1 | // Copyright 2010 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // Frame-reconstruction function. Memory allocation. |
11 | // |
12 | // Author: Skal (pascal.massimino@gmail.com) |
13 | |
14 | #include <stdlib.h> |
15 | #include "./vp8i_dec.h" |
16 | #include "../utils/utils.h" |
17 | |
18 | //------------------------------------------------------------------------------ |
19 | // Main reconstruction function. |
20 | |
21 | static const int kScan[16] = { |
22 | 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, |
23 | 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, |
24 | 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, |
25 | 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS |
26 | }; |
27 | |
28 | static int CheckMode(int mb_x, int mb_y, int mode) { |
29 | if (mode == B_DC_PRED) { |
30 | if (mb_x == 0) { |
31 | return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT; |
32 | } else { |
33 | return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED; |
34 | } |
35 | } |
36 | return mode; |
37 | } |
38 | |
39 | static void Copy32b(uint8_t* const dst, const uint8_t* const src) { |
40 | memcpy(dst, src, 4); |
41 | } |
42 | |
43 | static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src, |
44 | uint8_t* const dst) { |
45 | switch (bits >> 30) { |
46 | case 3: |
47 | VP8Transform(src, dst, 0); |
48 | break; |
49 | case 2: |
50 | VP8TransformAC3(src, dst); |
51 | break; |
52 | case 1: |
53 | VP8TransformDC(src, dst); |
54 | break; |
55 | default: |
56 | break; |
57 | } |
58 | } |
59 | |
60 | static void DoUVTransform(uint32_t bits, const int16_t* const src, |
61 | uint8_t* const dst) { |
62 | if (bits & 0xff) { // any non-zero coeff at all? |
63 | if (bits & 0xaa) { // any non-zero AC coefficient? |
64 | VP8TransformUV(src, dst); // note we don't use the AC3 variant for U/V |
65 | } else { |
66 | VP8TransformDCUV(src, dst); |
67 | } |
68 | } |
69 | } |
70 | |
71 | static void ReconstructRow(const VP8Decoder* const dec, |
72 | const VP8ThreadContext* ctx) { |
73 | int j; |
74 | int mb_x; |
75 | const int mb_y = ctx->mb_y_; |
76 | const int cache_id = ctx->id_; |
77 | uint8_t* const y_dst = dec->yuv_b_ + Y_OFF; |
78 | uint8_t* const u_dst = dec->yuv_b_ + U_OFF; |
79 | uint8_t* const v_dst = dec->yuv_b_ + V_OFF; |
80 | |
81 | // Initialize left-most block. |
82 | for (j = 0; j < 16; ++j) { |
83 | y_dst[j * BPS - 1] = 129; |
84 | } |
85 | for (j = 0; j < 8; ++j) { |
86 | u_dst[j * BPS - 1] = 129; |
87 | v_dst[j * BPS - 1] = 129; |
88 | } |
89 | |
90 | // Init top-left sample on left column too. |
91 | if (mb_y > 0) { |
92 | y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129; |
93 | } else { |
94 | // we only need to do this init once at block (0,0). |
95 | // Afterward, it remains valid for the whole topmost row. |
96 | memset(y_dst - BPS - 1, 127, 16 + 4 + 1); |
97 | memset(u_dst - BPS - 1, 127, 8 + 1); |
98 | memset(v_dst - BPS - 1, 127, 8 + 1); |
99 | } |
100 | |
101 | // Reconstruct one row. |
102 | for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) { |
103 | const VP8MBData* const block = ctx->mb_data_ + mb_x; |
104 | |
105 | // Rotate in the left samples from previously decoded block. We move four |
106 | // pixels at a time for alignment reason, and because of in-loop filter. |
107 | if (mb_x > 0) { |
108 | for (j = -1; j < 16; ++j) { |
109 | Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]); |
110 | } |
111 | for (j = -1; j < 8; ++j) { |
112 | Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]); |
113 | Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]); |
114 | } |
115 | } |
116 | { |
117 | // bring top samples into the cache |
118 | VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x; |
119 | const int16_t* const coeffs = block->coeffs_; |
120 | uint32_t bits = block->non_zero_y_; |
121 | int n; |
122 | |
123 | if (mb_y > 0) { |
