1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ****************************************************************************** |
5 | * |
6 | * Copyright (C) 1997-2016, International Business Machines |
7 | * Corporation and others. All Rights Reserved. |
8 | * |
9 | ****************************************************************************** |
10 | * |
11 | * File CMEMORY.H |
12 | * |
13 | * Contains stdlib.h/string.h memory functions |
14 | * |
15 | * @author Bertrand A. Damiba |
16 | * |
17 | * Modification History: |
18 | * |
19 | * Date Name Description |
20 | * 6/20/98 Bertrand Created. |
21 | * 05/03/99 stephen Changed from functions to macros. |
22 | * |
23 | ****************************************************************************** |
24 | */ |
25 | |
26 | #ifndef CMEMORY_H |
27 | #define CMEMORY_H |
28 | |
29 | #include "unicode/utypes.h" |
30 | |
31 | #include <stddef.h> |
32 | #include <string.h> |
33 | #include "unicode/localpointer.h" |
34 | |
35 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
36 | #include <stdio.h> |
37 | #endif |
38 | |
39 | |
40 | #define uprv_memcpy(dst, src, size) U_STANDARD_CPP_NAMESPACE memcpy(dst, src, size) |
41 | #define uprv_memmove(dst, src, size) U_STANDARD_CPP_NAMESPACE memmove(dst, src, size) |
42 | |
43 | /** |
44 | * \def UPRV_LENGTHOF |
45 | * Convenience macro to determine the length of a fixed array at compile-time. |
46 | * @param array A fixed length array |
47 | * @return The length of the array, in elements |
48 | * @internal |
49 | */ |
50 | #define UPRV_LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) |
51 | #define uprv_memset(buffer, mark, size) U_STANDARD_CPP_NAMESPACE memset(buffer, mark, size) |
52 | #define uprv_memcmp(buffer1, buffer2, size) U_STANDARD_CPP_NAMESPACE memcmp(buffer1, buffer2,size) |
53 | #define uprv_memchr(ptr, value, num) U_STANDARD_CPP_NAMESPACE memchr(ptr, value, num) |
54 | |
55 | U_CAPI void * U_EXPORT2 |
56 | uprv_malloc(size_t s) U_MALLOC_ATTR U_ALLOC_SIZE_ATTR(1); |
57 | |
58 | U_CAPI void * U_EXPORT2 |
59 | uprv_realloc(void *mem, size_t size) U_ALLOC_SIZE_ATTR(2); |
60 | |
61 | U_CAPI void U_EXPORT2 |
62 | uprv_free(void *mem); |
63 | |
64 | U_CAPI void * U_EXPORT2 |
65 | uprv_calloc(size_t num, size_t size) U_MALLOC_ATTR U_ALLOC_SIZE_ATTR2(1,2); |
66 | |
67 | /** |
68 | * Get the least significant bits of a pointer (a memory address). |
69 | * For example, with a mask of 3, the macro gets the 2 least significant bits, |
70 | * which will be 0 if the pointer is 32-bit (4-byte) aligned. |
71 | * |
72 | * uintptr_t is the most appropriate integer type to cast to. |
73 | */ |
74 | #define U_POINTER_MASK_LSB(ptr, mask) ((uintptr_t)(ptr) & (mask)) |
75 | |
76 | /** |
77 | * Create & return an instance of "type" in statically allocated storage. |
78 | * e.g. |
79 | * static std::mutex *myMutex = STATIC_NEW(std::mutex); |
80 | * To destroy an object created in this way, invoke the destructor explicitly, e.g. |
81 | * myMutex->~mutex(); |
82 | * DO NOT use delete. |
83 | * DO NOT use with class UMutex, which has specific support for static instances. |
84 | * |
85 | * STATIC_NEW is intended for use when |
86 | * - We want a static (or global) object. |
87 | * - We don't want it to ever be destructed, or to explicitly control destruction, |
88 | * to avoid use-after-destruction problems. |
89 | * - We want to avoid an ordinary heap allocated object, |
90 | * to avoid the possibility of memory allocation failures, and |
91 | * to avoid memory leak reports, from valgrind, for example. |
92 | * This is defined as a macro rather than a template function because each invocation |
93 | * must define distinct static storage for the object being returned. |
94 | */ |
95 | #define STATIC_NEW(type) [] () { \ |
