1 | /***************************************************************************/ |
2 | /* */ |
3 | /* ftgrays.c */ |
4 | /* */ |
5 | /* A new `perfect' anti-aliasing renderer (body). */ |
6 | /* */ |
7 | /* Copyright 2000-2018 by */ |
8 | /* David Turner, Robert Wilhelm, and Werner Lemberg. */ |
9 | /* */ |
10 | /* This file is part of the FreeType project, and may only be used, */ |
11 | /* modified, and distributed under the terms of the FreeType project */ |
12 | /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ |
13 | /* this file you indicate that you have read the license and */ |
14 | /* understand and accept it fully. */ |
15 | /* */ |
16 | /***************************************************************************/ |
17 | |
18 | /*************************************************************************/ |
19 | /* */ |
20 | /* This file can be compiled without the rest of the FreeType engine, by */ |
21 | /* defining the STANDALONE_ macro when compiling it. You also need to */ |
22 | /* put the files `ftgrays.h' and `ftimage.h' into the current */ |
23 | /* compilation directory. Typically, you could do something like */ |
24 | /* */ |
25 | /* - copy `src/smooth/ftgrays.c' (this file) to your current directory */ |
26 | /* */ |
27 | /* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the */ |
28 | /* same directory */ |
29 | /* */ |
30 | /* - compile `ftgrays' with the STANDALONE_ macro defined, as in */ |
31 | /* */ |
32 | /* cc -c -DSTANDALONE_ ftgrays.c */ |
33 | /* */ |
34 | /* The renderer can be initialized with a call to */ |
35 | /* `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated */ |
36 | /* with a call to `ft_gray_raster.raster_render'. */ |
37 | /* */ |
38 | /* See the comments and documentation in the file `ftimage.h' for more */ |
39 | /* details on how the raster works. */ |
40 | /* */ |
41 | /*************************************************************************/ |
42 | |
43 | /*************************************************************************/ |
44 | /* */ |
45 | /* This is a new anti-aliasing scan-converter for FreeType 2. The */ |
46 | /* algorithm used here is _very_ different from the one in the standard */ |
47 | /* `ftraster' module. Actually, `ftgrays' computes the _exact_ */ |
48 | /* coverage of the outline on each pixel cell. */ |
49 | /* */ |
50 | /* It is based on ideas that I initially found in Raph Levien's */ |
51 | /* excellent LibArt graphics library (see http://www.levien.com/libart */ |
52 | /* for more information, though the web pages do not tell anything */ |
53 | /* about the renderer; you'll have to dive into the source code to */ |
54 | /* understand how it works). */ |
55 | /* */ |
56 | /* Note, however, that this is a _very_ different implementation */ |
57 | /* compared to Raph's. Coverage information is stored in a very */ |
58 | /* different way, and I don't use sorted vector paths. Also, it doesn't */ |
59 | /* use floating point values. */ |
60 | /* */ |
61 | /* This renderer has the following advantages: */ |
62 | /* */ |
63 | /* - It doesn't need an intermediate bitmap. Instead, one can supply a */ |
64 | /* callback function that will be called by the renderer to draw gray */ |
65 | /* spans on any target surface. You can thus do direct composition on */ |
66 | /* any kind of bitmap, provided that you give the renderer the right */ |
67 | /* callback. */ |
68 | /* */ |
69 | /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on */ |
70 | /* each pixel cell. */ |
71 | /* */ |
72 | /* - It performs a single pass on the outline (the `standard' FT2 */ |
73 | /* renderer makes two passes). */ |
74 | /* */ |
75 | /* - It can easily be modified to render to _any_ number of gray levels */ |
76 | /* cheaply. */ |
77 | /* */ |
78 | /* - For small (< 20) pixel sizes, it is faster than the standard */ |
79 | /* renderer. */ |
80 | /* */ |
81 | /*************************************************************************/ |
82 | |
83 | |
84 | /*************************************************************************/ |
85 | /* */ |
86 | /* The macro FT_COMPONENT is used in trace mode. It is an implicit */ |
87 | /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */ |
88 | /* messages during execution. */ |
89 | /* */ |
90 | #undef FT_COMPONENT |
91 | #define FT_COMPONENT trace_smooth |
92 | |
93 | |
94 | #ifdef STANDALONE_ |
95 | |
96 | |
97 | /* The size in bytes of the render pool used by the scan-line converter */ |
98 | /* to do all of its work. */ |
99 | #define FT_RENDER_POOL_SIZE 16384L |
100 | |
101 | |
102 | /* Auxiliary macros for token concatenation. */ |
103 | #define FT_ERR_XCAT( x, y ) x ## y |
104 | #define FT_ERR_CAT( x, y ) FT_ERR_XCAT( x, y ) |
105 | |
106 | #define FT_BEGIN_STMNT do { |
107 | #define FT_END_STMNT } while ( 0 ) |
108 | |
109 | #define FT_MIN( a, b ) ( (a) < (b) ? (a) : (b) ) |
110 | #define FT_MAX( a, b ) ( (a) > (b) ? (a) : (b) ) |
111 | #define FT_ABS( a ) ( (a) < 0 ? -(a) : (a) ) |
112 | |
113 | |
114 | /* |
115 | * Approximate sqrt(x*x+y*y) using the `alpha max plus beta min' |
116 | * algorithm. We use alpha = 1, beta = 3/8, giving us results with a |
117 | * largest error less than 7% compared to the exact value. |
118 | */ |
119 | #define FT_HYPOT( x, y ) \ |
120 | ( x = FT_ABS( x ), \ |
121 | y = FT_ABS( y ), \ |
122 | x > y ? x + ( 3 * y >> 3 ) \ |
123 | : y + ( 3 * x >> 3 ) ) |
124 | |
125 | |
126 | /* define this to dump debugging information */ |
127 | /* #define FT_DEBUG_LEVEL_TRACE */ |
128 | |
129 | |
130 | #ifdef FT_DEBUG_LEVEL_TRACE |
131 | #include <stdio.h> |
132 | #include <stdarg.h> |
133 | #endif |
134 | |
135 | #include <stddef.h> |
136 | #include <string.h> |
137 | #include <setjmp.h> |
138 | #include <limits.h> |
139 | #define FT_CHAR_BIT CHAR_BIT |
140 | #define FT_UINT_MAX UINT_MAX |
141 | #define FT_INT_MAX INT_MAX |
142 | #define FT_ULONG_MAX ULONG_MAX |
143 | |
144 | #define ADD_LONG( a, b ) \ |
145 | (long)( (unsigned long)(a) + (unsigned long)(b) ) |
146 | #define SUB_LONG( a, b ) \ |
147 | (long)( (unsigned long)(a) - (unsigned long)(b) ) |
148 | #define MUL_LONG( a, b ) \ |
149 | (long)( (unsigned long)(a) * (unsigned long)(b) ) |
150 | #define NEG_LONG( a ) \ |
151 | (long)( -(unsigned long)(a) ) |
152 | |
153 | |
154 | #define ft_memset memset |
155 | |
156 | #define ft_setjmp setjmp |
157 | #define ft_longjmp longjmp |
158 | #define ft_jmp_buf jmp_buf |
159 | |
160 | typedef ptrdiff_t FT_PtrDist; |
161 | |
162 | |
163 | #define ErrRaster_Invalid_Mode -2 |
164 | #define ErrRaster_Invalid_Outline -1 |
165 | #define ErrRaster_Invalid_Argument -3 |
166 | #define ErrRaster_Memory_Overflow -4 |
167 | |
168 | #define FT_BEGIN_HEADER |
169 | #define FT_END_HEADER |
170 | |
171 | #include "ftimage.h" |
172 | #include "ftgrays.h" |
173 | |
174 | |
175 | /* This macro is used to indicate that a function parameter is unused. */ |
176 | /* Its purpose is simply to reduce compiler warnings. Note also that */ |
177 | /* simply defining it as `(void)x' doesn't avoid warnings with certain */ |
178 | /* ANSI compilers (e.g. LCC). */ |
179 | #define FT_UNUSED( x ) (x) = (x) |
180 | |
181 | |
182 | /* we only use level 5 & 7 tracing messages; cf. ftdebug.h */ |
183 | |
184 | #ifdef FT_DEBUG_LEVEL_TRACE |
185 | |
186 | void |
187 | FT_Message( const char* fmt, |
188 | ... ) |
189 | { |
190 | va_list ap; |
191 | |
192 | |
193 | va_start( ap, fmt ); |
194 | vfprintf( stderr, fmt, ap ); |
195 | va_end( ap ); |
196 | } |
197 | |
198 | |