124 | memcpy(y_dst - BPS, top_yuv[0].y, 16); |
125 | memcpy(u_dst - BPS, top_yuv[0].u, 8); |
126 | memcpy(v_dst - BPS, top_yuv[0].v, 8); |
127 | } |
128 | |
129 | // predict and add residuals |
130 | if (block->is_i4x4_) { // 4x4 |
131 | uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16); |
132 | |
133 | if (mb_y > 0) { |
134 | if (mb_x >= dec->mb_w_ - 1) { // on rightmost border |
135 | memset(top_right, top_yuv[0].y[15], sizeof(*top_right)); |
136 | } else { |
137 | memcpy(top_right, top_yuv[1].y, sizeof(*top_right)); |
138 | } |
139 | } |
140 | // replicate the top-right pixels below |
141 | top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0]; |
142 | |
143 | // predict and add residuals for all 4x4 blocks in turn. |
144 | for (n = 0; n < 16; ++n, bits <<= 2) { |
145 | uint8_t* const dst = y_dst + kScan[n]; |
146 | VP8PredLuma4[block->imodes_[n]](dst); |
147 | DoTransform(bits, coeffs + n * 16, dst); |
148 | } |
149 | } else { // 16x16 |
150 | const int pred_func = CheckMode(mb_x, mb_y, block->imodes_[0]); |
151 | VP8PredLuma16[pred_func](y_dst); |
152 | if (bits != 0) { |
153 | for (n = 0; n < 16; ++n, bits <<= 2) { |
154 | DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]); |
155 | } |
156 | } |
157 | } |
158 | { |
159 | // Chroma |
160 | const uint32_t bits_uv = block->non_zero_uv_; |
161 | const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_); |
162 | VP8PredChroma8[pred_func](u_dst); |
163 | VP8PredChroma8[pred_func](v_dst); |
164 | DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst); |
165 | DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst); |
166 | } |
167 | |
168 | // stash away top samples for next block |
169 | if (mb_y < dec->mb_h_ - 1) { |
170 | memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16); |
171 | memcpy(top_yuv[0].u, u_dst + 7 * BPS, 8); |
172 | memcpy(top_yuv[0].v, v_dst + 7 * BPS, 8); |
173 | } |
174 | } |
175 | // Transfer reconstructed samples from yuv_b_ cache to final destination. |
176 | { |
177 | const int y_offset = cache_id * 16 * dec->cache_y_stride_; |
178 | const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; |
179 | uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset; |
180 | uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset; |
181 | uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset; |
182 | for (j = 0; j < 16; ++j) { |
183 | memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16); |
184 | } |
185 | for (j = 0; j < 8; ++j) { |
186 | memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8); |
187 | memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8); |
188 | } |
189 | } |
190 | } |
191 | } |
192 | |
193 | //------------------------------------------------------------------------------ |
194 | // Filtering |
195 | |
196 | // kFilterExtraRows[] = How many extra lines are needed on the MB boundary |
197 | // for caching, given a filtering level. |
198 | // Simple filter: up to 2 luma samples are read and 1 is written. |
199 | // Complex filter: up to 4 luma samples are read and 3 are written. Same for |
200 | // U/V, so it's 8 samples total (because of the 2x upsampling). |
201 | static const uint8_t [3] = { 0, 2, 8 }; |
202 | |
203 | static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) { |
204 | const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
205 | const int cache_id = ctx->id_; |
206 | const int y_bps = dec->cache_y_stride_; |
207 | const VP8FInfo* const f_info = ctx->f_info_ + mb_x; |
208 | uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16; |
209 | const int ilevel = f_info->f_ilevel_; |
210 | const int limit = f_info->f_limit_; |
211 | if (limit == 0) { |
212 | return; |
213 | } |
214 | assert(limit >= 3); |
215 | if (dec->filter_type_ == 1) { // simple |
216 | if (mb_x > 0) { |
217 | VP8SimpleHFilter16(y_dst, y_bps, limit + 4); |
218 | } |
219 | if (f_info->f_inner_) { |