96 | alignas(type) static char storage[sizeof(type)]; \ |
97 | return new(storage) type();} () |
98 | |
99 | /** |
100 | * Heap clean up function, called from u_cleanup() |
101 | * Clears any user heap functions from u_setMemoryFunctions() |
102 | * Does NOT deallocate any remaining allocated memory. |
103 | */ |
104 | U_CFUNC UBool |
105 | cmemory_cleanup(void); |
106 | |
107 | /** |
108 | * A function called by <TT>uhash_remove</TT>, |
109 | * <TT>uhash_close</TT>, or <TT>uhash_put</TT> to delete |
110 | * an existing key or value. |
111 | * @param obj A key or value stored in a hashtable |
112 | * @see uprv_deleteUObject |
113 | */ |
114 | typedef void U_CALLCONV UObjectDeleter(void* obj); |
115 | |
116 | /** |
117 | * Deleter for UObject instances. |
118 | * Works for all subclasses of UObject because it has a virtual destructor. |
119 | */ |
120 | U_CAPI void U_EXPORT2 |
121 | uprv_deleteUObject(void *obj); |
122 | |
123 | #ifdef __cplusplus |
124 | |
125 | #include <utility> |
126 | #include "unicode/uobject.h" |
127 | |
128 | U_NAMESPACE_BEGIN |
129 | |
130 | /** |
131 | * "Smart pointer" class, deletes memory via uprv_free(). |
132 | * For most methods see the LocalPointerBase base class. |
133 | * Adds operator[] for array item access. |
134 | * |
135 | * @see LocalPointerBase |
136 | */ |
137 | template<typename T> |
138 | class LocalMemory : public LocalPointerBase<T> { |
139 | public: |
140 | using LocalPointerBase<T>::operator*; |
141 | using LocalPointerBase<T>::operator->; |
142 | /** |
143 | * Constructor takes ownership. |
144 | * @param p simple pointer to an array of T items that is adopted |
145 | */ |
146 | explicit LocalMemory(T *p=NULL) : LocalPointerBase<T>(p) {} |
147 | /** |
148 | * Move constructor, leaves src with isNull(). |
149 | * @param src source smart pointer |
150 | */ |
151 | LocalMemory(LocalMemory<T> &&src) U_NOEXCEPT : LocalPointerBase<T>(src.ptr) { |
152 | src.ptr=NULL; |
153 | } |
154 | /** |
155 | * Destructor deletes the memory it owns. |
156 | */ |
157 | ~LocalMemory() { |
158 | uprv_free(LocalPointerBase<T>::ptr); |
159 | } |
160 | /** |
161 | * Move assignment operator, leaves src with isNull(). |
162 | * The behavior is undefined if *this and src are the same object. |
163 | * @param src source smart pointer |
164 | * @return *this |
165 | */ |
166 | LocalMemory<T> &operator=(LocalMemory<T> &&src) U_NOEXCEPT { |
167 | uprv_free(LocalPointerBase<T>::ptr); |
168 | LocalPointerBase<T>::ptr=src.ptr; |
169 | src.ptr=NULL; |
170 | return *this; |
171 | } |
172 | /** |
173 | * Swap pointers. |
174 | * @param other other smart pointer |
175 | */ |
176 | void swap(LocalMemory<T> &other) U_NOEXCEPT { |
177 | T *temp=LocalPointerBase<T>::ptr; |
178 | LocalPointerBase<T>::ptr=other.ptr; |
179 | other.ptr=temp; |
180 | } |
181 | /** |
182 | * Non-member LocalMemory swap function. |
183 | * @param p1 will get p2's pointer |
184 | * @param p2 will get p1's pointer |
185 | */ |
186 | friend inline void swap(LocalMemory<T> &p1, LocalMemory<T> &p2) U_NOEXCEPT { |
187 | p1.swap(p2); |
188 | } |
189 | /** |
190 | * Deletes the array it owns, |
191 | * and adopts (takes ownership of) the one passed in. |
192 | * @param p simple pointer to an array of T items that is adopted |
193 | */ |
194 | void adoptInstead(T *p) { |
195 | uprv_free(LocalPointerBase<T>::ptr); |
196 | LocalPointerBase<T>::ptr=p; |
197 | } |
198 | /** |
199 | * Deletes the array it owns, allocates a new one and reset its bytes to 0. |
200 | * Returns the new array pointer. |
201 | * If the allocation fails, then the current array is unchanged and |
202 | * this method returns NULL. |
203 | * @param newCapacity must be >0 |
204 | * @return the allocated array pointer, or NULL if the allocation failed |
