| 1 | // Copyright 2017 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // Utilities for processing transparent channel, NEON version. |
| 11 | // |
| 12 | // Author: Skal (pascal.massimino@gmail.com) |
| 13 | |
| 14 | #include "./dsp.h" |
| 15 | |
| 16 | #if defined(WEBP_USE_NEON) |
| 17 | |
| 18 | #include "./neon.h" |
| 19 | |
| 20 | //------------------------------------------------------------------------------ |
| 21 | |
| 22 | #define MULTIPLIER(a) ((a) * 0x8081) |
| 23 | #define PREMULTIPLY(x, m) (((x) * (m)) >> 23) |
| 24 | |
| 25 | #define MULTIPLY_BY_ALPHA(V, ALPHA, OTHER) do { \ |
| 26 | const uint8x8_t alpha = (V).val[(ALPHA)]; \ |
| 27 | const uint16x8_t r1 = vmull_u8((V).val[1], alpha); \ |
| 28 | const uint16x8_t g1 = vmull_u8((V).val[2], alpha); \ |
| 29 | const uint16x8_t b1 = vmull_u8((V).val[(OTHER)], alpha); \ |
| 30 | /* we use: v / 255 = (v + 1 + (v >> 8)) >> 8 */ \ |
| 31 | const uint16x8_t r2 = vsraq_n_u16(r1, r1, 8); \ |
| 32 | const uint16x8_t g2 = vsraq_n_u16(g1, g1, 8); \ |
| 33 | const uint16x8_t b2 = vsraq_n_u16(b1, b1, 8); \ |
| 34 | const uint16x8_t r3 = vaddq_u16(r2, kOne); \ |
| 35 | const uint16x8_t g3 = vaddq_u16(g2, kOne); \ |
| 36 | const uint16x8_t b3 = vaddq_u16(b2, kOne); \ |
| 37 | (V).val[1] = vshrn_n_u16(r3, 8); \ |
| 38 | (V).val[2] = vshrn_n_u16(g3, 8); \ |
| 39 | (V).val[(OTHER)] = vshrn_n_u16(b3, 8); \ |
| 40 | } while (0) |
| 41 | |
| 42 | static void ApplyAlphaMultiply_NEON(uint8_t* rgba, int alpha_first, |
| 43 | int w, int h, int stride) { |
| 44 | const uint16x8_t kOne = vdupq_n_u16(1u); |
| 45 | while (h-- > 0) { |
| 46 | uint32_t* const rgbx = (uint32_t*)rgba; |
| 47 | int i = 0; |
| 48 | if (alpha_first) { |
| 49 | for (; i + 8 <= w; i += 8) { |
| 50 | // load aaaa...|rrrr...|gggg...|bbbb... |
| 51 | uint8x8x4_t RGBX = vld4_u8((const uint8_t*)(rgbx + i)); |
| 52 | MULTIPLY_BY_ALPHA(RGBX, 0, 3); |
| 53 | vst4_u8((uint8_t*)(rgbx + i), RGBX); |
| 54 | } |
| 55 | } else { |
| 56 | for (; i + 8 <= w; i += 8) { |
| 57 | uint8x8x4_t RGBX = vld4_u8((const uint8_t*)(rgbx + i)); |
| 58 | MULTIPLY_BY_ALPHA(RGBX, 3, 0); |
| 59 | vst4_u8((uint8_t*)(rgbx + i), RGBX); |
| 60 | } |
| 61 | } |
| 62 | // Finish with left-overs. |
| 63 | for (; i < w; ++i) { |
| 64 | uint8_t* const rgb = rgba + (alpha_first ? 1 : 0); |
| 65 | const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3); |
| 66 | const uint32_t a = alpha[4 * i]; |
| 67 | if (a != 0xff) { |
| 68 | const uint32_t mult = MULTIPLIER(a); |
| 69 | rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult); |
| 70 | rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult); |
| 71 | rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult); |
| 72 | } |
| 73 | } |
| 74 | rgba += stride; |
| 75 | } |
| 76 | } |
| 77 | #undef MULTIPLY_BY_ALPHA |
| 78 | #undef MULTIPLIER |
| 79 | #undef PREMULTIPLY |
| 80 | |
| 81 | //------------------------------------------------------------------------------ |
| 82 | |
| 83 | static int DispatchAlpha_NEON(const uint8_t* alpha, int alpha_stride, |
| 84 | int width, int height, |
| 85 | uint8_t* dst, int dst_stride) { |
| 86 | uint32_t alpha_mask = 0xffffffffu; |
| 87 | uint8x8_t mask8 = vdup_n_u8(0xff); |
| 88 | uint32_t tmp[2]; |
| 89 | int i, j; |
| 90 | for (j = 0; j < height; ++j) { |
| 91 | // We don't know if alpha is first or last in dst[] (depending on rgbA/Argb |
| 92 | // mode). So we must be sure dst[4*i + 8 - 1] is writable for the store. |
| 93 | // Hence the test with 'width - 1' instead of just 'width'. |
| 94 | for (i = 0; i + 8 <= width - 1; i += 8) { |
| 95 | uint8x8x4_t rgbX = vld4_u8((const uint8_t*)(dst + 4 * i)); |