220 | VP8SimpleHFilter16i(y_dst, y_bps, limit); |
221 | } |
222 | if (mb_y > 0) { |
223 | VP8SimpleVFilter16(y_dst, y_bps, limit + 4); |
224 | } |
225 | if (f_info->f_inner_) { |
226 | VP8SimpleVFilter16i(y_dst, y_bps, limit); |
227 | } |
228 | } else { // complex |
229 | const int uv_bps = dec->cache_uv_stride_; |
230 | uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; |
231 | uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; |
232 | const int hev_thresh = f_info->hev_thresh_; |
233 | if (mb_x > 0) { |
234 | VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); |
235 | VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); |
236 | } |
237 | if (f_info->f_inner_) { |
238 | VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); |
239 | VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); |
240 | } |
241 | if (mb_y > 0) { |
242 | VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); |
243 | VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); |
244 | } |
245 | if (f_info->f_inner_) { |
246 | VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); |
247 | VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); |
248 | } |
249 | } |
250 | } |
251 | |
252 | // Filter the decoded macroblock row (if needed) |
253 | static void FilterRow(const VP8Decoder* const dec) { |
254 | int mb_x; |
255 | const int mb_y = dec->thread_ctx_.mb_y_; |
256 | assert(dec->thread_ctx_.filter_row_); |
257 | for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { |
258 | DoFilter(dec, mb_x, mb_y); |
259 | } |
260 | } |
261 | |
262 | //------------------------------------------------------------------------------ |
263 | // Precompute the filtering strength for each segment and each i4x4/i16x16 mode. |
264 | |
265 | static void PrecomputeFilterStrengths(VP8Decoder* const dec) { |
266 | if (dec->filter_type_ > 0) { |
267 | int s; |
268 | const VP8FilterHeader* const hdr = &dec->filter_hdr_; |
269 | for (s = 0; s < NUM_MB_SEGMENTS; ++s) { |
270 | int i4x4; |
271 | // First, compute the initial level |
272 | int base_level; |
273 | if (dec->segment_hdr_.use_segment_) { |
274 | base_level = dec->segment_hdr_.filter_strength_[s]; |
275 | if (!dec->segment_hdr_.absolute_delta_) { |
276 | base_level += hdr->level_; |
277 | } |
278 | } else { |
279 | base_level = hdr->level_; |
280 | } |
281 | for (i4x4 = 0; i4x4 <= 1; ++i4x4) { |
282 | VP8FInfo* const info = &dec->fstrengths_[s][i4x4]; |
283 | int level = base_level; |
284 | if (hdr->use_lf_delta_) { |
285 | level += hdr->ref_lf_delta_[0]; |
286 | if (i4x4) { |
287 | level += hdr->mode_lf_delta_[0]; |
288 | } |
289 | } |
290 | level = (level < 0) ? 0 : (level > 63) ? 63 : level; |
291 | if (level > 0) { |
292 | int ilevel = level; |
293 | if (hdr->sharpness_ > 0) { |
294 | if (hdr->sharpness_ > 4) { |
295 | ilevel >>= 2; |
296 | } else { |
297 | ilevel >>= 1; |
298 | } |
299 | if (ilevel > 9 - hdr->sharpness_) { |
300 | ilevel = 9 - hdr->sharpness_; |
301 | } |
302 | } |
303 | if (ilevel < 1) ilevel = 1; |
304 | info->f_ilevel_ = ilevel; |
305 | info->f_limit_ = 2 * level + ilevel; |
306 | info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0; |
307 | } else { |
308 | info->f_limit_ = 0; // no filtering |
309 | } |
310 | info->f_inner_ = i4x4; |
311 | } |
312 | } |
313 | } |
314 | } |
315 | |
316 | //------------------------------------------------------------------------------ |
317 | // Dithering |
318 | |
319 | // minimal amp that will provide a non-zero dithering effect |
320 | #define MIN_DITHER_AMP 4 |
321 | |
322 | #define DITHER_AMP_TAB_SIZE 12 |
323 | static const int kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = { |
324 | // roughly, it's dqm->uv_mat_[1] |
325 | 8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1 |
326 | }; |
327 | |
328 | void VP8InitDithering(const WebPDecoderOptions* const options, |
329 | VP8Decoder* const dec) { |