205 | */ |
206 | inline T *allocateInsteadAndReset(int32_t newCapacity=1); |
207 | /** |
208 | * Deletes the array it owns and allocates a new one, copying length T items. |
209 | * Returns the new array pointer. |
210 | * If the allocation fails, then the current array is unchanged and |
211 | * this method returns NULL. |
212 | * @param newCapacity must be >0 |
213 | * @param length number of T items to be copied from the old array to the new one; |
214 | * must be no more than the capacity of the old array, |
215 | * which the caller must track because the LocalMemory does not track it |
216 | * @return the allocated array pointer, or NULL if the allocation failed |
217 | */ |
218 | inline T *allocateInsteadAndCopy(int32_t newCapacity=1, int32_t length=0); |
219 | /** |
220 | * Array item access (writable). |
221 | * No index bounds check. |
222 | * @param i array index |
223 | * @return reference to the array item |
224 | */ |
225 | T &operator[](ptrdiff_t i) const { return LocalPointerBase<T>::ptr[i]; } |
226 | }; |
227 | |
228 | template<typename T> |
229 | inline T *LocalMemory<T>::allocateInsteadAndReset(int32_t newCapacity) { |
230 | if(newCapacity>0) { |
231 | T *p=(T *)uprv_malloc(newCapacity*sizeof(T)); |
232 | if(p!=NULL) { |
233 | uprv_memset(p, 0, newCapacity*sizeof(T)); |
234 | uprv_free(LocalPointerBase<T>::ptr); |
235 | LocalPointerBase<T>::ptr=p; |
236 | } |
237 | return p; |
238 | } else { |
239 | return NULL; |
240 | } |
241 | } |
242 | |
243 | |
244 | template<typename T> |
245 | inline T *LocalMemory<T>::allocateInsteadAndCopy(int32_t newCapacity, int32_t length) { |
246 | if(newCapacity>0) { |
247 | T *p=(T *)uprv_malloc(newCapacity*sizeof(T)); |
248 | if(p!=NULL) { |
249 | if(length>0) { |
250 | if(length>newCapacity) { |
251 | length=newCapacity; |
252 | } |
253 | uprv_memcpy(p, LocalPointerBase<T>::ptr, (size_t)length*sizeof(T)); |
254 | } |
255 | uprv_free(LocalPointerBase<T>::ptr); |
256 | LocalPointerBase<T>::ptr=p; |
257 | } |
258 | return p; |
259 | } else { |
260 | return NULL; |
261 | } |
262 | } |
263 | |
264 | /** |
265 | * Simple array/buffer management class using uprv_malloc() and uprv_free(). |
266 | * Provides an internal array with fixed capacity. Can alias another array |
267 | * or allocate one. |
268 | * |
269 | * The array address is properly aligned for type T. It might not be properly |
270 | * aligned for types larger than T (or larger than the largest subtype of T). |
271 | * |
272 | * Unlike LocalMemory and LocalArray, this class never adopts |
273 | * (takes ownership of) another array. |
274 | * |
275 | * WARNING: MaybeStackArray only works with primitive (plain-old data) types. |
276 | * It does NOT know how to call a destructor! If you work with classes with |
277 | * destructors, consider: |
278 | * |
279 | * - LocalArray in localpointer.h if you know the length ahead of time |
280 | * - MaybeStackVector if you know the length at runtime |
281 | */ |
282 | template<typename T, int32_t stackCapacity> |
283 | class MaybeStackArray { |
284 | public: |
285 | // No heap allocation. Use only on the stack. |
286 | static void* U_EXPORT2 operator new(size_t) U_NOEXCEPT = delete; |
287 | static void* U_EXPORT2 operator new[](size_t) U_NOEXCEPT = delete; |
288 | #if U_HAVE_PLACEMENT_NEW |
289 | static void* U_EXPORT2 operator new(size_t, void*) U_NOEXCEPT = delete; |
290 | #endif |
291 | |
292 | /** |
293 | * Default constructor initializes with internal T[stackCapacity] buffer. |
294 | */ |
295 | MaybeStackArray() : ptr(stackArray), capacity(stackCapacity), needToRelease(FALSE) {} |
296 | /** |
297 | * Automatically allocates the heap array if the argument is larger than the stack capacity. |
298 | * Intended for use when an approximate capacity is known at compile time but the true |