199 | /* empty function useful for setting a breakpoint to catch errors */ |
200 | int |
201 | FT_Throw( int error, |
202 | int line, |
203 | const char* file ) |
204 | { |
205 | FT_UNUSED( error ); |
206 | FT_UNUSED( line ); |
207 | FT_UNUSED( file ); |
208 | |
209 | return 0; |
210 | } |
211 | |
212 | |
213 | /* we don't handle tracing levels in stand-alone mode; */ |
214 | #ifndef FT_TRACE5 |
215 | #define FT_TRACE5( varformat ) FT_Message varformat |
216 | #endif |
217 | #ifndef FT_TRACE7 |
218 | #define FT_TRACE7( varformat ) FT_Message varformat |
219 | #endif |
220 | #ifndef FT_ERROR |
221 | #define FT_ERROR( varformat ) FT_Message varformat |
222 | #endif |
223 | |
224 | #define FT_THROW( e ) \ |
225 | ( FT_Throw( FT_ERR_CAT( ErrRaster, e ), \ |
226 | __LINE__, \ |
227 | __FILE__ ) | \ |
228 | FT_ERR_CAT( ErrRaster, e ) ) |
229 | |
230 | #else /* !FT_DEBUG_LEVEL_TRACE */ |
231 | |
232 | #define FT_TRACE5( x ) do { } while ( 0 ) /* nothing */ |
233 | #define FT_TRACE7( x ) do { } while ( 0 ) /* nothing */ |
234 | #define FT_ERROR( x ) do { } while ( 0 ) /* nothing */ |
235 | #define FT_THROW( e ) FT_ERR_CAT( ErrRaster_, e ) |
236 | |
237 | |
238 | #endif /* !FT_DEBUG_LEVEL_TRACE */ |
239 | |
240 | |
241 | #define FT_DEFINE_OUTLINE_FUNCS( class_, \ |
242 | move_to_, line_to_, \ |
243 | conic_to_, cubic_to_, \ |
244 | shift_, delta_ ) \ |
245 | static const FT_Outline_Funcs class_ = \ |
246 | { \ |
247 | move_to_, \ |
248 | line_to_, \ |
249 | conic_to_, \ |
250 | cubic_to_, \ |
251 | shift_, \ |
252 | delta_ \ |
253 | }; |
254 | |
255 | #define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_, \ |
256 | raster_new_, raster_reset_, \ |
257 | raster_set_mode_, raster_render_, \ |
258 | raster_done_ ) \ |
259 | const FT_Raster_Funcs class_ = \ |
260 | { \ |
261 | glyph_format_, \ |
262 | raster_new_, \ |
263 | raster_reset_, \ |
264 | raster_set_mode_, \ |
265 | raster_render_, \ |
266 | raster_done_ \ |
267 | }; |
268 | |
269 | |
270 | #else /* !STANDALONE_ */ |
271 | |
272 | |
273 | #include <ft2build.h> |
274 | #include "ftgrays.h" |
275 | #include FT_INTERNAL_OBJECTS_H |
276 | #include FT_INTERNAL_DEBUG_H |
277 | #include FT_INTERNAL_CALC_H |
278 | #include FT_OUTLINE_H |
279 | |
280 | #include "ftsmerrs.h" |
281 | |
282 | #include "ftspic.h" |
283 | |
284 | #define Smooth_Err_Invalid_Mode Smooth_Err_Cannot_Render_Glyph |
285 | #define Smooth_Err_Memory_Overflow Smooth_Err_Out_Of_Memory |
286 | #define ErrRaster_Memory_Overflow Smooth_Err_Out_Of_Memory |
287 | |
288 | |
289 | #endif /* !STANDALONE_ */ |
290 | |
291 | |
292 | #ifndef FT_MEM_SET |
293 | #define FT_MEM_SET( d, s, c ) ft_memset( d, s, c ) |
294 | #endif |
295 | |
296 | #ifndef FT_MEM_ZERO |
297 | #define FT_MEM_ZERO( dest, count ) FT_MEM_SET( dest, 0, count ) |
298 | #endif |
299 | |
300 | #ifndef FT_ZERO |
301 | #define FT_ZERO( p ) FT_MEM_ZERO( p, sizeof ( *(p) ) ) |
302 | #endif |
303 | |
304 | /* as usual, for the speed hungry :-) */ |
305 | |
306 | #undef RAS_ARG |
307 | #undef RAS_ARG_ |
308 | #undef RAS_VAR |
309 | #undef RAS_VAR_ |
310 | |
311 | #ifndef FT_STATIC_RASTER |
312 | |
313 | #define RAS_ARG gray_PWorker worker |
314 | #define RAS_ARG_ gray_PWorker worker, |
315 | |
316 | #define RAS_VAR worker |
317 | #define RAS_VAR_ worker, |
318 | |
319 | #else /* FT_STATIC_RASTER */ |
320 | |
321 | #define RAS_ARG void |
322 | #define RAS_ARG_ /* empty */ |
323 | #define RAS_VAR /* empty */ |
324 | #define RAS_VAR_ /* empty */ |
325 | |
326 | #endif /* FT_STATIC_RASTER */ |
327 | |
328 | |
329 | /* must be at least 6 bits! */ |
330 | #define PIXEL_BITS 8 |
331 | |
332 | #undef FLOOR |
333 | #undef CEILING |
334 | #undef TRUNC |
335 | #undef SCALED |
336 | |
337 | #define ONE_PIXEL ( 1 << PIXEL_BITS ) |
338 | #define TRUNC( x ) ( (TCoord)( (x) >> PIXEL_BITS ) ) |
339 | #define SUBPIXELS( x ) ( (TPos)(x) * ONE_PIXEL ) |
340 | #define FLOOR( x ) ( (x) & -ONE_PIXEL ) |
341 | #define CEILING( x ) ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL ) |
342 | #define ROUND( x ) ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL ) |
343 | |
344 | #if PIXEL_BITS >= 6 |
345 | #define UPSCALE( x ) ( (x) * ( ONE_PIXEL >> 6 ) ) |
346 | #define DOWNSCALE( x ) ( (x) >> ( PIXEL_BITS - 6 ) ) |
347 | #else |
348 | #define UPSCALE( x ) ( (x) >> ( 6 - PIXEL_BITS ) ) |
349 | #define DOWNSCALE( x ) ( (x) * ( 64 >> PIXEL_BITS ) ) |
350 | #endif |
351 | |
352 | |
353 | /* Compute `dividend / divisor' and return both its quotient and */ |
354 | /* remainder, cast to a specific type. This macro also ensures that */ |
355 | /* the remainder is always positive. We use the remainder to keep */ |
356 | /* track of accumulating errors and compensate for them. */ |
357 | #define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \ |
358 | FT_BEGIN_STMNT \ |
359 | (quotient) = (type)( (dividend) / (divisor) ); \ |
360 | (remainder) = (type)( (dividend) % (divisor) ); \ |
361 | if ( (remainder) < 0 ) \ |
362 | { \ |
363 | (quotient)--; \ |
364 | (remainder) += (type)(divisor); \ |
365 | } \ |
366 | FT_END_STMNT |
367 | |
368 | #ifdef __arm__ |
369 | /* Work around a bug specific to GCC which make the compiler fail to */ |
370 | /* optimize a division and modulo operation on the same parameters */ |
371 | /* into a single call to `__aeabi_idivmod'. See */ |
372 | /* */ |
373 | /* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721 */ |
374 | #undef FT_DIV_MOD |
375 | #define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \ |
376 | FT_BEGIN_STMNT \ |
377 | (quotient) = (type)( (dividend) / (divisor) ); \ |
378 | (remainder) = (type)( (dividend) - (quotient) * (divisor) ); \ |
379 | if ( (remainder) < 0 ) \ |
380 | { \ |
381 | (quotient)--; \ |
382 | (remainder) += (type)(divisor); \ |
383 | } \ |
384 | FT_END_STMNT |
385 | #endif /* __arm__ */ |
386 | |
387 | |
388 | /* These macros speed up repetitive divisions by replacing them */ |
389 | /* with multiplications and right shifts. */ |
390 | #define FT_UDIVPREP( c, b ) \ |
391 | long b ## _r = c ? (long)( FT_ULONG_MAX >> PIXEL_BITS ) / ( b ) \ |
392 | : 0 |
393 | #define FT_UDIV( a, b ) \ |
394 | ( ( (unsigned long)( a ) * (unsigned long)( b ## _r ) ) >> \ |
395 | ( sizeof( long ) * FT_CHAR_BIT - PIXEL_BITS ) ) |
396 | |
397 | |
398 | /*************************************************************************/ |
399 | /* */ |
400 | /* TYPE DEFINITIONS */ |
401 | /* */ |
402 | |
403 | /* don't change the following types to FT_Int or FT_Pos, since we might */ |
404 | /* need to define them to "float" or "double" when experimenting with */ |
405 | /* new algorithms */ |
406 | |
407 | typedef long TPos; /* subpixel coordinate */ |
408 | typedef int TCoord; /* integer scanline/pixel coordinate */ |
409 | typedef int TArea; /* cell areas, coordinate products */ |
410 | |
411 | |
412 | typedef struct TCell_* PCell; |
413 | |
414 | typedef struct TCell_ |
415 | { |
416 | TCoord x; /* same with gray_TWorker.ex */ |
417 | TCoord cover; /* same with gray_TWorker.cover */ |
418 | TArea area; |
419 | PCell next; |
420 | |
421 | } TCell; |
422 | |
423 | typedef struct TPixmap_ |
424 | { |
425 | unsigned char* origin; /* pixmap origin at the bottom-left */ |
426 | int pitch; /* pitch to go down one row */ |
427 | |
428 | } TPixmap; |
429 | |
430 | /* maximum number of gray cells in the buffer */ |
431 | #if FT_RENDER_POOL_SIZE > 2048 |
432 | #define FT_MAX_GRAY_POOL ( FT_RENDER_POOL_SIZE / sizeof ( TCell ) ) |
433 | #else |
434 | #define FT_MAX_GRAY_POOL ( 2048 / sizeof ( TCell ) ) |
435 | #endif |
436 | |
437 | |