| 96 | const uint8x8_t alphas = vld1_u8(alpha + i); |
| 97 | rgbX.val[0] = alphas; |
| 98 | vst4_u8((uint8_t*)(dst + 4 * i), rgbX); |
| 99 | mask8 = vand_u8(mask8, alphas); |
| 100 | } |
| 101 | for (; i < width; ++i) { |
| 102 | const uint32_t alpha_value = alpha[i]; |
| 103 | dst[4 * i] = alpha_value; |
| 104 | alpha_mask &= alpha_value; |
| 105 | } |
| 106 | alpha += alpha_stride; |
| 107 | dst += dst_stride; |
| 108 | } |
| 109 | vst1_u8((uint8_t*)tmp, mask8); |
| 110 | alpha_mask &= tmp[0]; |
| 111 | alpha_mask &= tmp[1]; |
| 112 | return (alpha_mask != 0xffffffffu); |
| 113 | } |
| 114 | |
| 115 | static void DispatchAlphaToGreen_NEON(const uint8_t* alpha, int alpha_stride, |
| 116 | int width, int height, |
| 117 | uint32_t* dst, int dst_stride) { |
| 118 | int i, j; |
| 119 | uint8x8x4_t greens; // leave A/R/B channels zero'd. |
| 120 | greens.val[0] = vdup_n_u8(0); |
| 121 | greens.val[2] = vdup_n_u8(0); |
| 122 | greens.val[3] = vdup_n_u8(0); |
| 123 | for (j = 0; j < height; ++j) { |
| 124 | for (i = 0; i + 8 <= width; i += 8) { |
| 125 | greens.val[1] = vld1_u8(alpha + i); |
| 126 | vst4_u8((uint8_t*)(dst + i), greens); |
| 127 | } |
| 128 | for (; i < width; ++i) dst[i] = alpha[i] << 8; |
| 129 | alpha += alpha_stride; |
| 130 | dst += dst_stride; |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | static int ExtractAlpha_NEON(const uint8_t* argb, int argb_stride, |
| 135 | int width, int height, |
| 136 | uint8_t* alpha, int alpha_stride) { |
| 137 | uint32_t alpha_mask = 0xffffffffu; |
| 138 | uint8x8_t mask8 = vdup_n_u8(0xff); |
| 139 | uint32_t tmp[2]; |
| 140 | int i, j; |
| 141 | for (j = 0; j < height; ++j) { |
| 142 | // We don't know if alpha is first or last in dst[] (depending on rgbA/Argb |
| 143 | // mode). So we must be sure dst[4*i + 8 - 1] is writable for the store. |
| 144 | // Hence the test with 'width - 1' instead of just 'width'. |
| 145 | for (i = 0; i + 8 <= width - 1; i += 8) { |
| 146 | const uint8x8x4_t rgbX = vld4_u8((const uint8_t*)(argb + 4 * i)); |
| 147 | const uint8x8_t alphas = rgbX.val[0]; |
| 148 | vst1_u8((uint8_t*)(alpha + i), alphas); |
| 149 | mask8 = vand_u8(mask8, alphas); |
| 150 | } |
| 151 | for (; i < width; ++i) { |
| 152 | alpha[i] = argb[4 * i]; |
| 153 | alpha_mask &= alpha[i]; |
| 154 | } |
| 155 | argb += argb_stride; |
| 156 | alpha += alpha_stride; |
| 157 | } |
| 158 | vst1_u8((uint8_t*)tmp, mask8); |
| 159 | alpha_mask &= tmp[0]; |
| 160 | alpha_mask &= tmp[1]; |
| 161 | return (alpha_mask == 0xffffffffu); |
| 162 | } |
| 163 | |
| 164 | static void ExtractGreen_NEON(const uint32_t* argb, |
| 165 | uint8_t* alpha, int size) { |
| 166 | int i; |
| 167 | for (i = 0; i + 16 <= size; i += 16) { |
| 168 | const uint8x16x4_t rgbX = vld4q_u8((const uint8_t*)(argb + i)); |
| 169 | const uint8x16_t greens = rgbX.val[1]; |
| 170 | vst1q_u8(alpha + i, greens); |
| 171 | } |
| 172 | for (; i < size; ++i) alpha[i] = (argb[i] >> 8) & 0xff; |
| 173 | } |
| 174 | |
| 175 | //------------------------------------------------------------------------------ |
| 176 | |
| 177 | extern void WebPInitAlphaProcessingNEON(void); |
| 178 | |
| 179 | WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingNEON(void) { |
| 180 | WebPApplyAlphaMultiply = ApplyAlphaMultiply_NEON; |
| 181 | WebPDispatchAlpha = DispatchAlpha_NEON; |
| 182 | WebPDispatchAlphaToGreen = DispatchAlphaToGreen_NEON; |
| 183 | WebPExtractAlpha = ExtractAlpha_NEON; |
| 184 | WebPExtractGreen = ExtractGreen_NEON; |
| 185 | } |
| 186 | |
| 187 | #else // !WEBP_USE_NEON |
| 188 | |
| 189 | WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingNEON) |
| 190 | |
| 191 | #endif // WEBP_USE_NEON |
| 192 | |