957 | |
| 1958 | |
| 1959 | static void |
| 1960 | gray_raster_done( FT_Raster raster ) |
| 1961 | { |
| 1962 | /* nothing */ |
| 1963 | FT_UNUSED( raster ); |
| 1964 | } |
| 1965 | |
| 1966 | #else /* !STANDALONE_ */ |
| 1967 | |
| 1968 | static int |
| 1969 | gray_raster_new( FT_Memory memory, |
| 1970 | FT_Raster* araster ) |
| 1971 | { |
| 1972 | FT_Error error; |
| 1973 | gray_PRaster raster = NULL; |
| 1974 | |
| 1975 | |
| 1976 | *araster = 0; |
| 1977 | if ( !FT_ALLOC( raster, sizeof ( gray_TRaster ) ) ) |
| 1978 | { |
| 1979 | raster->memory = memory; |
| 1980 | *araster = (FT_Raster)raster; |
| 1981 | } |
| 1982 | |
| 1983 | return error; |
| 1984 | } |
| 1985 | |
| 1986 | |
| 1987 | static void |
| 1988 | gray_raster_done( FT_Raster raster ) |
| 1989 | { |
| 1990 | FT_Memory memory = (FT_Memory)((gray_PRaster)raster)->memory; |
| 1991 | |
| 1992 | |
| 1993 | FT_FREE( raster ); |
| 1994 | } |
| 1995 | |
| 1996 | #endif /* !STANDALONE_ */ |
| 1997 | |
| 1998 | |
| 1999 | static void |
| 2000 | gray_raster_reset( FT_Raster raster, |
| 2001 | unsigned char* pool_base, |
| 2002 | unsigned long pool_size ) |
| 2003 | { |
| 2004 | FT_UNUSED( raster ); |
| 2005 | FT_UNUSED( pool_base ); |
| 2006 | FT_UNUSED( pool_size ); |
| 2007 | } |
| 2008 | |
| 2009 | |
| 2010 | static int |
| 2011 | gray_raster_set_mode( FT_Raster raster, |
| 2012 | unsigned long mode, |
| 2013 | void* args ) |
| 2014 | { |
| 2015 | FT_UNUSED( raster ); |
| 2016 | FT_UNUSED( mode ); |
| 2017 | FT_UNUSED( args ); |
| 2018 | |
| 2019 | |
| 2020 | return 0; /* nothing to do */ |
| 2021 | } |
| 2022 | |
| 2023 | |
| 2024 | FT_DEFINE_RASTER_FUNCS( |
| 2025 | ft_grays_raster, |
| 2026 | |
| 2027 | FT_GLYPH_FORMAT_OUTLINE, |
| 2028 | |
| 2029 | (FT_Raster_New_Func) gray_raster_new, /* raster_new */ |
| 2030 | (FT_Raster_Reset_Func) gray_raster_reset, /* raster_reset */ |
| 2031 | (FT_Raster_Set_Mode_Func)gray_raster_set_mode, /* raster_set_mode */ |
| 2032 | (FT_Raster_Render_Func) gray_raster_render, /* raster_render */ |
| 2033 | (FT_Raster_Done_Func) gray_raster_done /* raster_done */ |
| 2034 | ) |
| 2035 | |
| 2036 | |
| 2037 | /* END */ |
| 2038 | |
| 2039 | |
| 2040 | /* Local Variables: */ |
| 2041 | /* coding: utf-8 */ |
| 2042 | /* End: */ |
| 2043 | |