299 | * capacity is not known until runtime. |
300 | */ |
301 | MaybeStackArray(int32_t newCapacity) : MaybeStackArray() { |
302 | if (capacity < newCapacity) { resize(newCapacity); } |
303 | } |
304 | /** |
305 | * Destructor deletes the array (if owned). |
306 | */ |
307 | ~MaybeStackArray() { releaseArray(); } |
308 | /** |
309 | * Move constructor: transfers ownership or copies the stack array. |
310 | */ |
311 | MaybeStackArray(MaybeStackArray<T, stackCapacity> &&src) U_NOEXCEPT; |
312 | /** |
313 | * Move assignment: transfers ownership or copies the stack array. |
314 | */ |
315 | MaybeStackArray<T, stackCapacity> &operator=(MaybeStackArray<T, stackCapacity> &&src) U_NOEXCEPT; |
316 | /** |
317 | * Returns the array capacity (number of T items). |
318 | * @return array capacity |
319 | */ |
320 | int32_t getCapacity() const { return capacity; } |
321 | /** |
322 | * Access without ownership change. |
323 | * @return the array pointer |
324 | */ |
325 | T *getAlias() const { return ptr; } |
326 | /** |
327 | * Returns the array limit. Simple convenience method. |
328 | * @return getAlias()+getCapacity() |
329 | */ |
330 | T *getArrayLimit() const { return getAlias()+capacity; } |
331 | // No "operator T *() const" because that can make |
332 | // expressions like mbs[index] ambiguous for some compilers. |
333 | /** |
334 | * Array item access (const). |
335 | * No index bounds check. |
336 | * @param i array index |
337 | * @return reference to the array item |
338 | */ |
339 | const T &operator[](ptrdiff_t i) const { return ptr[i]; } |
340 | /** |
341 | * Array item access (writable). |
342 | * No index bounds check. |
343 | * @param i array index |
344 | * @return reference to the array item |
345 | */ |
346 | T &operator[](ptrdiff_t i) { return ptr[i]; } |
347 | /** |
348 | * Deletes the array (if owned) and aliases another one, no transfer of ownership. |
349 | * If the arguments are illegal, then the current array is unchanged. |
350 | * @param otherArray must not be NULL |
351 | * @param otherCapacity must be >0 |
352 | */ |
353 | void aliasInstead(T *otherArray, int32_t otherCapacity) { |
354 | if(otherArray!=NULL && otherCapacity>0) { |
355 | releaseArray(); |
356 | ptr=otherArray; |
357 | capacity=otherCapacity; |
358 | needToRelease=FALSE; |
359 | } |
360 | } |
361 | /** |
362 | * Deletes the array (if owned) and allocates a new one, copying length T items. |
363 | * Returns the new array pointer. |
364 | * If the allocation fails, then the current array is unchanged and |
365 | * this method returns NULL. |
366 | * @param newCapacity can be less than or greater than the current capacity; |
367 | * must be >0 |
368 | * @param length number of T items to be copied from the old array to the new one |
369 | * @return the allocated array pointer, or NULL if the allocation failed |
370 | */ |
371 | inline T *resize(int32_t newCapacity, int32_t length=0); |
372 | /** |
373 | * Gives up ownership of the array if owned, or else clones it, |
374 | * copying length T items; resets itself to the internal stack array. |
375 | * Returns NULL if the allocation failed. |
376 | * @param length number of T items to copy when cloning, |
377 | * and capacity of the clone when cloning |
378 | * @param resultCapacity will be set to the returned array's capacity (output-only) |
379 | * @return the array pointer; |
380 | * caller becomes responsible for deleting the array |
381 | */ |
382 | inline T *orphanOrClone(int32_t length, int32_t &resultCapacity); |
383 | private: |
384 | T *ptr; |
385 | int32_t capacity; |
386 | UBool needToRelease; |
387 | T stackArray[stackCapacity]; |
388 | void releaseArray() { |
389 | if(needToRelease) { |
390 | uprv_free(ptr); |
391 | } |
