1 | // Copyright 2011 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // Speed-critical encoding functions. |
11 | // |
12 | // Author: Skal (pascal.massimino@gmail.com) |
13 | |
14 | #include <assert.h> |
15 | #include <stdlib.h> // for abs() |
16 | |
17 | #include "./dsp.h" |
18 | #include "../enc/vp8i_enc.h" |
19 | |
20 | static WEBP_INLINE uint8_t clip_8b(int v) { |
21 | return (!(v & ~0xff)) ? v : (v < 0) ? 0 : 255; |
22 | } |
23 | |
24 | static WEBP_INLINE int clip_max(int v, int max) { |
25 | return (v > max) ? max : v; |
26 | } |
27 | |
28 | //------------------------------------------------------------------------------ |
29 | // Compute susceptibility based on DCT-coeff histograms: |
30 | // the higher, the "easier" the macroblock is to compress. |
31 | |
32 | const int VP8DspScan[16 + 4 + 4] = { |
33 | // Luma |
34 | 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, |
35 | 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, |
36 | 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, |
37 | 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS, |
38 | |
39 | 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U |
40 | 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V |
41 | }; |
42 | |
43 | // general-purpose util function |
44 | void VP8SetHistogramData(const int distribution[MAX_COEFF_THRESH + 1], |
45 | VP8Histogram* const histo) { |
46 | int max_value = 0, last_non_zero = 1; |
47 | int k; |
48 | for (k = 0; k <= MAX_COEFF_THRESH; ++k) { |
49 | const int value = distribution[k]; |
50 | if (value > 0) { |
51 | if (value > max_value) max_value = value; |
52 | last_non_zero = k; |
53 | } |
54 | } |
55 | histo->max_value = max_value; |
56 | histo->last_non_zero = last_non_zero; |
57 | } |
58 | |
59 | static void CollectHistogram(const uint8_t* ref, const uint8_t* pred, |
60 | int start_block, int end_block, |
61 | VP8Histogram* const histo) { |
62 | int j; |
63 | int distribution[MAX_COEFF_THRESH + 1] = { 0 }; |
64 | for (j = start_block; j < end_block; ++j) { |
65 | int k; |
66 | int16_t out[16]; |
67 | |
68 | VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); |
69 | |
70 | // Convert coefficients to bin. |
71 | for (k = 0; k < 16; ++k) { |
72 | const int v = abs(out[k]) >> 3; |
73 | const int clipped_value = clip_max(v, MAX_COEFF_THRESH); |
74 | ++distribution[clipped_value]; |
75 | } |
76 | } |
77 | VP8SetHistogramData(distribution, histo); |
78 | } |
79 | |
80 | //------------------------------------------------------------------------------ |
81 | // run-time tables (~4k) |
82 | |
83 | static uint8_t clip1[255 + 510 + 1]; // clips [-255,510] to [0,255] |
84 | |
85 | // We declare this variable 'volatile' to prevent instruction reordering |
86 | // and make sure it's set to true _last_ (so as to be thread-safe) |
87 | static volatile int tables_ok = 0; |
88 | |
89 | static WEBP_TSAN_IGNORE_FUNCTION void InitTables(void) { |
90 | if (!tables_ok) { |
91 | int i; |
92 | for (i = -255; i <= 255 + 255; ++i) { |
93 | clip1[255 + i] = clip_8b(i); |
94 | } |
95 | tables_ok = 1; |
96 | } |
97 | } |
98 | |
99 | |
100 | //------------------------------------------------------------------------------ |
101 | // Transforms (Paragraph 14.4) |
102 | |
103 | #define STORE(x, y, v) \ |
104 | dst[(x) + (y) * BPS] = clip_8b(ref[(x) + (y) * BPS] + ((v) >> 3)) |
105 | |
106 | static const int kC1 = 20091 + (1 << 16); |
107 | static const int kC2 = 35468; |