330 | assert(dec != NULL); |
331 | if (options != NULL) { |
332 | const int d = options->dithering_strength; |
333 | const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1; |
334 | const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100); |
335 | if (f > 0) { |
336 | int s; |
337 | int all_amp = 0; |
338 | for (s = 0; s < NUM_MB_SEGMENTS; ++s) { |
339 | VP8QuantMatrix* const dqm = &dec->dqm_[s]; |
340 | if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) { |
341 | // TODO(skal): should we specially dither more for uv_quant_ < 0? |
342 | const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_; |
343 | dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3; |
344 | } |
345 | all_amp |= dqm->dither_; |
346 | } |
347 | if (all_amp != 0) { |
348 | VP8InitRandom(&dec->dithering_rg_, 1.0f); |
349 | dec->dither_ = 1; |
350 | } |
351 | } |
352 | // potentially allow alpha dithering |
353 | dec->alpha_dithering_ = options->alpha_dithering_strength; |
354 | if (dec->alpha_dithering_ > 100) { |
355 | dec->alpha_dithering_ = 100; |
356 | } else if (dec->alpha_dithering_ < 0) { |
357 | dec->alpha_dithering_ = 0; |
358 | } |
359 | } |
360 | } |
361 | |
362 | // Convert to range: [-2,2] for dither=50, [-4,4] for dither=100 |
363 | static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) { |
364 | uint8_t dither[64]; |
365 | int i; |
366 | for (i = 0; i < 8 * 8; ++i) { |
367 | dither[i] = VP8RandomBits2(rg, VP8_DITHER_AMP_BITS + 1, amp); |
368 | } |
369 | VP8DitherCombine8x8(dither, dst, bps); |
370 | } |
371 | |
372 | static void DitherRow(VP8Decoder* const dec) { |
373 | int mb_x; |
374 | assert(dec->dither_); |
375 | for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { |
376 | const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
377 | const VP8MBData* const data = ctx->mb_data_ + mb_x; |
378 | const int cache_id = ctx->id_; |
379 | const int uv_bps = dec->cache_uv_stride_; |
380 | if (data->dither_ >= MIN_DITHER_AMP) { |
381 | uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; |
382 | uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; |
383 | Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_); |
384 | Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_); |
385 | } |
386 | } |
387 | } |
388 | |
389 | //------------------------------------------------------------------------------ |
390 | // This function is called after a row of macroblocks is finished decoding. |
391 | // It also takes into account the following restrictions: |
392 | // * In case of in-loop filtering, we must hold off sending some of the bottom |
393 | // pixels as they are yet unfiltered. They will be when the next macroblock |
394 | // row is decoded. Meanwhile, we must preserve them by rotating them in the |
395 | // cache area. This doesn't hold for the very bottom row of the uncropped |
396 | // picture of course. |
397 | // * we must clip the remaining pixels against the cropping area. The VP8Io |
398 | // struct must have the following fields set correctly before calling put(): |
399 | |
400 | #define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB |
401 | |
402 | // Finalize and transmit a complete row. Return false in case of user-abort. |
403 | static int FinishRow(VP8Decoder* const dec, VP8Io* const io) { |
404 | int ok = 1; |
405 | const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
406 | const int cache_id = ctx->id_; |
407 | const int = kFilterExtraRows[dec->filter_type_]; |
408 | const int ysize = extra_y_rows * dec->cache_y_stride_; |
409 | const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_; |
410 | const int y_offset = cache_id * 16 * dec->cache_y_stride_; |
411 | const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; |
412 | uint8_t* const ydst = dec->cache_y_ - ysize + y_offset; |
413 | uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset; |
