1 | |
2 | /* png.c - location for general purpose libpng functions |
3 | * |
4 | * Last changed in libpng 1.6.19 [November 12, 2015] |
5 | * Copyright (c) 1998-2002,2004,2006-2015 Glenn Randers-Pehrson |
6 | * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) |
7 | * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) |
8 | * |
9 | * This code is released under the libpng license. |
10 | * For conditions of distribution and use, see the disclaimer |
11 | * and license in png.h |
12 | */ |
13 | |
14 | #include "pngpriv.h" |
15 | |
16 | /* Generate a compiler error if there is an old png.h in the search path. */ |
17 | typedef png_libpng_version_1_6_22rc01 Your_png_h_is_not_version_1_6_22rc01; |
18 | |
19 | /* Tells libpng that we have already handled the first "num_bytes" bytes |
20 | * of the PNG file signature. If the PNG data is embedded into another |
21 | * stream we can set num_bytes = 8 so that libpng will not attempt to read |
22 | * or write any of the magic bytes before it starts on the IHDR. |
23 | */ |
24 | |
25 | #ifdef PNG_READ_SUPPORTED |
26 | void PNGAPI |
27 | png_set_sig_bytes(png_structrp png_ptr, int num_bytes) |
28 | { |
29 | unsigned int nb = (unsigned int)num_bytes; |
30 | |
31 | png_debug(1, "in png_set_sig_bytes" ); |
32 | |
33 | if (png_ptr == NULL) |
34 | return; |
35 | |
36 | if (num_bytes < 0) |
37 | nb = 0; |
38 | |
39 | if (nb > 8) |
40 | png_error(png_ptr, "Too many bytes for PNG signature" ); |
41 | |
42 | png_ptr->sig_bytes = (png_byte)nb; |
43 | } |
44 | |
45 | /* Checks whether the supplied bytes match the PNG signature. We allow |
46 | * checking less than the full 8-byte signature so that those apps that |
47 | * already read the first few bytes of a file to determine the file type |
48 | * can simply check the remaining bytes for extra assurance. Returns |
49 | * an integer less than, equal to, or greater than zero if sig is found, |
50 | * respectively, to be less than, to match, or be greater than the correct |
51 | * PNG signature (this is the same behavior as strcmp, memcmp, etc). |
52 | */ |
53 | int PNGAPI |
54 | png_sig_cmp(png_const_bytep sig, png_size_t start, png_size_t num_to_check) |
55 | { |
56 | png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10}; |
57 | |
58 | if (num_to_check > 8) |
59 | num_to_check = 8; |
60 | |
61 | else if (num_to_check < 1) |
62 | return (-1); |
63 | |
64 | if (start > 7) |
65 | return (-1); |
66 | |
67 | if (start + num_to_check > 8) |
68 | num_to_check = 8 - start; |
69 | |
70 | return ((int)(memcmp(&sig[start], &png_signature[start], num_to_check))); |
71 | } |
72 | |
73 | #endif /* READ */ |
74 | |
75 | #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) |
76 | /* Function to allocate memory for zlib */ |
77 | PNG_FUNCTION(voidpf /* PRIVATE */, |
78 | png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED) |
79 | { |
80 | png_alloc_size_t num_bytes = size; |
81 | |
82 | if (png_ptr == NULL) |
83 | return NULL; |
84 | |
85 | if (items >= (~(png_alloc_size_t)0)/size) |
86 | { |
87 | png_warning (png_voidcast(png_structrp, png_ptr), |
88 | "Potential overflow in png_zalloc()" ); |
89 | return NULL; |
90 | } |
91 | |
92 | num_bytes *= items; |
93 | return png_malloc_warn(png_voidcast(png_structrp, png_ptr), num_bytes); |
94 | } |
95 | |
96 | /* Function to free memory for zlib */ |
97 | void /* PRIVATE */ |
98 | png_zfree(voidpf png_ptr, voidpf ptr) |
99 | { |
100 | png_free(png_voidcast(png_const_structrp,png_ptr), ptr); |
101 | } |
102 | |
103 | /* Reset the CRC variable to 32 bits of 1's. Care must be taken |
104 | * in case CRC is > 32 bits to leave the top bits 0. |
105 | */ |
106 | void /* PRIVATE */ |
107 | png_reset_crc(png_structrp png_ptr) |
108 | { |
109 | /* The cast is safe because the crc is a 32-bit value. */ |
110 | png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0); |
111 | } |
112 | |
113 | /* Calculate the CRC over a section of data. We can only pass as |
114 | * much data to this routine as the largest single buffer size. We |
115 | * also check that this data will actually be used before going to the |
116 | * trouble of calculating it. |
117 | */ |
118 | void /* PRIVATE */ |
119 | png_calculate_crc(png_structrp png_ptr, png_const_bytep ptr, png_size_t length) |
120 | { |
121 | int need_crc = 1; |
122 | |
123 | if (PNG_CHUNK_ANCILLARY(png_ptr->chunk_name) != 0) |
124 | { |
125 | if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) == |
126 | (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN)) |
127 | need_crc = 0; |
128 | } |
129 | |
130 | else /* critical */ |
131 | { |
132 | if ((png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) != 0) |
133 | need_crc = 0; |
134 | } |
135 | |
136 | /* 'uLong' is defined in zlib.h as unsigned long; this means that on some |
137 | * systems it is a 64-bit value. crc32, however, returns 32 bits so the |
138 | * following cast is safe. 'uInt' may be no more than 16 bits, so it is |
139 | * necessary to perform a loop here. |
140 | */ |
141 | if (need_crc != 0 && length > 0) |
142 | { |
143 | uLong crc = png_ptr->crc; /* Should never issue a warning */ |
144 | |
145 | do |
146 | { |
147 | uInt safe_length = (uInt)length; |
148 | #ifndef __COVERITY__ |
149 | if (safe_length == 0) |
150 | safe_length = (uInt)-1; /* evil, but safe */ |
151 | #endif |
152 | |
153 | crc = crc32(crc, ptr, safe_length); |
154 | |
155 | /* The following should never issue compiler warnings; if they do the |
156 | * target system has characteristics that will probably violate other |
157 | * assumptions within the libpng code. |
158 | */ |
159 | ptr += safe_length; |
160 | length -= safe_length; |
161 | } |
162 | while (length > 0); |
163 | |
164 | /* And the following is always safe because the crc is only 32 bits. */ |
165 | png_ptr->crc = (png_uint_32)crc; |
166 | } |
167 | } |
168 | |
169 | /* Check a user supplied version number, called from both read and write |
170 | * functions that create a png_struct. |
171 | */ |
172 | int |
173 | png_user_version_check(png_structrp png_ptr, png_const_charp user_png_ver) |
174 | { |
175 | /* Libpng versions 1.0.0 and later are binary compatible if the version |
176 | * string matches through the second '.'; we must recompile any |
177 | * applications that use any older library version. |
178 | */ |
179 | |
180 | if (user_png_ver != NULL) |
181 | { |
182 | int i = -1; |
183 | int found_dots = 0; |
184 | |
185 | do |
186 | { |
187 | i++; |
188 | if (user_png_ver[i] != PNG_LIBPNG_VER_STRING[i]) |
189 | png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; |
190 | if (user_png_ver[i] == '.') |
191 | found_dots++; |
192 | } while (found_dots < 2 && user_png_ver[i] != 0 && |
193 | PNG_LIBPNG_VER_STRING[i] != 0); |
194 | } |
195 | |
196 | else |
197 | png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; |
198 | |
199 | if ((png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) != 0) |
200 | { |
201 | #ifdef PNG_WARNINGS_SUPPORTED |
202 | size_t pos = 0; |
203 | char m[128]; |
204 | |
205 | pos = png_safecat(m, (sizeof m), pos, |
206 | "Application built with libpng-" ); |
207 | pos = png_safecat(m, (sizeof m), pos, user_png_ver); |
208 | pos = png_safecat(m, (sizeof m), pos, " but running with " ); |
209 | pos = png_safecat(m, (sizeof m), pos, PNG_LIBPNG_VER_STRING); |
210 | PNG_UNUSED(pos) |
211 | |
212 | png_warning(png_ptr, m); |
213 | #endif |
214 | |
215 | #ifdef PNG_ERROR_NUMBERS_SUPPORTED |
216 | png_ptr->flags = 0; |
217 | #endif |
218 | |
219 | return 0; |
220 | } |
221 | |
222 | /* Success return. */ |
223 | return 1; |
224 | } |
225 | |
226 | /* Generic function to create a png_struct for either read or write - this |
227 | * contains the common initialization. |
228 | */ |
229 | PNG_FUNCTION(png_structp /* PRIVATE */, |
230 | png_create_png_struct,(png_const_charp user_png_ver, png_voidp error_ptr, |
231 | png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr, |
232 | png_malloc_ptr malloc_fn, png_free_ptr free_fn),PNG_ALLOCATED) |
233 | { |
234 | png_struct create_struct; |
235 | # ifdef PNG_SETJMP_SUPPORTED |
236 | jmp_buf create_jmp_buf; |
237 | # endif |
238 | |
239 | /* This temporary stack-allocated structure is used to provide a place to |
240 | * build enough context to allow the user provided memory allocator (if any) |
241 | * to be called. |
242 | */ |
243 | memset(&create_struct, 0, (sizeof create_struct)); |
244 | |
245 | /* Added at libpng-1.2.6 */ |
246 | # ifdef PNG_USER_LIMITS_SUPPORTED |
247 | create_struct.user_width_max = PNG_USER_WIDTH_MAX; |
248 | create_struct.user_height_max = PNG_USER_HEIGHT_MAX; |
249 | |
250 | # ifdef PNG_USER_CHUNK_CACHE_MAX |
251 | /* Added at libpng-1.2.43 and 1.4.0 */ |
252 | create_struct.user_chunk_cache_max = PNG_USER_CHUNK_CACHE_MAX; |
253 | # endif |
254 | |
255 | # ifdef PNG_USER_CHUNK_MALLOC_MAX |
256 | /* Added at libpng-1.2.43 and 1.4.1, required only for read but exists |
257 | * in png_struct regardless. |
258 | */ |
259 | create_struct.user_chunk_malloc_max = PNG_USER_CHUNK_MALLOC_MAX; |
260 | # endif |
261 | # endif |
262 | |
263 | /* The following two API calls simply set fields in png_struct, so it is safe |
264 | * to do them now even though error handling is not yet set up. |
265 | */ |
266 | # ifdef PNG_USER_MEM_SUPPORTED |
267 | png_set_mem_fn(&create_struct, mem_ptr, malloc_fn, free_fn); |
268 | # else |
269 | PNG_UNUSED(mem_ptr) |
270 | PNG_UNUSED(malloc_fn) |
271 | PNG_UNUSED(free_fn) |
272 | # endif |
273 | |
274 | /* (*error_fn) can return control to the caller after the error_ptr is set, |
275 | * this will result in a memory leak unless the error_fn does something |
276 | * extremely sophisticated. The design lacks merit but is implicit in the |
277 | * API. |
278 | */ |
279 | png_set_error_fn(&create_struct, error_ptr, error_fn, warn_fn); |
280 | |
281 | # ifdef PNG_SETJMP_SUPPORTED |
282 | if (!setjmp(create_jmp_buf)) |
283 | # endif |
284 | { |
285 | # ifdef PNG_SETJMP_SUPPORTED |
286 | /* Temporarily fake out the longjmp information until we have |
287 | * successfully completed this function. This only works if we have |
288 | * setjmp() support compiled in, but it is safe - this stuff should |
289 | * never happen. |
290 | */ |
291 | create_struct.jmp_buf_ptr = &create_jmp_buf; |
292 | create_struct.jmp_buf_size = 0; /*stack allocation*/ |
293 | create_struct.longjmp_fn = longjmp; |
294 | # endif |
295 | /* Call the general version checker (shared with read and write code): |
296 | */ |
297 | if (png_user_version_check(&create_struct, user_png_ver) != 0) |
298 | { |
299 | png_structrp png_ptr = png_voidcast(png_structrp, |
300 | png_malloc_warn(&create_struct, (sizeof *png_ptr))); |
301 | |
302 | if (png_ptr != NULL) |
303 | { |
304 | /* png_ptr->zstream holds a back-pointer to the png_struct, so |
305 | * this can only be done now: |
306 | */ |
307 | create_struct.zstream.zalloc = png_zalloc; |
308 | create_struct.zstream.zfree = png_zfree; |
309 | create_struct.zstream.opaque = png_ptr; |
310 | |
311 | # ifdef PNG_SETJMP_SUPPORTED |
312 | /* Eliminate the local error handling: */ |
313 | create_struct.jmp_buf_ptr = NULL; |
314 | create_struct.jmp_buf_size = 0; |
315 | create_struct.longjmp_fn = 0; |
316 | # endif |
317 | |
318 | *png_ptr = create_struct; |
319 | |
320 | /* This is the successful return point */ |
321 | return png_ptr; |
322 | } |
323 | } |
324 | } |
325 | |
326 | /* A longjmp because of a bug in the application storage allocator or a |
327 | * simple failure to allocate the png_struct. |
328 | */ |
329 | return NULL; |
330 | } |
331 | |
332 | /* Allocate the memory for an info_struct for the application. */ |
333 | PNG_FUNCTION(png_infop,PNGAPI |
334 | png_create_info_struct,(png_const_structrp png_ptr),PNG_ALLOCATED) |
335 | { |
336 | png_inforp info_ptr; |
337 | |
338 | png_debug(1, "in png_create_info_struct" ); |
339 | |
340 | if (png_ptr == NULL) |
341 | return NULL; |
342 | |
343 | /* Use the internal API that does not (or at least should not) error out, so |
344 | * that this call always returns ok. The application typically sets up the |
345 | * error handling *after* creating the info_struct because this is the way it |
346 | * has always been done in 'example.c'. |
347 | */ |
348 | info_ptr = png_voidcast(png_inforp, png_malloc_base(png_ptr, |
349 | (sizeof *info_ptr))); |
350 | |
351 | if (info_ptr != NULL) |
352 | memset(info_ptr, 0, (sizeof *info_ptr)); |
353 | |
354 | return info_ptr; |
355 | } |
356 | |
357 | /* This function frees the memory associated with a single info struct. |
358 | * Normally, one would use either png_destroy_read_struct() or |
359 | * png_destroy_write_struct() to free an info struct, but this may be |
360 | * useful for some applications. From libpng 1.6.0 this function is also used |
361 | * internally to implement the png_info release part of the 'struct' destroy |
362 | * APIs. This ensures that all possible approaches free the same data (all of |
363 | * it). |
364 | */ |
365 | void PNGAPI |
366 | png_destroy_info_struct(png_const_structrp png_ptr, png_infopp info_ptr_ptr) |
367 | { |
368 | png_inforp info_ptr = NULL; |
369 | |
370 | png_debug(1, "in png_destroy_info_struct" ); |
371 | |
372 | if (png_ptr == NULL) |
373 | return; |
374 | |
375 | if (info_ptr_ptr != NULL) |
376 | info_ptr = *info_ptr_ptr; |
377 | |
378 | if (info_ptr != NULL) |
379 | { |
380 | /* Do this first in case of an error below; if the app implements its own |
381 | * memory management this can lead to png_free calling png_error, which |
382 | * will abort this routine and return control to the app error handler. |
383 | * An infinite loop may result if it then tries to free the same info |
384 | * ptr. |
385 | */ |
386 | *info_ptr_ptr = NULL; |
387 | |
388 | png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1); |
389 | memset(info_ptr, 0, (sizeof *info_ptr)); |
390 | png_free(png_ptr, info_ptr); |
391 | } |
392 | } |
393 | |
394 | /* Initialize the info structure. This is now an internal function (0.89) |
395 | * and applications using it are urged to use png_create_info_struct() |
396 | * instead. Use deprecated in 1.6.0, internal use removed (used internally it |
397 | * is just a memset). |
398 | * |
399 | * NOTE: it is almost inconceivable that this API is used because it bypasses |
400 | * the user-memory mechanism and the user error handling/warning mechanisms in |
401 | * those cases where it does anything other than a memset. |
402 | */ |
403 | PNG_FUNCTION(void,PNGAPI |
404 | png_info_init_3,(png_infopp ptr_ptr, png_size_t png_info_struct_size), |
405 | PNG_DEPRECATED) |
406 | { |
407 | png_inforp info_ptr = *ptr_ptr; |
408 | |
409 | png_debug(1, "in png_info_init_3" ); |
410 | |
411 | if (info_ptr == NULL) |
412 | return; |
413 | |
414 | if ((sizeof (png_info)) > png_info_struct_size) |
415 | { |
416 | *ptr_ptr = NULL; |
417 | /* The following line is why this API should not be used: */ |
418 | free(info_ptr); |
419 | info_ptr = png_voidcast(png_inforp, png_malloc_base(NULL, |
420 | (sizeof *info_ptr))); |
421 | if (info_ptr == NULL) |
422 | return; |
423 | *ptr_ptr = info_ptr; |
424 | } |
425 | |
426 | /* Set everything to 0 */ |
427 | memset(info_ptr, 0, (sizeof *info_ptr)); |
428 | } |
429 | |
430 | /* The following API is not called internally */ |
431 | void PNGAPI |
432 | png_data_freer(png_const_structrp png_ptr, png_inforp info_ptr, |
433 | int freer, png_uint_32 mask) |
434 | { |
435 | png_debug(1, "in png_data_freer" ); |
436 | |
437 | if (png_ptr == NULL || info_ptr == NULL) |
438 | return; |
439 | |
440 | if (freer == PNG_DESTROY_WILL_FREE_DATA) |
441 | info_ptr->free_me |= mask; |
442 | |
443 | else if (freer == PNG_USER_WILL_FREE_DATA) |
444 | info_ptr->free_me &= ~mask; |
445 | |
446 | else |
447 | png_error(png_ptr, "Unknown freer parameter in png_data_freer" ); |
448 | } |
449 | |
450 | void PNGAPI |
451 | png_free_data(png_const_structrp png_ptr, png_inforp info_ptr, png_uint_32 mask, |
452 | int num) |
453 | { |
454 | png_debug(1, "in png_free_data" ); |
455 | |
456 | if (png_ptr == NULL || info_ptr == NULL) |
457 | return; |
458 | |
459 | #ifdef PNG_TEXT_SUPPORTED |
460 | /* Free text item num or (if num == -1) all text items */ |
461 | if (info_ptr->text != 0 && |
462 | ((mask & PNG_FREE_TEXT) & info_ptr->free_me) != 0) |
463 | { |
464 | if (num != -1) |
465 | { |
466 | png_free(png_ptr, info_ptr->text[num].key); |
467 | info_ptr->text[num].key = NULL; |
468 | } |
469 | |
470 | else |
471 | { |
472 | int i; |
473 | |
474 | for (i = 0; i < info_ptr->num_text; i++) |
475 | png_free(png_ptr, info_ptr->text[i].key); |
476 | |
477 | png_free(png_ptr, info_ptr->text); |
478 | info_ptr->text = NULL; |
479 | info_ptr->num_text = 0; |
480 | } |
481 | } |
482 | #endif |
483 | |
484 | #ifdef PNG_tRNS_SUPPORTED |
485 | /* Free any tRNS entry */ |
486 | if (((mask & PNG_FREE_TRNS) & info_ptr->free_me) != 0) |
487 | { |
488 | info_ptr->valid &= ~PNG_INFO_tRNS; |
489 | png_free(png_ptr, info_ptr->trans_alpha); |
490 | info_ptr->trans_alpha = NULL; |
491 | info_ptr->num_trans = 0; |
492 | } |
493 | #endif |
494 | |
495 | #ifdef PNG_sCAL_SUPPORTED |
496 | /* Free any sCAL entry */ |
497 | if (((mask & PNG_FREE_SCAL) & info_ptr->free_me) != 0) |
498 | { |
499 | png_free(png_ptr, info_ptr->scal_s_width); |
500 | png_free(png_ptr, info_ptr->scal_s_height); |
501 | info_ptr->scal_s_width = NULL; |
502 | info_ptr->scal_s_height = NULL; |
503 | info_ptr->valid &= ~PNG_INFO_sCAL; |
504 | } |
505 | #endif |
506 | |
507 | #ifdef PNG_pCAL_SUPPORTED |
508 | /* Free any pCAL entry */ |
509 | if (((mask & PNG_FREE_PCAL) & info_ptr->free_me) != 0) |
510 | { |
511 | png_free(png_ptr, info_ptr->pcal_purpose); |
512 | png_free(png_ptr, info_ptr->pcal_units); |
513 | info_ptr->pcal_purpose = NULL; |
514 | info_ptr->pcal_units = NULL; |
515 | |
516 | if (info_ptr->pcal_params != NULL) |
517 | { |
518 | int i; |
519 | |
520 | for (i = 0; i < info_ptr->pcal_nparams; i++) |
521 | png_free(png_ptr, info_ptr->pcal_params[i]); |
522 | |
523 | png_free(png_ptr, info_ptr->pcal_params); |
524 | info_ptr->pcal_params = NULL; |
525 | } |
526 | info_ptr->valid &= ~PNG_INFO_pCAL; |
527 | } |
528 | #endif |
529 | |
530 | #ifdef PNG_iCCP_SUPPORTED |
531 | /* Free any profile entry */ |
532 | if (((mask & PNG_FREE_ICCP) & info_ptr->free_me) != 0) |
533 | { |
534 | png_free(png_ptr, info_ptr->iccp_name); |
535 | png_free(png_ptr, info_ptr->iccp_profile); |
536 | info_ptr->iccp_name = NULL; |
537 | info_ptr->iccp_profile = NULL; |
538 | info_ptr->valid &= ~PNG_INFO_iCCP; |
539 | } |
540 | #endif |
541 | |
542 | #ifdef PNG_sPLT_SUPPORTED |
543 | /* Free a given sPLT entry, or (if num == -1) all sPLT entries */ |
544 | if (info_ptr->splt_palettes != 0 && |
545 | ((mask & PNG_FREE_SPLT) & info_ptr->free_me) != 0) |
546 | { |
547 | if (num != -1) |
548 | { |
549 | png_free(png_ptr, info_ptr->splt_palettes[num].name); |
550 | png_free(png_ptr, info_ptr->splt_palettes[num].entries); |
551 | info_ptr->splt_palettes[num].name = NULL; |
552 | info_ptr->splt_palettes[num].entries = NULL; |
553 | } |
554 | |
555 | else |
556 | { |
557 | int i; |
558 | |
559 | for (i = 0; i < info_ptr->splt_palettes_num; i++) |
560 | { |
561 | png_free(png_ptr, info_ptr->splt_palettes[i].name); |
562 | png_free(png_ptr, info_ptr->splt_palettes[i].entries); |
563 | } |
564 | |
565 | png_free(png_ptr, info_ptr->splt_palettes); |
566 | info_ptr->splt_palettes = NULL; |
567 | info_ptr->splt_palettes_num = 0; |
568 | info_ptr->valid &= ~PNG_INFO_sPLT; |
569 | } |
570 | } |
571 | #endif |
572 | |
573 | #ifdef PNG_STORE_UNKNOWN_CHUNKS_SUPPORTED |
574 | if (info_ptr->unknown_chunks != 0 && |
575 | ((mask & PNG_FREE_UNKN) & info_ptr->free_me) != 0) |
576 | { |
577 | if (num != -1) |
578 | { |
579 | png_free(png_ptr, info_ptr->unknown_chunks[num].data); |
580 | info_ptr->unknown_chunks[num].data = NULL; |
581 | } |
582 | |
583 | else |
584 | { |
585 | int i; |
586 | |
587 | for (i = 0; i < info_ptr->unknown_chunks_num; i++) |
588 | png_free(png_ptr, info_ptr->unknown_chunks[i].data); |
589 | |
590 | png_free(png_ptr, info_ptr->unknown_chunks); |
591 | info_ptr->unknown_chunks = NULL; |
592 | info_ptr->unknown_chunks_num = 0; |
593 | } |
594 | } |
595 | #endif |
596 | |
597 | #ifdef PNG_hIST_SUPPORTED |
598 | /* Free any hIST entry */ |
599 | if (((mask & PNG_FREE_HIST) & info_ptr->free_me) != 0) |
600 | { |
601 | png_free(png_ptr, info_ptr->hist); |
602 | info_ptr->hist = NULL; |
603 | info_ptr->valid &= ~PNG_INFO_hIST; |
604 | } |
605 | #endif |
606 | |
607 | /* Free any PLTE entry that was internally allocated */ |
608 | if (((mask & PNG_FREE_PLTE) & info_ptr->free_me) != 0) |
609 | { |
610 | png_free(png_ptr, info_ptr->palette); |
611 | info_ptr->palette = NULL; |
612 | info_ptr->valid &= ~PNG_INFO_PLTE; |
613 | info_ptr->num_palette = 0; |
614 | } |
615 | |
616 | #ifdef PNG_INFO_IMAGE_SUPPORTED |
617 | /* Free any image bits attached to the info structure */ |
618 | if (((mask & PNG_FREE_ROWS) & info_ptr->free_me) != 0) |
619 | { |
620 | if (info_ptr->row_pointers != 0) |
621 | { |
622 | png_uint_32 row; |
623 | for (row = 0; row < info_ptr->height; row++) |
624 | png_free(png_ptr, info_ptr->row_pointers[row]); |
625 | |
626 | png_free(png_ptr, info_ptr->row_pointers); |
627 | info_ptr->row_pointers = NULL; |
628 | } |