438 | #if defined( _MSC_VER ) /* Visual C++ (and Intel C++) */ |
439 | /* We disable the warning `structure was padded due to */ |
440 | /* __declspec(align())' in order to compile cleanly with */ |
441 | /* the maximum level of warnings. */ |
442 | #pragma warning( push ) |
443 | #pragma warning( disable : 4324 ) |
444 | #endif /* _MSC_VER */ |
445 | |
446 | typedef struct gray_TWorker_ |
447 | { |
448 | ft_jmp_buf jump_buffer; |
449 | |
450 | TCoord ex, ey; |
451 | TCoord min_ex, max_ex; |
452 | TCoord min_ey, max_ey; |
453 | |
454 | TArea area; |
455 | TCoord cover; |
456 | int invalid; |
457 | |
458 | PCell* ycells; |
459 | PCell cells; |
460 | FT_PtrDist max_cells; |
461 | FT_PtrDist num_cells; |
462 | |
463 | TPos x, y; |
464 | |
465 | FT_Outline outline; |
466 | TPixmap target; |
467 | |
468 | FT_Raster_Span_Func render_span; |
469 | void* render_span_data; |
470 | |
471 | } gray_TWorker, *gray_PWorker; |
472 | |
473 | #if defined( _MSC_VER ) |
474 | #pragma warning( pop ) |
475 | #endif |
476 | |
477 | |
478 | #ifndef FT_STATIC_RASTER |
479 | #define ras (*worker) |
480 | #else |
481 | static gray_TWorker ras; |
482 | #endif |
483 | |
484 | |
485 | typedef struct gray_TRaster_ |
486 | { |
487 | void* memory; |
488 | |
489 | } gray_TRaster, *gray_PRaster; |
490 | |
491 | |
492 | #ifdef FT_DEBUG_LEVEL_TRACE |
493 | |
494 | /* to be called while in the debugger -- */ |
495 | /* this function causes a compiler warning since it is unused otherwise */ |
496 | static void |
497 | gray_dump_cells( RAS_ARG ) |
498 | { |
499 | int y; |
500 | |
501 | |
502 | for ( y = ras.min_ey; y < ras.max_ey; y++ ) |
503 | { |
504 | PCell cell = ras.ycells[y - ras.min_ey]; |
505 | |
506 | |
507 | printf( "%3d:" , y ); |
508 | |
509 | for ( ; cell != NULL; cell = cell->next ) |
510 | printf( " (%3d, c:%4d, a:%6d)" , |
511 | cell->x, cell->cover, cell->area ); |
512 | printf( "\n" ); |
513 | } |
514 | } |
515 | |
516 | #endif /* FT_DEBUG_LEVEL_TRACE */ |
517 | |
518 | |
519 | /*************************************************************************/ |
520 | /* */ |
521 | /* Record the current cell in the table. */ |
522 | /* */ |
523 | static void |
524 | gray_record_cell( RAS_ARG ) |
525 | { |
526 | PCell *pcell, cell; |
527 | TCoord x = ras.ex; |
528 | |
529 | |
530 | pcell = &ras.ycells[ras.ey - ras.min_ey]; |
531 | for (;;) |
532 | { |
533 | cell = *pcell; |
534 | if ( !cell || cell->x > x ) |
535 | break; |
536 | |
537 | if ( cell->x == x ) |
538 | goto Found; |
539 | |
540 | pcell = &cell->next; |
541 | } |
542 | |
543 | if ( ras.num_cells >= ras.max_cells ) |
544 | ft_longjmp( ras.jump_buffer, 1 ); |
545 | |
546 | /* insert new cell */ |
547 | cell = ras.cells + ras.num_cells++; |
548 | cell->x = x; |
549 | cell->area = ras.area; |
550 | cell->cover = ras.cover; |
551 | |
552 | cell->next = *pcell; |
553 | *pcell = cell; |
554 | |
555 | return; |
556 | |
557 | Found: |
558 | /* update old cell */ |
559 | cell->area += ras.area; |
560 | cell->cover += ras.cover; |
561 | } |
562 | |
563 | |
564 | /*************************************************************************/ |
565 | /* */ |
566 | /* Set the current cell to a new position. */ |
567 | /* */ |
568 | static void |
569 | gray_set_cell( RAS_ARG_ TCoord ex, |
570 | TCoord ey ) |
571 | { |
572 | /* Move the cell pointer to a new position. We set the `invalid' */ |
573 | /* flag to indicate that the cell isn't part of those we're interested */ |
574 | /* in during the render phase. This means that: */ |
575 | /* */ |
576 | /* . the new vertical position must be within min_ey..max_ey-1. */ |
577 | /* . the new horizontal position must be strictly less than max_ex */ |
578 | /* */ |
579 | /* Note that if a cell is to the left of the clipping region, it is */ |
580 | /* actually set to the (min_ex-1) horizontal position. */ |
581 | |
582 | if ( ex < ras.min_ex ) |
583 | ex = ras.min_ex - 1; |
584 | |
585 | /* record the current one if it is valid and substantial */ |
586 | if ( !ras.invalid && ( ras.area || ras.cover ) ) |
587 | gray_record_cell( RAS_VAR ); |
588 | |
589 | ras.area = 0; |
590 | ras.cover = 0; |
591 | ras.ex = ex; |
592 | ras.ey = ey; |
593 | |
594 | ras.invalid = ( ey >= ras.max_ey || ey < ras.min_ey || |
595 | ex >= ras.max_ex ); |
596 | } |
597 | |
598 | |
599 | #ifndef FT_LONG64 |
600 | |
601 | /*************************************************************************/ |
602 | /* */ |
603 | /* Render a scanline as one or more cells. */ |
604 | /* */ |
605 | static void |
606 | gray_render_scanline( RAS_ARG_ TCoord ey, |
607 | TPos x1, |
608 | TCoord y1, |
609 | TPos x2, |
610 | TCoord y2 ) |
611 | { |
612 | TCoord ex1, ex2, fx1, fx2, first, dy, delta, mod; |
613 | TPos p, dx; |
614 | int incr; |
615 | |
616 | |
617 | ex1 = TRUNC( x1 ); |
618 | ex2 = TRUNC( x2 ); |
619 | |
620 | /* trivial case. Happens often */ |
621 | if ( y1 == y2 ) |
622 | { |
623 | gray_set_cell( RAS_VAR_ ex2, ey ); |
624 | return; |
625 | } |
626 | |
627 | fx1 = (TCoord)( x1 - SUBPIXELS( ex1 ) ); |
628 | fx2 = (TCoord)( x2 - SUBPIXELS( ex2 ) ); |
629 | |
630 | /* everything is located in a single cell. That is easy! */ |
631 | /* */ |
632 | if ( ex1 == ex2 ) |
633 | goto End; |
634 | |
635 | /* ok, we'll have to render a run of adjacent cells on the same */ |
636 | /* scanline... */ |
637 | /* */ |
638 | dx = x2 - x1; |
639 | dy = y2 - y1; |
640 | |
641 | if ( dx > 0 ) |
642 | { |
643 | p = ( ONE_PIXEL - fx1 ) * dy; |
644 | first = ONE_PIXEL; |
645 | incr = 1; |
646 | } |
647 | else |
648 | { |
649 | p = fx1 * dy; |
650 | first = 0; |
651 | incr = -1; |
652 | dx = -dx; |
653 | } |
654 | |
655 | FT_DIV_MOD( TCoord, p, dx, delta, mod ); |
656 | |
657 | ras.area += (TArea)( ( fx1 + first ) * delta ); |
658 | ras.cover += delta; |
659 | y1 += delta; |
660 | ex1 += incr; |
661 | gray_set_cell( RAS_VAR_ ex1, ey ); |
662 | |
663 | if ( ex1 != ex2 ) |
664 | { |
665 | TCoord lift, rem; |
666 | |
667 | |
668 | p = ONE_PIXEL * dy; |
669 | FT_DIV_MOD( TCoord, p, dx, lift, rem ); |
670 | |
671 | do |
672 | { |
673 | delta = lift; |
674 | mod += rem; |
675 | if ( mod >= (TCoord)dx ) |
676 | { |
677 | mod -= (TCoord)dx; |
678 | delta++; |
679 | } |
680 | |
681 | ras.area += (TArea)( ONE_PIXEL * delta ); |
682 | ras.cover += delta; |
683 | y1 += delta; |
684 | ex1 += incr; |
685 | gray_set_cell( RAS_VAR_ ex1, ey ); |
686 | } while ( ex1 != ex2 ); |
687 | } |
688 | |
689 | fx1 = ONE_PIXEL - first; |
690 | |
691 | End: |
692 | dy = y2 - y1; |
693 | |
694 | ras.area += (TArea)( ( fx1 + fx2 ) * dy ); |
695 | ras.cover += dy; |
696 | } |
697 | |
698 | |
699 | /*************************************************************************/ |
700 | /* */ |
701 | /* Render a given line as a series of scanlines. */ |
702 | /* */ |
703 | static void |
704 | gray_render_line( RAS_ARG_ TPos to_x, |
705 | TPos to_y ) |
706 | { |
707 | TCoord ey1, ey2, fy1, fy2, first, delta, mod; |
708 | TPos p, dx, dy, x, x2; |
709 | int incr; |
710 | |
711 | |
712 | ey1 = TRUNC( ras.y ); |
713 | ey2 = TRUNC( to_y ); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */ |
714 | |
715 | /* perform vertical clipping */ |
716 | if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) || |
717 | ( ey1 < ras.min_ey && ey2 < ras.min_ey ) ) |
718 | goto End; |
719 | |
720 | fy1 = (TCoord)( ras.y - SUBPIXELS( ey1 ) ); |
721 | fy2 = (TCoord)( to_y - SUBPIXELS( ey2 ) ); |
722 | |
723 | /* everything is on a single scanline */ |
724 | if ( ey1 == ey2 ) |
725 | { |
726 | gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 ); |
727 | goto End; |