414 | uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset; |
415 | const int mb_y = ctx->mb_y_; |
416 | const int is_first_row = (mb_y == 0); |
417 | const int is_last_row = (mb_y >= dec->br_mb_y_ - 1); |
418 | |
419 | if (dec->mt_method_ == 2) { |
420 | ReconstructRow(dec, ctx); |
421 | } |
422 | |
423 | if (ctx->filter_row_) { |
424 | FilterRow(dec); |
425 | } |
426 | |
427 | if (dec->dither_) { |
428 | DitherRow(dec); |
429 | } |
430 | |
431 | if (io->put != NULL) { |
432 | int y_start = MACROBLOCK_VPOS(mb_y); |
433 | int y_end = MACROBLOCK_VPOS(mb_y + 1); |
434 | if (!is_first_row) { |
435 | y_start -= extra_y_rows; |
436 | io->y = ydst; |
437 | io->u = udst; |
438 | io->v = vdst; |
439 | } else { |
440 | io->y = dec->cache_y_ + y_offset; |
441 | io->u = dec->cache_u_ + uv_offset; |
442 | io->v = dec->cache_v_ + uv_offset; |
443 | } |
444 | |
445 | if (!is_last_row) { |
446 | y_end -= extra_y_rows; |
447 | } |
448 | if (y_end > io->crop_bottom) { |
449 | y_end = io->crop_bottom; // make sure we don't overflow on last row. |
450 | } |
451 | io->a = NULL; |
452 | if (dec->alpha_data_ != NULL && y_start < y_end) { |
453 | // TODO(skal): testing presence of alpha with dec->alpha_data_ is not a |
454 | // good idea. |
455 | io->a = VP8DecompressAlphaRows(dec, io, y_start, y_end - y_start); |
456 | if (io->a == NULL) { |
457 | return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, |
458 | "Could not decode alpha data." ); |
459 | } |
460 | } |
461 | if (y_start < io->crop_top) { |
462 | const int delta_y = io->crop_top - y_start; |
463 | y_start = io->crop_top; |
464 | assert(!(delta_y & 1)); |
465 | io->y += dec->cache_y_stride_ * delta_y; |
466 | io->u += dec->cache_uv_stride_ * (delta_y >> 1); |
467 | io->v += dec->cache_uv_stride_ * (delta_y >> 1); |
468 | if (io->a != NULL) { |
469 | io->a += io->width * delta_y; |
470 | } |
471 | } |
472 | if (y_start < y_end) { |
473 | io->y += io->crop_left; |
474 | io->u += io->crop_left >> 1; |
475 | io->v += io->crop_left >> 1; |
476 | if (io->a != NULL) { |
477 | io->a += io->crop_left; |
478 | } |
479 | io->mb_y = y_start - io->crop_top; |
480 | io->mb_w = io->crop_right - io->crop_left; |
481 | io->mb_h = y_end - y_start; |
482 | ok = io->put(io); |
483 | } |
484 | } |
485 | // rotate top samples if needed |
486 | if (cache_id + 1 == dec->num_caches_) { |
487 | if (!is_last_row) { |
488 | memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize); |
489 | memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize); |
490 | memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize); |
491 | } |
492 | } |
493 | |
494 | return ok; |
495 | } |
496 | |
497 | #undef MACROBLOCK_VPOS |
498 | |
499 | //------------------------------------------------------------------------------ |
500 | |
501 | int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) { |
502 | int ok = 1; |
503 | VP8ThreadContext* const ctx = &dec->thread_ctx_; |
504 | const int filter_row = |
505 | (dec->filter_type_ > 0) && |
506 | (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_); |
507 | if (dec->mt_method_ == 0) { |
508 | // ctx->id_ and ctx->f_info_ are already set |
509 | ctx->mb_y_ = dec->mb_y_; |
510 | ctx->filter_row_ = filter_row; |
511 | ReconstructRow(dec, ctx); |
512 | ok = FinishRow(dec, io); |
513 | } else { |
514 | WebPWorker* const worker = &dec->worker_; |
515 | // Finish previous job *before* updating context |
516 | ok &= WebPGetWorkerInterface()->Sync(worker); |
517 | assert(worker->status_ == OK); |
518 | if (ok) { // spawn a new deblocking/output job |
519 | ctx->io_ = *io; |
520 | ctx->id_ = dec->cache_id_; |
521 | ctx->mb_y_ = dec->mb_y_; |
522 | ctx->filter_row_ = filter_row; |
523 | if (dec->mt_method_ == 2) { // swap macroblock data |
524 | VP8MBData* const tmp = ctx->mb_data_; |
525 | ctx->mb_data_ = dec->mb_data_; |
526 | dec->mb_data_ = tmp; |
527 | } else { |