629 | info_ptr->valid &= ~PNG_INFO_IDAT; |
630 | } |
631 | #endif |
632 | |
633 | if (num != -1) |
634 | mask &= ~PNG_FREE_MUL; |
635 | |
636 | info_ptr->free_me &= ~mask; |
637 | } |
638 | #endif /* READ || WRITE */ |
639 | |
640 | /* This function returns a pointer to the io_ptr associated with the user |
641 | * functions. The application should free any memory associated with this |
642 | * pointer before png_write_destroy() or png_read_destroy() are called. |
643 | */ |
644 | png_voidp PNGAPI |
645 | png_get_io_ptr(png_const_structrp png_ptr) |
646 | { |
647 | if (png_ptr == NULL) |
648 | return (NULL); |
649 | |
650 | return (png_ptr->io_ptr); |
651 | } |
652 | |
653 | #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) |
654 | # ifdef PNG_STDIO_SUPPORTED |
655 | /* Initialize the default input/output functions for the PNG file. If you |
656 | * use your own read or write routines, you can call either png_set_read_fn() |
657 | * or png_set_write_fn() instead of png_init_io(). If you have defined |
658 | * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a |
659 | * function of your own because "FILE *" isn't necessarily available. |
660 | */ |
661 | void PNGAPI |
662 | png_init_io(png_structrp png_ptr, png_FILE_p fp) |
663 | { |
664 | png_debug(1, "in png_init_io" ); |
665 | |
666 | if (png_ptr == NULL) |
667 | return; |
668 | |
669 | png_ptr->io_ptr = (png_voidp)fp; |
670 | } |
671 | # endif |
672 | |
673 | # ifdef PNG_SAVE_INT_32_SUPPORTED |
674 | /* PNG signed integers are saved in 32-bit 2's complement format. ANSI C-90 |
675 | * defines a cast of a signed integer to an unsigned integer either to preserve |
676 | * the value, if it is positive, or to calculate: |
677 | * |
678 | * (UNSIGNED_MAX+1) + integer |
679 | * |
680 | * Where UNSIGNED_MAX is the appropriate maximum unsigned value, so when the |
681 | * negative integral value is added the result will be an unsigned value |
682 | * correspnding to the 2's complement representation. |
683 | */ |
684 | void PNGAPI |
685 | png_save_int_32(png_bytep buf, png_int_32 i) |
686 | { |
687 | png_save_uint_32(buf, i); |
688 | } |
689 | # endif |
690 | |
691 | # ifdef PNG_TIME_RFC1123_SUPPORTED |
692 | /* Convert the supplied time into an RFC 1123 string suitable for use in |
693 | * a "Creation Time" or other text-based time string. |
694 | */ |
695 | int PNGAPI |
696 | png_convert_to_rfc1123_buffer(char out[29], png_const_timep ptime) |
697 | { |
698 | static PNG_CONST char short_months[12][4] = |
699 | {"Jan" , "Feb" , "Mar" , "Apr" , "May" , "Jun" , |
700 | "Jul" , "Aug" , "Sep" , "Oct" , "Nov" , "Dec" }; |
701 | |
702 | if (out == NULL) |
703 | return 0; |
704 | |
705 | if (ptime->year > 9999 /* RFC1123 limitation */ || |
706 | ptime->month == 0 || ptime->month > 12 || |
707 | ptime->day == 0 || ptime->day > 31 || |
708 | ptime->hour > 23 || ptime->minute > 59 || |
709 | ptime->second > 60) |
710 | return 0; |
711 | |
712 | { |
713 | size_t pos = 0; |
714 | char number_buf[5]; /* enough for a four-digit year */ |
715 | |
716 | # define APPEND_STRING(string) pos = png_safecat(out, 29, pos, (string)) |
717 | # define APPEND_NUMBER(format, value)\ |
718 | APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value))) |
719 | # define APPEND(ch) if (pos < 28) out[pos++] = (ch) |
720 | |
721 | APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day); |
722 | APPEND(' '); |
723 | APPEND_STRING(short_months[(ptime->month - 1)]); |
724 | APPEND(' '); |
725 | APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year); |
726 | APPEND(' '); |
727 | APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour); |
728 | APPEND(':'); |
729 | APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute); |
730 | APPEND(':'); |
731 | APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second); |
732 | APPEND_STRING(" +0000" ); /* This reliably terminates the buffer */ |
733 | PNG_UNUSED (pos) |
734 | |
735 | # undef APPEND |
736 | # undef APPEND_NUMBER |
737 | # undef APPEND_STRING |
738 | } |
739 | |
740 | return 1; |
741 | } |
742 | |
743 | # if PNG_LIBPNG_VER < 10700 |
744 | /* To do: remove the following from libpng-1.7 */ |
745 | /* Original API that uses a private buffer in png_struct. |
746 | * Deprecated because it causes png_struct to carry a spurious temporary |
747 | * buffer (png_struct::time_buffer), better to have the caller pass this in. |
748 | */ |
749 | png_const_charp PNGAPI |
750 | png_convert_to_rfc1123(png_structrp png_ptr, png_const_timep ptime) |
751 | { |
752 | if (png_ptr != NULL) |
753 | { |
754 | /* The only failure above if png_ptr != NULL is from an invalid ptime */ |
755 | if (png_convert_to_rfc1123_buffer(png_ptr->time_buffer, ptime) == 0) |
756 | png_warning(png_ptr, "Ignoring invalid time value" ); |
757 | |
758 | else |
759 | return png_ptr->time_buffer; |
760 | } |
761 | |
762 | return NULL; |
763 | } |
764 | # endif /* LIBPNG_VER < 10700 */ |
765 | # endif /* TIME_RFC1123 */ |
766 | |
767 | #endif /* READ || WRITE */ |
768 | |
769 | png_const_charp PNGAPI |
770 | png_get_copyright(png_const_structrp png_ptr) |
771 | { |
772 | PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ |
773 | #ifdef PNG_STRING_COPYRIGHT |
774 | return PNG_STRING_COPYRIGHT |
775 | #else |
776 | # ifdef __STDC__ |
777 | return PNG_STRING_NEWLINE \ |
778 | "libpng version 1.6.22rc01 - May 14, 2016" PNG_STRING_NEWLINE \ |
779 | "Copyright (c) 1998-2002,2004,2006-2016 Glenn Randers-Pehrson" \ |
780 | PNG_STRING_NEWLINE \ |
781 | "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \ |
782 | "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \ |
783 | PNG_STRING_NEWLINE; |
784 | # else |
785 | return "libpng version 1.6.22rc01 - May 14, 2016\ |
786 | Copyright (c) 1998-2002,2004,2006-2016 Glenn Randers-Pehrson\ |
787 | Copyright (c) 1996-1997 Andreas Dilger\ |
788 | Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." ; |
789 | # endif |
790 | #endif |
791 | } |
792 | |
793 | /* The following return the library version as a short string in the |
794 | * format 1.0.0 through 99.99.99zz. To get the version of *.h files |
795 | * used with your application, print out PNG_LIBPNG_VER_STRING, which |
796 | * is defined in png.h. |
797 | * Note: now there is no difference between png_get_libpng_ver() and |
798 | * png_get_header_ver(). Due to the version_nn_nn_nn typedef guard, |
799 | * it is guaranteed that png.c uses the correct version of png.h. |
800 | */ |
801 | png_const_charp PNGAPI |
802 | png_get_libpng_ver(png_const_structrp png_ptr) |
803 | { |
804 | /* Version of *.c files used when building libpng */ |
805 | return png_get_header_ver(png_ptr); |
806 | } |
807 | |
808 | png_const_charp PNGAPI |
809 | png_get_header_ver(png_const_structrp png_ptr) |
810 | { |
811 | /* Version of *.h files used when building libpng */ |
812 | PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ |
813 | return PNG_LIBPNG_VER_STRING; |
814 | } |
815 | |
816 | png_const_charp PNGAPI |
817 | png_get_header_version(png_const_structrp png_ptr) |
818 | { |
819 | /* Returns longer string containing both version and date */ |
820 | PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ |
821 | #ifdef __STDC__ |
822 | return PNG_HEADER_VERSION_STRING |
823 | # ifndef PNG_READ_SUPPORTED |
824 | " (NO READ SUPPORT)" |
825 | # endif |
826 | PNG_STRING_NEWLINE; |
827 | #else |
828 | return PNG_HEADER_VERSION_STRING; |
829 | #endif |
830 | } |
831 | |
832 | #ifdef PNG_BUILD_GRAYSCALE_PALETTE_SUPPORTED |
833 | /* NOTE: this routine is not used internally! */ |
834 | /* Build a grayscale palette. Palette is assumed to be 1 << bit_depth |
835 | * large of png_color. This lets grayscale images be treated as |
836 | * paletted. Most useful for gamma correction and simplification |
837 | * of code. This API is not used internally. |
838 | */ |
839 | void PNGAPI |
840 | png_build_grayscale_palette(int bit_depth, png_colorp palette) |
841 | { |
842 | int num_palette; |
843 | int color_inc; |
844 | int i; |
845 | int v; |
846 | |
847 | png_debug(1, "in png_do_build_grayscale_palette" ); |
848 | |
849 | if (palette == NULL) |
850 | return; |
851 | |
852 | switch (bit_depth) |
853 | { |
854 | case 1: |
855 | num_palette = 2; |
856 | color_inc = 0xff; |
857 | break; |
858 | |
859 | case 2: |
860 | num_palette = 4; |
861 | color_inc = 0x55; |
862 | break; |
863 | |
864 | case 4: |
865 | num_palette = 16; |
866 | color_inc = 0x11; |
867 | break; |
868 | |
869 | case 8: |
870 | num_palette = 256; |
871 | color_inc = 1; |
872 | break; |
873 | |
874 | default: |
875 | num_palette = 0; |
876 | color_inc = 0; |
877 | break; |
878 | } |
879 | |
880 | for (i = 0, v = 0; i < num_palette; i++, v += color_inc) |
881 | { |
882 | palette[i].red = (png_byte)(v & 0xff); |
883 | palette[i].green = (png_byte)(v & 0xff); |
884 | palette[i].blue = (png_byte)(v & 0xff); |
885 | } |
886 | } |
887 | #endif |
888 | |
889 | #ifdef PNG_SET_UNKNOWN_CHUNKS_SUPPORTED |
890 | int PNGAPI |
891 | png_handle_as_unknown(png_const_structrp png_ptr, png_const_bytep chunk_name) |
892 | { |
893 | /* Check chunk_name and return "keep" value if it's on the list, else 0 */ |
894 | png_const_bytep p, p_end; |
895 | |
896 | if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list == 0) |
897 | return PNG_HANDLE_CHUNK_AS_DEFAULT; |
898 | |
899 | p_end = png_ptr->chunk_list; |
900 | p = p_end + png_ptr->num_chunk_list*5; /* beyond end */ |
901 | |
902 | /* The code is the fifth byte after each four byte string. Historically this |
903 | * code was always searched from the end of the list, this is no longer |
904 | * necessary because the 'set' routine handles duplicate entries correcty. |
905 | */ |
906 | do /* num_chunk_list > 0, so at least one */ |
907 | { |
908 | p -= 5; |
909 | |
910 | if (memcmp(chunk_name, p, 4) == 0) |
911 | return p[4]; |
912 | } |
913 | while (p > p_end); |
914 | |
915 | /* This means that known chunks should be processed and unknown chunks should |
916 | * be handled according to the value of png_ptr->unknown_default; this can be |
917 | * confusing because, as a result, there are two levels of defaulting for |
918 | * unknown chunks. |
919 | */ |
920 | return PNG_HANDLE_CHUNK_AS_DEFAULT; |
921 | } |
922 | |
923 | #if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) ||\ |
924 | defined(PNG_HANDLE_AS_UNKNOWN_SUPPORTED) |
925 | int /* PRIVATE */ |
926 | png_chunk_unknown_handling(png_const_structrp png_ptr, png_uint_32 chunk_name) |
927 | { |
928 | png_byte chunk_string[5]; |
929 | |
930 | PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name); |
931 | return png_handle_as_unknown(png_ptr, chunk_string); |
932 | } |
933 | #endif /* READ_UNKNOWN_CHUNKS || HANDLE_AS_UNKNOWN */ |
934 | #endif /* SET_UNKNOWN_CHUNKS */ |
935 | |
936 | #ifdef PNG_READ_SUPPORTED |
937 | /* This function, added to libpng-1.0.6g, is untested. */ |
938 | int PNGAPI |
939 | png_reset_zstream(png_structrp png_ptr) |
940 | { |
941 | if (png_ptr == NULL) |
942 | return Z_STREAM_ERROR; |
943 | |
944 | /* WARNING: this resets the window bits to the maximum! */ |
945 | return (inflateReset(&png_ptr->zstream)); |
946 | } |
947 | #endif /* READ */ |
948 | |
949 | /* This function was added to libpng-1.0.7 */ |
950 | png_uint_32 PNGAPI |
951 | png_access_version_number(void) |
952 | { |
953 | /* Version of *.c files used when building libpng */ |
954 | return((png_uint_32)PNG_LIBPNG_VER); |
955 | } |
956 | |
957 | #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) |
958 | /* Ensure that png_ptr->zstream.msg holds some appropriate error message string. |
959 | * If it doesn't 'ret' is used to set it to something appropriate, even in cases |
960 | * like Z_OK or Z_STREAM_END where the error code is apparently a success code. |
961 | */ |
962 | void /* PRIVATE */ |
963 | png_zstream_error(png_structrp png_ptr, int ret) |
964 | { |
965 | /* Translate 'ret' into an appropriate error string, priority is given to the |
966 | * one in zstream if set. This always returns a string, even in cases like |
967 | * Z_OK or Z_STREAM_END where the error code is a success code. |
968 | */ |
969 | if (png_ptr->zstream.msg == NULL) switch (ret) |
970 | { |
971 | default: |
972 | case Z_OK: |
973 | png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return code" ); |
974 | break; |
975 | |
976 | case Z_STREAM_END: |
977 | /* Normal exit */ |
978 | png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected end of LZ stream" ); |
979 | break; |
980 | |
981 | case Z_NEED_DICT: |
982 | /* This means the deflate stream did not have a dictionary; this |
983 | * indicates a bogus PNG. |
984 | */ |
985 | png_ptr->zstream.msg = PNGZ_MSG_CAST("missing LZ dictionary" ); |
986 | break; |
987 | |
988 | case Z_ERRNO: |
989 | /* gz APIs only: should not happen */ |
990 | png_ptr->zstream.msg = PNGZ_MSG_CAST("zlib IO error" ); |
991 | break; |
992 | |
993 | case Z_STREAM_ERROR: |
994 | /* internal libpng error */ |
995 | png_ptr->zstream.msg = PNGZ_MSG_CAST("bad parameters to zlib" ); |
996 | break; |
997 | |
998 | case Z_DATA_ERROR: |
999 | png_ptr->zstream.msg = PNGZ_MSG_CAST("damaged LZ stream" ); |
1000 | break; |
1001 | |
1002 | case Z_MEM_ERROR: |
1003 | png_ptr->zstream.msg = PNGZ_MSG_CAST("insufficient memory" ); |
1004 | break; |
1005 | |
1006 | case Z_BUF_ERROR: |
1007 | /* End of input or output; not a problem if the caller is doing |
1008 | * incremental read or write. |
1009 | */ |
1010 | png_ptr->zstream.msg = PNGZ_MSG_CAST("truncated" ); |
1011 | break; |
1012 | |
1013 | case Z_VERSION_ERROR: |
1014 | png_ptr->zstream.msg = PNGZ_MSG_CAST("unsupported zlib version" ); |
1015 | break; |
1016 | |
1017 | case PNG_UNEXPECTED_ZLIB_RETURN: |
1018 | /* Compile errors here mean that zlib now uses the value co-opted in |
1019 | * pngpriv.h for PNG_UNEXPECTED_ZLIB_RETURN; update the switch above |
1020 | * and change pngpriv.h. Note that this message is "... return", |
1021 | * whereas the default/Z_OK one is "... return code". |
1022 | */ |
1023 | png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return" ); |
1024 | break; |
1025 | } |
1026 | } |
1027 | |
1028 | /* png_convert_size: a PNGAPI but no longer in png.h, so deleted |
1029 | * at libpng 1.5.5! |
1030 | */ |
1031 | |
1032 | /* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */ |
1033 | #ifdef PNG_GAMMA_SUPPORTED /* always set if COLORSPACE */ |
1034 | static int |
1035 | png_colorspace_check_gamma(png_const_structrp png_ptr, |
1036 | png_colorspacerp colorspace, png_fixed_point gAMA, int from) |
1037 | /* This is called to check a new gamma value against an existing one. The |
1038 | * routine returns false if the new gamma value should not be written. |
1039 | * |
1040 | * 'from' says where the new gamma value comes from: |
1041 | * |
1042 | * 0: the new gamma value is the libpng estimate for an ICC profile |
1043 | * 1: the new gamma value comes from a gAMA chunk |
1044 | * 2: the new gamma value comes from an sRGB chunk |
1045 | */ |
1046 | { |
1047 | png_fixed_point gtest; |
1048 | |
1049 | if ((colorspace->flags & PNG_COLORSPACE_HAVE_GAMMA) != 0 && |
1050 | (png_muldiv(>est, colorspace->gamma, PNG_FP_1, gAMA) == 0 || |
1051 | png_gamma_significant(gtest) != 0)) |
1052 | { |
1053 | /* Either this is an sRGB image, in which case the calculated gamma |
1054 | * approximation should match, or this is an image with a profile and the |
1055 | * value libpng calculates for the gamma of the profile does not match the |
1056 | * value recorded in the file. The former, sRGB, case is an error, the |
1057 | * latter is just a warning. |
1058 | */ |
1059 | if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0 || from == 2) |
1060 | { |
1061 | png_chunk_report(png_ptr, "gamma value does not match sRGB" , |
1062 | PNG_CHUNK_ERROR); |
1063 | /* Do not overwrite an sRGB value */ |
1064 | return from == 2; |
1065 | } |
1066 | |
1067 | else /* sRGB tag not involved */ |
1068 | { |
1069 | png_chunk_report(png_ptr, "gamma value does not match libpng estimate" , |
1070 | PNG_CHUNK_WARNING); |
1071 | return from == 1; |
1072 | } |
1073 | } |
1074 | |
1075 | return 1; |
1076 | } |
1077 | |
1078 | void /* PRIVATE */ |
1079 | png_colorspace_set_gamma(png_const_structrp png_ptr, |
1080 | png_colorspacerp colorspace, png_fixed_point gAMA) |
1081 | { |
1082 | /* Changed in libpng-1.5.4 to limit the values to ensure overflow can't |
1083 | * occur. Since the fixed point representation is asymetrical it is |
1084 | * possible for 1/gamma to overflow the limit of 21474 and this means the |
1085 | * gamma value must be at least 5/100000 and hence at most 20000.0. For |
1086 | * safety the limits here are a little narrower. The values are 0.00016 to |
1087 | * 6250.0, which are truly ridiculous gamma values (and will produce |
1088 | * displays that are all black or all white.) |
1089 | * |
1090 | * In 1.6.0 this test replaces the ones in pngrutil.c, in the gAMA chunk |
1091 | * handling code, which only required the value to be >0. |
1092 | */ |
1093 | png_const_charp errmsg; |
1094 | |
1095 | if (gAMA < 16 || gAMA > 625000000) |
1096 | errmsg = "gamma value out of range" ; |
1097 | |
1098 | # ifdef PNG_READ_gAMA_SUPPORTED |
1099 | /* Allow the application to set the gamma value more than once */ |
1100 | else if ((png_ptr->mode & PNG_IS_READ_STRUCT) != 0 && |
1101 | (colorspace->flags & PNG_COLORSPACE_FROM_gAMA) != 0) |
1102 | errmsg = "duplicate" ; |
1103 | # endif |
1104 | |
1105 | /* Do nothing if the colorspace is already invalid */ |
1106 | else if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0) |
1107 | return; |
1108 | |
1109 | else |
1110 | { |
1111 | if (png_colorspace_check_gamma(png_ptr, colorspace, gAMA, |
1112 | 1/*from gAMA*/) != 0) |
1113 | { |
1114 | /* Store this gamma value. */ |
1115 | colorspace->gamma = gAMA; |
1116 | colorspace->flags |= |
1117 | (PNG_COLORSPACE_HAVE_GAMMA | PNG_COLORSPACE_FROM_gAMA); |
1118 | } |
1119 | |
1120 | /* At present if the check_gamma test fails the gamma of the colorspace is |
1121 | * not updated however the colorspace is not invalidated. This |
1122 | * corresponds to the case where the existing gamma comes from an sRGB |
1123 | * chunk or profile. An error message has already been output. |
1124 | */ |
1125 | return; |
1126 | } |
1127 | |
1128 | /* Error exit - errmsg has been set. */ |
1129 | colorspace->flags |= PNG_COLORSPACE_INVALID; |
1130 | png_chunk_report(png_ptr, errmsg, PNG_CHUNK_WRITE_ERROR); |
1131 | } |
1132 | |
1133 | void /* PRIVATE */ |
1134 | png_colorspace_sync_info(png_const_structrp png_ptr, png_inforp info_ptr) |
1135 | { |
1136 | if ((info_ptr->colorspace.flags & PNG_COLORSPACE_INVALID) != 0) |
1137 | { |
1138 | /* Everything is invalid */ |
1139 | info_ptr->valid &= ~(PNG_INFO_gAMA|PNG_INFO_cHRM|PNG_INFO_sRGB| |
1140 | PNG_INFO_iCCP); |
1141 | |
1142 | # ifdef PNG_COLORSPACE_SUPPORTED |
1143 | /* Clean up the iCCP profile now if it won't be used. */ |
1144 | png_free_data(png_ptr, info_ptr, PNG_FREE_ICCP, -1/*not used*/); |
1145 | # else |
1146 | PNG_UNUSED(png_ptr) |
1147 | # endif |
1148 | } |
1149 | |
1150 | else |
1151 | { |
1152 | # ifdef PNG_COLORSPACE_SUPPORTED |
1153 | /* Leave the INFO_iCCP flag set if the pngset.c code has already set |
1154 | * it; this allows a PNG to contain a profile which matches sRGB and |
1155 | * yet still have that profile retrievable by the application. |
1156 | */ |
1157 | if ((info_ptr->colorspace.flags & PNG_COLORSPACE_MATCHES_sRGB) != 0) |
1158 | info_ptr->valid |= PNG_INFO_sRGB; |
1159 | |
1160 | else |
1161 | info_ptr->valid &= ~PNG_INFO_sRGB; |
1162 | |
1163 | if ((info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0) |
1164 | info_ptr->valid |= PNG_INFO_cHRM; |
1165 | |
1166 | else |
1167 | info_ptr->valid &= ~PNG_INFO_cHRM; |
1168 | # endif |
1169 | |
1170 | if ((info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_GAMMA) != 0) |
1171 | info_ptr->valid |= PNG_INFO_gAMA; |
1172 | |
1173 | else |
1174 | info_ptr->valid &= ~PNG_INFO_gAMA; |
1175 | } |
1176 | } |
1177 | |
1178 | #ifdef PNG_READ_SUPPORTED |
1179 | void /* PRIVATE */ |
1180 | png_colorspace_sync(png_const_structrp png_ptr, png_inforp info_ptr) |
1181 | { |
1182 | if (info_ptr == NULL) /* reduce code size; check here not in the caller */ |
1183 | return; |
1184 | |
1185 | info_ptr->colorspace = png_ptr->colorspace; |
1186 | png_colorspace_sync_info(png_ptr, info_ptr); |
1187 | } |
1188 | #endif |
1189 | #endif /* GAMMA */ |
1190 | |
1191 | #ifdef PNG_COLORSPACE_SUPPORTED |
1192 | /* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for |
1193 | * cHRM, as opposed to using chromaticities. These internal APIs return |
1194 | * non-zero on a parameter error. The X, Y and Z values are required to be |
1195 | * positive and less than 1.0. |
1196 | */ |
1197 | static int |
1198 | png_xy_from_XYZ(png_xy *xy, const png_XYZ *XYZ) |
1199 | { |
1200 | png_int_32 d, dwhite, whiteX, whiteY; |
1201 | |
1202 | d = XYZ->red_X + XYZ->red_Y + XYZ->red_Z; |
1203 | if (png_muldiv(&xy->redx, XYZ->red_X, PNG_FP_1, d) == 0) |
1204 | return 1; |
1205 | if (png_muldiv(&xy->redy, XYZ->red_Y, PNG_FP_1, d) == 0) |
1206 | return 1; |
1207 | dwhite = d; |
1208 | whiteX = XYZ->red_X; |
1209 | whiteY = XYZ->red_Y; |
1210 | |
1211 | d = XYZ->green_X + XYZ->green_Y + XYZ->green_Z; |
1212 | if (png_muldiv(&xy->greenx, XYZ->green_X, PNG_FP_1, d) == 0) |