108 | #define MUL(a, b) (((a) * (b)) >> 16) |
109 | |
110 | static WEBP_INLINE void ITransformOne(const uint8_t* ref, const int16_t* in, |
111 | uint8_t* dst) { |
112 | int C[4 * 4], *tmp; |
113 | int i; |
114 | tmp = C; |
115 | for (i = 0; i < 4; ++i) { // vertical pass |
116 | const int a = in[0] + in[8]; |
117 | const int b = in[0] - in[8]; |
118 | const int c = MUL(in[4], kC2) - MUL(in[12], kC1); |
119 | const int d = MUL(in[4], kC1) + MUL(in[12], kC2); |
120 | tmp[0] = a + d; |
121 | tmp[1] = b + c; |
122 | tmp[2] = b - c; |
123 | tmp[3] = a - d; |
124 | tmp += 4; |
125 | in++; |
126 | } |
127 | |
128 | tmp = C; |
129 | for (i = 0; i < 4; ++i) { // horizontal pass |
130 | const int dc = tmp[0] + 4; |
131 | const int a = dc + tmp[8]; |
132 | const int b = dc - tmp[8]; |
133 | const int c = MUL(tmp[4], kC2) - MUL(tmp[12], kC1); |
134 | const int d = MUL(tmp[4], kC1) + MUL(tmp[12], kC2); |
135 | STORE(0, i, a + d); |
136 | STORE(1, i, b + c); |
137 | STORE(2, i, b - c); |
138 | STORE(3, i, a - d); |
139 | tmp++; |
140 | } |
141 | } |
142 | |
143 | static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst, |
144 | int do_two) { |
145 | ITransformOne(ref, in, dst); |
146 | if (do_two) { |
147 | ITransformOne(ref + 4, in + 16, dst + 4); |
148 | } |
149 | } |
150 | |
151 | static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) { |
152 | int i; |
153 | int tmp[16]; |
154 | for (i = 0; i < 4; ++i, src += BPS, ref += BPS) { |
155 | const int d0 = src[0] - ref[0]; // 9bit dynamic range ([-255,255]) |
156 | const int d1 = src[1] - ref[1]; |
157 | const int d2 = src[2] - ref[2]; |
158 | const int d3 = src[3] - ref[3]; |
159 | const int a0 = (d0 + d3); // 10b [-510,510] |
160 | const int a1 = (d1 + d2); |
161 | const int a2 = (d1 - d2); |
162 | const int a3 = (d0 - d3); |
163 | tmp[0 + i * 4] = (a0 + a1) * 8; // 14b [-8160,8160] |
164 | tmp[1 + i * 4] = (a2 * 2217 + a3 * 5352 + 1812) >> 9; // [-7536,7542] |
165 | tmp[2 + i * 4] = (a0 - a1) * 8; |
166 | tmp[3 + i * 4] = (a3 * 2217 - a2 * 5352 + 937) >> 9; |
167 | } |
168 | for (i = 0; i < 4; ++i) { |
169 | const int a0 = (tmp[0 + i] + tmp[12 + i]); // 15b |
170 | const int a1 = (tmp[4 + i] + tmp[ 8 + i]); |
171 | const int a2 = (tmp[4 + i] - tmp[ 8 + i]); |
172 | const int a3 = (tmp[0 + i] - tmp[12 + i]); |
173 | out[0 + i] = (a0 + a1 + 7) >> 4; // 12b |
174 | out[4 + i] = ((a2 * 2217 + a3 * 5352 + 12000) >> 16) + (a3 != 0); |
175 | out[8 + i] = (a0 - a1 + 7) >> 4; |
176 | out[12+ i] = ((a3 * 2217 - a2 * 5352 + 51000) >> 16); |
177 | } |
178 | } |
179 | |
180 | static void FTransform2(const uint8_t* src, const uint8_t* ref, int16_t* out) { |
181 | VP8FTransform(src, ref, out); |
182 | VP8FTransform(src + 4, ref + 4, out + 16); |
183 | } |
184 | |
185 | static void FTransformWHT(const int16_t* in, int16_t* out) { |
186 | // input is 12b signed |
187 | int32_t tmp[16]; |
188 | int i; |
189 | for (i = 0; i < 4; ++i, in += 64) { |
190 | const int a0 = (in[0 * 16] + in[2 * 16]); // 13b |
191 | const int a1 = (in[1 * 16] + in[3 * 16]); |
192 | const int a2 = (in[1 * 16] - in[3 * 16]); |
193 | const int a3 = (in[0 * 16] - in[2 * 16]); |
194 | tmp[0 + i * 4] = a0 + a1; // 14b |
195 | tmp[1 + i * 4] = a3 + a2; |
196 | tmp[2 + i * 4] = a3 - a2; |
197 | tmp[3 + i * 4] = a0 - a1; |
198 | } |
199 | for (i = 0; i < 4; ++i) { |
200 | const int a0 = (tmp[0 + i] + tmp[8 + i]); // 15b |
201 | const int a1 = (tmp[4 + i] + tmp[12+ i]); |
202 | const int a2 = (tmp[4 + i] - tmp[12+ i]); |