392 | } |
393 | void resetToStackArray() { |
394 | ptr=stackArray; |
395 | capacity=stackCapacity; |
396 | needToRelease=FALSE; |
397 | } |
398 | /* No comparison operators with other MaybeStackArray's. */ |
399 | bool operator==(const MaybeStackArray & /*other*/) {return FALSE;} |
400 | bool operator!=(const MaybeStackArray & /*other*/) {return TRUE;} |
401 | /* No ownership transfer: No copy constructor, no assignment operator. */ |
402 | MaybeStackArray(const MaybeStackArray & /*other*/) {} |
403 | void operator=(const MaybeStackArray & /*other*/) {} |
404 | }; |
405 | |
406 | template<typename T, int32_t stackCapacity> |
407 | icu::MaybeStackArray<T, stackCapacity>::MaybeStackArray( |
408 | MaybeStackArray <T, stackCapacity>&& src) U_NOEXCEPT |
409 | : ptr(src.ptr), capacity(src.capacity), needToRelease(src.needToRelease) { |
410 | if (src.ptr == src.stackArray) { |
411 | ptr = stackArray; |
412 | uprv_memcpy(stackArray, src.stackArray, sizeof(T) * src.capacity); |
413 | } else { |
414 | src.resetToStackArray(); // take ownership away from src |
415 | } |
416 | } |
417 | |
418 | template<typename T, int32_t stackCapacity> |
419 | inline MaybeStackArray <T, stackCapacity>& |
420 | MaybeStackArray<T, stackCapacity>::operator=(MaybeStackArray <T, stackCapacity>&& src) U_NOEXCEPT { |
421 | releaseArray(); // in case this instance had its own memory allocated |
422 | capacity = src.capacity; |
423 | needToRelease = src.needToRelease; |
424 | if (src.ptr == src.stackArray) { |
425 | ptr = stackArray; |
426 | uprv_memcpy(stackArray, src.stackArray, sizeof(T) * src.capacity); |
427 | } else { |
428 | ptr = src.ptr; |
429 | src.resetToStackArray(); // take ownership away from src |
430 | } |
431 | return *this; |
432 | } |
433 | |
434 | template<typename T, int32_t stackCapacity> |
435 | inline T *MaybeStackArray<T, stackCapacity>::resize(int32_t newCapacity, int32_t length) { |
436 | if(newCapacity>0) { |
437 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
438 | ::fprintf(::stderr,"MaybeStacArray (resize) alloc %d * %lu\n" , newCapacity,sizeof(T)); |
439 | #endif |
440 | T *p=(T *)uprv_malloc(newCapacity*sizeof(T)); |
441 | if(p!=NULL) { |
442 | if(length>0) { |
443 | if(length>capacity) { |
444 | length=capacity; |
445 | } |
446 | if(length>newCapacity) { |
447 | length=newCapacity; |
448 | } |
449 | uprv_memcpy(p, ptr, (size_t)length*sizeof(T)); |
450 | } |
451 | releaseArray(); |
452 | ptr=p; |
453 | capacity=newCapacity; |
454 | needToRelease=TRUE; |
455 | } |
456 | return p; |
457 | } else { |
458 | return NULL; |
459 | } |
460 | } |
461 | |
462 | template<typename T, int32_t stackCapacity> |
463 | inline T *MaybeStackArray<T, stackCapacity>::orphanOrClone(int32_t length, int32_t &resultCapacity) { |
464 | T *p; |
465 | if(needToRelease) { |
466 | p=ptr; |
467 | } else if(length<=0) { |
468 | return NULL; |
469 | } else { |
470 | if(length>capacity) { |
471 | length=capacity; |
472 | } |
473 | p=(T *)uprv_malloc(length*sizeof(T)); |
474 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
475 | ::fprintf(::stderr,"MaybeStacArray (orphan) alloc %d * %lu\n" , length,sizeof(T)); |
476 | #endif |
477 | if(p==NULL) { |
478 | return NULL; |
479 | } |
480 | uprv_memcpy(p, ptr, (size_t)length*sizeof(T)); |
481 | } |
482 | resultCapacity=length; |
483 | resetToStackArray(); |
484 | return p; |
485 | } |
486 | |
487 | /** |
488 | * Variant of MaybeStackArray that allocates a header struct and an array |
489 | * in one contiguous memory block, using uprv_malloc() and uprv_free(). |
490 | * Provides internal memory with fixed array capacity. Can alias another memory |
491 | * block or allocate one. |
492 | * The stackCapacity is the number of T items in the internal memory, |
493 | * not counting the H header. |