1213 | return 1; |
1214 | if (png_muldiv(&xy->greeny, XYZ->green_Y, PNG_FP_1, d) == 0) |
1215 | return 1; |
1216 | dwhite += d; |
1217 | whiteX += XYZ->green_X; |
1218 | whiteY += XYZ->green_Y; |
1219 | |
1220 | d = XYZ->blue_X + XYZ->blue_Y + XYZ->blue_Z; |
1221 | if (png_muldiv(&xy->bluex, XYZ->blue_X, PNG_FP_1, d) == 0) |
1222 | return 1; |
1223 | if (png_muldiv(&xy->bluey, XYZ->blue_Y, PNG_FP_1, d) == 0) |
1224 | return 1; |
1225 | dwhite += d; |
1226 | whiteX += XYZ->blue_X; |
1227 | whiteY += XYZ->blue_Y; |
1228 | |
1229 | /* The reference white is simply the sum of the end-point (X,Y,Z) vectors, |
1230 | * thus: |
1231 | */ |
1232 | if (png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite) == 0) |
1233 | return 1; |
1234 | if (png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite) == 0) |
1235 | return 1; |
1236 | |
1237 | return 0; |
1238 | } |
1239 | |
1240 | static int |
1241 | png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy) |
1242 | { |
1243 | png_fixed_point red_inverse, green_inverse, blue_scale; |
1244 | png_fixed_point left, right, denominator; |
1245 | |
1246 | /* Check xy and, implicitly, z. Note that wide gamut color spaces typically |
1247 | * have end points with 0 tristimulus values (these are impossible end |
1248 | * points, but they are used to cover the possible colors). We check |
1249 | * xy->whitey against 5, not 0, to avoid a possible integer overflow. |
1250 | */ |
1251 | if (xy->redx < 0 || xy->redx > PNG_FP_1) return 1; |
1252 | if (xy->redy < 0 || xy->redy > PNG_FP_1-xy->redx) return 1; |
1253 | if (xy->greenx < 0 || xy->greenx > PNG_FP_1) return 1; |
1254 | if (xy->greeny < 0 || xy->greeny > PNG_FP_1-xy->greenx) return 1; |
1255 | if (xy->bluex < 0 || xy->bluex > PNG_FP_1) return 1; |
1256 | if (xy->bluey < 0 || xy->bluey > PNG_FP_1-xy->bluex) return 1; |
1257 | if (xy->whitex < 0 || xy->whitex > PNG_FP_1) return 1; |
1258 | if (xy->whitey < 5 || xy->whitey > PNG_FP_1-xy->whitex) return 1; |
1259 | |
1260 | /* The reverse calculation is more difficult because the original tristimulus |
1261 | * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8 |
1262 | * derived values were recorded in the cHRM chunk; |
1263 | * (red,green,blue,white)x(x,y). This loses one degree of freedom and |
1264 | * therefore an arbitrary ninth value has to be introduced to undo the |
1265 | * original transformations. |
1266 | * |
1267 | * Think of the original end-points as points in (X,Y,Z) space. The |
1268 | * chromaticity values (c) have the property: |
1269 | * |
1270 | * C |
1271 | * c = --------- |
1272 | * X + Y + Z |
1273 | * |
1274 | * For each c (x,y,z) from the corresponding original C (X,Y,Z). Thus the |
1275 | * three chromaticity values (x,y,z) for each end-point obey the |
1276 | * relationship: |
1277 | * |
1278 | * x + y + z = 1 |
1279 | * |
1280 | * This describes the plane in (X,Y,Z) space that intersects each axis at the |
1281 | * value 1.0; call this the chromaticity plane. Thus the chromaticity |
1282 | * calculation has scaled each end-point so that it is on the x+y+z=1 plane |
1283 | * and chromaticity is the intersection of the vector from the origin to the |
1284 | * (X,Y,Z) value with the chromaticity plane. |
1285 | * |
1286 | * To fully invert the chromaticity calculation we would need the three |
1287 | * end-point scale factors, (red-scale, green-scale, blue-scale), but these |
1288 | * were not recorded. Instead we calculated the reference white (X,Y,Z) and |
1289 | * recorded the chromaticity of this. The reference white (X,Y,Z) would have |
1290 | * given all three of the scale factors since: |
1291 | * |
1292 | * color-C = color-c * color-scale |
1293 | * white-C = red-C + green-C + blue-C |
1294 | * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale |
1295 | * |
1296 | * But cHRM records only white-x and white-y, so we have lost the white scale |
1297 | * factor: |
1298 | * |
1299 | * white-C = white-c*white-scale |
1300 | * |
1301 | * To handle this the inverse transformation makes an arbitrary assumption |
1302 | * about white-scale: |
1303 | * |
1304 | * Assume: white-Y = 1.0 |
1305 | * Hence: white-scale = 1/white-y |
1306 | * Or: red-Y + green-Y + blue-Y = 1.0 |
1307 | * |
1308 | * Notice the last statement of the assumption gives an equation in three of |
1309 | * the nine values we want to calculate. 8 more equations come from the |
1310 | * above routine as summarised at the top above (the chromaticity |
1311 | * calculation): |
1312 | * |
1313 | * Given: color-x = color-X / (color-X + color-Y + color-Z) |
1314 | * Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0 |
1315 | * |
1316 | * This is 9 simultaneous equations in the 9 variables "color-C" and can be |
1317 | * solved by Cramer's rule. Cramer's rule requires calculating 10 9x9 matrix |
1318 | * determinants, however this is not as bad as it seems because only 28 of |
1319 | * the total of 90 terms in the various matrices are non-zero. Nevertheless |
1320 | * Cramer's rule is notoriously numerically unstable because the determinant |
1321 | * calculation involves the difference of large, but similar, numbers. It is |
1322 | * difficult to be sure that the calculation is stable for real world values |
1323 | * and it is certain that it becomes unstable where the end points are close |
1324 | * together. |
1325 | * |
1326 | * So this code uses the perhaps slightly less optimal but more |
1327 | * understandable and totally obvious approach of calculating color-scale. |
1328 | * |
1329 | * This algorithm depends on the precision in white-scale and that is |
1330 | * (1/white-y), so we can immediately see that as white-y approaches 0 the |
1331 | * accuracy inherent in the cHRM chunk drops off substantially. |
1332 | * |
1333 | * libpng arithmetic: a simple inversion of the above equations |
1334 | * ------------------------------------------------------------ |
1335 | * |
1336 | * white_scale = 1/white-y |
1337 | * white-X = white-x * white-scale |
1338 | * white-Y = 1.0 |
1339 | * white-Z = (1 - white-x - white-y) * white_scale |
1340 | * |
1341 | * white-C = red-C + green-C + blue-C |
1342 | * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale |
1343 | * |
1344 | * This gives us three equations in (red-scale,green-scale,blue-scale) where |
1345 | * all the coefficients are now known: |
1346 | * |
1347 | * red-x*red-scale + green-x*green-scale + blue-x*blue-scale |
1348 | * = white-x/white-y |
1349 | * red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1 |
1350 | * red-z*red-scale + green-z*green-scale + blue-z*blue-scale |
1351 | * = (1 - white-x - white-y)/white-y |
1352 | * |
1353 | * In the last equation color-z is (1 - color-x - color-y) so we can add all |
1354 | * three equations together to get an alternative third: |
1355 | * |
1356 | * red-scale + green-scale + blue-scale = 1/white-y = white-scale |
1357 | * |
1358 | * So now we have a Cramer's rule solution where the determinants are just |
1359 | * 3x3 - far more tractible. Unfortunately 3x3 determinants still involve |
1360 | * multiplication of three coefficients so we can't guarantee to avoid |
1361 | * overflow in the libpng fixed point representation. Using Cramer's rule in |
1362 | * floating point is probably a good choice here, but it's not an option for |
1363 | * fixed point. Instead proceed to simplify the first two equations by |
1364 | * eliminating what is likely to be the largest value, blue-scale: |
1365 | * |
1366 | * blue-scale = white-scale - red-scale - green-scale |
1367 | * |
1368 | * Hence: |
1369 | * |
1370 | * (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale = |
1371 | * (white-x - blue-x)*white-scale |
1372 | * |
1373 | * (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale = |
1374 | * 1 - blue-y*white-scale |
1375 | * |
1376 | * And now we can trivially solve for (red-scale,green-scale): |
1377 | * |
1378 | * green-scale = |
1379 | * (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale |
1380 | * ----------------------------------------------------------- |
1381 | * green-x - blue-x |
1382 | * |
1383 | * red-scale = |
1384 | * 1 - blue-y*white-scale - (green-y - blue-y) * green-scale |
1385 | * --------------------------------------------------------- |
1386 | * red-y - blue-y |
1387 | * |
1388 | * Hence: |
1389 | * |
1390 | * red-scale = |
1391 | * ( (green-x - blue-x) * (white-y - blue-y) - |
1392 | * (green-y - blue-y) * (white-x - blue-x) ) / white-y |
1393 | * ------------------------------------------------------------------------- |
1394 | * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x) |
1395 | * |
1396 | * green-scale = |
1397 | * ( (red-y - blue-y) * (white-x - blue-x) - |
1398 | * (red-x - blue-x) * (white-y - blue-y) ) / white-y |
1399 | * ------------------------------------------------------------------------- |
1400 | * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x) |
1401 | * |
1402 | * Accuracy: |
1403 | * The input values have 5 decimal digits of accuracy. The values are all in |
1404 | * the range 0 < value < 1, so simple products are in the same range but may |
1405 | * need up to 10 decimal digits to preserve the original precision and avoid |
1406 | * underflow. Because we are using a 32-bit signed representation we cannot |
1407 | * match this; the best is a little over 9 decimal digits, less than 10. |
1408 | * |
1409 | * The approach used here is to preserve the maximum precision within the |
1410 | * signed representation. Because the red-scale calculation above uses the |
1411 | * difference between two products of values that must be in the range -1..+1 |
1412 | * it is sufficient to divide the product by 7; ceil(100,000/32767*2). The |
1413 | * factor is irrelevant in the calculation because it is applied to both |
1414 | * numerator and denominator. |
1415 | * |
1416 | * Note that the values of the differences of the products of the |
1417 | * chromaticities in the above equations tend to be small, for example for |
1418 | * the sRGB chromaticities they are: |
1419 | * |
1420 | * red numerator: -0.04751 |
1421 | * green numerator: -0.08788 |
1422 | * denominator: -0.2241 (without white-y multiplication) |
1423 | * |
1424 | * The resultant Y coefficients from the chromaticities of some widely used |
1425 | * color space definitions are (to 15 decimal places): |
1426 | * |
1427 | * sRGB |
1428 | * 0.212639005871510 0.715168678767756 0.072192315360734 |
1429 | * Kodak ProPhoto |
1430 | * 0.288071128229293 0.711843217810102 0.000085653960605 |
1431 | * Adobe RGB |
1432 | * 0.297344975250536 0.627363566255466 0.075291458493998 |
1433 | * Adobe Wide Gamut RGB |
1434 | * 0.258728243040113 0.724682314948566 0.016589442011321 |
1435 | */ |
1436 | /* By the argument, above overflow should be impossible here. The return |
1437 | * value of 2 indicates an internal error to the caller. |
1438 | */ |
1439 | if (png_muldiv(&left, xy->greenx-xy->bluex, xy->redy - xy->bluey, 7) == 0) |
1440 | return 2; |
1441 | if (png_muldiv(&right, xy->greeny-xy->bluey, xy->redx - xy->bluex, 7) == 0) |
1442 | return 2; |
1443 | denominator = left - right; |
1444 | |
1445 | /* Now find the red numerator. */ |
1446 | if (png_muldiv(&left, xy->greenx-xy->bluex, xy->whitey-xy->bluey, 7) == 0) |
1447 | return 2; |
1448 | if (png_muldiv(&right, xy->greeny-xy->bluey, xy->whitex-xy->bluex, 7) == 0) |
1449 | return 2; |
1450 | |
1451 | /* Overflow is possible here and it indicates an extreme set of PNG cHRM |
1452 | * chunk values. This calculation actually returns the reciprocal of the |
1453 | * scale value because this allows us to delay the multiplication of white-y |
1454 | * into the denominator, which tends to produce a small number. |
1455 | */ |
1456 | if (png_muldiv(&red_inverse, xy->whitey, denominator, left-right) == 0 || |
1457 | red_inverse <= xy->whitey /* r+g+b scales = white scale */) |
1458 | return 1; |
1459 | |
1460 | /* Similarly for green_inverse: */ |
1461 | if (png_muldiv(&left, xy->redy-xy->bluey, xy->whitex-xy->bluex, 7) == 0) |
1462 | return 2; |
1463 | if (png_muldiv(&right, xy->redx-xy->bluex, xy->whitey-xy->bluey, 7) == 0) |
1464 | return 2; |
1465 | if (png_muldiv(&green_inverse, xy->whitey, denominator, left-right) == 0 || |
1466 | green_inverse <= xy->whitey) |
1467 | return 1; |
1468 | |
1469 | /* And the blue scale, the checks above guarantee this can't overflow but it |
1470 | * can still produce 0 for extreme cHRM values. |
1471 | */ |
1472 | blue_scale = png_reciprocal(xy->whitey) - png_reciprocal(red_inverse) - |
1473 | png_reciprocal(green_inverse); |
1474 | if (blue_scale <= 0) |
1475 | return 1; |
1476 | |
1477 | |
1478 | /* And fill in the png_XYZ: */ |
1479 | if (png_muldiv(&XYZ->red_X, xy->redx, PNG_FP_1, red_inverse) == 0) |
1480 | return 1; |
1481 | if (png_muldiv(&XYZ->red_Y, xy->redy, PNG_FP_1, red_inverse) == 0) |
1482 | return 1; |
1483 | if (png_muldiv(&XYZ->red_Z, PNG_FP_1 - xy->redx - xy->redy, PNG_FP_1, |
1484 | red_inverse) == 0) |
1485 | return 1; |
1486 | |
1487 | if (png_muldiv(&XYZ->green_X, xy->greenx, PNG_FP_1, green_inverse) == 0) |
1488 | return 1; |
1489 | if (png_muldiv(&XYZ->green_Y, xy->greeny, PNG_FP_1, green_inverse) == 0) |
1490 | return 1; |
1491 | if (png_muldiv(&XYZ->green_Z, PNG_FP_1 - xy->greenx - xy->greeny, PNG_FP_1, |
1492 | green_inverse) == 0) |
1493 | return 1; |
1494 | |
1495 | if (png_muldiv(&XYZ->blue_X, xy->bluex, blue_scale, PNG_FP_1) == 0) |
1496 | return 1; |
1497 | if (png_muldiv(&XYZ->blue_Y, xy->bluey, blue_scale, PNG_FP_1) == 0) |
1498 | return 1; |
1499 | if (png_muldiv(&XYZ->blue_Z, PNG_FP_1 - xy->bluex - xy->bluey, blue_scale, |
1500 | PNG_FP_1) == 0) |
1501 | return 1; |
1502 | |
1503 | return 0; /*success*/ |
1504 | } |
1505 | |
1506 | static int |
1507 | png_XYZ_normalize(png_XYZ *XYZ) |
1508 | { |
1509 | png_int_32 Y; |
1510 | |
1511 | if (XYZ->red_Y < 0 || XYZ->green_Y < 0 || XYZ->blue_Y < 0 || |
1512 | XYZ->red_X < 0 || XYZ->green_X < 0 || XYZ->blue_X < 0 || |
1513 | XYZ->red_Z < 0 || XYZ->green_Z < 0 || XYZ->blue_Z < 0) |
1514 | return 1; |
1515 | |
1516 | /* Normalize by scaling so the sum of the end-point Y values is PNG_FP_1. |
1517 | * IMPLEMENTATION NOTE: ANSI requires signed overflow not to occur, therefore |
1518 | * relying on addition of two positive values producing a negative one is not |
1519 | * safe. |
1520 | */ |
1521 | Y = XYZ->red_Y; |
1522 | if (0x7fffffff - Y < XYZ->green_X) |
1523 | return 1; |
1524 | Y += XYZ->green_Y; |
1525 | if (0x7fffffff - Y < XYZ->blue_X) |
1526 | return 1; |
1527 | Y += XYZ->blue_Y; |
1528 | |
1529 | if (Y != PNG_FP_1) |
1530 | { |
1531 | if (png_muldiv(&XYZ->red_X, XYZ->red_X, PNG_FP_1, Y) == 0) |
1532 | return 1; |
1533 | if (png_muldiv(&XYZ->red_Y, XYZ->red_Y, PNG_FP_1, Y) == 0) |
1534 | return 1; |
1535 | if (png_muldiv(&XYZ->red_Z, XYZ->red_Z, PNG_FP_1, Y) == 0) |
1536 | return 1; |
1537 | |
1538 | if (png_muldiv(&XYZ->green_X, XYZ->green_X, PNG_FP_1, Y) == 0) |
1539 | return 1; |
1540 | if (png_muldiv(&XYZ->green_Y, XYZ->green_Y, PNG_FP_1, Y) == 0) |
1541 | return 1; |
1542 | if (png_muldiv(&XYZ->green_Z, XYZ->green_Z, PNG_FP_1, Y) == 0) |
1543 | return 1; |
1544 | |
1545 | if (png_muldiv(&XYZ->blue_X, XYZ->blue_X, PNG_FP_1, Y) == 0) |
1546 | return 1; |
1547 | if (png_muldiv(&XYZ->blue_Y, XYZ->blue_Y, PNG_FP_1, Y) == 0) |
1548 | return 1; |
1549 | if (png_muldiv(&XYZ->blue_Z, XYZ->blue_Z, PNG_FP_1, Y) == 0) |
1550 | return 1; |
1551 | } |
1552 | |
1553 | return 0; |
1554 | } |
1555 | |
1556 | static int |
1557 | png_colorspace_endpoints_match(const png_xy *xy1, const png_xy *xy2, int delta) |
1558 | { |
1559 | /* Allow an error of +/-0.01 (absolute value) on each chromaticity */ |
1560 | if (PNG_OUT_OF_RANGE(xy1->whitex, xy2->whitex,delta) || |
1561 | PNG_OUT_OF_RANGE(xy1->whitey, xy2->whitey,delta) || |
1562 | PNG_OUT_OF_RANGE(xy1->redx, xy2->redx, delta) || |
1563 | PNG_OUT_OF_RANGE(xy1->redy, xy2->redy, delta) || |
1564 | PNG_OUT_OF_RANGE(xy1->greenx, xy2->greenx,delta) || |
1565 | PNG_OUT_OF_RANGE(xy1->greeny, xy2->greeny,delta) || |
1566 | PNG_OUT_OF_RANGE(xy1->bluex, xy2->bluex, delta) || |
1567 | PNG_OUT_OF_RANGE(xy1->bluey, xy2->bluey, delta)) |
1568 | return 0; |
1569 | return 1; |
1570 | } |
1571 | |
1572 | /* Added in libpng-1.6.0, a different check for the validity of a set of cHRM |
1573 | * chunk chromaticities. Earlier checks used to simply look for the overflow |
1574 | * condition (where the determinant of the matrix to solve for XYZ ends up zero |
1575 | * because the chromaticity values are not all distinct.) Despite this it is |
1576 | * theoretically possible to produce chromaticities that are apparently valid |
1577 | * but that rapidly degrade to invalid, potentially crashing, sets because of |
1578 | * arithmetic inaccuracies when calculations are performed on them. The new |
1579 | * check is to round-trip xy -> XYZ -> xy and then check that the result is |
1580 | * within a small percentage of the original. |
1581 | */ |
1582 | static int |
1583 | png_colorspace_check_xy(png_XYZ *XYZ, const png_xy *xy) |
1584 | { |
1585 | int result; |
1586 | png_xy xy_test; |
1587 | |
1588 | /* As a side-effect this routine also returns the XYZ endpoints. */ |
1589 | result = png_XYZ_from_xy(XYZ, xy); |
1590 | if (result != 0) |
1591 | return result; |
1592 | |
1593 | result = png_xy_from_XYZ(&xy_test, XYZ); |
1594 | if (result != 0) |
1595 | return result; |
1596 | |
1597 | if (png_colorspace_endpoints_match(xy, &xy_test, |
1598 | 5/*actually, the math is pretty accurate*/) != 0) |
1599 | return 0; |
1600 | |
1601 | /* Too much slip */ |
1602 | return 1; |
1603 | } |
1604 | |
1605 | /* This is the check going the other way. The XYZ is modified to normalize it |
1606 | * (another side-effect) and the xy chromaticities are returned. |
1607 | */ |
1608 | static int |
1609 | png_colorspace_check_XYZ(png_xy *xy, png_XYZ *XYZ) |
1610 | { |
1611 | int result; |
1612 | png_XYZ XYZtemp; |
1613 | |
1614 | result = png_XYZ_normalize(XYZ); |
1615 | if (result != 0) |
1616 | return result; |
1617 | |
1618 | result = png_xy_from_XYZ(xy, XYZ); |
1619 | if (result != 0) |
1620 | return result; |
1621 | |
1622 | XYZtemp = *XYZ; |
1623 | return png_colorspace_check_xy(&XYZtemp, xy); |
1624 | } |
1625 | |
1626 | /* Used to check for an endpoint match against sRGB */ |
1627 | static const png_xy sRGB_xy = /* From ITU-R BT.709-3 */ |
1628 | { |
1629 | /* color x y */ |
1630 | /* red */ 64000, 33000, |
1631 | /* green */ 30000, 60000, |
1632 | /* blue */ 15000, 6000, |
1633 | /* white */ 31270, 32900 |
1634 | }; |
1635 | |
1636 | static int |
1637 | png_colorspace_set_xy_and_XYZ(png_const_structrp png_ptr, |
1638 | png_colorspacerp colorspace, const png_xy *xy, const png_XYZ *XYZ, |
1639 | int preferred) |
1640 | { |
1641 | if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0) |
1642 | return 0; |
1643 | |
1644 | /* The consistency check is performed on the chromaticities; this factors out |
1645 | * variations because of the normalization (or not) of the end point Y |
1646 | * values. |
1647 | */ |
1648 | if (preferred < 2 && |
1649 | (colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0) |
1650 | { |
1651 | /* The end points must be reasonably close to any we already have. The |
1652 | * following allows an error of up to +/-.001 |
1653 | */ |
1654 | if (png_colorspace_endpoints_match(xy, &colorspace->end_points_xy, |
1655 | 100) == 0) |
1656 | { |
1657 | colorspace->flags |= PNG_COLORSPACE_INVALID; |
1658 | png_benign_error(png_ptr, "inconsistent chromaticities" ); |
1659 | return 0; /* failed */ |
1660 | } |
1661 | |
1662 | /* Only overwrite with preferred values */ |
1663 | if (preferred == 0) |
1664 | return 1; /* ok, but no change */ |
1665 | } |
1666 | |
1667 | colorspace->end_points_xy = *xy; |
1668 | colorspace->end_points_XYZ = *XYZ; |
1669 | colorspace->flags |= PNG_COLORSPACE_HAVE_ENDPOINTS; |
1670 | |
1671 | /* The end points are normally quoted to two decimal digits, so allow +/-0.01 |
1672 | * on this test. |
1673 | */ |
1674 | if (png_colorspace_endpoints_match(xy, &sRGB_xy, 1000) != 0) |
1675 | colorspace->flags |= PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB; |
1676 | |
1677 | else |
1678 | colorspace->flags &= PNG_COLORSPACE_CANCEL( |
1679 | PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB); |
1680 | |
1681 | return 2; /* ok and changed */ |
1682 | } |
1683 | |
1684 | int /* PRIVATE */ |
1685 | png_colorspace_set_chromaticities(png_const_structrp png_ptr, |
1686 | png_colorspacerp colorspace, const png_xy *xy, int preferred) |
1687 | { |
1688 | /* We must check the end points to ensure they are reasonable - in the past |
1689 | * color management systems have crashed as a result of getting bogus |
1690 | * colorant values, while this isn't the fault of libpng it is the |
1691 | * responsibility of libpng because PNG carries the bomb and libpng is in a |
1692 | * position to protect against it. |
1693 | */ |
1694 | png_XYZ XYZ; |
1695 | |
1696 | switch (png_colorspace_check_xy(&XYZ, xy)) |
1697 | { |
1698 | case 0: /* success */ |
1699 | return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, xy, &XYZ, |
1700 | preferred); |
1701 | |
1702 | case 1: |
1703 | /* We can't invert the chromaticities so we can't produce value XYZ |