203 | const int a3 = (tmp[0 + i] - tmp[8 + i]); |
204 | const int b0 = a0 + a1; // 16b |
205 | const int b1 = a3 + a2; |
206 | const int b2 = a3 - a2; |
207 | const int b3 = a0 - a1; |
208 | out[ 0 + i] = b0 >> 1; // 15b |
209 | out[ 4 + i] = b1 >> 1; |
210 | out[ 8 + i] = b2 >> 1; |
211 | out[12 + i] = b3 >> 1; |
212 | } |
213 | } |
214 | |
215 | #undef MUL |
216 | #undef STORE |
217 | |
218 | //------------------------------------------------------------------------------ |
219 | // Intra predictions |
220 | |
221 | static WEBP_INLINE void Fill(uint8_t* dst, int value, int size) { |
222 | int j; |
223 | for (j = 0; j < size; ++j) { |
224 | memset(dst + j * BPS, value, size); |
225 | } |
226 | } |
227 | |
228 | static WEBP_INLINE void VerticalPred(uint8_t* dst, |
229 | const uint8_t* top, int size) { |
230 | int j; |
231 | if (top != NULL) { |
232 | for (j = 0; j < size; ++j) memcpy(dst + j * BPS, top, size); |
233 | } else { |
234 | Fill(dst, 127, size); |
235 | } |
236 | } |
237 | |
238 | static WEBP_INLINE void HorizontalPred(uint8_t* dst, |
239 | const uint8_t* left, int size) { |
240 | if (left != NULL) { |
241 | int j; |
242 | for (j = 0; j < size; ++j) { |
243 | memset(dst + j * BPS, left[j], size); |
244 | } |
245 | } else { |
246 | Fill(dst, 129, size); |
247 | } |
248 | } |
249 | |
250 | static WEBP_INLINE void TrueMotion(uint8_t* dst, const uint8_t* left, |
251 | const uint8_t* top, int size) { |
252 | int y; |
253 | if (left != NULL) { |
254 | if (top != NULL) { |
255 | const uint8_t* const clip = clip1 + 255 - left[-1]; |
256 | for (y = 0; y < size; ++y) { |
257 | const uint8_t* const clip_table = clip + left[y]; |
258 | int x; |
259 | for (x = 0; x < size; ++x) { |
260 | dst[x] = clip_table[top[x]]; |
261 | } |
262 | dst += BPS; |
263 | } |
264 | } else { |
265 | HorizontalPred(dst, left, size); |
266 | } |
267 | } else { |
268 | // true motion without left samples (hence: with default 129 value) |
269 | // is equivalent to VE prediction where you just copy the top samples. |
270 | // Note that if top samples are not available, the default value is |
271 | // then 129, and not 127 as in the VerticalPred case. |
272 | if (top != NULL) { |
273 | VerticalPred(dst, top, size); |
274 | } else { |
275 | Fill(dst, 129, size); |
276 | } |
277 | } |
278 | } |
279 | |
280 | static WEBP_INLINE void DCMode(uint8_t* dst, const uint8_t* left, |
281 | const uint8_t* top, |
282 | int size, int round, int shift) { |
283 | int DC = 0; |
284 | int j; |
285 | if (top != NULL) { |
286 | for (j = 0; j < size; ++j) DC += top[j]; |
287 | if (left != NULL) { // top and left present |
288 | for (j = 0; j < size; ++j) DC += left[j]; |
289 | } else { // top, but no left |
290 | DC += DC; |
291 | } |
292 | DC = (DC + round) >> shift; |
293 | } else if (left != NULL) { // left but no top |
294 | for (j = 0; j < size; ++j) DC += left[j]; |
295 | DC += DC; |
296 | DC = (DC + round) >> shift; |
297 | } else { // no top, no left, nothing. |
298 | DC = 0x80; |
299 | } |
300 | Fill(dst, DC, size); |
301 | } |
302 | |
303 | //------------------------------------------------------------------------------ |
304 | // Chroma 8x8 prediction (paragraph 12.2) |
305 | |
306 | static void IntraChromaPreds(uint8_t* dst, const uint8_t* left, |
307 | const uint8_t* top) { |
308 | // U block |
309 | DCMode(C8DC8 + dst, left, top, 8, 8, 4); |
310 | VerticalPred(C8VE8 + dst, top, 8); |