728 | } |
729 | |
730 | dx = to_x - ras.x; |
731 | dy = to_y - ras.y; |
732 | |
733 | /* vertical line - avoid calling gray_render_scanline */ |
734 | if ( dx == 0 ) |
735 | { |
736 | TCoord ex = TRUNC( ras.x ); |
737 | TCoord two_fx = (TCoord)( ( ras.x - SUBPIXELS( ex ) ) << 1 ); |
738 | TArea area; |
739 | |
740 | |
741 | if ( dy > 0) |
742 | { |
743 | first = ONE_PIXEL; |
744 | incr = 1; |
745 | } |
746 | else |
747 | { |
748 | first = 0; |
749 | incr = -1; |
750 | } |
751 | |
752 | delta = first - fy1; |
753 | ras.area += (TArea)two_fx * delta; |
754 | ras.cover += delta; |
755 | ey1 += incr; |
756 | |
757 | gray_set_cell( RAS_VAR_ ex, ey1 ); |
758 | |
759 | delta = first + first - ONE_PIXEL; |
760 | area = (TArea)two_fx * delta; |
761 | while ( ey1 != ey2 ) |
762 | { |
763 | ras.area += area; |
764 | ras.cover += delta; |
765 | ey1 += incr; |
766 | |
767 | gray_set_cell( RAS_VAR_ ex, ey1 ); |
768 | } |
769 | |
770 | delta = fy2 - ONE_PIXEL + first; |
771 | ras.area += (TArea)two_fx * delta; |
772 | ras.cover += delta; |
773 | |
774 | goto End; |
775 | } |
776 | |
777 | /* ok, we have to render several scanlines */ |
778 | if ( dy > 0) |
779 | { |
780 | p = ( ONE_PIXEL - fy1 ) * dx; |
781 | first = ONE_PIXEL; |
782 | incr = 1; |
783 | } |
784 | else |
785 | { |
786 | p = fy1 * dx; |
787 | first = 0; |
788 | incr = -1; |
789 | dy = -dy; |
790 | } |
791 | |
792 | FT_DIV_MOD( TCoord, p, dy, delta, mod ); |
793 | |
794 | x = ras.x + delta; |
795 | gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first ); |
796 | |
797 | ey1 += incr; |
798 | gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 ); |
799 | |
800 | if ( ey1 != ey2 ) |
801 | { |
802 | TCoord lift, rem; |
803 | |
804 | |
805 | p = ONE_PIXEL * dx; |
806 | FT_DIV_MOD( TCoord, p, dy, lift, rem ); |
807 | |
808 | do |
809 | { |
810 | delta = lift; |
811 | mod += rem; |
812 | if ( mod >= (TCoord)dy ) |
813 | { |
814 | mod -= (TCoord)dy; |
815 | delta++; |
816 | } |
817 | |
818 | x2 = x + delta; |
819 | gray_render_scanline( RAS_VAR_ ey1, |
820 | x, ONE_PIXEL - first, |
821 | x2, first ); |
822 | x = x2; |
823 | |
824 | ey1 += incr; |
825 | gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 ); |
826 | } while ( ey1 != ey2 ); |
827 | } |
828 | |
829 | gray_render_scanline( RAS_VAR_ ey1, |
830 | x, ONE_PIXEL - first, |
831 | to_x, fy2 ); |
832 | |
833 | End: |
834 | ras.x = to_x; |
835 | ras.y = to_y; |
836 | } |
837 | |
838 | #else |
839 | |
840 | /*************************************************************************/ |
841 | /* */ |
842 | /* Render a straight line across multiple cells in any direction. */ |
843 | /* */ |
844 | static void |
845 | gray_render_line( RAS_ARG_ TPos to_x, |
846 | TPos to_y ) |
847 | { |
848 | TPos dx, dy, fx1, fy1, fx2, fy2; |
849 | TCoord ex1, ex2, ey1, ey2; |
850 | |
851 | |
852 | ey1 = TRUNC( ras.y ); |
853 | ey2 = TRUNC( to_y ); |
854 | |
855 | /* perform vertical clipping */ |
856 | if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) || |
857 | ( ey1 < ras.min_ey && ey2 < ras.min_ey ) ) |
858 | goto End; |
859 | |
860 | ex1 = TRUNC( ras.x ); |
861 | ex2 = TRUNC( to_x ); |
862 | |
863 | fx1 = ras.x - SUBPIXELS( ex1 ); |
864 | fy1 = ras.y - SUBPIXELS( ey1 ); |
865 | |
866 | dx = to_x - ras.x; |
867 | dy = to_y - ras.y; |
868 | |
869 | if ( ex1 == ex2 && ey1 == ey2 ) /* inside one cell */ |
870 | ; |
871 | else if ( dy == 0 ) /* ex1 != ex2 */ /* any horizontal line */ |
872 | { |
873 | ex1 = ex2; |
874 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
875 | } |
876 | else if ( dx == 0 ) |
877 | { |
878 | if ( dy > 0 ) /* vertical line up */ |
879 | do |
880 | { |
881 | fy2 = ONE_PIXEL; |
882 | ras.cover += ( fy2 - fy1 ); |
883 | ras.area += ( fy2 - fy1 ) * fx1 * 2; |
884 | fy1 = 0; |
885 | ey1++; |
886 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
887 | } while ( ey1 != ey2 ); |
888 | else /* vertical line down */ |
889 | do |
890 | { |
891 | fy2 = 0; |
892 | ras.cover += ( fy2 - fy1 ); |
893 | ras.area += ( fy2 - fy1 ) * fx1 * 2; |
894 | fy1 = ONE_PIXEL; |
895 | ey1--; |
896 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
897 | } while ( ey1 != ey2 ); |
898 | } |
899 | else /* any other line */ |
900 | { |
901 | TPos prod = dx * fy1 - dy * fx1; |
902 | FT_UDIVPREP( ex1 != ex2, dx ); |
903 | FT_UDIVPREP( ey1 != ey2, dy ); |
904 | |
905 | |
906 | /* The fundamental value `prod' determines which side and the */ |
907 | /* exact coordinate where the line exits current cell. It is */ |
908 | /* also easily updated when moving from one cell to the next. */ |
909 | do |
910 | { |
911 | if ( prod <= 0 && |
912 | prod - dx * ONE_PIXEL > 0 ) /* left */ |
913 | { |
914 | fx2 = 0; |
915 | fy2 = (TPos)FT_UDIV( -prod, -dx ); |
916 | prod -= dy * ONE_PIXEL; |
917 | ras.cover += ( fy2 - fy1 ); |
918 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
919 | fx1 = ONE_PIXEL; |
920 | fy1 = fy2; |
921 | ex1--; |
922 | } |
923 | else if ( prod - dx * ONE_PIXEL <= 0 && |
924 | prod - dx * ONE_PIXEL + dy * ONE_PIXEL > 0 ) /* up */ |
925 | { |
926 | prod -= dx * ONE_PIXEL; |
927 | fx2 = (TPos)FT_UDIV( -prod, dy ); |
928 | fy2 = ONE_PIXEL; |
929 | ras.cover += ( fy2 - fy1 ); |
930 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
931 | fx1 = fx2; |
932 | fy1 = 0; |
933 | ey1++; |
934 | } |
935 | else if ( prod - dx * ONE_PIXEL + dy * ONE_PIXEL <= 0 && |
936 | prod + dy * ONE_PIXEL >= 0 ) /* right */ |
937 | { |
938 | prod += dy * ONE_PIXEL; |
939 | fx2 = ONE_PIXEL; |
940 | fy2 = (TPos)FT_UDIV( prod, dx ); |
941 | ras.cover += ( fy2 - fy1 ); |
942 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
943 | fx1 = 0; |
944 | fy1 = fy2; |
945 | ex1++; |
946 | } |
947 | else /* ( prod + dy * ONE_PIXEL < 0 && |
948 | prod > 0 ) down */ |
949 | { |
950 | fx2 = (TPos)FT_UDIV( prod, -dy ); |
951 | fy2 = 0; |
952 | prod += dx * ONE_PIXEL; |
953 | ras.cover += ( fy2 - fy1 ); |
954 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
955 | fx1 = fx2; |
956 | fy1 = ONE_PIXEL; |
957 | ey1--; |
958 | } |
959 | |
960 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
961 | } while ( ex1 != ex2 || ey1 != ey2 ); |
962 | } |
963 | |
964 | fx2 = to_x - SUBPIXELS( ex2 ); |
965 | fy2 = to_y - SUBPIXELS( ey2 ); |
966 | |
967 | ras.cover += ( fy2 - fy1 ); |
968 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
969 | |
970 | End: |
971 | ras.x = to_x; |
972 | ras.y = to_y; |
973 | } |
974 | |
975 | #endif |
976 | |
977 | static void |
978 | gray_split_conic( FT_Vector* base ) |
979 | { |
980 | TPos a, b; |
981 | |
982 | |
983 | base[4].x = base[2].x; |
984 | b = base[1].x; |
985 | a = base[3].x = ( base[2].x + b ) / 2; |
986 | b = base[1].x = ( base[0].x + b ) / 2; |
987 | base[2].x = ( a + b ) / 2; |
988 | |
989 | base[4].y = base[2].y; |
990 | b = base[1].y; |
991 | a = base[3].y = ( base[2].y + b ) / 2; |
992 | b = base[1].y = ( base[0].y + b ) / 2; |
993 | base[2].y = ( a + b ) / 2; |
994 | } |
995 | |
996 | |
997 | static void |
998 | gray_render_conic( RAS_ARG_ const FT_Vector* control, |
999 | const FT_Vector* to ) |
1000 | { |
1001 | FT_Vector bez_stack[16 * 2 + 1]; /* enough to accommodate bisections */ |
1002 | FT_Vector* arc = bez_stack; |
1003 | TPos dx, dy; |
1004 | int draw, split; |
1005 | |
1006 | |
1007 | arc[0].x = UPSCALE( to->x ); |
1008 | arc[0].y = UPSCALE( to->y ); |
1009 | arc[1].x = UPSCALE( control->x ); |
1010 | arc[1].y = UPSCALE( control->y ); |
1011 | arc[2].x = ras.x; |
1012 | arc[2].y = ras.y; |
1013 | |
1014 | /* short-cut the arc that crosses the current band */ |