1704 | * values. Likely as not a color management system will fail too. |
1705 | */ |
1706 | colorspace->flags |= PNG_COLORSPACE_INVALID; |
1707 | png_benign_error(png_ptr, "invalid chromaticities" ); |
1708 | break; |
1709 | |
1710 | default: |
1711 | /* libpng is broken; this should be a warning but if it happens we |
1712 | * want error reports so for the moment it is an error. |
1713 | */ |
1714 | colorspace->flags |= PNG_COLORSPACE_INVALID; |
1715 | png_error(png_ptr, "internal error checking chromaticities" ); |
1716 | } |
1717 | |
1718 | return 0; /* failed */ |
1719 | } |
1720 | |
1721 | int /* PRIVATE */ |
1722 | png_colorspace_set_endpoints(png_const_structrp png_ptr, |
1723 | png_colorspacerp colorspace, const png_XYZ *XYZ_in, int preferred) |
1724 | { |
1725 | png_XYZ XYZ = *XYZ_in; |
1726 | png_xy xy; |
1727 | |
1728 | switch (png_colorspace_check_XYZ(&xy, &XYZ)) |
1729 | { |
1730 | case 0: |
1731 | return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, &xy, &XYZ, |
1732 | preferred); |
1733 | |
1734 | case 1: |
1735 | /* End points are invalid. */ |
1736 | colorspace->flags |= PNG_COLORSPACE_INVALID; |
1737 | png_benign_error(png_ptr, "invalid end points" ); |
1738 | break; |
1739 | |
1740 | default: |
1741 | colorspace->flags |= PNG_COLORSPACE_INVALID; |
1742 | png_error(png_ptr, "internal error checking chromaticities" ); |
1743 | } |
1744 | |
1745 | return 0; /* failed */ |
1746 | } |
1747 | |
1748 | #if defined(PNG_sRGB_SUPPORTED) || defined(PNG_iCCP_SUPPORTED) |
1749 | /* Error message generation */ |
1750 | static char |
1751 | png_icc_tag_char(png_uint_32 byte) |
1752 | { |
1753 | byte &= 0xff; |
1754 | if (byte >= 32 && byte <= 126) |
1755 | return (char)byte; |
1756 | else |
1757 | return '?'; |
1758 | } |
1759 | |
1760 | static void |
1761 | png_icc_tag_name(char *name, png_uint_32 tag) |
1762 | { |
1763 | name[0] = '\''; |
1764 | name[1] = png_icc_tag_char(tag >> 24); |
1765 | name[2] = png_icc_tag_char(tag >> 16); |
1766 | name[3] = png_icc_tag_char(tag >> 8); |
1767 | name[4] = png_icc_tag_char(tag ); |
1768 | name[5] = '\''; |
1769 | } |
1770 | |
1771 | static int |
1772 | is_ICC_signature_char(png_alloc_size_t it) |
1773 | { |
1774 | return it == 32 || (it >= 48 && it <= 57) || (it >= 65 && it <= 90) || |
1775 | (it >= 97 && it <= 122); |
1776 | } |
1777 | |
1778 | static int |
1779 | is_ICC_signature(png_alloc_size_t it) |
1780 | { |
1781 | return is_ICC_signature_char(it >> 24) /* checks all the top bits */ && |
1782 | is_ICC_signature_char((it >> 16) & 0xff) && |
1783 | is_ICC_signature_char((it >> 8) & 0xff) && |
1784 | is_ICC_signature_char(it & 0xff); |
1785 | } |
1786 | |
1787 | static int |
1788 | png_icc_profile_error(png_const_structrp png_ptr, png_colorspacerp colorspace, |
1789 | png_const_charp name, png_alloc_size_t value, png_const_charp reason) |
1790 | { |
1791 | size_t pos; |
1792 | char message[196]; /* see below for calculation */ |
1793 | |
1794 | if (colorspace != NULL) |
1795 | colorspace->flags |= PNG_COLORSPACE_INVALID; |
1796 | |
1797 | pos = png_safecat(message, (sizeof message), 0, "profile '" ); /* 9 chars */ |
1798 | pos = png_safecat(message, pos+79, pos, name); /* Truncate to 79 chars */ |
1799 | pos = png_safecat(message, (sizeof message), pos, "': " ); /* +2 = 90 */ |
1800 | if (is_ICC_signature(value) != 0) |
1801 | { |
1802 | /* So 'value' is at most 4 bytes and the following cast is safe */ |
1803 | png_icc_tag_name(message+pos, (png_uint_32)value); |
1804 | pos += 6; /* total +8; less than the else clause */ |
1805 | message[pos++] = ':'; |
1806 | message[pos++] = ' '; |
1807 | } |
1808 | # ifdef PNG_WARNINGS_SUPPORTED |
1809 | else |
1810 | { |
1811 | char number[PNG_NUMBER_BUFFER_SIZE]; /* +24 = 114*/ |
1812 | |
1813 | pos = png_safecat(message, (sizeof message), pos, |
1814 | png_format_number(number, number+(sizeof number), |
1815 | PNG_NUMBER_FORMAT_x, value)); |
1816 | pos = png_safecat(message, (sizeof message), pos, "h: " ); /*+2 = 116*/ |
1817 | } |
1818 | # endif |
1819 | /* The 'reason' is an arbitrary message, allow +79 maximum 195 */ |
1820 | pos = png_safecat(message, (sizeof message), pos, reason); |
1821 | PNG_UNUSED(pos) |
1822 | |
1823 | /* This is recoverable, but make it unconditionally an app_error on write to |
1824 | * avoid writing invalid ICC profiles into PNG files (i.e., we handle them |
1825 | * on read, with a warning, but on write unless the app turns off |
1826 | * application errors the PNG won't be written.) |
1827 | */ |
1828 | png_chunk_report(png_ptr, message, |
1829 | (colorspace != NULL) ? PNG_CHUNK_ERROR : PNG_CHUNK_WRITE_ERROR); |
1830 | |
1831 | return 0; |
1832 | } |
1833 | #endif /* sRGB || iCCP */ |
1834 | |
1835 | #ifdef PNG_sRGB_SUPPORTED |
1836 | int /* PRIVATE */ |
1837 | png_colorspace_set_sRGB(png_const_structrp png_ptr, png_colorspacerp colorspace, |
1838 | int intent) |
1839 | { |
1840 | /* sRGB sets known gamma, end points and (from the chunk) intent. */ |
1841 | /* IMPORTANT: these are not necessarily the values found in an ICC profile |
1842 | * because ICC profiles store values adapted to a D50 environment; it is |
1843 | * expected that the ICC profile mediaWhitePointTag will be D50; see the |
1844 | * checks and code elsewhere to understand this better. |
1845 | * |
1846 | * These XYZ values, which are accurate to 5dp, produce rgb to gray |
1847 | * coefficients of (6968,23435,2366), which are reduced (because they add up |
1848 | * to 32769 not 32768) to (6968,23434,2366). These are the values that |
1849 | * libpng has traditionally used (and are the best values given the 15bit |
1850 | * algorithm used by the rgb to gray code.) |
1851 | */ |
1852 | static const png_XYZ sRGB_XYZ = /* D65 XYZ (*not* the D50 adapted values!) */ |
1853 | { |
1854 | /* color X Y Z */ |
1855 | /* red */ 41239, 21264, 1933, |
1856 | /* green */ 35758, 71517, 11919, |
1857 | /* blue */ 18048, 7219, 95053 |
1858 | }; |
1859 | |
1860 | /* Do nothing if the colorspace is already invalidated. */ |
1861 | if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0) |
1862 | return 0; |
1863 | |
1864 | /* Check the intent, then check for existing settings. It is valid for the |
1865 | * PNG file to have cHRM or gAMA chunks along with sRGB, but the values must |
1866 | * be consistent with the correct values. If, however, this function is |
1867 | * called below because an iCCP chunk matches sRGB then it is quite |
1868 | * conceivable that an older app recorded incorrect gAMA and cHRM because of |
1869 | * an incorrect calculation based on the values in the profile - this does |
1870 | * *not* invalidate the profile (though it still produces an error, which can |
1871 | * be ignored.) |
1872 | */ |
1873 | if (intent < 0 || intent >= PNG_sRGB_INTENT_LAST) |
1874 | return png_icc_profile_error(png_ptr, colorspace, "sRGB" , |
1875 | (unsigned)intent, "invalid sRGB rendering intent" ); |
1876 | |
1877 | if ((colorspace->flags & PNG_COLORSPACE_HAVE_INTENT) != 0 && |
1878 | colorspace->rendering_intent != intent) |
1879 | return png_icc_profile_error(png_ptr, colorspace, "sRGB" , |
1880 | (unsigned)intent, "inconsistent rendering intents" ); |
1881 | |
1882 | if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0) |
1883 | { |
1884 | png_benign_error(png_ptr, "duplicate sRGB information ignored" ); |
1885 | return 0; |
1886 | } |
1887 | |
1888 | /* If the standard sRGB cHRM chunk does not match the one from the PNG file |
1889 | * warn but overwrite the value with the correct one. |
1890 | */ |
1891 | if ((colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0 && |
1892 | !png_colorspace_endpoints_match(&sRGB_xy, &colorspace->end_points_xy, |
1893 | 100)) |
1894 | png_chunk_report(png_ptr, "cHRM chunk does not match sRGB" , |
1895 | PNG_CHUNK_ERROR); |
1896 | |
1897 | /* This check is just done for the error reporting - the routine always |
1898 | * returns true when the 'from' argument corresponds to sRGB (2). |
1899 | */ |
1900 | (void)png_colorspace_check_gamma(png_ptr, colorspace, PNG_GAMMA_sRGB_INVERSE, |
1901 | 2/*from sRGB*/); |
1902 | |
1903 | /* intent: bugs in GCC force 'int' to be used as the parameter type. */ |
1904 | colorspace->rendering_intent = (png_uint_16)intent; |
1905 | colorspace->flags |= PNG_COLORSPACE_HAVE_INTENT; |
1906 | |
1907 | /* endpoints */ |
1908 | colorspace->end_points_xy = sRGB_xy; |
1909 | colorspace->end_points_XYZ = sRGB_XYZ; |
1910 | colorspace->flags |= |
1911 | (PNG_COLORSPACE_HAVE_ENDPOINTS|PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB); |
1912 | |
1913 | /* gamma */ |
1914 | colorspace->gamma = PNG_GAMMA_sRGB_INVERSE; |
1915 | colorspace->flags |= PNG_COLORSPACE_HAVE_GAMMA; |
1916 | |
1917 | /* Finally record that we have an sRGB profile */ |
1918 | colorspace->flags |= |
1919 | (PNG_COLORSPACE_MATCHES_sRGB|PNG_COLORSPACE_FROM_sRGB); |
1920 | |
1921 | return 1; /* set */ |
1922 | } |
1923 | #endif /* sRGB */ |
1924 | |
1925 | #ifdef PNG_iCCP_SUPPORTED |
1926 | /* Encoded value of D50 as an ICC XYZNumber. From the ICC 2010 spec the value |
1927 | * is XYZ(0.9642,1.0,0.8249), which scales to: |
1928 | * |
1929 | * (63189.8112, 65536, 54060.6464) |
1930 | */ |
1931 | static const png_byte D50_nCIEXYZ[12] = |
1932 | { 0x00, 0x00, 0xf6, 0xd6, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0xd3, 0x2d }; |
1933 | |
1934 | int /* PRIVATE */ |
1935 | png_icc_check_length(png_const_structrp png_ptr, png_colorspacerp colorspace, |
1936 | png_const_charp name, png_uint_32 profile_length) |
1937 | { |
1938 | if (profile_length < 132) |
1939 | return png_icc_profile_error(png_ptr, colorspace, name, profile_length, |
1940 | "too short" ); |
1941 | |
1942 | return 1; |
1943 | } |
1944 | |
1945 | int /* PRIVATE */ |
1946 | png_icc_check_header(png_const_structrp png_ptr, png_colorspacerp colorspace, |
1947 | png_const_charp name, png_uint_32 profile_length, |
1948 | png_const_bytep profile/* first 132 bytes only */, int color_type) |
1949 | { |
1950 | png_uint_32 temp; |
1951 | |
1952 | /* Length check; this cannot be ignored in this code because profile_length |
1953 | * is used later to check the tag table, so even if the profile seems over |
1954 | * long profile_length from the caller must be correct. The caller can fix |
1955 | * this up on read or write by just passing in the profile header length. |
1956 | */ |
1957 | temp = png_get_uint_32(profile); |
1958 | if (temp != profile_length) |
1959 | return png_icc_profile_error(png_ptr, colorspace, name, temp, |
1960 | "length does not match profile" ); |
1961 | |
1962 | temp = (png_uint_32) (*(profile+8)); |
1963 | if (temp > 3 && (profile_length & 3)) |
1964 | return png_icc_profile_error(png_ptr, colorspace, name, profile_length, |
1965 | "invalid length" ); |
1966 | |
1967 | temp = png_get_uint_32(profile+128); /* tag count: 12 bytes/tag */ |
1968 | if (temp > 357913930 || /* (2^32-4-132)/12: maximum possible tag count */ |
1969 | profile_length < 132+12*temp) /* truncated tag table */ |
1970 | return png_icc_profile_error(png_ptr, colorspace, name, temp, |
1971 | "tag count too large" ); |
1972 | |
1973 | /* The 'intent' must be valid or we can't store it, ICC limits the intent to |
1974 | * 16 bits. |
1975 | */ |
1976 | temp = png_get_uint_32(profile+64); |
1977 | if (temp >= 0xffff) /* The ICC limit */ |
1978 | return png_icc_profile_error(png_ptr, colorspace, name, temp, |
1979 | "invalid rendering intent" ); |
1980 | |
1981 | /* This is just a warning because the profile may be valid in future |
1982 | * versions. |
1983 | */ |
1984 | if (temp >= PNG_sRGB_INTENT_LAST) |
1985 | (void)png_icc_profile_error(png_ptr, NULL, name, temp, |
1986 | "intent outside defined range" ); |
1987 | |
1988 | /* At this point the tag table can't be checked because it hasn't necessarily |
1989 | * been loaded; however, various header fields can be checked. These checks |
1990 | * are for values permitted by the PNG spec in an ICC profile; the PNG spec |
1991 | * restricts the profiles that can be passed in an iCCP chunk (they must be |
1992 | * appropriate to processing PNG data!) |
1993 | */ |
1994 | |
1995 | /* Data checks (could be skipped). These checks must be independent of the |
1996 | * version number; however, the version number doesn't accomodate changes in |
1997 | * the header fields (just the known tags and the interpretation of the |
1998 | * data.) |
1999 | */ |
2000 | temp = png_get_uint_32(profile+36); /* signature 'ascp' */ |
2001 | if (temp != 0x61637370) |
2002 | return png_icc_profile_error(png_ptr, colorspace, name, temp, |
2003 | "invalid signature" ); |
2004 | |
2005 | /* Currently the PCS illuminant/adopted white point (the computational |
2006 | * white point) are required to be D50, |
2007 | * however the profile contains a record of the illuminant so perhaps ICC |
2008 | * expects to be able to change this in the future (despite the rationale in |
2009 | * the introduction for using a fixed PCS adopted white.) Consequently the |
2010 | * following is just a warning. |
2011 | */ |
2012 | if (memcmp(profile+68, D50_nCIEXYZ, 12) != 0) |
2013 | (void)png_icc_profile_error(png_ptr, NULL, name, 0/*no tag value*/, |
2014 | "PCS illuminant is not D50" ); |
2015 | |
2016 | /* The PNG spec requires this: |
2017 | * "If the iCCP chunk is present, the image samples conform to the colour |
2018 | * space represented by the embedded ICC profile as defined by the |
2019 | * International Color Consortium [ICC]. The colour space of the ICC profile |
2020 | * shall be an RGB colour space for colour images (PNG colour types 2, 3, and |
2021 | * 6), or a greyscale colour space for greyscale images (PNG colour types 0 |
2022 | * and 4)." |
2023 | * |
2024 | * This checking code ensures the embedded profile (on either read or write) |
2025 | * conforms to the specification requirements. Notice that an ICC 'gray' |
2026 | * color-space profile contains the information to transform the monochrome |
2027 | * data to XYZ or L*a*b (according to which PCS the profile uses) and this |
2028 | * should be used in preference to the standard libpng K channel replication |
2029 | * into R, G and B channels. |
2030 | * |
2031 | * Previously it was suggested that an RGB profile on grayscale data could be |
2032 | * handled. However it it is clear that using an RGB profile in this context |
2033 | * must be an error - there is no specification of what it means. Thus it is |
2034 | * almost certainly more correct to ignore the profile. |
2035 | */ |
2036 | temp = png_get_uint_32(profile+16); /* data colour space field */ |
2037 | switch (temp) |
2038 | { |
2039 | case 0x52474220: /* 'RGB ' */ |
2040 | if ((color_type & PNG_COLOR_MASK_COLOR) == 0) |
2041 | return png_icc_profile_error(png_ptr, colorspace, name, temp, |
2042 | "RGB color space not permitted on grayscale PNG" ); |
2043 | break; |
2044 | |
2045 | case 0x47524159: /* 'GRAY' */ |
2046 | if ((color_type & PNG_COLOR_MASK_COLOR) != 0) |
2047 | return png_icc_profile_error(png_ptr, colorspace, name, temp, |
2048 | "Gray color space not permitted on RGB PNG" ); |
2049 | break; |
2050 | |
2051 | default: |
2052 | return png_icc_profile_error(png_ptr, colorspace, name, temp, |
2053 | "invalid ICC profile color space" ); |
2054 | } |
2055 | |
2056 | /* It is up to the application to check that the profile class matches the |
2057 | * application requirements; the spec provides no guidance, but it's pretty |
2058 | * weird if the profile is not scanner ('scnr'), monitor ('mntr'), printer |
2059 | * ('prtr') or 'spac' (for generic color spaces). Issue a warning in these |
2060 | * cases. Issue an error for device link or abstract profiles - these don't |
2061 | * contain the records necessary to transform the color-space to anything |
2062 | * other than the target device (and not even that for an abstract profile). |
2063 | * Profiles of these classes may not be embedded in images. |
2064 | */ |
2065 | temp = png_get_uint_32(profile+12); /* profile/device class */ |
2066 | switch (temp) |
2067 | { |
2068 | case 0x73636e72: /* 'scnr' */ |
2069 | case 0x6d6e7472: /* 'mntr' */ |
2070 | case 0x70727472: /* 'prtr' */ |
2071 | case 0x73706163: /* 'spac' */ |
2072 | /* All supported */ |
2073 | break; |
2074 | |
2075 | case 0x61627374: /* 'abst' */ |
2076 | /* May not be embedded in an image */ |
2077 | return png_icc_profile_error(png_ptr, colorspace, name, temp, |
2078 | "invalid embedded Abstract ICC profile" ); |
2079 | |
2080 | case 0x6c696e6b: /* 'link' */ |
2081 | /* DeviceLink profiles cannot be interpreted in a non-device specific |
2082 | * fashion, if an app uses the AToB0Tag in the profile the results are |
2083 | * undefined unless the result is sent to the intended device, |
2084 | * therefore a DeviceLink profile should not be found embedded in a |
2085 | * PNG. |
2086 | */ |
2087 | return png_icc_profile_error(png_ptr, colorspace, name, temp, |
2088 | "unexpected DeviceLink ICC profile class" ); |
2089 | |
2090 | case 0x6e6d636c: /* 'nmcl' */ |
2091 | /* A NamedColor profile is also device specific, however it doesn't |
2092 | * contain an AToB0 tag that is open to misinterpretation. Almost |
2093 | * certainly it will fail the tests below. |
2094 | */ |
2095 | (void)png_icc_profile_error(png_ptr, NULL, name, temp, |
2096 | "unexpected NamedColor ICC profile class" ); |
2097 | break; |
2098 | |
2099 | default: |
2100 | /* To allow for future enhancements to the profile accept unrecognized |
2101 | * profile classes with a warning, these then hit the test below on the |
2102 | * tag content to ensure they are backward compatible with one of the |
2103 | * understood profiles. |
2104 | */ |
2105 | (void)png_icc_profile_error(png_ptr, NULL, name, temp, |
2106 | "unrecognized ICC profile class" ); |
2107 | break; |
2108 | } |
2109 | |
2110 | /* For any profile other than a device link one the PCS must be encoded |
2111 | * either in XYZ or Lab. |
2112 | */ |
2113 | temp = png_get_uint_32(profile+20); |
2114 | switch (temp) |
2115 | { |
2116 | case 0x58595a20: /* 'XYZ ' */ |
2117 | case 0x4c616220: /* 'Lab ' */ |
2118 | break; |
2119 | |
2120 | default: |
2121 | return png_icc_profile_error(png_ptr, colorspace, name, temp, |
2122 | "unexpected ICC PCS encoding" ); |
2123 | } |
2124 | |
2125 | return 1; |
2126 | } |
2127 | |
2128 | int /* PRIVATE */ |
2129 | png_icc_check_tag_table(png_const_structrp png_ptr, png_colorspacerp colorspace, |
2130 | png_const_charp name, png_uint_32 profile_length, |
2131 | png_const_bytep profile /* header plus whole tag table */) |
2132 | { |
2133 | png_uint_32 tag_count = png_get_uint_32(profile+128); |
2134 | png_uint_32 itag; |
2135 | png_const_bytep tag = profile+132; /* The first tag */ |
2136 | |
2137 | /* First scan all the tags in the table and add bits to the icc_info value |
2138 | * (temporarily in 'tags'). |
2139 | */ |
2140 | for (itag=0; itag < tag_count; ++itag, tag += 12) |
2141 | { |
2142 | png_uint_32 tag_id = png_get_uint_32(tag+0); |
2143 | png_uint_32 tag_start = png_get_uint_32(tag+4); /* must be aligned */ |
2144 | png_uint_32 tag_length = png_get_uint_32(tag+8);/* not padded */ |
2145 | |
2146 | /* The ICC specification does not exclude zero length tags, therefore the |
2147 | * start might actually be anywhere if there is no data, but this would be |
2148 | * a clear abuse of the intent of the standard so the start is checked for |
2149 | * being in range. All defined tag types have an 8 byte header - a 4 byte |
2150 | * type signature then 0. |
2151 | */ |
2152 | if ((tag_start & 3) != 0) |
2153 | { |
2154 | /* CNHP730S.icc shipped with Microsoft Windows 64 violates this, it is |
2155 | * only a warning here because libpng does not care about the |
2156 | * alignment. |
2157 | */ |
2158 | (void)png_icc_profile_error(png_ptr, NULL, name, tag_id, |
2159 | "ICC profile tag start not a multiple of 4" ); |
2160 | } |
2161 | |
2162 | /* This is a hard error; potentially it can cause read outside the |
2163 | * profile. |
2164 | */ |
2165 | if (tag_start > profile_length || tag_length > profile_length - tag_start) |
2166 | return png_icc_profile_error(png_ptr, colorspace, name, tag_id, |
2167 | "ICC profile tag outside profile" ); |
2168 | } |
2169 | |
2170 | return 1; /* success, maybe with warnings */ |
2171 | } |
2172 | |
2173 | #ifdef PNG_sRGB_SUPPORTED |
2174 | #if PNG_sRGB_PROFILE_CHECKS >= 0 |
2175 | /* Information about the known ICC sRGB profiles */ |
2176 | static const struct |
2177 | { |
2178 | png_uint_32 adler, crc, length; |
2179 | png_uint_32 md5[4]; |
2180 | png_byte have_md5; |
2181 | png_byte is_broken; |
2182 | png_uint_16 intent; |
2183 | |
2184 | # define PNG_MD5(a,b,c,d) { a, b, c, d }, (a!=0)||(b!=0)||(c!=0)||(d!=0) |
2185 | # define PNG_ICC_CHECKSUM(adler, crc, md5, intent, broke, date, length, fname)\ |
2186 | { adler, crc, length, md5, broke, intent }, |
2187 | |
2188 | } png_sRGB_checks[] = |
2189 | { |
2190 | /* This data comes from contrib/tools/checksum-icc run on downloads of |
2191 | * all four ICC sRGB profiles from www.color.org. |
2192 | */ |
2193 | /* adler32, crc32, MD5[4], intent, date, length, file-name */ |
2194 | PNG_ICC_CHECKSUM(0x0a3fd9f6, 0x3b8772b9, |
2195 | PNG_MD5(0x29f83dde, 0xaff255ae, 0x7842fae4, 0xca83390d), 0, 0, |
2196 | "2009/03/27 21:36:31" , 3048, "sRGB_IEC61966-2-1_black_scaled.icc" ) |