528 | // perform reconstruction directly in main thread |
529 | ReconstructRow(dec, ctx); |
530 | } |
531 | if (filter_row) { // swap filter info |
532 | VP8FInfo* const tmp = ctx->f_info_; |
533 | ctx->f_info_ = dec->f_info_; |
534 | dec->f_info_ = tmp; |
535 | } |
536 | // (reconstruct)+filter in parallel |
537 | WebPGetWorkerInterface()->Launch(worker); |
538 | if (++dec->cache_id_ == dec->num_caches_) { |
539 | dec->cache_id_ = 0; |
540 | } |
541 | } |
542 | } |
543 | return ok; |
544 | } |
545 | |
546 | //------------------------------------------------------------------------------ |
547 | // Finish setting up the decoding parameter once user's setup() is called. |
548 | |
549 | VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) { |
550 | // Call setup() first. This may trigger additional decoding features on 'io'. |
551 | // Note: Afterward, we must call teardown() no matter what. |
552 | if (io->setup != NULL && !io->setup(io)) { |
553 | VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed" ); |
554 | return dec->status_; |
555 | } |
556 | |
557 | // Disable filtering per user request |
558 | if (io->bypass_filtering) { |
559 | dec->filter_type_ = 0; |
560 | } |
561 | // TODO(skal): filter type / strength / sharpness forcing |
562 | |
563 | // Define the area where we can skip in-loop filtering, in case of cropping. |
564 | // |
565 | // 'Simple' filter reads two luma samples outside of the macroblock |
566 | // and filters one. It doesn't filter the chroma samples. Hence, we can |
567 | // avoid doing the in-loop filtering before crop_top/crop_left position. |
568 | // For the 'Complex' filter, 3 samples are read and up to 3 are filtered. |
569 | // Means: there's a dependency chain that goes all the way up to the |
570 | // top-left corner of the picture (MB #0). We must filter all the previous |
571 | // macroblocks. |
572 | // TODO(skal): add an 'approximate_decoding' option, that won't produce |
573 | // a 1:1 bit-exactness for complex filtering? |
574 | { |
575 | const int = kFilterExtraRows[dec->filter_type_]; |
576 | if (dec->filter_type_ == 2) { |
577 | // For complex filter, we need to preserve the dependency chain. |
578 | dec->tl_mb_x_ = 0; |
579 | dec->tl_mb_y_ = 0; |
580 | } else { |
581 | // For simple filter, we can filter only the cropped region. |
582 | // We include 'extra_pixels' on the other side of the boundary, since |
583 | // vertical or horizontal filtering of the previous macroblock can |
584 | // modify some abutting pixels. |
585 | dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4; |
586 | dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4; |
587 | if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0; |
588 | if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0; |
589 | } |
590 | // We need some 'extra' pixels on the right/bottom. |
591 | dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4; |
592 | dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4; |
593 | if (dec->br_mb_x_ > dec->mb_w_) { |
594 | dec->br_mb_x_ = dec->mb_w_; |
595 | } |
596 | if (dec->br_mb_y_ > dec->mb_h_) { |
597 | dec->br_mb_y_ = dec->mb_h_; |
598 | } |
599 | } |
600 | PrecomputeFilterStrengths(dec); |
601 | return VP8_STATUS_OK; |
602 | } |
603 | |
604 | int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) { |
605 | int ok = 1; |
606 | if (dec->mt_method_ > 0) { |
607 | ok = WebPGetWorkerInterface()->Sync(&dec->worker_); |
608 | } |
609 | |
610 | if (io->teardown != NULL) { |
611 | io->teardown(io); |
612 | } |
613 | return ok; |
614 | } |
615 | |
616 | //------------------------------------------------------------------------------ |
617 | // For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line. |
618 | // |
619 | // Reason is: the deblocking filter cannot deblock the bottom horizontal edges |
620 | // immediately, and needs to wait for first few rows of the next macroblock to |