311 | HorizontalPred(C8HE8 + dst, left, 8); |
312 | TrueMotion(C8TM8 + dst, left, top, 8); |
313 | // V block |
314 | dst += 8; |
315 | if (top != NULL) top += 8; |
316 | if (left != NULL) left += 16; |
317 | DCMode(C8DC8 + dst, left, top, 8, 8, 4); |
318 | VerticalPred(C8VE8 + dst, top, 8); |
319 | HorizontalPred(C8HE8 + dst, left, 8); |
320 | TrueMotion(C8TM8 + dst, left, top, 8); |
321 | } |
322 | |
323 | //------------------------------------------------------------------------------ |
324 | // luma 16x16 prediction (paragraph 12.3) |
325 | |
326 | static void Intra16Preds(uint8_t* dst, |
327 | const uint8_t* left, const uint8_t* top) { |
328 | DCMode(I16DC16 + dst, left, top, 16, 16, 5); |
329 | VerticalPred(I16VE16 + dst, top, 16); |
330 | HorizontalPred(I16HE16 + dst, left, 16); |
331 | TrueMotion(I16TM16 + dst, left, top, 16); |
332 | } |
333 | |
334 | //------------------------------------------------------------------------------ |
335 | // luma 4x4 prediction |
336 | |
337 | #define DST(x, y) dst[(x) + (y) * BPS] |
338 | #define AVG3(a, b, c) ((uint8_t)(((a) + 2 * (b) + (c) + 2) >> 2)) |
339 | #define AVG2(a, b) (((a) + (b) + 1) >> 1) |
340 | |
341 | static void VE4(uint8_t* dst, const uint8_t* top) { // vertical |
342 | const uint8_t vals[4] = { |
343 | AVG3(top[-1], top[0], top[1]), |
344 | AVG3(top[ 0], top[1], top[2]), |
345 | AVG3(top[ 1], top[2], top[3]), |
346 | AVG3(top[ 2], top[3], top[4]) |
347 | }; |
348 | int i; |
349 | for (i = 0; i < 4; ++i) { |
350 | memcpy(dst + i * BPS, vals, 4); |
351 | } |
352 | } |
353 | |
354 | static void HE4(uint8_t* dst, const uint8_t* top) { // horizontal |
355 | const int X = top[-1]; |
356 | const int I = top[-2]; |
357 | const int J = top[-3]; |
358 | const int K = top[-4]; |
359 | const int L = top[-5]; |
360 | WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J)); |
361 | WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K)); |
362 | WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L)); |
363 | WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L)); |
364 | } |
365 | |
366 | static void DC4(uint8_t* dst, const uint8_t* top) { |
367 | uint32_t dc = 4; |
368 | int i; |
369 | for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i]; |
370 | Fill(dst, dc >> 3, 4); |
371 | } |
372 | |
373 | static void RD4(uint8_t* dst, const uint8_t* top) { |
374 | const int X = top[-1]; |
375 | const int I = top[-2]; |
376 | const int J = top[-3]; |
377 | const int K = top[-4]; |
378 | const int L = top[-5]; |
379 | const int A = top[0]; |
380 | const int B = top[1]; |
381 | const int C = top[2]; |
382 | const int D = top[3]; |
383 | DST(0, 3) = AVG3(J, K, L); |
384 | DST(0, 2) = DST(1, 3) = AVG3(I, J, K); |
385 | DST(0, 1) = DST(1, 2) = DST(2, 3) = AVG3(X, I, J); |
386 | DST(0, 0) = DST(1, 1) = DST(2, 2) = DST(3, 3) = AVG3(A, X, I); |
387 | DST(1, 0) = DST(2, 1) = DST(3, 2) = AVG3(B, A, X); |
388 | DST(2, 0) = DST(3, 1) = AVG3(C, B, A); |
389 | DST(3, 0) = AVG3(D, C, B); |
390 | } |
391 | |
392 | static void LD4(uint8_t* dst, const uint8_t* top) { |
393 | const int A = top[0]; |
394 | const int B = top[1]; |
395 | const int C = top[2]; |
396 | const int D = top[3]; |
397 | const int E = top[4]; |
398 | const int F = top[5]; |
399 | const int G = top[6]; |
400 | const int H = top[7]; |
401 | DST(0, 0) = AVG3(A, B, C); |
402 | DST(1, 0) = DST(0, 1) = AVG3(B, C, D); |
403 | DST(2, 0) = DST(1, 1) = DST(0, 2) = AVG3(C, D, E); |