2197 | |
2198 | /* ICC sRGB v2 perceptual no black-compensation: */ |
2199 | PNG_ICC_CHECKSUM(0x4909e5e1, 0x427ebb21, |
2200 | PNG_MD5(0xc95bd637, 0xe95d8a3b, 0x0df38f99, 0xc1320389), 1, 0, |
2201 | "2009/03/27 21:37:45" , 3052, "sRGB_IEC61966-2-1_no_black_scaling.icc" ) |
2202 | |
2203 | PNG_ICC_CHECKSUM(0xfd2144a1, 0x306fd8ae, |
2204 | PNG_MD5(0xfc663378, 0x37e2886b, 0xfd72e983, 0x8228f1b8), 0, 0, |
2205 | "2009/08/10 17:28:01" , 60988, "sRGB_v4_ICC_preference_displayclass.icc" ) |
2206 | |
2207 | /* ICC sRGB v4 perceptual */ |
2208 | PNG_ICC_CHECKSUM(0x209c35d2, 0xbbef7812, |
2209 | PNG_MD5(0x34562abf, 0x994ccd06, 0x6d2c5721, 0xd0d68c5d), 0, 0, |
2210 | "2007/07/25 00:05:37" , 60960, "sRGB_v4_ICC_preference.icc" ) |
2211 | |
2212 | /* The following profiles have no known MD5 checksum. If there is a match |
2213 | * on the (empty) MD5 the other fields are used to attempt a match and |
2214 | * a warning is produced. The first two of these profiles have a 'cprt' tag |
2215 | * which suggests that they were also made by Hewlett Packard. |
2216 | */ |
2217 | PNG_ICC_CHECKSUM(0xa054d762, 0x5d5129ce, |
2218 | PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 0, |
2219 | "2004/07/21 18:57:42" , 3024, "sRGB_IEC61966-2-1_noBPC.icc" ) |
2220 | |
2221 | /* This is a 'mntr' (display) profile with a mediaWhitePointTag that does not |
2222 | * match the D50 PCS illuminant in the header (it is in fact the D65 values, |
2223 | * so the white point is recorded as the un-adapted value.) The profiles |
2224 | * below only differ in one byte - the intent - and are basically the same as |
2225 | * the previous profile except for the mediaWhitePointTag error and a missing |
2226 | * chromaticAdaptationTag. |
2227 | */ |
2228 | PNG_ICC_CHECKSUM(0xf784f3fb, 0x182ea552, |
2229 | PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 0, 1/*broken*/, |
2230 | "1998/02/09 06:49:00" , 3144, "HP-Microsoft sRGB v2 perceptual" ) |
2231 | |
2232 | PNG_ICC_CHECKSUM(0x0398f3fc, 0xf29e526d, |
2233 | PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 1/*broken*/, |
2234 | "1998/02/09 06:49:00" , 3144, "HP-Microsoft sRGB v2 media-relative" ) |
2235 | }; |
2236 | |
2237 | static int |
2238 | png_compare_ICC_profile_with_sRGB(png_const_structrp png_ptr, |
2239 | png_const_bytep profile, uLong adler) |
2240 | { |
2241 | /* The quick check is to verify just the MD5 signature and trust the |
2242 | * rest of the data. Because the profile has already been verified for |
2243 | * correctness this is safe. png_colorspace_set_sRGB will check the 'intent' |
2244 | * field too, so if the profile has been edited with an intent not defined |
2245 | * by sRGB (but maybe defined by a later ICC specification) the read of |
2246 | * the profile will fail at that point. |
2247 | */ |
2248 | |
2249 | png_uint_32 length = 0; |
2250 | png_uint_32 intent = 0x10000; /* invalid */ |
2251 | #if PNG_sRGB_PROFILE_CHECKS > 1 |
2252 | uLong crc = 0; /* the value for 0 length data */ |
2253 | #endif |
2254 | unsigned int i; |
2255 | |
2256 | #ifdef PNG_SET_OPTION_SUPPORTED |
2257 | /* First see if PNG_SKIP_sRGB_CHECK_PROFILE has been set to "on" */ |
2258 | if (((png_ptr->options >> PNG_SKIP_sRGB_CHECK_PROFILE) & 3) == |
2259 | PNG_OPTION_ON) |
2260 | return 0; |
2261 | #endif |
2262 | |
2263 | for (i=0; i < (sizeof png_sRGB_checks) / (sizeof png_sRGB_checks[0]); ++i) |
2264 | { |
2265 | if (png_get_uint_32(profile+84) == png_sRGB_checks[i].md5[0] && |
2266 | png_get_uint_32(profile+88) == png_sRGB_checks[i].md5[1] && |
2267 | png_get_uint_32(profile+92) == png_sRGB_checks[i].md5[2] && |
2268 | png_get_uint_32(profile+96) == png_sRGB_checks[i].md5[3]) |
2269 | { |
2270 | /* This may be one of the old HP profiles without an MD5, in that |
2271 | * case we can only use the length and Adler32 (note that these |
2272 | * are not used by default if there is an MD5!) |
2273 | */ |
2274 | # if PNG_sRGB_PROFILE_CHECKS == 0 |
2275 | if (png_sRGB_checks[i].have_md5 != 0) |
2276 | return 1+png_sRGB_checks[i].is_broken; |
2277 | # endif |
2278 | |
2279 | /* Profile is unsigned or more checks have been configured in. */ |
2280 | if (length == 0) |
2281 | { |
2282 | length = png_get_uint_32(profile); |
2283 | intent = png_get_uint_32(profile+64); |
2284 | } |
2285 | |
2286 | /* Length *and* intent must match */ |
2287 | if (length == (png_uint_32) png_sRGB_checks[i].length && |
2288 | intent == (png_uint_32) png_sRGB_checks[i].intent) |
2289 | { |
2290 | /* Now calculate the adler32 if not done already. */ |
2291 | if (adler == 0) |
2292 | { |
2293 | adler = adler32(0, NULL, 0); |
2294 | adler = adler32(adler, profile, length); |
2295 | } |
2296 | |
2297 | if (adler == png_sRGB_checks[i].adler) |
2298 | { |
2299 | /* These basic checks suggest that the data has not been |
2300 | * modified, but if the check level is more than 1 perform |
2301 | * our own crc32 checksum on the data. |
2302 | */ |
2303 | # if PNG_sRGB_PROFILE_CHECKS > 1 |
2304 | if (crc == 0) |
2305 | { |
2306 | crc = crc32(0, NULL, 0); |
2307 | crc = crc32(crc, profile, length); |
2308 | } |
2309 | |
2310 | /* So this check must pass for the 'return' below to happen. |
2311 | */ |
2312 | if (crc == png_sRGB_checks[i].crc) |
2313 | # endif |
2314 | { |
2315 | if (png_sRGB_checks[i].is_broken != 0) |
2316 | { |
2317 | /* These profiles are known to have bad data that may cause |
2318 | * problems if they are used, therefore attempt to |
2319 | * discourage their use, skip the 'have_md5' warning below, |
2320 | * which is made irrelevant by this error. |
2321 | */ |
2322 | png_chunk_report(png_ptr, "known incorrect sRGB profile" , |
2323 | PNG_CHUNK_ERROR); |
2324 | } |
2325 | |
2326 | /* Warn that this being done; this isn't even an error since |
2327 | * the profile is perfectly valid, but it would be nice if |
2328 | * people used the up-to-date ones. |
2329 | */ |
2330 | else if (png_sRGB_checks[i].have_md5 == 0) |
2331 | { |
2332 | png_chunk_report(png_ptr, |
2333 | "out-of-date sRGB profile with no signature" , |
2334 | PNG_CHUNK_WARNING); |
2335 | } |
2336 | |
2337 | return 1+png_sRGB_checks[i].is_broken; |
2338 | } |
2339 | } |
2340 | |
2341 | # if PNG_sRGB_PROFILE_CHECKS > 0 |
2342 | /* The signature matched, but the profile had been changed in some |
2343 | * way. This probably indicates a data error or uninformed hacking. |
2344 | * Fall through to "no match". |
2345 | */ |
2346 | png_chunk_report(png_ptr, |
2347 | "Not recognizing known sRGB profile that has been edited" , |
2348 | PNG_CHUNK_WARNING); |
2349 | break; |
2350 | # endif |
2351 | } |
2352 | } |
2353 | } |
2354 | |
2355 | return 0; /* no match */ |
2356 | } |
2357 | #endif /* PNG_sRGB_PROFILE_CHECKS >= 0 */ |
2358 | |
2359 | void /* PRIVATE */ |
2360 | png_icc_set_sRGB(png_const_structrp png_ptr, |
2361 | png_colorspacerp colorspace, png_const_bytep profile, uLong adler) |
2362 | { |
2363 | /* Is this profile one of the known ICC sRGB profiles? If it is, just set |
2364 | * the sRGB information. |
2365 | */ |
2366 | #if PNG_sRGB_PROFILE_CHECKS >= 0 |
2367 | if (png_compare_ICC_profile_with_sRGB(png_ptr, profile, adler) != 0) |
2368 | #endif |
2369 | (void)png_colorspace_set_sRGB(png_ptr, colorspace, |
2370 | (int)/*already checked*/png_get_uint_32(profile+64)); |
2371 | } |
2372 | #endif /* sRGB */ |
2373 | |
2374 | int /* PRIVATE */ |
2375 | png_colorspace_set_ICC(png_const_structrp png_ptr, png_colorspacerp colorspace, |
2376 | png_const_charp name, png_uint_32 profile_length, png_const_bytep profile, |
2377 | int color_type) |
2378 | { |
2379 | if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0) |
2380 | return 0; |
2381 | |
2382 | if (png_icc_check_length(png_ptr, colorspace, name, profile_length) != 0 && |
2383 | png_icc_check_header(png_ptr, colorspace, name, profile_length, profile, |
2384 | color_type) != 0 && |
2385 | png_icc_check_tag_table(png_ptr, colorspace, name, profile_length, |
2386 | profile) != 0) |
2387 | { |
2388 | # ifdef PNG_sRGB_SUPPORTED |
2389 | /* If no sRGB support, don't try storing sRGB information */ |
2390 | png_icc_set_sRGB(png_ptr, colorspace, profile, 0); |
2391 | # endif |
2392 | return 1; |
2393 | } |
2394 | |
2395 | /* Failure case */ |
2396 | return 0; |
2397 | } |
2398 | #endif /* iCCP */ |
2399 | |
2400 | #ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED |
2401 | void /* PRIVATE */ |
2402 | png_colorspace_set_rgb_coefficients(png_structrp png_ptr) |
2403 | { |
2404 | /* Set the rgb_to_gray coefficients from the colorspace. */ |
2405 | if (png_ptr->rgb_to_gray_coefficients_set == 0 && |
2406 | (png_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0) |
2407 | { |
2408 | /* png_set_background has not been called, get the coefficients from the Y |
2409 | * values of the colorspace colorants. |
2410 | */ |
2411 | png_fixed_point r = png_ptr->colorspace.end_points_XYZ.red_Y; |
2412 | png_fixed_point g = png_ptr->colorspace.end_points_XYZ.green_Y; |
2413 | png_fixed_point b = png_ptr->colorspace.end_points_XYZ.blue_Y; |
2414 | png_fixed_point total = r+g+b; |
2415 | |
2416 | if (total > 0 && |
2417 | r >= 0 && png_muldiv(&r, r, 32768, total) && r >= 0 && r <= 32768 && |
2418 | g >= 0 && png_muldiv(&g, g, 32768, total) && g >= 0 && g <= 32768 && |
2419 | b >= 0 && png_muldiv(&b, b, 32768, total) && b >= 0 && b <= 32768 && |
2420 | r+g+b <= 32769) |
2421 | { |
2422 | /* We allow 0 coefficients here. r+g+b may be 32769 if two or |
2423 | * all of the coefficients were rounded up. Handle this by |
2424 | * reducing the *largest* coefficient by 1; this matches the |
2425 | * approach used for the default coefficients in pngrtran.c |
2426 | */ |
2427 | int add = 0; |
2428 | |
2429 | if (r+g+b > 32768) |
2430 | add = -1; |
2431 | else if (r+g+b < 32768) |
2432 | add = 1; |
2433 | |
2434 | if (add != 0) |
2435 | { |
2436 | if (g >= r && g >= b) |
2437 | g += add; |
2438 | else if (r >= g && r >= b) |
2439 | r += add; |
2440 | else |
2441 | b += add; |
2442 | } |
2443 | |
2444 | /* Check for an internal error. */ |
2445 | if (r+g+b != 32768) |
2446 | png_error(png_ptr, |
2447 | "internal error handling cHRM coefficients" ); |
2448 | |
2449 | else |
2450 | { |
2451 | png_ptr->rgb_to_gray_red_coeff = (png_uint_16)r; |
2452 | png_ptr->rgb_to_gray_green_coeff = (png_uint_16)g; |
2453 | } |
2454 | } |
2455 | |
2456 | /* This is a png_error at present even though it could be ignored - |
2457 | * it should never happen, but it is important that if it does, the |
2458 | * bug is fixed. |
2459 | */ |
2460 | else |
2461 | png_error(png_ptr, "internal error handling cHRM->XYZ" ); |
2462 | } |
2463 | } |
2464 | #endif /* READ_RGB_TO_GRAY */ |
2465 | |
2466 | #endif /* COLORSPACE */ |
2467 | |
2468 | #ifdef __GNUC__ |
2469 | /* This exists solely to work round a warning from GNU C. */ |
2470 | static int /* PRIVATE */ |
2471 | png_gt(size_t a, size_t b) |
2472 | { |
2473 | return a > b; |
2474 | } |
2475 | #else |
2476 | # define png_gt(a,b) ((a) > (b)) |
2477 | #endif |
2478 | |
2479 | void /* PRIVATE */ |
2480 | png_check_IHDR(png_const_structrp png_ptr, |
2481 | png_uint_32 width, png_uint_32 height, int bit_depth, |
2482 | int color_type, int interlace_type, int compression_type, |
2483 | int filter_type) |
2484 | { |
2485 | int error = 0; |
2486 | |
2487 | /* Check for width and height valid values */ |
2488 | if (width == 0) |
2489 | { |
2490 | png_warning(png_ptr, "Image width is zero in IHDR" ); |
2491 | error = 1; |
2492 | } |
2493 | |
2494 | if (width > PNG_UINT_31_MAX) |
2495 | { |
2496 | png_warning(png_ptr, "Invalid image width in IHDR" ); |
2497 | error = 1; |
2498 | } |
2499 | |
2500 | if (png_gt(((width + 7) & (~7)), |
2501 | ((PNG_SIZE_MAX |
2502 | - 48 /* big_row_buf hack */ |
2503 | - 1) /* filter byte */ |
2504 | / 8) /* 8-byte RGBA pixels */ |
2505 | - 1)) /* extra max_pixel_depth pad */ |
2506 | { |
2507 | /* The size of the row must be within the limits of this architecture. |
2508 | * Because the read code can perform arbitrary transformations the |
2509 | * maximum size is checked here. Because the code in png_read_start_row |
2510 | * adds extra space "for safety's sake" in several places a conservative |
2511 | * limit is used here. |
2512 | * |
2513 | * NOTE: it would be far better to check the size that is actually used, |
2514 | * but the effect in the real world is minor and the changes are more |
2515 | * extensive, therefore much more dangerous and much more difficult to |
2516 | * write in a way that avoids compiler warnings. |
2517 | */ |
2518 | png_warning(png_ptr, "Image width is too large for this architecture" ); |
2519 | error = 1; |
2520 | } |
2521 | |
2522 | #ifdef PNG_SET_USER_LIMITS_SUPPORTED |
2523 | if (width > png_ptr->user_width_max) |
2524 | #else |
2525 | if (width > PNG_USER_WIDTH_MAX) |
2526 | #endif |
2527 | { |
2528 | png_warning(png_ptr, "Image width exceeds user limit in IHDR" ); |
2529 | error = 1; |
2530 | } |
2531 | |
2532 | if (height == 0) |
2533 | { |
2534 | png_warning(png_ptr, "Image height is zero in IHDR" ); |
2535 | error = 1; |
2536 | } |
2537 | |
2538 | if (height > PNG_UINT_31_MAX) |
2539 | { |
2540 | png_warning(png_ptr, "Invalid image height in IHDR" ); |
2541 | error = 1; |
2542 | } |
2543 | |
2544 | #ifdef PNG_SET_USER_LIMITS_SUPPORTED |
2545 | if (height > png_ptr->user_height_max) |
2546 | #else |
2547 | if (height > PNG_USER_HEIGHT_MAX) |
2548 | #endif |
2549 | { |
2550 | png_warning(png_ptr, "Image height exceeds user limit in IHDR" ); |
2551 | error = 1; |
2552 | } |
2553 | |
2554 | /* Check other values */ |
2555 | if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 && |
2556 | bit_depth != 8 && bit_depth != 16) |
2557 | { |
2558 | png_warning(png_ptr, "Invalid bit depth in IHDR" ); |
2559 | error = 1; |
2560 | } |
2561 | |
2562 | if (color_type < 0 || color_type == 1 || |
2563 | color_type == 5 || color_type > 6) |
2564 | { |
2565 | png_warning(png_ptr, "Invalid color type in IHDR" ); |
2566 | error = 1; |
2567 | } |
2568 | |
2569 | if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) || |
2570 | ((color_type == PNG_COLOR_TYPE_RGB || |
2571 | color_type == PNG_COLOR_TYPE_GRAY_ALPHA || |
2572 | color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8)) |
2573 | { |
2574 | png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR" ); |
2575 | error = 1; |
2576 | } |
2577 | |
2578 | if (interlace_type >= PNG_INTERLACE_LAST) |
2579 | { |
2580 | png_warning(png_ptr, "Unknown interlace method in IHDR" ); |
2581 | error = 1; |
2582 | } |
2583 | |
2584 | if (compression_type != PNG_COMPRESSION_TYPE_BASE) |
2585 | { |
2586 | png_warning(png_ptr, "Unknown compression method in IHDR" ); |
2587 | error = 1; |
2588 | } |
2589 | |
2590 | #ifdef PNG_MNG_FEATURES_SUPPORTED |
2591 | /* Accept filter_method 64 (intrapixel differencing) only if |
2592 | * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and |
2593 | * 2. Libpng did not read a PNG signature (this filter_method is only |
2594 | * used in PNG datastreams that are embedded in MNG datastreams) and |
2595 | * 3. The application called png_permit_mng_features with a mask that |
2596 | * included PNG_FLAG_MNG_FILTER_64 and |
2597 | * 4. The filter_method is 64 and |
2598 | * 5. The color_type is RGB or RGBA |
2599 | */ |
2600 | if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0 && |
2601 | png_ptr->mng_features_permitted != 0) |
2602 | png_warning(png_ptr, "MNG features are not allowed in a PNG datastream" ); |
2603 | |
2604 | if (filter_type != PNG_FILTER_TYPE_BASE) |
2605 | { |
2606 | if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) != 0 && |
2607 | (filter_type == PNG_INTRAPIXEL_DIFFERENCING) && |
2608 | ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) && |
2609 | (color_type == PNG_COLOR_TYPE_RGB || |
2610 | color_type == PNG_COLOR_TYPE_RGB_ALPHA))) |
2611 | { |
2612 | png_warning(png_ptr, "Unknown filter method in IHDR" ); |
2613 | error = 1; |
2614 | } |
2615 | |
2616 | if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0) |
2617 | { |
2618 | png_warning(png_ptr, "Invalid filter method in IHDR" ); |
2619 | error = 1; |
2620 | } |
2621 | } |
2622 | |
2623 | #else |
2624 | if (filter_type != PNG_FILTER_TYPE_BASE) |
2625 | { |
2626 | png_warning(png_ptr, "Unknown filter method in IHDR" ); |
2627 | error = 1; |
2628 | } |
2629 | #endif |
2630 | |
2631 | if (error == 1) |
2632 | png_error(png_ptr, "Invalid IHDR data" ); |
2633 | } |
2634 | |
2635 | #if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED) |
2636 | /* ASCII to fp functions */ |
2637 | /* Check an ASCII formated floating point value, see the more detailed |
2638 | * comments in pngpriv.h |
2639 | */ |
2640 | /* The following is used internally to preserve the sticky flags */ |
2641 | #define png_fp_add(state, flags) ((state) |= (flags)) |
2642 | #define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY)) |
2643 | |
2644 | int /* PRIVATE */ |
2645 | png_check_fp_number(png_const_charp string, png_size_t size, int *statep, |
2646 | png_size_tp whereami) |
2647 | { |
2648 | int state = *statep; |
2649 | png_size_t i = *whereami; |
2650 | |
2651 | while (i < size) |
2652 | { |
2653 | int type; |
2654 | /* First find the type of the next character */ |
2655 | switch (string[i]) |
2656 | { |
2657 | case 43: type = PNG_FP_SAW_SIGN; break; |
2658 | case 45: type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break; |
2659 | case 46: type = PNG_FP_SAW_DOT; break; |
2660 | case 48: type = PNG_FP_SAW_DIGIT; break; |
2661 | case 49: case 50: case 51: case 52: |
2662 | case 53: case 54: case 55: case 56: |
2663 | case 57: type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break; |
2664 | case 69: |
2665 | case 101: type = PNG_FP_SAW_E; break; |
2666 | default: goto PNG_FP_End; |
2667 | } |
2668 | |
2669 | /* Now deal with this type according to the current |
2670 | * state, the type is arranged to not overlap the |
2671 | * bits of the PNG_FP_STATE. |
2672 | */ |
2673 | switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY)) |
2674 | { |
2675 | case PNG_FP_INTEGER + PNG_FP_SAW_SIGN: |
2676 | if ((state & PNG_FP_SAW_ANY) != 0) |
2677 | goto PNG_FP_End; /* not a part of the number */ |
2678 | |
2679 | png_fp_add(state, type); |
2680 | break; |
2681 | |
2682 | case PNG_FP_INTEGER + PNG_FP_SAW_DOT: |
2683 | /* Ok as trailer, ok as lead of fraction. */ |
2684 | if ((state & PNG_FP_SAW_DOT) != 0) /* two dots */ |
2685 | goto PNG_FP_End; |
2686 | |
2687 | else if ((state & PNG_FP_SAW_DIGIT) != 0) /* trailing dot? */ |
2688 | png_fp_add(state, type); |
2689 | |
2690 | else |
2691 | png_fp_set(state, PNG_FP_FRACTION | type); |
2692 | |
2693 | break; |
2694 | |
2695 | case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT: |
2696 | if ((state & PNG_FP_SAW_DOT) != 0) /* delayed fraction */ |
2697 | png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT); |
2698 | |
2699 | png_fp_add(state, type | PNG_FP_WAS_VALID); |
2700 | |
2701 | break; |
2702 | |
2703 | case PNG_FP_INTEGER + PNG_FP_SAW_E: |
2704 | if ((state & PNG_FP_SAW_DIGIT) == 0) |
2705 | goto PNG_FP_End; |
2706 | |
2707 | png_fp_set(state, PNG_FP_EXPONENT); |
2708 | |
2709 | break; |
2710 | |
2711 | /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN: |
2712 | goto PNG_FP_End; ** no sign in fraction */ |
2713 | |
2714 | /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT: |
2715 | goto PNG_FP_End; ** Because SAW_DOT is always set */ |
2716 | |
2717 | case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT: |
2718 | png_fp_add(state, type | PNG_FP_WAS_VALID); |
2719 | break; |
2720 | |
2721 | case PNG_FP_FRACTION + PNG_FP_SAW_E: |
2722 | /* This is correct because the trailing '.' on an |
2723 | * integer is handled above - so we can only get here |
2724 | * with the sequence ".E" (with no preceding digits). |
2725 | */ |
2726 | if ((state & PNG_FP_SAW_DIGIT) == 0) |
2727 | goto PNG_FP_End; |
2728 | |
2729 | png_fp_set(state, PNG_FP_EXPONENT); |
2730 | |
2731 | break; |
2732 | |
2733 | case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN: |
2734 | if ((state & PNG_FP_SAW_ANY) != 0) |
2735 | goto PNG_FP_End; /* not a part of the number */ |
2736 | |
2737 | png_fp_add(state, PNG_FP_SAW_SIGN); |
2738 | |
2739 | break; |
2740 | |
2741 | /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT: |
2742 | goto PNG_FP_End; */ |
2743 | |
2744 | case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT: |
2745 | png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID); |
2746 | |
2747 | break; |
2748 | |
2749 | /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E: |
2750 | goto PNG_FP_End; */ |
2751 | |
2752 | default: goto PNG_FP_End; /* I.e. break 2 */ |
2753 | } |
2754 | |
2755 | /* The character seems ok, continue. */ |
2756 | ++i; |
2757 | } |
2758 | |
2759 | PNG_FP_End: |
2760 | /* Here at the end, update the state and return the correct |
2761 | * return code. |
2762 | */ |
2763 | *statep = state; |
2764 | *whereami = i; |
2765 | |
2766 | return (state & PNG_FP_SAW_DIGIT) != 0; |
2767 | } |
2768 | |
2769 | |
2770 | /* The same but for a complete string. */ |
2771 | int |
2772 | png_check_fp_string(png_const_charp string, png_size_t size) |
2773 | { |
2774 | int state=0; |
2775 | png_size_t char_index=0; |
2776 | |
2777 | if (png_check_fp_number(string, size, &state, &char_index) != 0 && |