621 | // be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending |
622 | // on strength). |
623 | // With two threads, the vertical positions of the rows being decoded are: |
624 | // Decode: [ 0..15][16..31][32..47][48..63][64..79][... |
625 | // Deblock: [ 0..11][12..27][28..43][44..59][... |
626 | // If we use two threads and two caches of 16 pixels, the sequence would be: |
627 | // Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][... |
628 | // Deblock: [ 0..11][12..27!!][-4..11][12..27][... |
629 | // The problem occurs during row [12..15!!] that both the decoding and |
630 | // deblocking threads are writing simultaneously. |
631 | // With 3 cache lines, one get a safe write pattern: |
632 | // Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0.. |
633 | // Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28... |
634 | // Note that multi-threaded output _without_ deblocking can make use of two |
635 | // cache lines of 16 pixels only, since there's no lagging behind. The decoding |
636 | // and output process have non-concurrent writing: |
637 | // Decode: [ 0..15][16..31][ 0..15][16..31][... |
638 | // io->put: [ 0..15][16..31][ 0..15][... |
639 | |
640 | #define MT_CACHE_LINES 3 |
641 | #define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case |
642 | |
643 | // Initialize multi/single-thread worker |
644 | static int InitThreadContext(VP8Decoder* const dec) { |
645 | dec->cache_id_ = 0; |
646 | if (dec->mt_method_ > 0) { |
647 | WebPWorker* const worker = &dec->worker_; |
648 | if (!WebPGetWorkerInterface()->Reset(worker)) { |
649 | return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, |
650 | "thread initialization failed." ); |
651 | } |
652 | worker->data1 = dec; |
653 | worker->data2 = (void*)&dec->thread_ctx_.io_; |
654 | worker->hook = (WebPWorkerHook)FinishRow; |
655 | dec->num_caches_ = |
656 | (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1; |
657 | } else { |
658 | dec->num_caches_ = ST_CACHE_LINES; |
659 | } |
660 | return 1; |
661 | } |
662 | |
663 | int VP8GetThreadMethod(const WebPDecoderOptions* const options, |
664 | const WebPHeaderStructure* const , |
665 | int width, int height) { |
666 | if (options == NULL || options->use_threads == 0) { |
667 | return 0; |
668 | } |
669 | (void)headers; |
670 | (void)width; |
671 | (void)height; |
672 | assert(headers == NULL || !headers->is_lossless); |
673 | #if defined(WEBP_USE_THREAD) |
674 | if (width < MIN_WIDTH_FOR_THREADS) return 0; |
675 | // TODO(skal): tune the heuristic further |
676 | #if 0 |
677 | if (height < 2 * width) return 2; |
678 | #endif |
679 | return 2; |
680 | #else // !WEBP_USE_THREAD |
681 | return 0; |
682 | #endif |
683 | } |
684 | |
685 | #undef MT_CACHE_LINES |
686 | #undef ST_CACHE_LINES |
687 | |
688 | //------------------------------------------------------------------------------ |
689 | // Memory setup |
690 | |
691 | static int AllocateMemory(VP8Decoder* const dec) { |
692 | const int num_caches = dec->num_caches_; |
693 | const int mb_w = dec->mb_w_; |
694 | // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise. |
695 | const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t); |
696 | const size_t top_size = sizeof(VP8TopSamples) * mb_w; |
697 | const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB); |
698 | const size_t f_info_size = |
699 | (dec->filter_type_ > 0) ? |
700 | mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo) |
701 | : 0; |
702 | const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_); |
703 | const size_t mb_data_size = |
704 | (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_); |
705 | const size_t cache_height = (16 * num_caches |
706 | + kFilterExtraRows[dec->filter_type_]) * 3 / 2; |
707 | const size_t cache_size = top_size * cache_height; |
708 | // alpha_size is the only one that scales as width x height. |