1015 | if ( ( TRUNC( arc[0].y ) >= ras.max_ey && |
1016 | TRUNC( arc[1].y ) >= ras.max_ey && |
1017 | TRUNC( arc[2].y ) >= ras.max_ey ) || |
1018 | ( TRUNC( arc[0].y ) < ras.min_ey && |
1019 | TRUNC( arc[1].y ) < ras.min_ey && |
1020 | TRUNC( arc[2].y ) < ras.min_ey ) ) |
1021 | { |
1022 | ras.x = arc[0].x; |
1023 | ras.y = arc[0].y; |
1024 | return; |
1025 | } |
1026 | |
1027 | dx = FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x ); |
1028 | dy = FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y ); |
1029 | if ( dx < dy ) |
1030 | dx = dy; |
1031 | |
1032 | /* We can calculate the number of necessary bisections because */ |
1033 | /* each bisection predictably reduces deviation exactly 4-fold. */ |
1034 | /* Even 32-bit deviation would vanish after 16 bisections. */ |
1035 | draw = 1; |
1036 | while ( dx > ONE_PIXEL / 4 ) |
1037 | { |
1038 | dx >>= 2; |
1039 | draw <<= 1; |
1040 | } |
1041 | |
1042 | /* We use decrement counter to count the total number of segments */ |
1043 | /* to draw starting from 2^level. Before each draw we split as */ |
1044 | /* many times as there are trailing zeros in the counter. */ |
1045 | do |
1046 | { |
1047 | split = 1; |
1048 | while ( ( draw & split ) == 0 ) |
1049 | { |
1050 | gray_split_conic( arc ); |
1051 | arc += 2; |
1052 | split <<= 1; |
1053 | } |
1054 | |
1055 | gray_render_line( RAS_VAR_ arc[0].x, arc[0].y ); |
1056 | arc -= 2; |
1057 | |
1058 | } while ( --draw ); |
1059 | } |
1060 | |
1061 | |
1062 | static void |
1063 | gray_split_cubic( FT_Vector* base ) |
1064 | { |
1065 | TPos a, b, c, d; |
1066 | |
1067 | |
1068 | base[6].x = base[3].x; |
1069 | c = base[1].x; |
1070 | d = base[2].x; |
1071 | base[1].x = a = ( base[0].x + c ) / 2; |
1072 | base[5].x = b = ( base[3].x + d ) / 2; |
1073 | c = ( c + d ) / 2; |
1074 | base[2].x = a = ( a + c ) / 2; |
1075 | base[4].x = b = ( b + c ) / 2; |
1076 | base[3].x = ( a + b ) / 2; |
1077 | |
1078 | base[6].y = base[3].y; |
1079 | c = base[1].y; |
1080 | d = base[2].y; |
1081 | base[1].y = a = ( base[0].y + c ) / 2; |
1082 | base[5].y = b = ( base[3].y + d ) / 2; |
1083 | c = ( c + d ) / 2; |
1084 | base[2].y = a = ( a + c ) / 2; |
1085 | base[4].y = b = ( b + c ) / 2; |
1086 | base[3].y = ( a + b ) / 2; |
1087 | } |
1088 | |
1089 | |
1090 | static void |
1091 | gray_render_cubic( RAS_ARG_ const FT_Vector* control1, |
1092 | const FT_Vector* control2, |
1093 | const FT_Vector* to ) |
1094 | { |
1095 | FT_Vector bez_stack[16 * 3 + 1]; /* enough to accommodate bisections */ |
1096 | FT_Vector* arc = bez_stack; |
1097 | TPos dx, dy, dx_, dy_; |
1098 | TPos dx1, dy1, dx2, dy2; |
1099 | TPos L, s, s_limit; |
1100 | |
1101 | |
1102 | arc[0].x = UPSCALE( to->x ); |
1103 | arc[0].y = UPSCALE( to->y ); |
1104 | arc[1].x = UPSCALE( control2->x ); |
1105 | arc[1].y = UPSCALE( control2->y ); |
1106 | arc[2].x = UPSCALE( control1->x ); |
1107 | arc[2].y = UPSCALE( control1->y ); |
1108 | arc[3].x = ras.x; |
1109 | arc[3].y = ras.y; |
1110 | |
1111 | /* short-cut the arc that crosses the current band */ |
1112 | if ( ( TRUNC( arc[0].y ) >= ras.max_ey && |
1113 | TRUNC( arc[1].y ) >= ras.max_ey && |
1114 | TRUNC( arc[2].y ) >= ras.max_ey && |
1115 | TRUNC( arc[3].y ) >= ras.max_ey ) || |
1116 | ( TRUNC( arc[0].y ) < ras.min_ey && |
1117 | TRUNC( arc[1].y ) < ras.min_ey && |
1118 | TRUNC( arc[2].y ) < ras.min_ey && |
1119 | TRUNC( arc[3].y ) < ras.min_ey ) ) |
1120 | { |
1121 | ras.x = arc[0].x; |
1122 | ras.y = arc[0].y; |
1123 | return; |
1124 | } |
1125 | |
1126 | for (;;) |
1127 | { |
1128 | /* Decide whether to split or draw. See `Rapid Termination */ |
1129 | /* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */ |
1130 | /* F. Hain, at */ |
1131 | /* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */ |
1132 | |
1133 | /* dx and dy are x and y components of the P0-P3 chord vector. */ |
1134 | dx = dx_ = arc[3].x - arc[0].x; |
1135 | dy = dy_ = arc[3].y - arc[0].y; |
1136 | |
1137 | L = FT_HYPOT( dx_, dy_ ); |
1138 | |
1139 | /* Avoid possible arithmetic overflow below by splitting. */ |
1140 | if ( L > 32767 ) |
1141 | goto Split; |
1142 | |
1143 | /* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */ |
1144 | s_limit = L * (TPos)( ONE_PIXEL / 6 ); |
1145 | |
1146 | /* s is L * the perpendicular distance from P1 to the line P0-P3. */ |
1147 | dx1 = arc[1].x - arc[0].x; |
1148 | dy1 = arc[1].y - arc[0].y; |
1149 | s = FT_ABS( SUB_LONG( MUL_LONG( dy, dx1 ), MUL_LONG( dx, dy1 ) ) ); |
1150 | |
1151 | if ( s > s_limit ) |
1152 | goto Split; |
1153 | |
1154 | /* s is L * the perpendicular distance from P2 to the line P0-P3. */ |
1155 | dx2 = arc[2].x - arc[0].x; |
1156 | dy2 = arc[2].y - arc[0].y; |
1157 | s = FT_ABS( SUB_LONG( MUL_LONG( dy, dx2 ), MUL_LONG( dx, dy2 ) ) ); |
1158 | |
1159 | if ( s > s_limit ) |
1160 | goto Split; |
1161 | |
1162 | /* Split super curvy segments where the off points are so far |
1163 | from the chord that the angles P0-P1-P3 or P0-P2-P3 become |
1164 | acute as detected by appropriate dot products. */ |
1165 | if ( dx1 * ( dx1 - dx ) + dy1 * ( dy1 - dy ) > 0 || |
1166 | dx2 * ( dx2 - dx ) + dy2 * ( dy2 - dy ) > 0 ) |
1167 | goto Split; |
1168 | |
1169 | gray_render_line( RAS_VAR_ arc[0].x, arc[0].y ); |
1170 | |
1171 | if ( arc == bez_stack ) |
1172 | return; |
1173 | |
1174 | arc -= 3; |
1175 | continue; |
1176 | |
1177 | Split: |
1178 | gray_split_cubic( arc ); |
1179 | arc += 3; |
1180 | } |
1181 | } |
1182 | |
1183 | |
1184 | static int |
1185 | gray_move_to( const FT_Vector* to, |
1186 | gray_PWorker worker ) |
1187 | { |
1188 | TPos x, y; |
1189 | |
1190 | |
1191 | /* start to a new position */ |
1192 | x = UPSCALE( to->x ); |
1193 | y = UPSCALE( to->y ); |
1194 | |
1195 | gray_set_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) ); |
1196 | |
1197 | ras.x = x; |
1198 | ras.y = y; |
1199 | return 0; |
1200 | } |
1201 | |
1202 | |
1203 | static int |
1204 | gray_line_to( const FT_Vector* to, |
1205 | gray_PWorker worker ) |
1206 | { |
1207 | gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) ); |
1208 | return 0; |
1209 | } |
1210 | |
1211 | |
1212 | static int |
1213 | gray_conic_to( const FT_Vector* control, |
1214 | const FT_Vector* to, |
1215 | gray_PWorker worker ) |
1216 | { |
1217 | gray_render_conic( RAS_VAR_ control, to ); |
1218 | return 0; |
1219 | } |
1220 | |
1221 | |
1222 | static int |
1223 | gray_cubic_to( const FT_Vector* control1, |
1224 | const FT_Vector* control2, |
1225 | const FT_Vector* to, |
1226 | gray_PWorker worker ) |
1227 | { |
1228 | gray_render_cubic( RAS_VAR_ control1, control2, to ); |
1229 | return 0; |
1230 | } |
1231 | |
1232 | |
1233 | static void |
1234 | gray_hline( RAS_ARG_ TCoord x, |
1235 | TCoord y, |
1236 | TArea coverage, |
1237 | TCoord acount ) |
1238 | { |
1239 | /* scale the coverage from 0..(ONE_PIXEL*ONE_PIXEL*2) to 0..256 */ |
1240 | coverage >>= PIXEL_BITS * 2 + 1 - 8; |
1241 | if ( coverage < 0 ) |
1242 | coverage = -coverage - 1; |
1243 | |
1244 | /* compute the line's coverage depending on the outline fill rule */ |
1245 | if ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL ) |
1246 | { |
1247 | coverage &= 511; |
1248 | |
1249 | if ( coverage >= 256 ) |
1250 | coverage = 511 - coverage; |
1251 | } |
1252 | else |
1253 | { |
1254 | /* normal non-zero winding rule */ |
1255 | if ( coverage >= 256 ) |
1256 | coverage = 255; |
1257 | } |
1258 | |
1259 | if ( ras.render_span ) /* for FT_RASTER_FLAG_DIRECT only */ |
1260 | { |
1261 | FT_Span span; |
1262 | |
1263 | |
1264 | span.x = (short)x; |
