1 | // © 2018 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | // |
4 | // From the double-conversion library. Original license: |
5 | // |
6 | // Copyright 2012 the V8 project authors. All rights reserved. |
7 | // Redistribution and use in source and binary forms, with or without |
8 | // modification, are permitted provided that the following conditions are |
9 | // met: |
10 | // |
11 | // * Redistributions of source code must retain the above copyright |
12 | // notice, this list of conditions and the following disclaimer. |
13 | // * Redistributions in binary form must reproduce the above |
14 | // copyright notice, this list of conditions and the following |
15 | // disclaimer in the documentation and/or other materials provided |
16 | // with the distribution. |
17 | // * Neither the name of Google Inc. nor the names of its |
18 | // contributors may be used to endorse or promote products derived |
19 | // from this software without specific prior written permission. |
20 | // |
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
32 | |
33 | // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING |
34 | #include "unicode/utypes.h" |
35 | #if !UCONFIG_NO_FORMATTING |
36 | |
37 | #ifndef DOUBLE_CONVERSION_DOUBLE_H_ |
38 | #define DOUBLE_CONVERSION_DOUBLE_H_ |
39 | |
40 | // ICU PATCH: Customize header file paths for ICU. |
41 | |
42 | #include "double-conversion-diy-fp.h" |
43 | |
44 | // ICU PATCH: Wrap in ICU namespace |
45 | U_NAMESPACE_BEGIN |
46 | |
47 | namespace double_conversion { |
48 | |
49 | // We assume that doubles and uint64_t have the same endianness. |
50 | static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); } |
51 | static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); } |
52 | static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); } |
53 | static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); } |
54 | |
55 | // Helper functions for doubles. |
56 | class Double { |
57 | public: |
58 | static const uint64_t kSignMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x80000000, 00000000); |
59 | static const uint64_t kExponentMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000); |
60 | static const uint64_t kSignificandMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x000FFFFF, FFFFFFFF); |
61 | static const uint64_t kHiddenBit = DOUBLE_CONVERSION_UINT64_2PART_C(0x00100000, 00000000); |
62 | static const uint64_t kQuietNanBit = DOUBLE_CONVERSION_UINT64_2PART_C(0x00080000, 00000000); |
63 | static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit. |
64 | static const int kSignificandSize = 53; |
65 | static const int kExponentBias = 0x3FF + kPhysicalSignificandSize; |
66 | static const int kMaxExponent = 0x7FF - kExponentBias; |
67 | |
68 | Double() : d64_(0) {} |
69 | explicit Double(double d) : d64_(double_to_uint64(d)) {} |
70 | explicit Double(uint64_t d64) : d64_(d64) {} |
71 | explicit Double(DiyFp diy_fp) |
72 | : d64_(DiyFpToUint64(diy_fp)) {} |
73 | |
74 | // The value encoded by this Double must be greater or equal to +0.0. |
75 | // It must not be special (infinity, or NaN). |
76 | DiyFp AsDiyFp() const { |
77 | DOUBLE_CONVERSION_ASSERT(Sign() > 0); |
78 | DOUBLE_CONVERSION_ASSERT(!IsSpecial()); |
79 | return DiyFp(Significand(), Exponent()); |
80 | } |
81 | |
82 | // The value encoded by this Double must be strictly greater than 0. |
83 | DiyFp AsNormalizedDiyFp() const { |
84 | DOUBLE_CONVERSION_ASSERT(value() > 0.0); |
85 | uint64_t f = Significand(); |
86 | int e = Exponent(); |
87 | |
88 | // The current double could be a denormal. |
89 | while ((f & kHiddenBit) == 0) { |
90 | f <<= 1; |
91 | e--; |
92 | } |
93 | // Do the final shifts in one go. |
94 | f <<= DiyFp::kSignificandSize - kSignificandSize; |
95 | e -= DiyFp::kSignificandSize - kSignificandSize; |
96 | return DiyFp(f, e); |
97 | } |
98 | |
99 | // Returns the double's bit as uint64. |
100 | uint64_t AsUint64() const { |
101 | return d64_; |
102 | } |
103 | |
104 | // Returns the next greater double. Returns +infinity on input +infinity. |