709 | const uint64_t alpha_size = (dec->alpha_data_ != NULL) ? |
710 | (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL; |
711 | const uint64_t needed = (uint64_t)intra_pred_mode_size |
712 | + top_size + mb_info_size + f_info_size |
713 | + yuv_size + mb_data_size |
714 | + cache_size + alpha_size + WEBP_ALIGN_CST; |
715 | uint8_t* mem; |
716 | |
717 | if (needed != (size_t)needed) return 0; // check for overflow |
718 | if (needed > dec->mem_size_) { |
719 | WebPSafeFree(dec->mem_); |
720 | dec->mem_size_ = 0; |
721 | dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t)); |
722 | if (dec->mem_ == NULL) { |
723 | return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, |
724 | "no memory during frame initialization." ); |
725 | } |
726 | // down-cast is ok, thanks to WebPSafeMalloc() above. |
727 | dec->mem_size_ = (size_t)needed; |
728 | } |
729 | |
730 | mem = (uint8_t*)dec->mem_; |
731 | dec->intra_t_ = (uint8_t*)mem; |
732 | mem += intra_pred_mode_size; |
733 | |
734 | dec->yuv_t_ = (VP8TopSamples*)mem; |
735 | mem += top_size; |
736 | |
737 | dec->mb_info_ = ((VP8MB*)mem) + 1; |
738 | mem += mb_info_size; |
739 | |
740 | dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL; |
741 | mem += f_info_size; |
742 | dec->thread_ctx_.id_ = 0; |
743 | dec->thread_ctx_.f_info_ = dec->f_info_; |
744 | if (dec->mt_method_ > 0) { |
745 | // secondary cache line. The deblocking process need to make use of the |
746 | // filtering strength from previous macroblock row, while the new ones |
747 | // are being decoded in parallel. We'll just swap the pointers. |
748 | dec->thread_ctx_.f_info_ += mb_w; |
749 | } |
750 | |
751 | mem = (uint8_t*)WEBP_ALIGN(mem); |
752 | assert((yuv_size & WEBP_ALIGN_CST) == 0); |
753 | dec->yuv_b_ = (uint8_t*)mem; |
754 | mem += yuv_size; |
755 | |
756 | dec->mb_data_ = (VP8MBData*)mem; |
757 | dec->thread_ctx_.mb_data_ = (VP8MBData*)mem; |
758 | if (dec->mt_method_ == 2) { |
759 | dec->thread_ctx_.mb_data_ += mb_w; |
760 | } |
761 | mem += mb_data_size; |
762 | |
763 | dec->cache_y_stride_ = 16 * mb_w; |
764 | dec->cache_uv_stride_ = 8 * mb_w; |
765 | { |
766 | const int = kFilterExtraRows[dec->filter_type_]; |
767 | const int = extra_rows * dec->cache_y_stride_; |
768 | const int = (extra_rows / 2) * dec->cache_uv_stride_; |
769 | dec->cache_y_ = ((uint8_t*)mem) + extra_y; |
770 | dec->cache_u_ = dec->cache_y_ |
771 | + 16 * num_caches * dec->cache_y_stride_ + extra_uv; |
772 | dec->cache_v_ = dec->cache_u_ |
773 | + 8 * num_caches * dec->cache_uv_stride_ + extra_uv; |
774 | dec->cache_id_ = 0; |
775 | } |
776 | mem += cache_size; |
777 | |
778 | // alpha plane |
779 | dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL; |
780 | mem += alpha_size; |
781 | assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_); |
782 | |
783 | // note: left/top-info is initialized once for all. |
784 | memset(dec->mb_info_ - 1, 0, mb_info_size); |
785 | VP8InitScanline(dec); // initialize left too. |
786 | |
787 | // initialize top |
788 | memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size); |
789 | |
790 | return 1; |
791 | } |
792 | |
793 | static void InitIo(VP8Decoder* const dec, VP8Io* io) { |
794 | // prepare 'io' |
795 | io->mb_y = 0; |
796 | io->y = dec->cache_y_; |
797 | io->u = dec->cache_u_; |
798 | io->v = dec->cache_v_; |
799 | io->y_stride = dec->cache_y_stride_; |
800 | io->uv_stride = dec->cache_uv_stride_; |
801 | io->a = NULL; |
802 | } |
803 | |
804 | int VP8InitFrame(VP8Decoder* const dec, VP8Io* const io) { |
805 | if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_. |
806 | if (!AllocateMemory(dec)) return 0; |
807 | InitIo(dec, io); |
808 | VP8DspInit(); // Init critical function pointers and look-up tables. |
809 | return 1; |
810 | } |
811 | |
812 | //------------------------------------------------------------------------------ |
813 | |