404 | DST(3, 0) = DST(2, 1) = DST(1, 2) = DST(0, 3) = AVG3(D, E, F); |
405 | DST(3, 1) = DST(2, 2) = DST(1, 3) = AVG3(E, F, G); |
406 | DST(3, 2) = DST(2, 3) = AVG3(F, G, H); |
407 | DST(3, 3) = AVG3(G, H, H); |
408 | } |
409 | |
410 | static void VR4(uint8_t* dst, const uint8_t* top) { |
411 | const int X = top[-1]; |
412 | const int I = top[-2]; |
413 | const int J = top[-3]; |
414 | const int K = top[-4]; |
415 | const int A = top[0]; |
416 | const int B = top[1]; |
417 | const int C = top[2]; |
418 | const int D = top[3]; |
419 | DST(0, 0) = DST(1, 2) = AVG2(X, A); |
420 | DST(1, 0) = DST(2, 2) = AVG2(A, B); |
421 | DST(2, 0) = DST(3, 2) = AVG2(B, C); |
422 | DST(3, 0) = AVG2(C, D); |
423 | |
424 | DST(0, 3) = AVG3(K, J, I); |
425 | DST(0, 2) = AVG3(J, I, X); |
426 | DST(0, 1) = DST(1, 3) = AVG3(I, X, A); |
427 | DST(1, 1) = DST(2, 3) = AVG3(X, A, B); |
428 | DST(2, 1) = DST(3, 3) = AVG3(A, B, C); |
429 | DST(3, 1) = AVG3(B, C, D); |
430 | } |
431 | |
432 | static void VL4(uint8_t* dst, const uint8_t* top) { |
433 | const int A = top[0]; |
434 | const int B = top[1]; |
435 | const int C = top[2]; |
436 | const int D = top[3]; |
437 | const int E = top[4]; |
438 | const int F = top[5]; |
439 | const int G = top[6]; |
440 | const int H = top[7]; |
441 | DST(0, 0) = AVG2(A, B); |
442 | DST(1, 0) = DST(0, 2) = AVG2(B, C); |
443 | DST(2, 0) = DST(1, 2) = AVG2(C, D); |
444 | DST(3, 0) = DST(2, 2) = AVG2(D, E); |
445 | |
446 | DST(0, 1) = AVG3(A, B, C); |
447 | DST(1, 1) = DST(0, 3) = AVG3(B, C, D); |
448 | DST(2, 1) = DST(1, 3) = AVG3(C, D, E); |
449 | DST(3, 1) = DST(2, 3) = AVG3(D, E, F); |
450 | DST(3, 2) = AVG3(E, F, G); |
451 | DST(3, 3) = AVG3(F, G, H); |
452 | } |
453 | |
454 | static void HU4(uint8_t* dst, const uint8_t* top) { |
455 | const int I = top[-2]; |
456 | const int J = top[-3]; |
457 | const int K = top[-4]; |
458 | const int L = top[-5]; |
459 | DST(0, 0) = AVG2(I, J); |
460 | DST(2, 0) = DST(0, 1) = AVG2(J, K); |
461 | DST(2, 1) = DST(0, 2) = AVG2(K, L); |
462 | DST(1, 0) = AVG3(I, J, K); |
463 | DST(3, 0) = DST(1, 1) = AVG3(J, K, L); |
464 | DST(3, 1) = DST(1, 2) = AVG3(K, L, L); |
465 | DST(3, 2) = DST(2, 2) = |
466 | DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L; |
467 | } |
468 | |
469 | static void HD4(uint8_t* dst, const uint8_t* top) { |
470 | const int X = top[-1]; |
471 | const int I = top[-2]; |
472 | const int J = top[-3]; |
473 | const int K = top[-4]; |
474 | const int L = top[-5]; |
475 | const int A = top[0]; |
476 | const int B = top[1]; |
477 | const int C = top[2]; |
478 | |
479 | DST(0, 0) = DST(2, 1) = AVG2(I, X); |
480 | DST(0, 1) = DST(2, 2) = AVG2(J, I); |
481 | DST(0, 2) = DST(2, 3) = AVG2(K, J); |
482 | DST(0, 3) = AVG2(L, K); |
483 | |
484 | DST(3, 0) = AVG3(A, B, C); |
485 | DST(2, 0) = AVG3(X, A, B); |
486 | DST(1, 0) = DST(3, 1) = AVG3(I, X, A); |
487 | DST(1, 1) = DST(3, 2) = AVG3(J, I, X); |
488 | DST(1, 2) = DST(3, 3) = AVG3(K, J, I); |
489 | DST(1, 3) = AVG3(L, K, J); |
490 | } |
491 | |
492 | static void TM4(uint8_t* dst, const uint8_t* top) { |
493 | int x, y; |
494 | const uint8_t* const clip = clip1 + 255 - top[-1]; |
495 | for (y = 0; y < 4; ++y) { |
496 | const uint8_t* const clip_table = clip + top[-2 - y]; |
497 | for (x = 0; x < 4; ++x) { |
498 | dst[x] = clip_table[top[x]]; |
499 | } |
500 | dst += BPS; |
501 | } |
502 | } |
503 | |
504 | #undef DST |
505 | #undef AVG3 |
506 | #undef AVG2 |
507 | |
508 | // Left samples are top[-5 .. -2], top_left is top[-1], top are |