105 | double NextDouble() const { |
106 | if (d64_ == kInfinity) return Double(kInfinity).value(); |
107 | if (Sign() < 0 && Significand() == 0) { |
108 | // -0.0 |
109 | return 0.0; |
110 | } |
111 | if (Sign() < 0) { |
112 | return Double(d64_ - 1).value(); |
113 | } else { |
114 | return Double(d64_ + 1).value(); |
115 | } |
116 | } |
117 | |
118 | double PreviousDouble() const { |
119 | if (d64_ == (kInfinity | kSignMask)) return -Infinity(); |
120 | if (Sign() < 0) { |
121 | return Double(d64_ + 1).value(); |
122 | } else { |
123 | if (Significand() == 0) return -0.0; |
124 | return Double(d64_ - 1).value(); |
125 | } |
126 | } |
127 | |
128 | int Exponent() const { |
129 | if (IsDenormal()) return kDenormalExponent; |
130 | |
131 | uint64_t d64 = AsUint64(); |
132 | int biased_e = |
133 | static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize); |
134 | return biased_e - kExponentBias; |
135 | } |
136 | |
137 | uint64_t Significand() const { |
138 | uint64_t d64 = AsUint64(); |
139 | uint64_t significand = d64 & kSignificandMask; |
140 | if (!IsDenormal()) { |
141 | return significand + kHiddenBit; |
142 | } else { |
143 | return significand; |
144 | } |
145 | } |
146 | |
147 | // Returns true if the double is a denormal. |
148 | bool IsDenormal() const { |
149 | uint64_t d64 = AsUint64(); |
150 | return (d64 & kExponentMask) == 0; |
151 | } |
152 | |
153 | // We consider denormals not to be special. |
154 | // Hence only Infinity and NaN are special. |
155 | bool IsSpecial() const { |
156 | uint64_t d64 = AsUint64(); |
157 | return (d64 & kExponentMask) == kExponentMask; |
158 | } |
159 | |
160 | bool IsNan() const { |
161 | uint64_t d64 = AsUint64(); |
162 | return ((d64 & kExponentMask) == kExponentMask) && |
163 | ((d64 & kSignificandMask) != 0); |
164 | } |
165 | |
166 | bool IsQuietNan() const { |
167 | return IsNan() && ((AsUint64() & kQuietNanBit) != 0); |
168 | } |
169 | |
170 | bool IsSignalingNan() const { |
171 | return IsNan() && ((AsUint64() & kQuietNanBit) == 0); |
172 | } |
173 | |
174 | |
175 | bool IsInfinite() const { |
176 | uint64_t d64 = AsUint64(); |
177 | return ((d64 & kExponentMask) == kExponentMask) && |
178 | ((d64 & kSignificandMask) == 0); |
179 | } |
180 | |
181 | int Sign() const { |
182 | uint64_t d64 = AsUint64(); |
183 | return (d64 & kSignMask) == 0? 1: -1; |
184 | } |
185 | |
186 | // Precondition: the value encoded by this Double must be greater or equal |
187 | // than +0.0. |
188 | DiyFp UpperBoundary() const { |
189 | DOUBLE_CONVERSION_ASSERT(Sign() > 0); |
190 | return DiyFp(Significand() * 2 + 1, Exponent() - 1); |
191 | } |
192 | |
193 | // Computes the two boundaries of this. |
194 | // The bigger boundary (m_plus) is normalized. The lower boundary has the same |
195 | // exponent as m_plus. |
196 | // Precondition: the value encoded by this Double must be greater than 0. |
197 | void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { |
198 | DOUBLE_CONVERSION_ASSERT(value() > 0.0); |
199 | DiyFp v = this->AsDiyFp(); |
200 | DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); |
201 | DiyFp m_minus; |
202 | if (LowerBoundaryIsCloser()) { |
203 | m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); |
204 | } else { |
205 | m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); |
206 | } |
207 | m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); |
208 | m_minus.set_e(m_plus.e()); |
209 | *out_m_plus = m_plus; |
210 | *out_m_minus = m_minus; |
211 | } |
212 | |
213 | bool LowerBoundaryIsCloser() const { |
214 | // The boundary is closer if the significand is of the form f == 2^p-1 then |
215 | // the lower boundary is closer. |
216 | // Think of v = 1000e10 and v- = 9999e9. |
217 | // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but |
218 | // at a distance of 1e8. |
219 | // The only exception is for the smallest normal: the largest denormal is |
220 | // at the same distance as its successor. |
221 | // Note: denormals have the same exponent as the smallest normals. |