494 | * Unlike LocalMemory and LocalArray, this class never adopts |
495 | * (takes ownership of) another memory block. |
496 | */ |
497 | template<typename H, typename T, int32_t stackCapacity> |
498 | class MaybeStackHeaderAndArray { |
499 | public: |
500 | // No heap allocation. Use only on the stack. |
501 | static void* U_EXPORT2 operator new(size_t) U_NOEXCEPT = delete; |
502 | static void* U_EXPORT2 operator new[](size_t) U_NOEXCEPT = delete; |
503 | #if U_HAVE_PLACEMENT_NEW |
504 | static void* U_EXPORT2 operator new(size_t, void*) U_NOEXCEPT = delete; |
505 | #endif |
506 | |
507 | /** |
508 | * Default constructor initializes with internal H+T[stackCapacity] buffer. |
509 | */ |
510 | MaybeStackHeaderAndArray() : ptr(&stackHeader), capacity(stackCapacity), needToRelease(FALSE) {} |
511 | /** |
512 | * Destructor deletes the memory (if owned). |
513 | */ |
514 | ~MaybeStackHeaderAndArray() { releaseMemory(); } |
515 | /** |
516 | * Returns the array capacity (number of T items). |
517 | * @return array capacity |
518 | */ |
519 | int32_t getCapacity() const { return capacity; } |
520 | /** |
521 | * Access without ownership change. |
522 | * @return the header pointer |
523 | */ |
524 | H *getAlias() const { return ptr; } |
525 | /** |
526 | * Returns the array start. |
527 | * @return array start, same address as getAlias()+1 |
528 | */ |
529 | T *getArrayStart() const { return reinterpret_cast<T *>(getAlias()+1); } |
530 | /** |
531 | * Returns the array limit. |
532 | * @return array limit |
533 | */ |
534 | T *getArrayLimit() const { return getArrayStart()+capacity; } |
535 | /** |
536 | * Access without ownership change. Same as getAlias(). |
537 | * A class instance can be used directly in expressions that take a T *. |
538 | * @return the header pointer |
539 | */ |
540 | operator H *() const { return ptr; } |
541 | /** |
542 | * Array item access (writable). |
543 | * No index bounds check. |
544 | * @param i array index |
545 | * @return reference to the array item |
546 | */ |
547 | T &operator[](ptrdiff_t i) { return getArrayStart()[i]; } |
548 | /** |
549 | * Deletes the memory block (if owned) and aliases another one, no transfer of ownership. |
550 | * If the arguments are illegal, then the current memory is unchanged. |
551 | * @param otherArray must not be NULL |
552 | * @param otherCapacity must be >0 |
553 | */ |
554 | void aliasInstead(H *otherMemory, int32_t otherCapacity) { |
555 | if(otherMemory!=NULL && otherCapacity>0) { |
556 | releaseMemory(); |
557 | ptr=otherMemory; |
558 | capacity=otherCapacity; |
559 | needToRelease=FALSE; |
560 | } |
561 | } |
562 | /** |
563 | * Deletes the memory block (if owned) and allocates a new one, |
564 | * copying the header and length T array items. |
565 | * Returns the new header pointer. |
566 | * If the allocation fails, then the current memory is unchanged and |
567 | * this method returns NULL. |
568 | * @param newCapacity can be less than or greater than the current capacity; |
569 | * must be >0 |
570 | * @param length number of T items to be copied from the old array to the new one |
571 | * @return the allocated pointer, or NULL if the allocation failed |
572 | */ |
573 | inline H *resize(int32_t newCapacity, int32_t length=0); |
574 | /** |
575 | * Gives up ownership of the memory if owned, or else clones it, |
576 | * copying the header and length T array items; resets itself to the internal memory. |
577 | * Returns NULL if the allocation failed. |
578 | * @param length number of T items to copy when cloning, |
579 | * and array capacity of the clone when cloning |
580 | * @param resultCapacity will be set to the returned array's capacity (output-only) |
581 | * @return the header pointer; |