509 | // located at top[0..3], and top right is top[4..7] |
510 | static void Intra4Preds(uint8_t* dst, const uint8_t* top) { |
511 | DC4(I4DC4 + dst, top); |
512 | TM4(I4TM4 + dst, top); |
513 | VE4(I4VE4 + dst, top); |
514 | HE4(I4HE4 + dst, top); |
515 | RD4(I4RD4 + dst, top); |
516 | VR4(I4VR4 + dst, top); |
517 | LD4(I4LD4 + dst, top); |
518 | VL4(I4VL4 + dst, top); |
519 | HD4(I4HD4 + dst, top); |
520 | HU4(I4HU4 + dst, top); |
521 | } |
522 | |
523 | //------------------------------------------------------------------------------ |
524 | // Metric |
525 | |
526 | static WEBP_INLINE int GetSSE(const uint8_t* a, const uint8_t* b, |
527 | int w, int h) { |
528 | int count = 0; |
529 | int y, x; |
530 | for (y = 0; y < h; ++y) { |
531 | for (x = 0; x < w; ++x) { |
532 | const int diff = (int)a[x] - b[x]; |
533 | count += diff * diff; |
534 | } |
535 | a += BPS; |
536 | b += BPS; |
537 | } |
538 | return count; |
539 | } |
540 | |
541 | static int SSE16x16(const uint8_t* a, const uint8_t* b) { |
542 | return GetSSE(a, b, 16, 16); |
543 | } |
544 | static int SSE16x8(const uint8_t* a, const uint8_t* b) { |
545 | return GetSSE(a, b, 16, 8); |
546 | } |
547 | static int SSE8x8(const uint8_t* a, const uint8_t* b) { |
548 | return GetSSE(a, b, 8, 8); |
549 | } |
550 | static int SSE4x4(const uint8_t* a, const uint8_t* b) { |
551 | return GetSSE(a, b, 4, 4); |
552 | } |
553 | |
554 | static void Mean16x4(const uint8_t* ref, uint32_t dc[4]) { |
555 | int k, x, y; |
556 | for (k = 0; k < 4; ++k) { |
557 | uint32_t avg = 0; |
558 | for (y = 0; y < 4; ++y) { |
559 | for (x = 0; x < 4; ++x) { |
560 | avg += ref[x + y * BPS]; |
561 | } |
562 | } |
563 | dc[k] = avg; |
564 | ref += 4; // go to next 4x4 block. |
565 | } |
566 | } |
567 | |
568 | //------------------------------------------------------------------------------ |
569 | // Texture distortion |
570 | // |
571 | // We try to match the spectral content (weighted) between source and |
572 | // reconstructed samples. |
573 | |
574 | // Hadamard transform |
575 | // Returns the weighted sum of the absolute value of transformed coefficients. |
576 | // w[] contains a row-major 4 by 4 symmetric matrix. |
577 | static int TTransform(const uint8_t* in, const uint16_t* w) { |
578 | int sum = 0; |
579 | int tmp[16]; |
580 | int i; |
581 | // horizontal pass |
582 | for (i = 0; i < 4; ++i, in += BPS) { |
583 | const int a0 = in[0] + in[2]; |
584 | const int a1 = in[1] + in[3]; |
585 | const int a2 = in[1] - in[3]; |
586 | const int a3 = in[0] - in[2]; |
587 | tmp[0 + i * 4] = a0 + a1; |
588 | tmp[1 + i * 4] = a3 + a2; |
589 | tmp[2 + i * 4] = a3 - a2; |
590 | tmp[3 + i * 4] = a0 - a1; |
591 | } |
592 | // vertical pass |
593 | for (i = 0; i < 4; ++i, ++w) { |
594 | const int a0 = tmp[0 + i] + tmp[8 + i]; |
595 | const int a1 = tmp[4 + i] + tmp[12+ i]; |
596 | const int a2 = tmp[4 + i] - tmp[12+ i]; |
597 | const int a3 = tmp[0 + i] - tmp[8 + i]; |
598 | const int b0 = a0 + a1; |
599 | const int b1 = a3 + a2; |
600 | const int b2 = a3 - a2; |
601 | const int b3 = a0 - a1; |
602 | |
603 | sum += w[ 0] * abs(b0); |
604 | sum += w[ 4] * abs(b1); |
605 | sum += w[ 8] * abs(b2); |
606 | sum += w[12] * abs(b3); |
607 | } |
608 | return sum; |
609 | } |
610 | |
611 | static int Disto4x4(const uint8_t* const a, const uint8_t* const b, |
612 | const uint16_t* const w) { |
613 | const int sum1 = TTransform(a, w); |