2778 | (char_index == size || string[char_index] == 0)) |
2779 | return state /* must be non-zero - see above */; |
2780 | |
2781 | return 0; /* i.e. fail */ |
2782 | } |
2783 | #endif /* pCAL || sCAL */ |
2784 | |
2785 | #ifdef PNG_sCAL_SUPPORTED |
2786 | # ifdef PNG_FLOATING_POINT_SUPPORTED |
2787 | /* Utility used below - a simple accurate power of ten from an integral |
2788 | * exponent. |
2789 | */ |
2790 | static double |
2791 | png_pow10(int power) |
2792 | { |
2793 | int recip = 0; |
2794 | double d = 1; |
2795 | |
2796 | /* Handle negative exponent with a reciprocal at the end because |
2797 | * 10 is exact whereas .1 is inexact in base 2 |
2798 | */ |
2799 | if (power < 0) |
2800 | { |
2801 | if (power < DBL_MIN_10_EXP) return 0; |
2802 | recip = 1, power = -power; |
2803 | } |
2804 | |
2805 | if (power > 0) |
2806 | { |
2807 | /* Decompose power bitwise. */ |
2808 | double mult = 10; |
2809 | do |
2810 | { |
2811 | if (power & 1) d *= mult; |
2812 | mult *= mult; |
2813 | power >>= 1; |
2814 | } |
2815 | while (power > 0); |
2816 | |
2817 | if (recip != 0) d = 1/d; |
2818 | } |
2819 | /* else power is 0 and d is 1 */ |
2820 | |
2821 | return d; |
2822 | } |
2823 | |
2824 | /* Function to format a floating point value in ASCII with a given |
2825 | * precision. |
2826 | */ |
2827 | void /* PRIVATE */ |
2828 | png_ascii_from_fp(png_const_structrp png_ptr, png_charp ascii, png_size_t size, |
2829 | double fp, unsigned int precision) |
2830 | { |
2831 | /* We use standard functions from math.h, but not printf because |
2832 | * that would require stdio. The caller must supply a buffer of |
2833 | * sufficient size or we will png_error. The tests on size and |
2834 | * the space in ascii[] consumed are indicated below. |
2835 | */ |
2836 | if (precision < 1) |
2837 | precision = DBL_DIG; |
2838 | |
2839 | /* Enforce the limit of the implementation precision too. */ |
2840 | if (precision > DBL_DIG+1) |
2841 | precision = DBL_DIG+1; |
2842 | |
2843 | /* Basic sanity checks */ |
2844 | if (size >= precision+5) /* See the requirements below. */ |
2845 | { |
2846 | if (fp < 0) |
2847 | { |
2848 | fp = -fp; |
2849 | *ascii++ = 45; /* '-' PLUS 1 TOTAL 1 */ |
2850 | --size; |
2851 | } |
2852 | |
2853 | if (fp >= DBL_MIN && fp <= DBL_MAX) |
2854 | { |
2855 | int exp_b10; /* A base 10 exponent */ |
2856 | double base; /* 10^exp_b10 */ |
2857 | |
2858 | /* First extract a base 10 exponent of the number, |
2859 | * the calculation below rounds down when converting |
2860 | * from base 2 to base 10 (multiply by log10(2) - |
2861 | * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to |
2862 | * be increased. Note that the arithmetic shift |
2863 | * performs a floor() unlike C arithmetic - using a |
2864 | * C multiply would break the following for negative |
2865 | * exponents. |
2866 | */ |
2867 | (void)frexp(fp, &exp_b10); /* exponent to base 2 */ |
2868 | |
2869 | exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */ |
2870 | |
2871 | /* Avoid underflow here. */ |
2872 | base = png_pow10(exp_b10); /* May underflow */ |
2873 | |
2874 | while (base < DBL_MIN || base < fp) |
2875 | { |
2876 | /* And this may overflow. */ |
2877 | double test = png_pow10(exp_b10+1); |
2878 | |
2879 | if (test <= DBL_MAX) |
2880 | ++exp_b10, base = test; |
2881 | |
2882 | else |
2883 | break; |
2884 | } |
2885 | |
2886 | /* Normalize fp and correct exp_b10, after this fp is in the |
2887 | * range [.1,1) and exp_b10 is both the exponent and the digit |
2888 | * *before* which the decimal point should be inserted |
2889 | * (starting with 0 for the first digit). Note that this |
2890 | * works even if 10^exp_b10 is out of range because of the |
2891 | * test on DBL_MAX above. |
2892 | */ |
2893 | fp /= base; |
2894 | while (fp >= 1) fp /= 10, ++exp_b10; |
2895 | |
2896 | /* Because of the code above fp may, at this point, be |
2897 | * less than .1, this is ok because the code below can |
2898 | * handle the leading zeros this generates, so no attempt |
2899 | * is made to correct that here. |
2900 | */ |
2901 | |
2902 | { |
2903 | unsigned int czero, clead, cdigits; |
2904 | char exponent[10]; |
2905 | |
2906 | /* Allow up to two leading zeros - this will not lengthen |
2907 | * the number compared to using E-n. |
2908 | */ |
2909 | if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */ |
2910 | { |
2911 | czero = -exp_b10; /* PLUS 2 digits: TOTAL 3 */ |
2912 | exp_b10 = 0; /* Dot added below before first output. */ |
2913 | } |
2914 | else |
2915 | czero = 0; /* No zeros to add */ |
2916 | |
2917 | /* Generate the digit list, stripping trailing zeros and |
2918 | * inserting a '.' before a digit if the exponent is 0. |
2919 | */ |
2920 | clead = czero; /* Count of leading zeros */ |
2921 | cdigits = 0; /* Count of digits in list. */ |
2922 | |
2923 | do |
2924 | { |
2925 | double d; |
2926 | |
2927 | fp *= 10; |
2928 | /* Use modf here, not floor and subtract, so that |
2929 | * the separation is done in one step. At the end |
2930 | * of the loop don't break the number into parts so |
2931 | * that the final digit is rounded. |
2932 | */ |
2933 | if (cdigits+czero+1 < precision+clead) |
2934 | fp = modf(fp, &d); |
2935 | |
2936 | else |
2937 | { |
2938 | d = floor(fp + .5); |
2939 | |
2940 | if (d > 9) |
2941 | { |
2942 | /* Rounding up to 10, handle that here. */ |
2943 | if (czero > 0) |
2944 | { |
2945 | --czero, d = 1; |
2946 | if (cdigits == 0) --clead; |
2947 | } |
2948 | else |
2949 | { |
2950 | while (cdigits > 0 && d > 9) |
2951 | { |
2952 | int ch = *--ascii; |
2953 | |
2954 | if (exp_b10 != (-1)) |
2955 | ++exp_b10; |
2956 | |
2957 | else if (ch == 46) |
2958 | { |
2959 | ch = *--ascii, ++size; |
2960 | /* Advance exp_b10 to '1', so that the |
2961 | * decimal point happens after the |
2962 | * previous digit. |
2963 | */ |
2964 | exp_b10 = 1; |
2965 | } |
2966 | |
2967 | --cdigits; |
2968 | d = ch - 47; /* I.e. 1+(ch-48) */ |
2969 | } |
2970 | |
2971 | /* Did we reach the beginning? If so adjust the |
2972 | * exponent but take into account the leading |
2973 | * decimal point. |
2974 | */ |
2975 | if (d > 9) /* cdigits == 0 */ |
2976 | { |
2977 | if (exp_b10 == (-1)) |
2978 | { |
2979 | /* Leading decimal point (plus zeros?), if |
2980 | * we lose the decimal point here it must |
2981 | * be reentered below. |
2982 | */ |
2983 | int ch = *--ascii; |
2984 | |
2985 | if (ch == 46) |
2986 | ++size, exp_b10 = 1; |
2987 | |
2988 | /* Else lost a leading zero, so 'exp_b10' is |
2989 | * still ok at (-1) |
2990 | */ |
2991 | } |
2992 | else |
2993 | ++exp_b10; |
2994 | |
2995 | /* In all cases we output a '1' */ |
2996 | d = 1; |
2997 | } |
2998 | } |
2999 | } |
3000 | fp = 0; /* Guarantees termination below. */ |
3001 | } |
3002 | |
3003 | if (d == 0) |
3004 | { |
3005 | ++czero; |
3006 | if (cdigits == 0) ++clead; |
3007 | } |
3008 | else |
3009 | { |
3010 | /* Included embedded zeros in the digit count. */ |
3011 | cdigits += czero - clead; |
3012 | clead = 0; |
3013 | |
3014 | while (czero > 0) |
3015 | { |
3016 | /* exp_b10 == (-1) means we just output the decimal |
3017 | * place - after the DP don't adjust 'exp_b10' any |
3018 | * more! |
3019 | */ |
3020 | if (exp_b10 != (-1)) |
3021 | { |
3022 | if (exp_b10 == 0) *ascii++ = 46, --size; |
3023 | /* PLUS 1: TOTAL 4 */ |
3024 | --exp_b10; |
3025 | } |
3026 | *ascii++ = 48, --czero; |
3027 | } |
3028 | |
3029 | if (exp_b10 != (-1)) |
3030 | { |
3031 | if (exp_b10 == 0) |
3032 | *ascii++ = 46, --size; /* counted above */ |
3033 | |
3034 | --exp_b10; |
3035 | } |
3036 | *ascii++ = (char)(48 + (int)d), ++cdigits; |
3037 | } |
3038 | } |
3039 | while (cdigits+czero < precision+clead && fp > DBL_MIN); |
3040 | |
3041 | /* The total output count (max) is now 4+precision */ |
3042 | |
3043 | /* Check for an exponent, if we don't need one we are |
3044 | * done and just need to terminate the string. At |
3045 | * this point exp_b10==(-1) is effectively if flag - it got |
3046 | * to '-1' because of the decrement after outputting |
3047 | * the decimal point above (the exponent required is |
3048 | * *not* -1!) |
3049 | */ |
3050 | if (exp_b10 >= (-1) && exp_b10 <= 2) |
3051 | { |
3052 | /* The following only happens if we didn't output the |
3053 | * leading zeros above for negative exponent, so this |
3054 | * doesn't add to the digit requirement. Note that the |
3055 | * two zeros here can only be output if the two leading |
3056 | * zeros were *not* output, so this doesn't increase |
3057 | * the output count. |
3058 | */ |
3059 | while (--exp_b10 >= 0) *ascii++ = 48; |
3060 | |
3061 | *ascii = 0; |
3062 | |
3063 | /* Total buffer requirement (including the '\0') is |
3064 | * 5+precision - see check at the start. |
3065 | */ |
3066 | return; |
3067 | } |
3068 | |
3069 | /* Here if an exponent is required, adjust size for |
3070 | * the digits we output but did not count. The total |
3071 | * digit output here so far is at most 1+precision - no |
3072 | * decimal point and no leading or trailing zeros have |
3073 | * been output. |
3074 | */ |
3075 | size -= cdigits; |
3076 | |
3077 | *ascii++ = 69, --size; /* 'E': PLUS 1 TOTAL 2+precision */ |
3078 | |
3079 | /* The following use of an unsigned temporary avoids ambiguities in |
3080 | * the signed arithmetic on exp_b10 and permits GCC at least to do |
3081 | * better optimization. |
3082 | */ |
3083 | { |
3084 | unsigned int uexp_b10; |
3085 | |
3086 | if (exp_b10 < 0) |
3087 | { |
3088 | *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */ |
3089 | uexp_b10 = -exp_b10; |
3090 | } |
3091 | |
3092 | else |
3093 | uexp_b10 = exp_b10; |
3094 | |
3095 | cdigits = 0; |
3096 | |
3097 | while (uexp_b10 > 0) |
3098 | { |
3099 | exponent[cdigits++] = (char)(48 + uexp_b10 % 10); |
3100 | uexp_b10 /= 10; |
3101 | } |
3102 | } |
3103 | |
3104 | /* Need another size check here for the exponent digits, so |
3105 | * this need not be considered above. |
3106 | */ |
3107 | if (size > cdigits) |
3108 | { |
3109 | while (cdigits > 0) *ascii++ = exponent[--cdigits]; |
3110 | |
3111 | *ascii = 0; |
3112 | |
3113 | return; |
3114 | } |
3115 | } |
3116 | } |
3117 | else if (!(fp >= DBL_MIN)) |
3118 | { |
3119 | *ascii++ = 48; /* '0' */ |
3120 | *ascii = 0; |
3121 | return; |
3122 | } |
3123 | else |
3124 | { |
3125 | *ascii++ = 105; /* 'i' */ |
3126 | *ascii++ = 110; /* 'n' */ |
3127 | *ascii++ = 102; /* 'f' */ |
3128 | *ascii = 0; |
3129 | return; |
3130 | } |
3131 | } |
3132 | |
3133 | /* Here on buffer too small. */ |
3134 | png_error(png_ptr, "ASCII conversion buffer too small" ); |
3135 | } |
3136 | |
3137 | # endif /* FLOATING_POINT */ |
3138 | |
3139 | # ifdef PNG_FIXED_POINT_SUPPORTED |
3140 | /* Function to format a fixed point value in ASCII. |
3141 | */ |
3142 | void /* PRIVATE */ |
3143 | png_ascii_from_fixed(png_const_structrp png_ptr, png_charp ascii, |
3144 | png_size_t size, png_fixed_point fp) |
3145 | { |
3146 | /* Require space for 10 decimal digits, a decimal point, a minus sign and a |
3147 | * trailing \0, 13 characters: |
3148 | */ |
3149 | if (size > 12) |
3150 | { |
3151 | png_uint_32 num; |
3152 | |
3153 | /* Avoid overflow here on the minimum integer. */ |
3154 | if (fp < 0) |
3155 | *ascii++ = 45, num = -fp; |
3156 | else |
3157 | num = fp; |
3158 | |
3159 | if (num <= 0x80000000) /* else overflowed */ |
3160 | { |
3161 | unsigned int ndigits = 0, first = 16 /* flag value */; |
3162 | char digits[10]; |
3163 | |
3164 | while (num) |
3165 | { |
3166 | /* Split the low digit off num: */ |
3167 | unsigned int tmp = num/10; |
3168 | num -= tmp*10; |
3169 | digits[ndigits++] = (char)(48 + num); |
3170 | /* Record the first non-zero digit, note that this is a number |
3171 | * starting at 1, it's not actually the array index. |
3172 | */ |
3173 | if (first == 16 && num > 0) |
3174 | first = ndigits; |
3175 | num = tmp; |
3176 | } |
3177 | |
3178 | if (ndigits > 0) |
3179 | { |
3180 | while (ndigits > 5) *ascii++ = digits[--ndigits]; |
3181 | /* The remaining digits are fractional digits, ndigits is '5' or |
3182 | * smaller at this point. It is certainly not zero. Check for a |
3183 | * non-zero fractional digit: |
3184 | */ |
3185 | if (first <= 5) |
3186 | { |
3187 | unsigned int i; |
3188 | *ascii++ = 46; /* decimal point */ |
3189 | /* ndigits may be <5 for small numbers, output leading zeros |
3190 | * then ndigits digits to first: |
3191 | */ |
3192 | i = 5; |
3193 | while (ndigits < i) *ascii++ = 48, --i; |
3194 | while (ndigits >= first) *ascii++ = digits[--ndigits]; |
3195 | /* Don't output the trailing zeros! */ |
3196 | } |
3197 | } |
3198 | else |
3199 | *ascii++ = 48; |
3200 | |
3201 | /* And null terminate the string: */ |
3202 | *ascii = 0; |
3203 | return; |
3204 | } |
3205 | } |
3206 | |
3207 | /* Here on buffer too small. */ |
3208 | png_error(png_ptr, "ASCII conversion buffer too small" ); |
3209 | } |
3210 | # endif /* FIXED_POINT */ |
3211 | #endif /* SCAL */ |
3212 | |
3213 | #if defined(PNG_FLOATING_POINT_SUPPORTED) && \ |
3214 | !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \ |
3215 | (defined(PNG_gAMA_SUPPORTED) || defined(PNG_cHRM_SUPPORTED) || \ |
3216 | defined(PNG_sCAL_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) || \ |
3217 | defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)) || \ |
3218 | (defined(PNG_sCAL_SUPPORTED) && \ |
3219 | defined(PNG_FLOATING_ARITHMETIC_SUPPORTED)) |
3220 | png_fixed_point |
3221 | png_fixed(png_const_structrp png_ptr, double fp, png_const_charp text) |
3222 | { |
3223 | double r = floor(100000 * fp + .5); |
3224 | |
3225 | if (r > 2147483647. || r < -2147483648.) |
3226 | png_fixed_error(png_ptr, text); |
3227 | |
3228 | # ifndef PNG_ERROR_TEXT_SUPPORTED |
3229 | PNG_UNUSED(text) |
3230 | # endif |
3231 | |
3232 | return (png_fixed_point)r; |
3233 | } |
3234 | #endif |
3235 | |
3236 | #if defined(PNG_GAMMA_SUPPORTED) || defined(PNG_COLORSPACE_SUPPORTED) ||\ |
3237 | defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG_READ_pHYs_SUPPORTED) |
3238 | /* muldiv functions */ |
3239 | /* This API takes signed arguments and rounds the result to the nearest |
3240 | * integer (or, for a fixed point number - the standard argument - to |
3241 | * the nearest .00001). Overflow and divide by zero are signalled in |
3242 | * the result, a boolean - true on success, false on overflow. |
3243 | */ |
3244 | int |
3245 | png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times, |
3246 | png_int_32 divisor) |
3247 | { |
3248 | /* Return a * times / divisor, rounded. */ |
3249 | if (divisor != 0) |
3250 | { |
3251 | if (a == 0 || times == 0) |
3252 | { |
3253 | *res = 0; |
3254 | return 1; |
3255 | } |
3256 | else |
3257 | { |
3258 | #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
3259 | double r = a; |
3260 | r *= times; |
3261 | r /= divisor; |
3262 | r = floor(r+.5); |
3263 | |
3264 | /* A png_fixed_point is a 32-bit integer. */ |
3265 | if (r <= 2147483647. && r >= -2147483648.) |
3266 | { |
3267 | *res = (png_fixed_point)r; |
3268 | return 1; |
3269 | } |
3270 | #else |
3271 | int negative = 0; |
3272 | png_uint_32 A, T, D; |
3273 | png_uint_32 s16, s32, s00; |
3274 | |
3275 | if (a < 0) |
3276 | negative = 1, A = -a; |
3277 | else |
3278 | A = a; |
3279 | |
3280 | if (times < 0) |
3281 | negative = !negative, T = -times; |
3282 | else |
3283 | T = times; |
3284 | |
3285 | if (divisor < 0) |
3286 | negative = !negative, D = -divisor; |
3287 | else |
3288 | D = divisor; |
3289 | |
3290 | /* Following can't overflow because the arguments only |
3291 | * have 31 bits each, however the result may be 32 bits. |
3292 | */ |
3293 | s16 = (A >> 16) * (T & 0xffff) + |
3294 | (A & 0xffff) * (T >> 16); |
3295 | /* Can't overflow because the a*times bit is only 30 |
3296 | * bits at most. |
3297 | */ |
3298 | s32 = (A >> 16) * (T >> 16) + (s16 >> 16); |
3299 | s00 = (A & 0xffff) * (T & 0xffff); |
3300 | |
3301 | s16 = (s16 & 0xffff) << 16; |
3302 | s00 += s16; |
3303 | |
3304 | if (s00 < s16) |
3305 | ++s32; /* carry */ |
3306 | |
3307 | if (s32 < D) /* else overflow */ |
3308 | { |
3309 | /* s32.s00 is now the 64-bit product, do a standard |
3310 | * division, we know that s32 < D, so the maximum |
3311 | * required shift is 31. |
3312 | */ |
3313 | int bitshift = 32; |
3314 | png_fixed_point result = 0; /* NOTE: signed */ |
3315 | |
3316 | while (--bitshift >= 0) |
3317 | { |
3318 | png_uint_32 d32, d00; |
3319 | |
3320 | if (bitshift > 0) |
3321 | d32 = D >> (32-bitshift), d00 = D << bitshift; |
3322 | |
3323 | else |
3324 | d32 = 0, d00 = D; |
3325 | |
3326 | if (s32 > d32) |
3327 | { |
3328 | if (s00 < d00) --s32; /* carry */ |
3329 | s32 -= d32, s00 -= d00, result += 1<<bitshift; |
3330 | } |
3331 | |
3332 | else |
3333 | if (s32 == d32 && s00 >= d00) |
3334 | s32 = 0, s00 -= d00, result += 1<<bitshift; |
3335 | } |
3336 | |
3337 | /* Handle the rounding. */ |
3338 | if (s00 >= (D >> 1)) |
3339 | ++result; |
3340 | |
3341 | if (negative != 0) |
3342 | result = -result; |
3343 | |
3344 | /* Check for overflow. */ |
3345 | if ((negative != 0 && result <= 0) || |
3346 | (negative == 0 && result >= 0)) |
3347 | { |
3348 | *res = result; |
3349 | return 1; |
3350 | } |
3351 | } |
3352 | #endif |
3353 | } |
3354 | } |
3355 | |
3356 | return 0; |
3357 | } |
3358 | #endif /* READ_GAMMA || INCH_CONVERSIONS */ |
3359 | |
3360 | #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED) |
3361 | /* The following is for when the caller doesn't much care about the |
3362 | * result. |
3363 | */ |
3364 | png_fixed_point |
3365 | png_muldiv_warn(png_const_structrp png_ptr, png_fixed_point a, png_int_32 times, |
3366 | png_int_32 divisor) |
3367 | { |
3368 | png_fixed_point result; |
3369 | |
3370 | if (png_muldiv(&result, a, times, divisor) != 0) |
3371 | return result; |
3372 | |
3373 | png_warning(png_ptr, "fixed point overflow ignored" ); |
3374 | return 0; |
3375 | } |
3376 | #endif |
3377 | |
3378 | #ifdef PNG_GAMMA_SUPPORTED /* more fixed point functions for gamma */ |
3379 | /* Calculate a reciprocal, return 0 on div-by-zero or overflow. */ |
3380 | png_fixed_point |
3381 | png_reciprocal(png_fixed_point a) |
3382 | { |
3383 | #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
3384 | double r = floor(1E10/a+.5); |
3385 | |
3386 | if (r <= 2147483647. && r >= -2147483648.) |
3387 | return (png_fixed_point)r; |
3388 | #else |
3389 | png_fixed_point res; |
3390 | |
3391 | if (png_muldiv(&res, 100000, 100000, a) != 0) |
3392 | return res; |
3393 | #endif |
3394 | |
3395 | return 0; /* error/overflow */ |
3396 | } |
3397 | |
3398 | /* This is the shared test on whether a gamma value is 'significant' - whether |
3399 | * it is worth doing gamma correction. |
3400 | */ |
3401 | int /* PRIVATE */ |
3402 | png_gamma_significant(png_fixed_point gamma_val) |
3403 | { |
3404 | return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED || |
3405 | gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED; |
3406 | } |
3407 | #endif |
3408 | |
3409 | #ifdef PNG_READ_GAMMA_SUPPORTED |
3410 | #ifdef PNG_16BIT_SUPPORTED |
3411 | /* A local convenience routine. */ |
3412 | static png_fixed_point |
3413 | png_product2(png_fixed_point a, png_fixed_point b) |
3414 | { |
3415 | /* The required result is 1/a * 1/b; the following preserves accuracy. */ |
3416 | #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
3417 | double r = a * 1E-5; |
3418 | r *= b; |
3419 | r = floor(r+.5); |
3420 | |
3421 | if (r <= 2147483647. && r >= -2147483648.) |
3422 | return (png_fixed_point)r; |
3423 | #else |
3424 | png_fixed_point res; |
3425 | |
3426 | if (png_muldiv(&res, a, b, 100000) != 0) |
3427 | return res; |
3428 | #endif |
3429 | |
3430 | return 0; /* overflow */ |
3431 | } |
3432 | #endif /* 16BIT */ |
3433 | |
3434 | /* The inverse of the above. */ |
3435 | png_fixed_point |
3436 | png_reciprocal2(png_fixed_point a, png_fixed_point b) |
3437 | { |
3438 | /* The required result is 1/a * 1/b; the following preserves accuracy. */ |
3439 | #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
3440 | if (a != 0 && b != 0) |
3441 | { |
3442 | double r = 1E15/a; |
3443 | r /= b; |
3444 | r = floor(r+.5); |
3445 | |
3446 | if (r <= 2147483647. && r >= -2147483648.) |
3447 | return (png_fixed_point)r; |
3448 | } |
3449 | #else |
3450 | /* This may overflow because the range of png_fixed_point isn't symmetric, |
3451 | * but this API is only used for the product of file and screen gamma so it |
3452 | * doesn't matter that the smallest number it can produce is 1/21474, not |
3453 | * 1/100000 |
3454 | */ |
3455 | png_fixed_point res = png_product2(a, b); |
3456 | |
3457 | if (res != 0) |
3458 | return png_reciprocal(res); |
3459 | #endif |
3460 | |
3461 | return 0; /* overflow */ |
3462 | } |
3463 | #endif /* READ_GAMMA */ |
3464 | |
3465 | #ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */ |
3466 | #ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED |
3467 | /* Fixed point gamma. |
3468 | * |
3469 | * The code to calculate the tables used below can be found in the shell script |
3470 | * contrib/tools/intgamma.sh |
3471 | * |
3472 | * To calculate gamma this code implements fast log() and exp() calls using only |
3473 | * fixed point arithmetic. This code has sufficient precision for either 8-bit |
3474 | * or 16-bit sample values. |