222 | bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0); |
223 | return physical_significand_is_zero && (Exponent() != kDenormalExponent); |
224 | } |
225 | |
226 | double value() const { return uint64_to_double(d64_); } |
227 | |
228 | // Returns the significand size for a given order of magnitude. |
229 | // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude. |
230 | // This function returns the number of significant binary digits v will have |
231 | // once it's encoded into a double. In almost all cases this is equal to |
232 | // kSignificandSize. The only exceptions are denormals. They start with |
233 | // leading zeroes and their effective significand-size is hence smaller. |
234 | static int SignificandSizeForOrderOfMagnitude(int order) { |
235 | if (order >= (kDenormalExponent + kSignificandSize)) { |
236 | return kSignificandSize; |
237 | } |
238 | if (order <= kDenormalExponent) return 0; |
239 | return order - kDenormalExponent; |
240 | } |
241 | |
242 | static double Infinity() { |
243 | return Double(kInfinity).value(); |
244 | } |
245 | |
246 | static double NaN() { |
247 | return Double(kNaN).value(); |
248 | } |
249 | |
250 | private: |
251 | static const int kDenormalExponent = -kExponentBias + 1; |
252 | static const uint64_t kInfinity = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000); |
253 | static const uint64_t kNaN = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF80000, 00000000); |
254 | |
255 | const uint64_t d64_; |
256 | |
257 | static uint64_t DiyFpToUint64(DiyFp diy_fp) { |
258 | uint64_t significand = diy_fp.f(); |
259 | int exponent = diy_fp.e(); |
260 | while (significand > kHiddenBit + kSignificandMask) { |
261 | significand >>= 1; |
262 | exponent++; |
263 | } |
264 | if (exponent >= kMaxExponent) { |
265 | return kInfinity; |
266 | } |
267 | if (exponent < kDenormalExponent) { |
268 | return 0; |
269 | } |
270 | while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) { |
271 | significand <<= 1; |
272 | exponent--; |
273 | } |
274 | uint64_t biased_exponent; |
275 | if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) { |
276 | biased_exponent = 0; |
277 | } else { |
278 | biased_exponent = static_cast<uint64_t>(exponent + kExponentBias); |
279 | } |
280 | return (significand & kSignificandMask) | |
281 | (biased_exponent << kPhysicalSignificandSize); |
282 | } |
283 | |
284 | DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(Double); |
285 | }; |
286 | |
287 | class Single { |
288 | public: |
289 | static const uint32_t kSignMask = 0x80000000; |
290 | static const uint32_t kExponentMask = 0x7F800000; |
291 | static const uint32_t kSignificandMask = 0x007FFFFF; |
292 | static const uint32_t kHiddenBit = 0x00800000; |
293 | static const uint32_t kQuietNanBit = 0x00400000; |
294 | static const int kPhysicalSignificandSize = 23; // Excludes the hidden bit. |
295 | static const int kSignificandSize = 24; |
296 | |
297 | Single() : d32_(0) {} |
298 | explicit Single(float f) : d32_(float_to_uint32(f)) {} |
299 | explicit Single(uint32_t d32) : d32_(d32) {} |
300 | |
301 | // The value encoded by this Single must be greater or equal to +0.0. |
302 | // It must not be special (infinity, or NaN). |
303 | DiyFp AsDiyFp() const { |
304 | DOUBLE_CONVERSION_ASSERT(Sign() > 0); |
305 | DOUBLE_CONVERSION_ASSERT(!IsSpecial()); |
306 | return DiyFp(Significand(), Exponent()); |
307 | } |
308 | |
309 | // Returns the single's bit as uint64. |
310 | uint32_t AsUint32() const { |
311 | return d32_; |
312 | } |
313 | |
314 | int Exponent() const { |
315 | if (IsDenormal()) return kDenormalExponent; |
316 | |
317 | uint32_t d32 = AsUint32(); |
318 | int biased_e = |
319 | static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize); |
320 | return biased_e - kExponentBias; |
321 | } |
322 | |
323 | uint32_t Significand() const { |
324 | uint32_t d32 = AsUint32(); |
325 | uint32_t significand = d32 & kSignificandMask; |
326 | if (!IsDenormal()) { |