614 | const int sum2 = TTransform(b, w); |
615 | return abs(sum2 - sum1) >> 5; |
616 | } |
617 | |
618 | static int Disto16x16(const uint8_t* const a, const uint8_t* const b, |
619 | const uint16_t* const w) { |
620 | int D = 0; |
621 | int x, y; |
622 | for (y = 0; y < 16 * BPS; y += 4 * BPS) { |
623 | for (x = 0; x < 16; x += 4) { |
624 | D += Disto4x4(a + x + y, b + x + y, w); |
625 | } |
626 | } |
627 | return D; |
628 | } |
629 | |
630 | //------------------------------------------------------------------------------ |
631 | // Quantization |
632 | // |
633 | |
634 | static const uint8_t kZigzag[16] = { |
635 | 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15 |
636 | }; |
637 | |
638 | // Simple quantization |
639 | static int QuantizeBlock(int16_t in[16], int16_t out[16], |
640 | const VP8Matrix* const mtx) { |
641 | int last = -1; |
642 | int n; |
643 | for (n = 0; n < 16; ++n) { |
644 | const int j = kZigzag[n]; |
645 | const int sign = (in[j] < 0); |
646 | const uint32_t coeff = (sign ? -in[j] : in[j]) + mtx->sharpen_[j]; |
647 | if (coeff > mtx->zthresh_[j]) { |
648 | const uint32_t Q = mtx->q_[j]; |
649 | const uint32_t iQ = mtx->iq_[j]; |
650 | const uint32_t B = mtx->bias_[j]; |
651 | int level = QUANTDIV(coeff, iQ, B); |
652 | if (level > MAX_LEVEL) level = MAX_LEVEL; |
653 | if (sign) level = -level; |
654 | in[j] = level * (int)Q; |
655 | out[n] = level; |
656 | if (level) last = n; |
657 | } else { |
658 | out[n] = 0; |
659 | in[j] = 0; |
660 | } |
661 | } |
662 | return (last >= 0); |
663 | } |
664 | |
665 | static int Quantize2Blocks(int16_t in[32], int16_t out[32], |
666 | const VP8Matrix* const mtx) { |
667 | int nz; |
668 | nz = VP8EncQuantizeBlock(in + 0 * 16, out + 0 * 16, mtx) << 0; |
669 | nz |= VP8EncQuantizeBlock(in + 1 * 16, out + 1 * 16, mtx) << 1; |
670 | return nz; |
671 | } |
672 | |
673 | //------------------------------------------------------------------------------ |
674 | // Block copy |
675 | |
676 | static WEBP_INLINE void Copy(const uint8_t* src, uint8_t* dst, int w, int h) { |
677 | int y; |
678 | for (y = 0; y < h; ++y) { |
679 | memcpy(dst, src, w); |
680 | src += BPS; |
681 | dst += BPS; |
682 | } |
683 | } |
684 | |
685 | static void Copy4x4(const uint8_t* src, uint8_t* dst) { |
686 | Copy(src, dst, 4, 4); |
687 | } |
688 | |
689 | static void Copy16x8(const uint8_t* src, uint8_t* dst) { |
690 | Copy(src, dst, 16, 8); |
691 | } |
692 | |
693 | //------------------------------------------------------------------------------ |
694 | // SSIM / PSNR |
695 | |
696 | // hat-shaped filter. Sum of coefficients is equal to 16. |
697 | static const uint32_t kWeight[2 * VP8_SSIM_KERNEL + 1] = { |
698 | 1, 2, 3, 4, 3, 2, 1 |
699 | }; |
700 | static const uint32_t kWeightSum = 16 * 16; // sum{kWeight}^2 |
701 | |
702 | static WEBP_INLINE double SSIMCalculation( |
703 | const VP8DistoStats* const stats, uint32_t N /*num samples*/) { |
704 | const uint32_t w2 = N * N; |
705 | const uint32_t C1 = 20 * w2; |
706 | const uint32_t C2 = 60 * w2; |
707 | const uint32_t C3 = 8 * 8 * w2; // 'dark' limit ~= 6 |
708 | const uint64_t xmxm = (uint64_t)stats->xm * stats->xm; |
709 | const uint64_t ymym = (uint64_t)stats->ym * stats->ym; |
710 | if (xmxm + ymym >= C3) { |
711 | const int64_t xmym = (int64_t)stats->xm * stats->ym; |
712 | const int64_t sxy = (int64_t)stats->xym * N - xmym; // can be negative |
713 | const uint64_t sxx = (uint64_t)stats->xxm * N - xmxm; |