1265 | span.len = (unsigned short)acount; |
1266 | span.coverage = (unsigned char)coverage; |
1267 | |
1268 | ras.render_span( y, 1, &span, ras.render_span_data ); |
1269 | } |
1270 | else |
1271 | { |
1272 | unsigned char* q = ras.target.origin - ras.target.pitch * y + x; |
1273 | unsigned char c = (unsigned char)coverage; |
1274 | |
1275 | |
1276 | /* For small-spans it is faster to do it by ourselves than |
1277 | * calling `memset'. This is mainly due to the cost of the |
1278 | * function call. |
1279 | */ |
1280 | switch ( acount ) |
1281 | { |
1282 | case 7: *q++ = c; |
1283 | case 6: *q++ = c; |
1284 | case 5: *q++ = c; |
1285 | case 4: *q++ = c; |
1286 | case 3: *q++ = c; |
1287 | case 2: *q++ = c; |
1288 | case 1: *q = c; |
1289 | case 0: break; |
1290 | default: |
1291 | FT_MEM_SET( q, c, acount ); |
1292 | } |
1293 | } |
1294 | } |
1295 | |
1296 | |
1297 | static void |
1298 | gray_sweep( RAS_ARG ) |
1299 | { |
1300 | int y; |
1301 | |
1302 | |
1303 | for ( y = ras.min_ey; y < ras.max_ey; y++ ) |
1304 | { |
1305 | PCell cell = ras.ycells[y - ras.min_ey]; |
1306 | TCoord x = ras.min_ex; |
1307 | TArea cover = 0; |
1308 | TArea area; |
1309 | |
1310 | |
1311 | for ( ; cell != NULL; cell = cell->next ) |
1312 | { |
1313 | if ( cover != 0 && cell->x > x ) |
1314 | gray_hline( RAS_VAR_ x, y, cover, cell->x - x ); |
1315 | |
1316 | cover += (TArea)cell->cover * ( ONE_PIXEL * 2 ); |
1317 | area = cover - cell->area; |
1318 | |
1319 | if ( area != 0 && cell->x >= ras.min_ex ) |
1320 | gray_hline( RAS_VAR_ cell->x, y, area, 1 ); |
1321 | |
1322 | x = cell->x + 1; |
1323 | } |
1324 | |
1325 | if ( cover != 0 ) |
1326 | gray_hline( RAS_VAR_ x, y, cover, ras.max_ex - x ); |
1327 | } |
1328 | } |
1329 | |
1330 | |
1331 | #ifdef STANDALONE_ |
1332 | |
1333 | /*************************************************************************/ |
1334 | /* */ |
1335 | /* The following functions should only compile in stand-alone mode, */ |
1336 | /* i.e., when building this component without the rest of FreeType. */ |
1337 | /* */ |
1338 | /*************************************************************************/ |
1339 | |
1340 | /*************************************************************************/ |
1341 | /* */ |
1342 | /* <Function> */ |
1343 | /* FT_Outline_Decompose */ |
1344 | /* */ |
1345 | /* <Description> */ |
1346 | /* Walk over an outline's structure to decompose it into individual */ |
1347 | /* segments and Bézier arcs. This function is also able to emit */ |
1348 | /* `move to' and `close to' operations to indicate the start and end */ |
1349 | /* of new contours in the outline. */ |
1350 | /* */ |
1351 | /* <Input> */ |
1352 | /* outline :: A pointer to the source target. */ |
1353 | /* */ |
1354 | /* func_interface :: A table of `emitters', i.e., function pointers */ |
1355 | /* called during decomposition to indicate path */ |
1356 | /* operations. */ |
1357 | /* */ |
1358 | /* <InOut> */ |
1359 | /* user :: A typeless pointer which is passed to each */ |
1360 | /* emitter during the decomposition. It can be */ |
1361 | /* used to store the state during the */ |
1362 | /* decomposition. */ |
1363 | /* */ |
1364 | /* <Return> */ |
1365 | /* Error code. 0 means success. */ |
1366 | /* */ |
1367 | static int |
1368 | FT_Outline_Decompose( const FT_Outline* outline, |
1369 | const FT_Outline_Funcs* func_interface, |
1370 | void* user ) |
1371 | { |
1372 | #undef SCALED |
1373 | #define SCALED( x ) ( ( (x) << shift ) - delta ) |
1374 | |
1375 | FT_Vector v_last; |
1376 | FT_Vector v_control; |
1377 | FT_Vector v_start; |
1378 | |
1379 | FT_Vector* point; |
1380 | FT_Vector* limit; |
1381 | char* tags; |
1382 | |
1383 | int error; |
1384 | |
1385 | int n; /* index of contour in outline */ |
1386 | int first; /* index of first point in contour */ |
1387 | char tag; /* current point's state */ |
1388 | |
1389 | int shift; |
1390 | TPos delta; |
1391 | |
1392 | |
1393 | if ( !outline ) |
1394 | return FT_THROW( Invalid_Outline ); |
1395 | |
1396 | if ( !func_interface ) |
1397 | return FT_THROW( Invalid_Argument ); |
1398 | |
1399 | shift = func_interface->shift; |
1400 | delta = func_interface->delta; |
1401 | first = 0; |
1402 | |
1403 | for ( n = 0; n < outline->n_contours; n++ ) |
1404 | { |
1405 | int last; /* index of last point in contour */ |
1406 | |
1407 | |
1408 | FT_TRACE5(( "FT_Outline_Decompose: Outline %d\n" , n )); |
1409 | |
1410 | last = outline->contours[n]; |
1411 | if ( last < 0 ) |
1412 | goto Invalid_Outline; |
1413 | limit = outline->points + last; |
1414 | |
1415 | v_start = outline->points[first]; |
1416 | v_start.x = SCALED( v_start.x ); |
1417 | v_start.y = SCALED( v_start.y ); |
1418 | |
1419 | v_last = outline->points[last]; |
1420 | v_last.x = SCALED( v_last.x ); |
1421 | v_last.y = SCALED( v_last.y ); |
1422 | |
1423 | v_control = v_start; |
1424 | |
1425 | point = outline->points + first; |
1426 | tags = outline->tags + first; |
1427 | tag = FT_CURVE_TAG( tags[0] ); |
1428 | |
1429 | /* A contour cannot start with a cubic control point! */ |
1430 | if ( tag == FT_CURVE_TAG_CUBIC ) |
1431 | goto Invalid_Outline; |
1432 | |
1433 | /* check first point to determine origin */ |
1434 | if ( tag == FT_CURVE_TAG_CONIC ) |
1435 | { |
1436 | /* first point is conic control. Yes, this happens. */ |
1437 | if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON ) |
1438 | { |
1439 | /* start at last point if it is on the curve */ |
1440 | v_start = v_last; |
1441 | limit--; |
1442 | } |
1443 | else |
1444 | { |
1445 | /* if both first and last points are conic, */ |
1446 | /* start at their middle and record its position */ |
1447 | /* for closure */ |
1448 | v_start.x = ( v_start.x + v_last.x ) / 2; |
1449 | v_start.y = ( v_start.y + v_last.y ) / 2; |
1450 | |
1451 | v_last = v_start; |
1452 | } |
1453 | point--; |
1454 | tags--; |
1455 | } |
1456 | |
1457 | FT_TRACE5(( " move to (%.2f, %.2f)\n" , |
1458 | v_start.x / 64.0, v_start.y / 64.0 )); |
1459 | error = func_interface->move_to( &v_start, user ); |
1460 | if ( error ) |
1461 | goto Exit; |
1462 | |
1463 | while ( point < limit ) |
1464 | { |
1465 | point++; |
1466 | tags++; |
1467 | |
1468 | tag = FT_CURVE_TAG( tags[0] ); |
1469 | switch ( tag ) |
1470 | { |
1471 | case FT_CURVE_TAG_ON: /* emit a single line_to */ |
1472 | { |
1473 | FT_Vector vec; |
1474 | |
1475 | |
1476 | vec.x = SCALED( point->x ); |
1477 | vec.y = SCALED( point->y ); |
1478 | |
1479 | FT_TRACE5(( " line to (%.2f, %.2f)\n" , |
1480 | vec.x / 64.0, vec.y / 64.0 )); |
1481 | error = func_interface->line_to( &vec, user ); |
1482 | if ( error ) |
1483 | goto Exit; |
1484 | continue; |
1485 | } |
1486 | |
1487 | case FT_CURVE_TAG_CONIC: /* consume conic arcs */ |
1488 | v_control.x = SCALED( point->x ); |
1489 | v_control.y = SCALED( point->y ); |
1490 | |
1491 | Do_Conic: |
1492 | if ( point < limit ) |
1493 | { |
1494 | FT_Vector vec; |
1495 | FT_Vector v_middle; |
1496 | |
1497 | |
1498 | point++; |
1499 | tags++; |
1500 | tag = FT_CURVE_TAG( tags[0] ); |
1501 | |
1502 | vec.x = SCALED( point->x ); |
1503 | vec.y = SCALED( point->y ); |
1504 | |
1505 | if ( tag == FT_CURVE_TAG_ON ) |
1506 | { |
1507 | FT_TRACE5(( " conic to (%.2f, %.2f)" |
1508 | " with control (%.2f, %.2f)\n" , |
1509 | vec.x / 64.0, vec.y / 64.0, |
1510 | v_control.x / 64.0, v_control.y / 64.0 )); |
1511 | error = func_interface->conic_to( &v_control, &vec, user ); |
1512 | if ( error ) |
1513 | goto Exit; |
1514 | continue; |
1515 | } |
1516 | |
1517 | if ( tag != FT_CURVE_TAG_CONIC ) |