327 | return significand + kHiddenBit; |
328 | } else { |
329 | return significand; |
330 | } |
331 | } |
332 | |
333 | // Returns true if the single is a denormal. |
334 | bool IsDenormal() const { |
335 | uint32_t d32 = AsUint32(); |
336 | return (d32 & kExponentMask) == 0; |
337 | } |
338 | |
339 | // We consider denormals not to be special. |
340 | // Hence only Infinity and NaN are special. |
341 | bool IsSpecial() const { |
342 | uint32_t d32 = AsUint32(); |
343 | return (d32 & kExponentMask) == kExponentMask; |
344 | } |
345 | |
346 | bool IsNan() const { |
347 | uint32_t d32 = AsUint32(); |
348 | return ((d32 & kExponentMask) == kExponentMask) && |
349 | ((d32 & kSignificandMask) != 0); |
350 | } |
351 | |
352 | bool IsQuietNan() const { |
353 | return IsNan() && ((AsUint32() & kQuietNanBit) != 0); |
354 | } |
355 | |
356 | bool IsSignalingNan() const { |
357 | return IsNan() && ((AsUint32() & kQuietNanBit) == 0); |
358 | } |
359 | |
360 | |
361 | bool IsInfinite() const { |
362 | uint32_t d32 = AsUint32(); |
363 | return ((d32 & kExponentMask) == kExponentMask) && |
364 | ((d32 & kSignificandMask) == 0); |
365 | } |
366 | |
367 | int Sign() const { |
368 | uint32_t d32 = AsUint32(); |
369 | return (d32 & kSignMask) == 0? 1: -1; |
370 | } |
371 | |
372 | // Computes the two boundaries of this. |
373 | // The bigger boundary (m_plus) is normalized. The lower boundary has the same |
374 | // exponent as m_plus. |
375 | // Precondition: the value encoded by this Single must be greater than 0. |
376 | void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { |
377 | DOUBLE_CONVERSION_ASSERT(value() > 0.0); |
378 | DiyFp v = this->AsDiyFp(); |
379 | DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); |
380 | DiyFp m_minus; |
381 | if (LowerBoundaryIsCloser()) { |
382 | m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); |
383 | } else { |
384 | m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); |
385 | } |
386 | m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); |
387 | m_minus.set_e(m_plus.e()); |
388 | *out_m_plus = m_plus; |
389 | *out_m_minus = m_minus; |
390 | } |
391 | |
392 | // Precondition: the value encoded by this Single must be greater or equal |
393 | // than +0.0. |
394 | DiyFp UpperBoundary() const { |
395 | DOUBLE_CONVERSION_ASSERT(Sign() > 0); |
396 | return DiyFp(Significand() * 2 + 1, Exponent() - 1); |
397 | } |
398 | |
399 | bool LowerBoundaryIsCloser() const { |
400 | // The boundary is closer if the significand is of the form f == 2^p-1 then |
401 | // the lower boundary is closer. |
402 | // Think of v = 1000e10 and v- = 9999e9. |
403 | // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but |
404 | // at a distance of 1e8. |
405 | // The only exception is for the smallest normal: the largest denormal is |
406 | // at the same distance as its successor. |
407 | // Note: denormals have the same exponent as the smallest normals. |
408 | bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0); |
409 | return physical_significand_is_zero && (Exponent() != kDenormalExponent); |
410 | } |
411 | |
412 | float value() const { return uint32_to_float(d32_); } |
413 | |
414 | static float Infinity() { |
415 | return Single(kInfinity).value(); |
416 | } |
417 | |
418 | static float NaN() { |
419 | return Single(kNaN).value(); |
420 | } |
421 | |
422 | private: |
423 | static const int kExponentBias = 0x7F + kPhysicalSignificandSize; |
424 | static const int kDenormalExponent = -kExponentBias + 1; |
425 | static const int kMaxExponent = 0xFF - kExponentBias; |
426 | static const uint32_t kInfinity = 0x7F800000; |
427 | static const uint32_t kNaN = 0x7FC00000; |
428 | |
429 | const uint32_t d32_; |
430 | |
431 | DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(Single); |
432 | }; |
433 | |
434 | } // namespace double_conversion |
435 | |
436 | // ICU PATCH: Close ICU namespace |
437 | U_NAMESPACE_END |
438 | |
439 | #endif // DOUBLE_CONVERSION_DOUBLE_H_ |
440 | #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING |
441 | |