582 | * caller becomes responsible for deleting the array |
583 | */ |
584 | inline H *orphanOrClone(int32_t length, int32_t &resultCapacity); |
585 | private: |
586 | H *ptr; |
587 | int32_t capacity; |
588 | UBool needToRelease; |
589 | // stackHeader must precede stackArray immediately. |
590 | H stackHeader; |
591 | T stackArray[stackCapacity]; |
592 | void releaseMemory() { |
593 | if(needToRelease) { |
594 | uprv_free(ptr); |
595 | } |
596 | } |
597 | /* No comparison operators with other MaybeStackHeaderAndArray's. */ |
598 | bool operator==(const MaybeStackHeaderAndArray & /*other*/) {return FALSE;} |
599 | bool operator!=(const MaybeStackHeaderAndArray & /*other*/) {return TRUE;} |
600 | /* No ownership transfer: No copy constructor, no assignment operator. */ |
601 | MaybeStackHeaderAndArray(const MaybeStackHeaderAndArray & /*other*/) {} |
602 | void operator=(const MaybeStackHeaderAndArray & /*other*/) {} |
603 | }; |
604 | |
605 | template<typename H, typename T, int32_t stackCapacity> |
606 | inline H *MaybeStackHeaderAndArray<H, T, stackCapacity>::resize(int32_t newCapacity, |
607 | int32_t length) { |
608 | if(newCapacity>=0) { |
609 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
610 | ::fprintf(::stderr,"MaybeStackHeaderAndArray alloc %d + %d * %ul\n" , sizeof(H),newCapacity,sizeof(T)); |
611 | #endif |
612 | H *p=(H *)uprv_malloc(sizeof(H)+newCapacity*sizeof(T)); |
613 | if(p!=NULL) { |
614 | if(length<0) { |
615 | length=0; |
616 | } else if(length>0) { |
617 | if(length>capacity) { |
618 | length=capacity; |
619 | } |
620 | if(length>newCapacity) { |
621 | length=newCapacity; |
622 | } |
623 | } |
624 | uprv_memcpy(p, ptr, sizeof(H)+(size_t)length*sizeof(T)); |
625 | releaseMemory(); |
626 | ptr=p; |
627 | capacity=newCapacity; |
628 | needToRelease=TRUE; |
629 | } |
630 | return p; |
631 | } else { |
632 | return NULL; |
633 | } |
634 | } |
635 | |
636 | template<typename H, typename T, int32_t stackCapacity> |
637 | inline H *MaybeStackHeaderAndArray<H, T, stackCapacity>::orphanOrClone(int32_t length, |
638 | int32_t &resultCapacity) { |
639 | H *p; |
640 | if(needToRelease) { |
641 | p=ptr; |
642 | } else { |
643 | if(length<0) { |
644 | length=0; |
645 | } else if(length>capacity) { |
646 | length=capacity; |
647 | } |
648 | #if U_DEBUG && defined(UPRV_MALLOC_COUNT) |
649 | ::fprintf(::stderr,"MaybeStackHeaderAndArray (orphan) alloc %ul + %d * %lu\n" , sizeof(H),length,sizeof(T)); |
650 | #endif |
651 | p=(H *)uprv_malloc(sizeof(H)+length*sizeof(T)); |
652 | if(p==NULL) { |
653 | return NULL; |
654 | } |
655 | uprv_memcpy(p, ptr, sizeof(H)+(size_t)length*sizeof(T)); |
656 | } |
657 | resultCapacity=length; |
658 | ptr=&stackHeader; |
659 | capacity=stackCapacity; |
660 | needToRelease=FALSE; |
661 | return p; |
662 | } |
663 | |
664 | /** |
665 | * A simple memory management class that creates new heap allocated objects (of |
666 | * any class that has a public constructor), keeps track of them and eventually |
667 | * deletes them all in its own destructor. |
668 | * |
669 | * A typical use-case would be code like this: |
670 | * |
671 | * MemoryPool<MyType> pool; |
672 | * |
673 | * MyType* o1 = pool.create(); |
674 | * if (o1 != nullptr) { |
675 | * foo(o1); |
676 | * } |
677 | * |
678 | * MyType* o2 = pool.create(1, 2, 3); |
679 | * if (o2 != nullptr) { |
680 | * bar(o2); |
681 | * } |
682 | * |
683 | * // MemoryPool will take care of deleting the MyType objects. |
684 | * |
685 | * It doesn't do anything more than that, and is intentionally kept minimalist. |
686 | */ |
687 | template<typename T, int32_t stackCapacity = 8> |
688 | class MemoryPool : public UMemory { |
689 | public: |
690 | MemoryPool() : fCount(0), fPool() {} |
691 | |
692 | ~MemoryPool() { |