1518 | goto Invalid_Outline; |
1519 | |
1520 | v_middle.x = ( v_control.x + vec.x ) / 2; |
1521 | v_middle.y = ( v_control.y + vec.y ) / 2; |
1522 | |
1523 | FT_TRACE5(( " conic to (%.2f, %.2f)" |
1524 | " with control (%.2f, %.2f)\n" , |
1525 | v_middle.x / 64.0, v_middle.y / 64.0, |
1526 | v_control.x / 64.0, v_control.y / 64.0 )); |
1527 | error = func_interface->conic_to( &v_control, &v_middle, user ); |
1528 | if ( error ) |
1529 | goto Exit; |
1530 | |
1531 | v_control = vec; |
1532 | goto Do_Conic; |
1533 | } |
1534 | |
1535 | FT_TRACE5(( " conic to (%.2f, %.2f)" |
1536 | " with control (%.2f, %.2f)\n" , |
1537 | v_start.x / 64.0, v_start.y / 64.0, |
1538 | v_control.x / 64.0, v_control.y / 64.0 )); |
1539 | error = func_interface->conic_to( &v_control, &v_start, user ); |
1540 | goto Close; |
1541 | |
1542 | default: /* FT_CURVE_TAG_CUBIC */ |
1543 | { |
1544 | FT_Vector vec1, vec2; |
1545 | |
1546 | |
1547 | if ( point + 1 > limit || |
1548 | FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC ) |
1549 | goto Invalid_Outline; |
1550 | |
1551 | point += 2; |
1552 | tags += 2; |
1553 | |
1554 | vec1.x = SCALED( point[-2].x ); |
1555 | vec1.y = SCALED( point[-2].y ); |
1556 | |
1557 | vec2.x = SCALED( point[-1].x ); |
1558 | vec2.y = SCALED( point[-1].y ); |
1559 | |
1560 | if ( point <= limit ) |
1561 | { |
1562 | FT_Vector vec; |
1563 | |
1564 | |
1565 | vec.x = SCALED( point->x ); |
1566 | vec.y = SCALED( point->y ); |
1567 | |
1568 | FT_TRACE5(( " cubic to (%.2f, %.2f)" |
1569 | " with controls (%.2f, %.2f) and (%.2f, %.2f)\n" , |
1570 | vec.x / 64.0, vec.y / 64.0, |
1571 | vec1.x / 64.0, vec1.y / 64.0, |
1572 | vec2.x / 64.0, vec2.y / 64.0 )); |
1573 | error = func_interface->cubic_to( &vec1, &vec2, &vec, user ); |
1574 | if ( error ) |
1575 | goto Exit; |
1576 | continue; |
1577 | } |
1578 | |
1579 | FT_TRACE5(( " cubic to (%.2f, %.2f)" |
1580 | " with controls (%.2f, %.2f) and (%.2f, %.2f)\n" , |
1581 | v_start.x / 64.0, v_start.y / 64.0, |
1582 | vec1.x / 64.0, vec1.y / 64.0, |
1583 | vec2.x / 64.0, vec2.y / 64.0 )); |
1584 | error = func_interface->cubic_to( &vec1, &vec2, &v_start, user ); |
1585 | goto Close; |
1586 | } |
1587 | } |
1588 | } |
1589 | |
1590 | /* close the contour with a line segment */ |
1591 | FT_TRACE5(( " line to (%.2f, %.2f)\n" , |
1592 | v_start.x / 64.0, v_start.y / 64.0 )); |
1593 | error = func_interface->line_to( &v_start, user ); |
1594 | |
1595 | Close: |
1596 | if ( error ) |
1597 | goto Exit; |
1598 | |
1599 | first = last + 1; |
1600 | } |
1601 | |
1602 | FT_TRACE5(( "FT_Outline_Decompose: Done\n" , n )); |
1603 | return 0; |
1604 | |
1605 | Exit: |
1606 | FT_TRACE5(( "FT_Outline_Decompose: Error 0x%x\n" , error )); |
1607 | return error; |
1608 | |
1609 | Invalid_Outline: |
1610 | return FT_THROW( Invalid_Outline ); |
1611 | } |
1612 | |
1613 | |
1614 | /*************************************************************************/ |
1615 | /* */ |
1616 | /* <Function> */ |
1617 | /* FT_Outline_Get_CBox */ |
1618 | /* */ |
1619 | /* <Description> */ |
1620 | /* Return an outline's `control box'. The control box encloses all */ |
1621 | /* the outline's points, including Bézier control points. Though it */ |
1622 | /* coincides with the exact bounding box for most glyphs, it can be */ |
1623 | /* slightly larger in some situations (like when rotating an outline */ |
1624 | /* that contains Bézier outside arcs). */ |
1625 | /* */ |
1626 | /* Computing the control box is very fast, while getting the bounding */ |
1627 | /* box can take much more time as it needs to walk over all segments */ |
1628 | /* and arcs in the outline. To get the latter, you can use the */ |
1629 | /* `ftbbox' component, which is dedicated to this single task. */ |
1630 | /* */ |
1631 | /* <Input> */ |
1632 | /* outline :: A pointer to the source outline descriptor. */ |
1633 | /* */ |
1634 | /* <Output> */ |
1635 | /* acbox :: The outline's control box. */ |
1636 | /* */ |
1637 | /* <Note> */ |
1638 | /* See @FT_Glyph_Get_CBox for a discussion of tricky fonts. */ |
1639 | /* */ |
1640 | |
1641 | static void |
1642 | FT_Outline_Get_CBox( const FT_Outline* outline, |
1643 | FT_BBox *acbox ) |
1644 | { |
1645 | TPos xMin, yMin, xMax, yMax; |
1646 | |
1647 | |
1648 | if ( outline && acbox ) |
1649 | { |
1650 | if ( outline->n_points == 0 ) |
1651 | { |
1652 | xMin = 0; |
1653 | yMin = 0; |
1654 | xMax = 0; |
1655 | yMax = 0; |
1656 | } |
1657 | else |
1658 | { |
1659 | FT_Vector* vec = outline->points; |
1660 | FT_Vector* limit = vec + outline->n_points; |
1661 | |
1662 | |
1663 | xMin = xMax = vec->x; |
1664 | yMin = yMax = vec->y; |
1665 | vec++; |
1666 | |
1667 | for ( ; vec < limit; vec++ ) |
1668 | { |
1669 | TPos x, y; |
1670 | |
1671 | |
1672 | x = vec->x; |
1673 | if ( x < xMin ) xMin = x; |
1674 | if ( x > xMax ) xMax = x; |
1675 | |
1676 | y = vec->y; |
1677 | if ( y < yMin ) yMin = y; |
1678 | if ( y > yMax ) yMax = y; |
1679 | } |
1680 | } |
1681 | acbox->xMin = xMin; |
1682 | acbox->xMax = xMax; |
1683 | acbox->yMin = yMin; |
1684 | acbox->yMax = yMax; |
1685 | } |
1686 | } |
1687 | |
1688 | #endif /* STANDALONE_ */ |
1689 | |
1690 | |
1691 | FT_DEFINE_OUTLINE_FUNCS( |
1692 | func_interface, |
1693 | |
1694 | (FT_Outline_MoveTo_Func) gray_move_to, /* move_to */ |
1695 | (FT_Outline_LineTo_Func) gray_line_to, /* line_to */ |
1696 | (FT_Outline_ConicTo_Func)gray_conic_to, /* conic_to */ |
1697 | (FT_Outline_CubicTo_Func)gray_cubic_to, /* cubic_to */ |
1698 | |
1699 | 0, /* shift */ |
1700 | 0 /* delta */ |
1701 | ) |
1702 | |
1703 | |
1704 | static int |
1705 | gray_convert_glyph_inner( RAS_ARG ) |
1706 | { |
1707 | |
1708 | volatile int error = 0; |
1709 | |
1710 | #ifdef FT_CONFIG_OPTION_PIC |
1711 | FT_Outline_Funcs func_interface; |
1712 | Init_Class_func_interface(&func_interface); |
1713 | #endif |
1714 | |
1715 | if ( ft_setjmp( ras.jump_buffer ) == 0 ) |
1716 | { |
1717 | error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras ); |
1718 | if ( !ras.invalid ) |
1719 | gray_record_cell( RAS_VAR ); |
1720 | |
1721 | FT_TRACE7(( "band [%d..%d]: %d cell%s\n" , |
1722 | ras.min_ey, |
1723 | ras.max_ey, |
1724 | ras.num_cells, |
1725 | ras.num_cells == 1 ? "" : "s" )); |
1726 | } |
1727 | else |
1728 | { |
1729 | error = FT_THROW( Memory_Overflow ); |
1730 | |
1731 | FT_TRACE7(( "band [%d..%d]: to be bisected\n" , |
1732 | ras.min_ey, ras.max_ey )); |
1733 | } |
1734 | |
1735 | return error; |
1736 | } |
1737 | |
1738 | |
1739 | static int |
1740 | gray_convert_glyph( RAS_ARG ) |
1741 | { |
1742 | const TCoord yMin = ras.min_ey; |
1743 | const TCoord yMax = ras.max_ey; |
1744 | const TCoord xMin = ras.min_ex; |
1745 | const TCoord xMax = ras.max_ex; |
1746 | |
1747 | TCell buffer[FT_MAX_GRAY_POOL]; |
1748 | size_t height = (size_t)( yMax - yMin ); |
1749 | size_t n = FT_MAX_GRAY_POOL / 8; |
1750 | TCoord y; |
1751 | TCoord bands[32]; /* enough to accommodate bisections */ |
1752 | TCoord* band; |
1753 | |
1754 | |
1755 | /* set up vertical bands */ |
1756 | if ( height > n ) |
1757 | { |
1758 | /* two divisions rounded up */ |
1759 | n = ( height + n - 1 ) / n; |
1760 | height = ( height + n - 1 ) / n; |
1761 | } |
1762 | |
1763 | /* memory management */ |
1764 | n = ( height * sizeof ( PCell ) + sizeof ( TCell ) - 1 ) / sizeof ( TCell ); |
1765 | |
1766 | ras.cells = buffer + n; |
1767 | ras.max_cells = (FT_PtrDist)( FT_MAX_GRAY_POOL - n ); |
1768 | ras.ycells = (PCell*)buffer; |
1769 | |
1770 | for ( y = yMin; y < yMax; ) |
1771 | { |
1772 | ras.min_ey = y; |