3475 | * |
3476 | * The tables used here were calculated using simple 'bc' programs, but C double |
3477 | * precision floating point arithmetic would work fine. |
3478 | * |
3479 | * 8-bit log table |
3480 | * This is a table of -log(value/255)/log(2) for 'value' in the range 128 to |
3481 | * 255, so it's the base 2 logarithm of a normalized 8-bit floating point |
3482 | * mantissa. The numbers are 32-bit fractions. |
3483 | */ |
3484 | static const png_uint_32 |
3485 | png_8bit_l2[128] = |
3486 | { |
3487 | 4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U, |
3488 | 3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U, |
3489 | 3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U, |
3490 | 3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U, |
3491 | 3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U, |
3492 | 2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U, |
3493 | 2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U, |
3494 | 2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U, |
3495 | 2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U, |
3496 | 2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U, |
3497 | 1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U, |
3498 | 1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U, |
3499 | 1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U, |
3500 | 1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U, |
3501 | 1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U, |
3502 | 971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U, |
3503 | 803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U, |
3504 | 639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U, |
3505 | 479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U, |
3506 | 324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U, |
3507 | 172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U, |
3508 | 24347096U, 0U |
3509 | |
3510 | #if 0 |
3511 | /* The following are the values for 16-bit tables - these work fine for the |
3512 | * 8-bit conversions but produce very slightly larger errors in the 16-bit |
3513 | * log (about 1.2 as opposed to 0.7 absolute error in the final value). To |
3514 | * use these all the shifts below must be adjusted appropriately. |
3515 | */ |
3516 | 65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054, |
3517 | 57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803, |
3518 | 50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068, |
3519 | 43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782, |
3520 | 37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887, |
3521 | 31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339, |
3522 | 25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098, |
3523 | 20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132, |
3524 | 15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415, |
3525 | 10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523, |
3526 | 6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495, |
3527 | 1119, 744, 372 |
3528 | #endif |
3529 | }; |
3530 | |
3531 | static png_int_32 |
3532 | png_log8bit(unsigned int x) |
3533 | { |
3534 | unsigned int lg2 = 0; |
3535 | /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log, |
3536 | * because the log is actually negate that means adding 1. The final |
3537 | * returned value thus has the range 0 (for 255 input) to 7.994 (for 1 |
3538 | * input), return -1 for the overflow (log 0) case, - so the result is |
3539 | * always at most 19 bits. |
3540 | */ |
3541 | if ((x &= 0xff) == 0) |
3542 | return -1; |
3543 | |
3544 | if ((x & 0xf0) == 0) |
3545 | lg2 = 4, x <<= 4; |
3546 | |
3547 | if ((x & 0xc0) == 0) |
3548 | lg2 += 2, x <<= 2; |
3549 | |
3550 | if ((x & 0x80) == 0) |
3551 | lg2 += 1, x <<= 1; |
3552 | |
3553 | /* result is at most 19 bits, so this cast is safe: */ |
3554 | return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16)); |
3555 | } |
3556 | |
3557 | /* The above gives exact (to 16 binary places) log2 values for 8-bit images, |
3558 | * for 16-bit images we use the most significant 8 bits of the 16-bit value to |
3559 | * get an approximation then multiply the approximation by a correction factor |
3560 | * determined by the remaining up to 8 bits. This requires an additional step |
3561 | * in the 16-bit case. |
3562 | * |
3563 | * We want log2(value/65535), we have log2(v'/255), where: |
3564 | * |
3565 | * value = v' * 256 + v'' |
3566 | * = v' * f |
3567 | * |
3568 | * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128 |
3569 | * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less |
3570 | * than 258. The final factor also needs to correct for the fact that our 8-bit |
3571 | * value is scaled by 255, whereas the 16-bit values must be scaled by 65535. |
3572 | * |
3573 | * This gives a final formula using a calculated value 'x' which is value/v' and |
3574 | * scaling by 65536 to match the above table: |
3575 | * |
3576 | * log2(x/257) * 65536 |
3577 | * |
3578 | * Since these numbers are so close to '1' we can use simple linear |
3579 | * interpolation between the two end values 256/257 (result -368.61) and 258/257 |
3580 | * (result 367.179). The values used below are scaled by a further 64 to give |
3581 | * 16-bit precision in the interpolation: |
3582 | * |
3583 | * Start (256): -23591 |
3584 | * Zero (257): 0 |
3585 | * End (258): 23499 |
3586 | */ |
3587 | #ifdef PNG_16BIT_SUPPORTED |
3588 | static png_int_32 |
3589 | png_log16bit(png_uint_32 x) |
3590 | { |
3591 | unsigned int lg2 = 0; |
3592 | |
3593 | /* As above, but now the input has 16 bits. */ |
3594 | if ((x &= 0xffff) == 0) |
3595 | return -1; |
3596 | |
3597 | if ((x & 0xff00) == 0) |
3598 | lg2 = 8, x <<= 8; |
3599 | |
3600 | if ((x & 0xf000) == 0) |
3601 | lg2 += 4, x <<= 4; |
3602 | |
3603 | if ((x & 0xc000) == 0) |
3604 | lg2 += 2, x <<= 2; |
3605 | |
3606 | if ((x & 0x8000) == 0) |
3607 | lg2 += 1, x <<= 1; |
3608 | |
3609 | /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional |
3610 | * value. |
3611 | */ |
3612 | lg2 <<= 28; |
3613 | lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4; |
3614 | |
3615 | /* Now we need to interpolate the factor, this requires a division by the top |
3616 | * 8 bits. Do this with maximum precision. |
3617 | */ |
3618 | x = ((x << 16) + (x >> 9)) / (x >> 8); |
3619 | |
3620 | /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24, |
3621 | * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly |
3622 | * 16 bits to interpolate to get the low bits of the result. Round the |
3623 | * answer. Note that the end point values are scaled by 64 to retain overall |
3624 | * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust |
3625 | * the overall scaling by 6-12. Round at every step. |
3626 | */ |
3627 | x -= 1U << 24; |
3628 | |
3629 | if (x <= 65536U) /* <= '257' */ |
3630 | lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12); |
3631 | |
3632 | else |
3633 | lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12); |
3634 | |
3635 | /* Safe, because the result can't have more than 20 bits: */ |
3636 | return (png_int_32)((lg2 + 2048) >> 12); |
3637 | } |
3638 | #endif /* 16BIT */ |
3639 | |
3640 | /* The 'exp()' case must invert the above, taking a 20-bit fixed point |
3641 | * logarithmic value and returning a 16 or 8-bit number as appropriate. In |
3642 | * each case only the low 16 bits are relevant - the fraction - since the |
3643 | * integer bits (the top 4) simply determine a shift. |
3644 | * |
3645 | * The worst case is the 16-bit distinction between 65535 and 65534. This |
3646 | * requires perhaps spurious accuracy in the decoding of the logarithm to |
3647 | * distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance |
3648 | * of getting this accuracy in practice. |
3649 | * |
3650 | * To deal with this the following exp() function works out the exponent of the |
3651 | * frational part of the logarithm by using an accurate 32-bit value from the |
3652 | * top four fractional bits then multiplying in the remaining bits. |
3653 | */ |
3654 | static const png_uint_32 |
3655 | png_32bit_exp[16] = |
3656 | { |
3657 | /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */ |
3658 | 4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U, |
3659 | 3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U, |
3660 | 2553802834U, 2445529972U, 2341847524U, 2242560872U |
3661 | }; |
3662 | |
3663 | /* Adjustment table; provided to explain the numbers in the code below. */ |
3664 | #if 0 |
3665 | for (i=11;i>=0;--i){ print i, " " , (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n" } |
3666 | 11 44937.64284865548751208448 |
3667 | 10 45180.98734845585101160448 |
3668 | 9 45303.31936980687359311872 |
3669 | 8 45364.65110595323018870784 |
3670 | 7 45395.35850361789624614912 |
3671 | 6 45410.72259715102037508096 |
3672 | 5 45418.40724413220722311168 |
3673 | 4 45422.25021786898173001728 |
3674 | 3 45424.17186732298419044352 |
3675 | 2 45425.13273269940811464704 |
3676 | 1 45425.61317555035558641664 |
3677 | 0 45425.85339951654943850496 |
3678 | #endif |
3679 | |
3680 | static png_uint_32 |
3681 | png_exp(png_fixed_point x) |
3682 | { |
3683 | if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */ |
3684 | { |
3685 | /* Obtain a 4-bit approximation */ |
3686 | png_uint_32 e = png_32bit_exp[(x >> 12) & 0x0f]; |
3687 | |
3688 | /* Incorporate the low 12 bits - these decrease the returned value by |
3689 | * multiplying by a number less than 1 if the bit is set. The multiplier |
3690 | * is determined by the above table and the shift. Notice that the values |
3691 | * converge on 45426 and this is used to allow linear interpolation of the |
3692 | * low bits. |
3693 | */ |
3694 | if (x & 0x800) |
3695 | e -= (((e >> 16) * 44938U) + 16U) >> 5; |
3696 | |
3697 | if (x & 0x400) |
3698 | e -= (((e >> 16) * 45181U) + 32U) >> 6; |
3699 | |
3700 | if (x & 0x200) |
3701 | e -= (((e >> 16) * 45303U) + 64U) >> 7; |
3702 | |
3703 | if (x & 0x100) |
3704 | e -= (((e >> 16) * 45365U) + 128U) >> 8; |
3705 | |
3706 | if (x & 0x080) |
3707 | e -= (((e >> 16) * 45395U) + 256U) >> 9; |
3708 | |
3709 | if (x & 0x040) |
3710 | e -= (((e >> 16) * 45410U) + 512U) >> 10; |
3711 | |
3712 | /* And handle the low 6 bits in a single block. */ |
3713 | e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9; |
3714 | |
3715 | /* Handle the upper bits of x. */ |
3716 | e >>= x >> 16; |
3717 | return e; |
3718 | } |
3719 | |
3720 | /* Check for overflow */ |
3721 | if (x <= 0) |
3722 | return png_32bit_exp[0]; |
3723 | |
3724 | /* Else underflow */ |
3725 | return 0; |
3726 | } |
3727 | |
3728 | static png_byte |
3729 | png_exp8bit(png_fixed_point lg2) |
3730 | { |
3731 | /* Get a 32-bit value: */ |
3732 | png_uint_32 x = png_exp(lg2); |
3733 | |
3734 | /* Convert the 32-bit value to 0..255 by multiplying by 256-1. Note that the |
3735 | * second, rounding, step can't overflow because of the first, subtraction, |
3736 | * step. |
3737 | */ |
3738 | x -= x >> 8; |
3739 | return (png_byte)(((x + 0x7fffffU) >> 24) & 0xff); |
3740 | } |
3741 | |
3742 | #ifdef PNG_16BIT_SUPPORTED |
3743 | static png_uint_16 |
3744 | png_exp16bit(png_fixed_point lg2) |
3745 | { |
3746 | /* Get a 32-bit value: */ |
3747 | png_uint_32 x = png_exp(lg2); |
3748 | |
3749 | /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */ |
3750 | x -= x >> 16; |
3751 | return (png_uint_16)((x + 32767U) >> 16); |
3752 | } |
3753 | #endif /* 16BIT */ |
3754 | #endif /* FLOATING_ARITHMETIC */ |
3755 | |
3756 | png_byte |
3757 | png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val) |
3758 | { |
3759 | if (value > 0 && value < 255) |
3760 | { |
3761 | # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
3762 | /* 'value' is unsigned, ANSI-C90 requires the compiler to correctly |
3763 | * convert this to a floating point value. This includes values that |
3764 | * would overflow if 'value' were to be converted to 'int'. |
3765 | * |
3766 | * Apparently GCC, however, does an intermediate conversion to (int) |
3767 | * on some (ARM) but not all (x86) platforms, possibly because of |
3768 | * hardware FP limitations. (E.g. if the hardware conversion always |
3769 | * assumes the integer register contains a signed value.) This results |
3770 | * in ANSI-C undefined behavior for large values. |
3771 | * |
3772 | * Other implementations on the same machine might actually be ANSI-C90 |
3773 | * conformant and therefore compile spurious extra code for the large |
3774 | * values. |
3775 | * |
3776 | * We can be reasonably sure that an unsigned to float conversion |
3777 | * won't be faster than an int to float one. Therefore this code |
3778 | * assumes responsibility for the undefined behavior, which it knows |
3779 | * can't happen because of the check above. |
3780 | * |
3781 | * Note the argument to this routine is an (unsigned int) because, on |
3782 | * 16-bit platforms, it is assigned a value which might be out of |
3783 | * range for an (int); that would result in undefined behavior in the |
3784 | * caller if the *argument* ('value') were to be declared (int). |
3785 | */ |
3786 | double r = floor(255*pow((int)/*SAFE*/value/255.,gamma_val*.00001)+.5); |
3787 | return (png_byte)r; |
3788 | # else |
3789 | png_int_32 lg2 = png_log8bit(value); |
3790 | png_fixed_point res; |
3791 | |
3792 | if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0) |
3793 | return png_exp8bit(res); |
3794 | |
3795 | /* Overflow. */ |
3796 | value = 0; |
3797 | # endif |
3798 | } |
3799 | |
3800 | return (png_byte)(value & 0xff); |
3801 | } |
3802 | |
3803 | #ifdef PNG_16BIT_SUPPORTED |
3804 | png_uint_16 |
3805 | png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val) |
3806 | { |
3807 | if (value > 0 && value < 65535) |
3808 | { |
3809 | # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
3810 | /* The same (unsigned int)->(double) constraints apply here as above, |
3811 | * however in this case the (unsigned int) to (int) conversion can |
3812 | * overflow on an ANSI-C90 compliant system so the cast needs to ensure |
3813 | * that this is not possible. |
3814 | */ |
3815 | double r = floor(65535*pow((png_int_32)value/65535., |
3816 | gamma_val*.00001)+.5); |
3817 | return (png_uint_16)r; |
3818 | # else |
3819 | png_int_32 lg2 = png_log16bit(value); |
3820 | png_fixed_point res; |
3821 | |
3822 | if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0) |
3823 | return png_exp16bit(res); |
3824 | |
3825 | /* Overflow. */ |
3826 | value = 0; |
3827 | # endif |
3828 | } |
3829 | |
3830 | return (png_uint_16)value; |
3831 | } |
3832 | #endif /* 16BIT */ |
3833 | |
3834 | /* This does the right thing based on the bit_depth field of the |
3835 | * png_struct, interpreting values as 8-bit or 16-bit. While the result |
3836 | * is nominally a 16-bit value if bit depth is 8 then the result is |
3837 | * 8-bit (as are the arguments.) |
3838 | */ |
3839 | png_uint_16 /* PRIVATE */ |
3840 | png_gamma_correct(png_structrp png_ptr, unsigned int value, |
3841 | png_fixed_point gamma_val) |
3842 | { |
3843 | if (png_ptr->bit_depth == 8) |
3844 | return png_gamma_8bit_correct(value, gamma_val); |
3845 | |
3846 | #ifdef PNG_16BIT_SUPPORTED |
3847 | else |
3848 | return png_gamma_16bit_correct(value, gamma_val); |
3849 | #else |
3850 | /* should not reach this */ |
3851 | return 0; |
3852 | #endif /* 16BIT */ |
3853 | } |
3854 | |
3855 | #ifdef PNG_16BIT_SUPPORTED |
3856 | /* Internal function to build a single 16-bit table - the table consists of |
3857 | * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount |
3858 | * to shift the input values right (or 16-number_of_signifiant_bits). |
3859 | * |
3860 | * The caller is responsible for ensuring that the table gets cleaned up on |
3861 | * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument |
3862 | * should be somewhere that will be cleaned. |
3863 | */ |
3864 | static void |
3865 | png_build_16bit_table(png_structrp png_ptr, png_uint_16pp *ptable, |
3866 | PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val) |
3867 | { |
3868 | /* Various values derived from 'shift': */ |
3869 | PNG_CONST unsigned int num = 1U << (8U - shift); |
3870 | #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
3871 | /* CSE the division and work round wacky GCC warnings (see the comments |
3872 | * in png_gamma_8bit_correct for where these come from.) |
3873 | */ |
3874 | PNG_CONST double fmax = 1./(((png_int_32)1 << (16U - shift))-1); |
3875 | #endif |
3876 | PNG_CONST unsigned int max = (1U << (16U - shift))-1U; |
3877 | PNG_CONST unsigned int max_by_2 = 1U << (15U-shift); |
3878 | unsigned int i; |
3879 | |
3880 | png_uint_16pp table = *ptable = |
3881 | (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p))); |
3882 | |
3883 | for (i = 0; i < num; i++) |
3884 | { |
3885 | png_uint_16p sub_table = table[i] = |
3886 | (png_uint_16p)png_malloc(png_ptr, 256 * (sizeof (png_uint_16))); |
3887 | |
3888 | /* The 'threshold' test is repeated here because it can arise for one of |
3889 | * the 16-bit tables even if the others don't hit it. |
3890 | */ |
3891 | if (png_gamma_significant(gamma_val) != 0) |
3892 | { |
3893 | /* The old code would overflow at the end and this would cause the |
3894 | * 'pow' function to return a result >1, resulting in an |
3895 | * arithmetic error. This code follows the spec exactly; ig is |
3896 | * the recovered input sample, it always has 8-16 bits. |
3897 | * |
3898 | * We want input * 65535/max, rounded, the arithmetic fits in 32 |
3899 | * bits (unsigned) so long as max <= 32767. |
3900 | */ |
3901 | unsigned int j; |
3902 | for (j = 0; j < 256; j++) |
3903 | { |
3904 | png_uint_32 ig = (j << (8-shift)) + i; |
3905 | # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
3906 | /* Inline the 'max' scaling operation: */ |
3907 | /* See png_gamma_8bit_correct for why the cast to (int) is |
3908 | * required here. |
3909 | */ |
3910 | double d = floor(65535.*pow(ig*fmax, gamma_val*.00001)+.5); |
3911 | sub_table[j] = (png_uint_16)d; |
3912 | # else |
3913 | if (shift != 0) |
3914 | ig = (ig * 65535U + max_by_2)/max; |
3915 | |
3916 | sub_table[j] = png_gamma_16bit_correct(ig, gamma_val); |
3917 | # endif |
3918 | } |
3919 | } |
3920 | else |
3921 | { |
3922 | /* We must still build a table, but do it the fast way. */ |
3923 | unsigned int j; |
3924 | |
3925 | for (j = 0; j < 256; j++) |
3926 | { |
3927 | png_uint_32 ig = (j << (8-shift)) + i; |
3928 | |
3929 | if (shift != 0) |
3930 | ig = (ig * 65535U + max_by_2)/max; |
3931 | |
3932 | sub_table[j] = (png_uint_16)ig; |
3933 | } |
3934 | } |
3935 | } |
3936 | } |
3937 | |
3938 | /* NOTE: this function expects the *inverse* of the overall gamma transformation |
3939 | * required. |
3940 | */ |
3941 | static void |
3942 | png_build_16to8_table(png_structrp png_ptr, png_uint_16pp *ptable, |
3943 | PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val) |
3944 | { |
3945 | PNG_CONST unsigned int num = 1U << (8U - shift); |
3946 | PNG_CONST unsigned int max = (1U << (16U - shift))-1U; |
3947 | unsigned int i; |
3948 | png_uint_32 last; |
3949 | |
3950 | png_uint_16pp table = *ptable = |
3951 | (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p))); |
3952 | |
3953 | /* 'num' is the number of tables and also the number of low bits of low |
3954 | * bits of the input 16-bit value used to select a table. Each table is |
3955 | * itself indexed by the high 8 bits of the value. |
3956 | */ |
3957 | for (i = 0; i < num; i++) |
3958 | table[i] = (png_uint_16p)png_malloc(png_ptr, |
3959 | 256 * (sizeof (png_uint_16))); |
3960 | |
3961 | /* 'gamma_val' is set to the reciprocal of the value calculated above, so |
3962 | * pow(out,g) is an *input* value. 'last' is the last input value set. |
3963 | * |
3964 | * In the loop 'i' is used to find output values. Since the output is |
3965 | * 8-bit there are only 256 possible values. The tables are set up to |
3966 | * select the closest possible output value for each input by finding |
3967 | * the input value at the boundary between each pair of output values |
3968 | * and filling the table up to that boundary with the lower output |
3969 | * value. |
3970 | * |
3971 | * The boundary values are 0.5,1.5..253.5,254.5. Since these are 9-bit |
3972 | * values the code below uses a 16-bit value in i; the values start at |
3973 | * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last |
3974 | * entries are filled with 255). Start i at 128 and fill all 'last' |
3975 | * table entries <= 'max' |
3976 | */ |
3977 | last = 0; |
3978 | for (i = 0; i < 255; ++i) /* 8-bit output value */ |
3979 | { |
3980 | /* Find the corresponding maximum input value */ |
3981 | png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */ |
3982 | |
3983 | /* Find the boundary value in 16 bits: */ |
3984 | png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val); |
3985 | |
3986 | /* Adjust (round) to (16-shift) bits: */ |
3987 | bound = (bound * max + 32768U)/65535U + 1U; |
3988 | |
3989 | while (last < bound) |
3990 | { |
3991 | table[last & (0xffU >> shift)][last >> (8U - shift)] = out; |
3992 | last++; |
3993 | } |
3994 | } |
3995 | |
3996 | /* And fill in the final entries. */ |
3997 | while (last < (num << 8)) |