693 | for (int32_t i = 0; i < fCount; ++i) { |
694 | delete fPool[i]; |
695 | } |
696 | } |
697 | |
698 | MemoryPool(const MemoryPool&) = delete; |
699 | MemoryPool& operator=(const MemoryPool&) = delete; |
700 | |
701 | MemoryPool(MemoryPool&& other) U_NOEXCEPT : fCount(other.fCount), |
702 | fPool(std::move(other.fPool)) { |
703 | other.fCount = 0; |
704 | } |
705 | |
706 | MemoryPool& operator=(MemoryPool&& other) U_NOEXCEPT { |
707 | fCount = other.fCount; |
708 | fPool = std::move(other.fPool); |
709 | other.fCount = 0; |
710 | return *this; |
711 | } |
712 | |
713 | /** |
714 | * Creates a new object of typename T, by forwarding any and all arguments |
715 | * to the typename T constructor. |
716 | * |
717 | * @param args Arguments to be forwarded to the typename T constructor. |
718 | * @return A pointer to the newly created object, or nullptr on error. |
719 | */ |
720 | template<typename... Args> |
721 | T* create(Args&&... args) { |
722 | int32_t capacity = fPool.getCapacity(); |
723 | if (fCount == capacity && |
724 | fPool.resize(capacity == stackCapacity ? 4 * capacity : 2 * capacity, |
725 | capacity) == nullptr) { |
726 | return nullptr; |
727 | } |
728 | return fPool[fCount++] = new T(std::forward<Args>(args)...); |
729 | } |
730 | |
731 | /** |
732 | * @return Number of elements that have been allocated. |
733 | */ |
734 | int32_t count() const { |
735 | return fCount; |
736 | } |
737 | |
738 | protected: |
739 | int32_t fCount; |
740 | MaybeStackArray<T*, stackCapacity> fPool; |
741 | }; |
742 | |
743 | /** |
744 | * An internal Vector-like implementation based on MemoryPool. |
745 | * |
746 | * Heap-allocates each element and stores pointers. |
747 | * |
748 | * To append an item to the vector, use emplaceBack. |
749 | * |
750 | * MaybeStackVector<MyType> vector; |
751 | * MyType* element = vector.emplaceBack(); |
752 | * if (!element) { |
753 | * status = U_MEMORY_ALLOCATION_ERROR; |
754 | * } |
755 | * // do stuff with element |
756 | * |
757 | * To loop over the vector, use a for loop with indices: |
758 | * |
759 | * for (int32_t i = 0; i < vector.length(); i++) { |
760 | * MyType* element = vector[i]; |
761 | * } |
762 | */ |
763 | template<typename T, int32_t stackCapacity = 8> |
764 | class MaybeStackVector : protected MemoryPool<T, stackCapacity> { |
765 | public: |
766 | using MemoryPool<T, stackCapacity>::MemoryPool; |
767 | using MemoryPool<T, stackCapacity>::operator=; |
768 | |
769 | template<typename... Args> |
770 | T* emplaceBack(Args&&... args) { |
771 | return this->create(args...); |
772 | } |
773 | |
774 | int32_t length() const { |
775 | return this->fCount; |
776 | } |
777 | |
778 | T** getAlias() { |
779 | return this->fPool.getAlias(); |
780 | } |
781 | |
782 | /** |
783 | * Array item access (read-only). |
784 | * No index bounds check. |
785 | * @param i array index |
786 | * @return reference to the array item |
787 | */ |
788 | const T* operator[](ptrdiff_t i) const { |
789 | return this->fPool[i]; |
790 | } |
791 | |
792 | /** |
793 | * Array item access (writable). |
794 | * No index bounds check. |
795 | * @param i array index |
796 | * @return reference to the array item |
797 | */ |
798 | T* operator[](ptrdiff_t i) { |
799 | return this->fPool[i]; |
800 | } |
801 | |
802 | /** |
803 | * Append all the items from another MaybeStackVector to this one. |
804 | */ |
805 | void appendAll(const MaybeStackVector& other, UErrorCode& status) { |
806 | for (int32_t i = 0; i < other.fCount; i++) { |
807 | T* item = emplaceBack(*other[i]); |
808 | if (!item) { |
809 | status = U_MEMORY_ALLOCATION_ERROR; |
810 | return; |
811 | } |
812 | } |
813 | } |
814 | }; |
815 | |
816 | |
817 | U_NAMESPACE_END |
818 | |
819 | #endif /* __cplusplus */ |
820 | #endif /* CMEMORY_H */ |
821 | |