1773 | y += height; |
1774 | ras.max_ey = FT_MIN( y, yMax ); |
1775 | |
1776 | band = bands; |
1777 | band[1] = xMin; |
1778 | band[0] = xMax; |
1779 | |
1780 | do |
1781 | { |
1782 | TCoord width = band[0] - band[1]; |
1783 | int error; |
1784 | |
1785 | |
1786 | FT_MEM_ZERO( ras.ycells, height * sizeof ( PCell ) ); |
1787 | |
1788 | ras.num_cells = 0; |
1789 | ras.invalid = 1; |
1790 | ras.min_ex = band[1]; |
1791 | ras.max_ex = band[0]; |
1792 | |
1793 | error = gray_convert_glyph_inner( RAS_VAR ); |
1794 | |
1795 | if ( !error ) |
1796 | { |
1797 | gray_sweep( RAS_VAR ); |
1798 | band--; |
1799 | continue; |
1800 | } |
1801 | else if ( error != ErrRaster_Memory_Overflow ) |
1802 | return 1; |
1803 | |
1804 | /* render pool overflow; we will reduce the render band by half */ |
1805 | width >>= 1; |
1806 | |
1807 | /* this should never happen even with tiny rendering pool */ |
1808 | if ( width == 0 ) |
1809 | { |
1810 | FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" )); |
1811 | return 1; |
1812 | } |
1813 | |
1814 | band++; |
1815 | band[1] = band[0]; |
1816 | band[0] += width; |
1817 | } while ( band >= bands ); |
1818 | } |
1819 | |
1820 | return 0; |
1821 | } |
1822 | |
1823 | |
1824 | static int |
1825 | gray_raster_render( FT_Raster raster, |
1826 | const FT_Raster_Params* params ) |
1827 | { |
1828 | const FT_Outline* outline = (const FT_Outline*)params->source; |
1829 | const FT_Bitmap* target_map = params->target; |
1830 | FT_BBox cbox, clip; |
1831 | |
1832 | #ifndef FT_STATIC_RASTER |
1833 | gray_TWorker worker[1]; |
1834 | #endif |
1835 | |
1836 | |
1837 | if ( !raster ) |
1838 | return FT_THROW( Invalid_Argument ); |
1839 | |
1840 | /* this version does not support monochrome rendering */ |
1841 | if ( !( params->flags & FT_RASTER_FLAG_AA ) ) |
1842 | return FT_THROW( Invalid_Mode ); |
1843 | |
1844 | if ( !outline ) |
1845 | return FT_THROW( Invalid_Outline ); |
1846 | |
1847 | /* return immediately if the outline is empty */ |
1848 | if ( outline->n_points == 0 || outline->n_contours <= 0 ) |
1849 | return 0; |
1850 | |
1851 | if ( !outline->contours || !outline->points ) |
1852 | return FT_THROW( Invalid_Outline ); |
1853 | |
1854 | if ( outline->n_points != |
1855 | outline->contours[outline->n_contours - 1] + 1 ) |
1856 | return FT_THROW( Invalid_Outline ); |
1857 | |
1858 | ras.outline = *outline; |
1859 | |
1860 | if ( params->flags & FT_RASTER_FLAG_DIRECT ) |
1861 | { |
1862 | if ( !params->gray_spans ) |
1863 | return 0; |
1864 | |
1865 | ras.render_span = (FT_Raster_Span_Func)params->gray_spans; |
1866 | ras.render_span_data = params->user; |
1867 | } |
1868 | else |
1869 | { |
1870 | /* if direct mode is not set, we must have a target bitmap */ |
1871 | if ( !target_map ) |
1872 | return FT_THROW( Invalid_Argument ); |
1873 | |
1874 | /* nothing to do */ |
1875 | if ( !target_map->width || !target_map->rows ) |
1876 | return 0; |
1877 | |
1878 | if ( !target_map->buffer ) |
1879 | return FT_THROW( Invalid_Argument ); |
1880 | |
1881 | if ( target_map->pitch < 0 ) |
1882 | ras.target.origin = target_map->buffer; |
1883 | else |
1884 | ras.target.origin = target_map->buffer |
1885 | + ( target_map->rows - 1 ) * (unsigned int)target_map->pitch; |
1886 | |
1887 | ras.target.pitch = target_map->pitch; |
1888 | |
1889 | ras.render_span = (FT_Raster_Span_Func)NULL; |
1890 | ras.render_span_data = NULL; |
1891 | } |
1892 | |
1893 | FT_Outline_Get_CBox( outline, &cbox ); |
1894 | |
1895 | /* reject too large outline coordinates */ |
1896 | if ( cbox.xMin < -0x1000000L || cbox.xMax > 0x1000000L || |
1897 | cbox.yMin < -0x1000000L || cbox.yMax > 0x1000000L ) |
1898 | return FT_THROW( Invalid_Outline ); |
1899 | |
1900 | /* truncate the bounding box to integer pixels */ |
1901 | cbox.xMin = cbox.xMin >> 6; |
1902 | cbox.yMin = cbox.yMin >> 6; |
1903 | cbox.xMax = ( cbox.xMax + 63 ) >> 6; |
1904 | cbox.yMax = ( cbox.yMax + 63 ) >> 6; |
1905 | |
1906 | /* compute clipping box */ |
1907 | if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) ) |
1908 | { |
1909 | /* compute clip box from target pixmap */ |
1910 | clip.xMin = 0; |
1911 | clip.yMin = 0; |
1912 | clip.xMax = (FT_Pos)target_map->width; |
1913 | clip.yMax = (FT_Pos)target_map->rows; |
1914 | } |
1915 | else if ( params->flags & FT_RASTER_FLAG_CLIP ) |
1916 | clip = params->clip_box; |
1917 | else |
1918 | { |
1919 | clip.xMin = -32768L; |
1920 | clip.yMin = -32768L; |
1921 | clip.xMax = 32767L; |
1922 | clip.yMax = 32767L; |
1923 | } |
1924 | |
1925 | /* clip to target bitmap, exit if nothing to do */ |
1926 | ras.min_ex = FT_MAX( cbox.xMin, clip.xMin ); |
1927 | ras.min_ey = FT_MAX( cbox.yMin, clip.yMin ); |
1928 | ras.max_ex = FT_MIN( cbox.xMax, clip.xMax ); |
1929 | ras.max_ey = FT_MIN( cbox.yMax, clip.yMax ); |
1930 | |
1931 | if ( ras.max_ex <= ras.min_ex || ras.max_ey <= ras.min_ey ) |
1932 | return 0; |
1933 | |
1934 | return gray_convert_glyph( RAS_VAR ); |
1935 | } |
1936 | |
1937 | |
1938 | /**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/ |
1939 | /**** a static object. *****/ |
1940 | |
1941 | #ifdef STANDALONE_ |
1942 | |
1943 | static int |
1944 | gray_raster_new( void* memory, |
1945 | FT_Raster* araster ) |
1946 | { |
1947 | static gray_TRaster the_raster; |
1948 | |
1949 | FT_UNUSED( memory ); |
1950 | |
1951 | |
1952 | *araster = (FT_Raster)&the_raster; |
1953 | FT_ZERO( &the_raster ); |
1954 | |
1955 | return 0; |
1956 | } |
1957 | |
1958 | |
1959 | static void |
1960 | gray_raster_done( FT_Raster raster ) |
1961 | { |
1962 | /* nothing */ |
1963 | FT_UNUSED( raster ); |
1964 | } |
1965 | |
1966 | #else /* !STANDALONE_ */ |
1967 | |
1968 | static int |
1969 | gray_raster_new( FT_Memory memory, |
1970 | FT_Raster* araster ) |
1971 | { |
1972 | FT_Error error; |
1973 | gray_PRaster raster = NULL; |
1974 | |
1975 | |
1976 | *araster = 0; |
1977 | if ( !FT_ALLOC( raster, sizeof ( gray_TRaster ) ) ) |
1978 | { |
1979 | raster->memory = memory; |
1980 | *araster = (FT_Raster)raster; |
1981 | } |
1982 | |
1983 | return error; |
1984 | } |
1985 | |
1986 | |
1987 | static void |
1988 | gray_raster_done( FT_Raster raster ) |
1989 | { |
1990 | FT_Memory memory = (FT_Memory)((gray_PRaster)raster)->memory; |
1991 | |
1992 | |
1993 | FT_FREE( raster ); |
1994 | } |
1995 | |
1996 | #endif /* !STANDALONE_ */ |
1997 | |
1998 | |
1999 | static void |
2000 | gray_raster_reset( FT_Raster raster, |
2001 | unsigned char* pool_base, |
2002 | unsigned long pool_size ) |
2003 | { |
2004 | FT_UNUSED( raster ); |
2005 | FT_UNUSED( pool_base ); |
2006 | FT_UNUSED( pool_size ); |
2007 | } |
2008 | |
2009 | |
2010 | static int |
2011 | gray_raster_set_mode( FT_Raster raster, |
2012 | unsigned long mode, |
2013 | void* args ) |
2014 | { |
2015 | FT_UNUSED( raster ); |
2016 | FT_UNUSED( mode ); |
2017 | FT_UNUSED( args ); |
2018 | |
2019 | |
2020 | return 0; /* nothing to do */ |
2021 | } |
2022 | |
2023 | |
2024 | FT_DEFINE_RASTER_FUNCS( |
2025 | ft_grays_raster, |
2026 | |
2027 | FT_GLYPH_FORMAT_OUTLINE, |
2028 | |
2029 | (FT_Raster_New_Func) gray_raster_new, /* raster_new */ |
2030 | (FT_Raster_Reset_Func) gray_raster_reset, /* raster_reset */ |
2031 | (FT_Raster_Set_Mode_Func)gray_raster_set_mode, /* raster_set_mode */ |
2032 | (FT_Raster_Render_Func) gray_raster_render, /* raster_render */ |
2033 | (FT_Raster_Done_Func) gray_raster_done /* raster_done */ |
2034 | ) |
2035 | |
2036 | |
2037 | /* END */ |
2038 | |
2039 | |
2040 | /* Local Variables: */ |
2041 | /* coding: utf-8 */ |
2042 | /* End: */ |
2043 | |