3998 | { |
3999 | table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U; |
4000 | last++; |
4001 | } |
4002 | } |
4003 | #endif /* 16BIT */ |
4004 | |
4005 | /* Build a single 8-bit table: same as the 16-bit case but much simpler (and |
4006 | * typically much faster). Note that libpng currently does no sBIT processing |
4007 | * (apparently contrary to the spec) so a 256-entry table is always generated. |
4008 | */ |
4009 | static void |
4010 | png_build_8bit_table(png_structrp png_ptr, png_bytepp ptable, |
4011 | PNG_CONST png_fixed_point gamma_val) |
4012 | { |
4013 | unsigned int i; |
4014 | png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256); |
4015 | |
4016 | if (png_gamma_significant(gamma_val) != 0) |
4017 | for (i=0; i<256; i++) |
4018 | table[i] = png_gamma_8bit_correct(i, gamma_val); |
4019 | |
4020 | else |
4021 | for (i=0; i<256; ++i) |
4022 | table[i] = (png_byte)(i & 0xff); |
4023 | } |
4024 | |
4025 | /* Used from png_read_destroy and below to release the memory used by the gamma |
4026 | * tables. |
4027 | */ |
4028 | void /* PRIVATE */ |
4029 | png_destroy_gamma_table(png_structrp png_ptr) |
4030 | { |
4031 | png_free(png_ptr, png_ptr->gamma_table); |
4032 | png_ptr->gamma_table = NULL; |
4033 | |
4034 | #ifdef PNG_16BIT_SUPPORTED |
4035 | if (png_ptr->gamma_16_table != NULL) |
4036 | { |
4037 | int i; |
4038 | int istop = (1 << (8 - png_ptr->gamma_shift)); |
4039 | for (i = 0; i < istop; i++) |
4040 | { |
4041 | png_free(png_ptr, png_ptr->gamma_16_table[i]); |
4042 | } |
4043 | png_free(png_ptr, png_ptr->gamma_16_table); |
4044 | png_ptr->gamma_16_table = NULL; |
4045 | } |
4046 | #endif /* 16BIT */ |
4047 | |
4048 | #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ |
4049 | defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ |
4050 | defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) |
4051 | png_free(png_ptr, png_ptr->gamma_from_1); |
4052 | png_ptr->gamma_from_1 = NULL; |
4053 | png_free(png_ptr, png_ptr->gamma_to_1); |
4054 | png_ptr->gamma_to_1 = NULL; |
4055 | |
4056 | #ifdef PNG_16BIT_SUPPORTED |
4057 | if (png_ptr->gamma_16_from_1 != NULL) |
4058 | { |
4059 | int i; |
4060 | int istop = (1 << (8 - png_ptr->gamma_shift)); |
4061 | for (i = 0; i < istop; i++) |
4062 | { |
4063 | png_free(png_ptr, png_ptr->gamma_16_from_1[i]); |
4064 | } |
4065 | png_free(png_ptr, png_ptr->gamma_16_from_1); |
4066 | png_ptr->gamma_16_from_1 = NULL; |
4067 | } |
4068 | if (png_ptr->gamma_16_to_1 != NULL) |
4069 | { |
4070 | int i; |
4071 | int istop = (1 << (8 - png_ptr->gamma_shift)); |
4072 | for (i = 0; i < istop; i++) |
4073 | { |
4074 | png_free(png_ptr, png_ptr->gamma_16_to_1[i]); |
4075 | } |
4076 | png_free(png_ptr, png_ptr->gamma_16_to_1); |
4077 | png_ptr->gamma_16_to_1 = NULL; |
4078 | } |
4079 | #endif /* 16BIT */ |
4080 | #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ |
4081 | } |
4082 | |
4083 | /* We build the 8- or 16-bit gamma tables here. Note that for 16-bit |
4084 | * tables, we don't make a full table if we are reducing to 8-bit in |
4085 | * the future. Note also how the gamma_16 tables are segmented so that |
4086 | * we don't need to allocate > 64K chunks for a full 16-bit table. |
4087 | */ |
4088 | void /* PRIVATE */ |
4089 | png_build_gamma_table(png_structrp png_ptr, int bit_depth) |
4090 | { |
4091 | png_debug(1, "in png_build_gamma_table" ); |
4092 | |
4093 | /* Remove any existing table; this copes with multiple calls to |
4094 | * png_read_update_info. The warning is because building the gamma tables |
4095 | * multiple times is a performance hit - it's harmless but the ability to call |
4096 | * png_read_update_info() multiple times is new in 1.5.6 so it seems sensible |
4097 | * to warn if the app introduces such a hit. |
4098 | */ |
4099 | if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL) |
4100 | { |
4101 | png_warning(png_ptr, "gamma table being rebuilt" ); |
4102 | png_destroy_gamma_table(png_ptr); |
4103 | } |
4104 | |
4105 | if (bit_depth <= 8) |
4106 | { |
4107 | png_build_8bit_table(png_ptr, &png_ptr->gamma_table, |
4108 | png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->colorspace.gamma, |
4109 | png_ptr->screen_gamma) : PNG_FP_1); |
4110 | |
4111 | #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ |
4112 | defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ |
4113 | defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) |
4114 | if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0) |
4115 | { |
4116 | png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1, |
4117 | png_reciprocal(png_ptr->colorspace.gamma)); |
4118 | |
4119 | png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1, |
4120 | png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) : |
4121 | png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */); |
4122 | } |
4123 | #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ |
4124 | } |
4125 | #ifdef PNG_16BIT_SUPPORTED |
4126 | else |
4127 | { |
4128 | png_byte shift, sig_bit; |
4129 | |
4130 | if ((png_ptr->color_type & PNG_COLOR_MASK_COLOR) != 0) |
4131 | { |
4132 | sig_bit = png_ptr->sig_bit.red; |
4133 | |
4134 | if (png_ptr->sig_bit.green > sig_bit) |
4135 | sig_bit = png_ptr->sig_bit.green; |
4136 | |
4137 | if (png_ptr->sig_bit.blue > sig_bit) |
4138 | sig_bit = png_ptr->sig_bit.blue; |
4139 | } |
4140 | else |
4141 | sig_bit = png_ptr->sig_bit.gray; |
4142 | |
4143 | /* 16-bit gamma code uses this equation: |
4144 | * |
4145 | * ov = table[(iv & 0xff) >> gamma_shift][iv >> 8] |
4146 | * |
4147 | * Where 'iv' is the input color value and 'ov' is the output value - |
4148 | * pow(iv, gamma). |
4149 | * |
4150 | * Thus the gamma table consists of up to 256 256-entry tables. The table |
4151 | * is selected by the (8-gamma_shift) most significant of the low 8 bits of |
4152 | * the color value then indexed by the upper 8 bits: |
4153 | * |
4154 | * table[low bits][high 8 bits] |
4155 | * |
4156 | * So the table 'n' corresponds to all those 'iv' of: |
4157 | * |
4158 | * <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1> |
4159 | * |
4160 | */ |
4161 | if (sig_bit > 0 && sig_bit < 16U) |
4162 | /* shift == insignificant bits */ |
4163 | shift = (png_byte)((16U - sig_bit) & 0xff); |
4164 | |
4165 | else |
4166 | shift = 0; /* keep all 16 bits */ |
4167 | |
4168 | if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0) |
4169 | { |
4170 | /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively |
4171 | * the significant bits in the *input* when the output will |
4172 | * eventually be 8 bits. By default it is 11. |
4173 | */ |
4174 | if (shift < (16U - PNG_MAX_GAMMA_8)) |
4175 | shift = (16U - PNG_MAX_GAMMA_8); |
4176 | } |
4177 | |
4178 | if (shift > 8U) |
4179 | shift = 8U; /* Guarantees at least one table! */ |
4180 | |
4181 | png_ptr->gamma_shift = shift; |
4182 | |
4183 | /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now |
4184 | * PNG_COMPOSE). This effectively smashed the background calculation for |
4185 | * 16-bit output because the 8-bit table assumes the result will be reduced |
4186 | * to 8 bits. |
4187 | */ |
4188 | if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0) |
4189 | png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift, |
4190 | png_ptr->screen_gamma > 0 ? png_product2(png_ptr->colorspace.gamma, |
4191 | png_ptr->screen_gamma) : PNG_FP_1); |
4192 | |
4193 | else |
4194 | png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift, |
4195 | png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->colorspace.gamma, |
4196 | png_ptr->screen_gamma) : PNG_FP_1); |
4197 | |
4198 | #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ |
4199 | defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ |
4200 | defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) |
4201 | if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0) |
4202 | { |
4203 | png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift, |
4204 | png_reciprocal(png_ptr->colorspace.gamma)); |
4205 | |
4206 | /* Notice that the '16 from 1' table should be full precision, however |
4207 | * the lookup on this table still uses gamma_shift, so it can't be. |
4208 | * TODO: fix this. |
4209 | */ |
4210 | png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift, |
4211 | png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) : |
4212 | png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */); |
4213 | } |
4214 | #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ |
4215 | } |
4216 | #endif /* 16BIT */ |
4217 | } |
4218 | #endif /* READ_GAMMA */ |
4219 | |
4220 | /* HARDWARE OR SOFTWARE OPTION SUPPORT */ |
4221 | #ifdef PNG_SET_OPTION_SUPPORTED |
4222 | int PNGAPI |
4223 | png_set_option(png_structrp png_ptr, int option, int onoff) |
4224 | { |
4225 | if (png_ptr != NULL && option >= 0 && option < PNG_OPTION_NEXT && |
4226 | (option & 1) == 0) |
4227 | { |
4228 | int mask = 3 << option; |
4229 | int setting = (2 + (onoff != 0)) << option; |
4230 | int current = png_ptr->options; |
4231 | |
4232 | png_ptr->options = (png_byte)(((current & ~mask) | setting) & 0xff); |
4233 | |
4234 | return (current & mask) >> option; |
4235 | } |
4236 | |
4237 | return PNG_OPTION_INVALID; |
4238 | } |
4239 | #endif |
4240 | |
4241 | /* sRGB support */ |
4242 | #if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\ |
4243 | defined(PNG_SIMPLIFIED_WRITE_SUPPORTED) |
4244 | /* sRGB conversion tables; these are machine generated with the code in |
4245 | * contrib/tools/makesRGB.c. The actual sRGB transfer curve defined in the |
4246 | * specification (see the article at http://en.wikipedia.org/wiki/SRGB) |
4247 | * is used, not the gamma=1/2.2 approximation use elsewhere in libpng. |
4248 | * The sRGB to linear table is exact (to the nearest 16-bit linear fraction). |
4249 | * The inverse (linear to sRGB) table has accuracies as follows: |
4250 | * |
4251 | * For all possible (255*65535+1) input values: |
4252 | * |
4253 | * error: -0.515566 - 0.625971, 79441 (0.475369%) of readings inexact |
4254 | * |
4255 | * For the input values corresponding to the 65536 16-bit values: |
4256 | * |
4257 | * error: -0.513727 - 0.607759, 308 (0.469978%) of readings inexact |
4258 | * |
4259 | * In all cases the inexact readings are only off by one. |
4260 | */ |
4261 | |
4262 | #ifdef PNG_SIMPLIFIED_READ_SUPPORTED |
4263 | /* The convert-to-sRGB table is only currently required for read. */ |
4264 | const png_uint_16 png_sRGB_table[256] = |
4265 | { |
4266 | 0,20,40,60,80,99,119,139, |
4267 | 159,179,199,219,241,264,288,313, |
4268 | 340,367,396,427,458,491,526,562, |
4269 | 599,637,677,718,761,805,851,898, |
4270 | 947,997,1048,1101,1156,1212,1270,1330, |
4271 | 1391,1453,1517,1583,1651,1720,1790,1863, |
4272 | 1937,2013,2090,2170,2250,2333,2418,2504, |
4273 | 2592,2681,2773,2866,2961,3058,3157,3258, |
4274 | 3360,3464,3570,3678,3788,3900,4014,4129, |
4275 | 4247,4366,4488,4611,4736,4864,4993,5124, |
4276 | 5257,5392,5530,5669,5810,5953,6099,6246, |
4277 | 6395,6547,6700,6856,7014,7174,7335,7500, |
4278 | 7666,7834,8004,8177,8352,8528,8708,8889, |
4279 | 9072,9258,9445,9635,9828,10022,10219,10417, |
4280 | 10619,10822,11028,11235,11446,11658,11873,12090, |
4281 | 12309,12530,12754,12980,13209,13440,13673,13909, |
4282 | 14146,14387,14629,14874,15122,15371,15623,15878, |
4283 | 16135,16394,16656,16920,17187,17456,17727,18001, |
4284 | 18277,18556,18837,19121,19407,19696,19987,20281, |
4285 | 20577,20876,21177,21481,21787,22096,22407,22721, |
4286 | 23038,23357,23678,24002,24329,24658,24990,25325, |
4287 | 25662,26001,26344,26688,27036,27386,27739,28094, |
4288 | 28452,28813,29176,29542,29911,30282,30656,31033, |
4289 | 31412,31794,32179,32567,32957,33350,33745,34143, |
4290 | 34544,34948,35355,35764,36176,36591,37008,37429, |
4291 | 37852,38278,38706,39138,39572,40009,40449,40891, |
4292 | 41337,41785,42236,42690,43147,43606,44069,44534, |
4293 | 45002,45473,45947,46423,46903,47385,47871,48359, |
4294 | 48850,49344,49841,50341,50844,51349,51858,52369, |
4295 | 52884,53401,53921,54445,54971,55500,56032,56567, |
4296 | 57105,57646,58190,58737,59287,59840,60396,60955, |
4297 | 61517,62082,62650,63221,63795,64372,64952,65535 |
4298 | }; |
4299 | #endif /* SIMPLIFIED_READ */ |
4300 | |
4301 | /* The base/delta tables are required for both read and write (but currently |
4302 | * only the simplified versions.) |
4303 | */ |
4304 | const png_uint_16 png_sRGB_base[512] = |
4305 | { |
4306 | 128,1782,3383,4644,5675,6564,7357,8074, |
4307 | 8732,9346,9921,10463,10977,11466,11935,12384, |
4308 | 12816,13233,13634,14024,14402,14769,15125,15473, |
4309 | 15812,16142,16466,16781,17090,17393,17690,17981, |
4310 | 18266,18546,18822,19093,19359,19621,19879,20133, |
4311 | 20383,20630,20873,21113,21349,21583,21813,22041, |
4312 | 22265,22487,22707,22923,23138,23350,23559,23767, |
4313 | 23972,24175,24376,24575,24772,24967,25160,25352, |
4314 | 25542,25730,25916,26101,26284,26465,26645,26823, |
4315 | 27000,27176,27350,27523,27695,27865,28034,28201, |
4316 | 28368,28533,28697,28860,29021,29182,29341,29500, |
4317 | 29657,29813,29969,30123,30276,30429,30580,30730, |
4318 | 30880,31028,31176,31323,31469,31614,31758,31902, |
4319 | 32045,32186,32327,32468,32607,32746,32884,33021, |
4320 | 33158,33294,33429,33564,33697,33831,33963,34095, |
4321 | 34226,34357,34486,34616,34744,34873,35000,35127, |
4322 | 35253,35379,35504,35629,35753,35876,35999,36122, |
4323 | 36244,36365,36486,36606,36726,36845,36964,37083, |
4324 | 37201,37318,37435,37551,37668,37783,37898,38013, |
4325 | 38127,38241,38354,38467,38580,38692,38803,38915, |
4326 | 39026,39136,39246,39356,39465,39574,39682,39790, |
4327 | 39898,40005,40112,40219,40325,40431,40537,40642, |
4328 | 40747,40851,40955,41059,41163,41266,41369,41471, |
4329 | 41573,41675,41777,41878,41979,42079,42179,42279, |
4330 | 42379,42478,42577,42676,42775,42873,42971,43068, |
4331 | 43165,43262,43359,43456,43552,43648,43743,43839, |
4332 | 43934,44028,44123,44217,44311,44405,44499,44592, |
4333 | 44685,44778,44870,44962,45054,45146,45238,45329, |
4334 | 45420,45511,45601,45692,45782,45872,45961,46051, |
4335 | 46140,46229,46318,46406,46494,46583,46670,46758, |
4336 | 46846,46933,47020,47107,47193,47280,47366,47452, |
4337 | 47538,47623,47709,47794,47879,47964,48048,48133, |
4338 | 48217,48301,48385,48468,48552,48635,48718,48801, |
4339 | 48884,48966,49048,49131,49213,49294,49376,49458, |
4340 | 49539,49620,49701,49782,49862,49943,50023,50103, |
4341 | 50183,50263,50342,50422,50501,50580,50659,50738, |
4342 | 50816,50895,50973,51051,51129,51207,51285,51362, |
4343 | 51439,51517,51594,51671,51747,51824,51900,51977, |
4344 | 52053,52129,52205,52280,52356,52432,52507,52582, |
4345 | 52657,52732,52807,52881,52956,53030,53104,53178, |
4346 | 53252,53326,53400,53473,53546,53620,53693,53766, |
4347 | 53839,53911,53984,54056,54129,54201,54273,54345, |
4348 | 54417,54489,54560,54632,54703,54774,54845,54916, |
4349 | 54987,55058,55129,55199,55269,55340,55410,55480, |
4350 | 55550,55620,55689,55759,55828,55898,55967,56036, |
4351 | 56105,56174,56243,56311,56380,56448,56517,56585, |
4352 | 56653,56721,56789,56857,56924,56992,57059,57127, |
4353 | 57194,57261,57328,57395,57462,57529,57595,57662, |
4354 | 57728,57795,57861,57927,57993,58059,58125,58191, |
4355 | 58256,58322,58387,58453,58518,58583,58648,58713, |
4356 | 58778,58843,58908,58972,59037,59101,59165,59230, |
4357 | 59294,59358,59422,59486,59549,59613,59677,59740, |
4358 | 59804,59867,59930,59993,60056,60119,60182,60245, |
4359 | 60308,60370,60433,60495,60558,60620,60682,60744, |
4360 | 60806,60868,60930,60992,61054,61115,61177,61238, |
4361 | 61300,61361,61422,61483,61544,61605,61666,61727, |
4362 | 61788,61848,61909,61969,62030,62090,62150,62211, |
4363 | 62271,62331,62391,62450,62510,62570,62630,62689, |
4364 | 62749,62808,62867,62927,62986,63045,63104,63163, |
4365 | 63222,63281,63340,63398,63457,63515,63574,63632, |
4366 | 63691,63749,63807,63865,63923,63981,64039,64097, |
4367 | 64155,64212,64270,64328,64385,64443,64500,64557, |
4368 | 64614,64672,64729,64786,64843,64900,64956,65013, |
4369 | 65070,65126,65183,65239,65296,65352,65409,65465 |
4370 | }; |
4371 | |
4372 | const png_byte png_sRGB_delta[512] = |
4373 | { |
4374 | 207,201,158,129,113,100,90,82,77,72,68,64,61,59,56,54, |
4375 | 52,50,49,47,46,45,43,42,41,40,39,39,38,37,36,36, |
4376 | 35,34,34,33,33,32,32,31,31,30,30,30,29,29,28,28, |
4377 | 28,27,27,27,27,26,26,26,25,25,25,25,24,24,24,24, |
4378 | 23,23,23,23,23,22,22,22,22,22,22,21,21,21,21,21, |
4379 | 21,20,20,20,20,20,20,20,20,19,19,19,19,19,19,19, |
4380 | 19,18,18,18,18,18,18,18,18,18,18,17,17,17,17,17, |
4381 | 17,17,17,17,17,17,16,16,16,16,16,16,16,16,16,16, |
4382 | 16,16,16,16,15,15,15,15,15,15,15,15,15,15,15,15, |
4383 | 15,15,15,15,14,14,14,14,14,14,14,14,14,14,14,14, |
4384 | 14,14,14,14,14,14,14,13,13,13,13,13,13,13,13,13, |
4385 | 13,13,13,13,13,13,13,13,13,13,13,13,13,13,12,12, |
4386 | 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, |
4387 | 12,12,12,12,12,12,12,12,12,12,12,12,11,11,11,11, |
4388 | 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, |
4389 | 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, |
4390 | 11,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, |
4391 | 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, |
4392 | 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, |
4393 | 10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, |
4394 | 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, |
4395 | 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, |
4396 | 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, |
4397 | 9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, |
4398 | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, |
4399 | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, |
4400 | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, |
4401 | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, |
4402 | 8,8,8,8,8,8,8,8,8,7,7,7,7,7,7,7, |
4403 | 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, |
4404 | 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, |
4405 | 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 |
4406 | }; |
4407 | #endif /* SIMPLIFIED READ/WRITE sRGB support */ |
4408 | |
4409 | /* SIMPLIFIED READ/WRITE SUPPORT */ |
4410 | #if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\ |
4411 | defined(PNG_SIMPLIFIED_WRITE_SUPPORTED) |
4412 | static int |
4413 | png_image_free_function(png_voidp argument) |
4414 | { |
4415 | png_imagep image = png_voidcast(png_imagep, argument); |
4416 | png_controlp cp = image->opaque; |
4417 | png_control c; |
4418 | |
4419 | /* Double check that we have a png_ptr - it should be impossible to get here |
4420 | * without one. |
4421 | */ |
4422 | if (cp->png_ptr == NULL) |
4423 | return 0; |
4424 | |
4425 | /* First free any data held in the control structure. */ |
4426 | # ifdef PNG_STDIO_SUPPORTED |
4427 | if (cp->owned_file != 0) |
4428 | { |
4429 | FILE *fp = png_voidcast(FILE*, cp->png_ptr->io_ptr); |
4430 | cp->owned_file = 0; |
4431 | |
4432 | /* Ignore errors here. */ |
4433 | if (fp != NULL) |
4434 | { |
4435 | cp->png_ptr->io_ptr = NULL; |
4436 | (void)fclose(fp); |
4437 | } |
4438 | } |
4439 | # endif |
4440 | |
4441 | /* Copy the control structure so that the original, allocated, version can be |
4442 | * safely freed. Notice that a png_error here stops the remainder of the |
4443 | * cleanup, but this is probably fine because that would indicate bad memory |
4444 | * problems anyway. |
4445 | */ |
4446 | c = *cp; |
4447 | image->opaque = &c; |
4448 | png_free(c.png_ptr, cp); |
4449 | |
4450 | /* Then the structures, calling the correct API. */ |
4451 | if (c.for_write != 0) |
4452 | { |
4453 | # ifdef PNG_SIMPLIFIED_WRITE_SUPPORTED |
4454 | png_destroy_write_struct(&c.png_ptr, &c.info_ptr); |
4455 | # else |
4456 | png_error(c.png_ptr, "simplified write not supported" ); |
4457 | # endif |
4458 | } |
4459 | else |
4460 | { |
4461 | # ifdef PNG_SIMPLIFIED_READ_SUPPORTED |
4462 | png_destroy_read_struct(&c.png_ptr, &c.info_ptr, NULL); |
4463 | # else |
4464 | png_error(c.png_ptr, "simplified read not supported" ); |
4465 | # endif |
4466 | } |
4467 | |
4468 | /* Success. */ |
4469 | return 1; |
4470 | } |
4471 | |
4472 | void PNGAPI |
4473 | png_image_free(png_imagep image) |
4474 | { |
4475 | /* Safely call the real function, but only if doing so is safe at this point |
4476 | * (if not inside an error handling context). Otherwise assume |
4477 | * png_safe_execute will call this API after the return. |
4478 | */ |
4479 | if (image != NULL && image->opaque != NULL && |
4480 | image->opaque->error_buf == NULL) |
4481 | { |
4482 | /* Ignore errors here: */ |
4483 | (void)png_safe_execute(image, png_image_free_function, image); |
4484 | image->opaque = NULL; |
4485 | } |
4486 | } |
4487 | |
4488 | int /* PRIVATE */ |
4489 | png_image_error(png_imagep image, png_const_charp error_message) |
4490 | { |
4491 | /* Utility to log an error. */ |
4492 | png_safecat(image->message, (sizeof image->message), 0, error_message); |
4493 | image->warning_or_error |= PNG_IMAGE_ERROR; |
4494 | png_image_free(image); |
4495 | return 0; |
4496 | } |
4497 | |
4498 | #endif /* SIMPLIFIED READ/WRITE */ |
4499 | #endif /* READ || WRITE */ |
4500 | |