714 | const uint64_t syy = (uint64_t)stats->yym * N - ymym; |
715 | // we descale by 8 to prevent overflow during the fnum/fden multiply. |
716 | const uint64_t num_S = (2 * (uint64_t)(sxy < 0 ? 0 : sxy) + C2) >> 8; |
717 | const uint64_t den_S = (sxx + syy + C2) >> 8; |
718 | const uint64_t fnum = (2 * xmym + C1) * num_S; |
719 | const uint64_t fden = (xmxm + ymym + C1) * den_S; |
720 | const double r = (double)fnum / fden; |
721 | assert(r >= 0. && r <= 1.0); |
722 | return r; |
723 | } |
724 | return 1.; // area is too dark to contribute meaningfully |
725 | } |
726 | |
727 | double VP8SSIMFromStats(const VP8DistoStats* const stats) { |
728 | return SSIMCalculation(stats, kWeightSum); |
729 | } |
730 | |
731 | double VP8SSIMFromStatsClipped(const VP8DistoStats* const stats) { |
732 | return SSIMCalculation(stats, stats->w); |
733 | } |
734 | |
735 | static double SSIMGetClipped_C(const uint8_t* src1, int stride1, |
736 | const uint8_t* src2, int stride2, |
737 | int xo, int yo, int W, int H) { |
738 | VP8DistoStats stats = { 0, 0, 0, 0, 0, 0 }; |
739 | const int ymin = (yo - VP8_SSIM_KERNEL < 0) ? 0 : yo - VP8_SSIM_KERNEL; |
740 | const int ymax = (yo + VP8_SSIM_KERNEL > H - 1) ? H - 1 |
741 | : yo + VP8_SSIM_KERNEL; |
742 | const int xmin = (xo - VP8_SSIM_KERNEL < 0) ? 0 : xo - VP8_SSIM_KERNEL; |
743 | const int xmax = (xo + VP8_SSIM_KERNEL > W - 1) ? W - 1 |
744 | : xo + VP8_SSIM_KERNEL; |
745 | int x, y; |
746 | src1 += ymin * stride1; |
747 | src2 += ymin * stride2; |
748 | for (y = ymin; y <= ymax; ++y, src1 += stride1, src2 += stride2) { |
749 | for (x = xmin; x <= xmax; ++x) { |
750 | const uint32_t w = kWeight[VP8_SSIM_KERNEL + x - xo] |
751 | * kWeight[VP8_SSIM_KERNEL + y - yo]; |
752 | const uint32_t s1 = src1[x]; |
753 | const uint32_t s2 = src2[x]; |
754 | stats.w += w; |
755 | stats.xm += w * s1; |
756 | stats.ym += w * s2; |
757 | stats.xxm += w * s1 * s1; |
758 | stats.xym += w * s1 * s2; |
759 | stats.yym += w * s2 * s2; |
760 | } |
761 | } |
762 | return VP8SSIMFromStatsClipped(&stats); |
763 | } |
764 | |
765 | static double SSIMGet_C(const uint8_t* src1, int stride1, |
766 | const uint8_t* src2, int stride2) { |
767 | VP8DistoStats stats = { 0, 0, 0, 0, 0, 0 }; |
768 | int x, y; |
769 | for (y = 0; y <= 2 * VP8_SSIM_KERNEL; ++y, src1 += stride1, src2 += stride2) { |
770 | for (x = 0; x <= 2 * VP8_SSIM_KERNEL; ++x) { |
771 | const uint32_t w = kWeight[x] * kWeight[y]; |
772 | const uint32_t s1 = src1[x]; |
773 | const uint32_t s2 = src2[x]; |
774 | stats.xm += w * s1; |
775 | stats.ym += w * s2; |
776 | stats.xxm += w * s1 * s1; |
777 | stats.xym += w * s1 * s2; |
778 | stats.yym += w * s2 * s2; |
779 | } |
780 | } |
781 | return VP8SSIMFromStats(&stats); |
782 | } |
783 | |
784 | //------------------------------------------------------------------------------ |
785 | |
786 | static uint32_t AccumulateSSE(const uint8_t* src1, |
787 | const uint8_t* src2, int len) { |
788 | int i; |
789 | uint32_t sse2 = 0; |
790 | assert(len <= 65535); // to ensure that accumulation fits within uint32_t |
791 | for (i = 0; i < len; ++i) { |
792 | const int32_t diff = src1[i] - src2[i]; |
793 | sse2 += diff * diff; |
794 | } |
795 | return sse2; |
796 | } |
797 | |
798 | //------------------------------------------------------------------------------ |
799 | |
800 | VP8SSIMGetFunc VP8SSIMGet; |
801 | VP8SSIMGetClippedFunc VP8SSIMGetClipped; |
802 | VP8AccumulateSSEFunc VP8AccumulateSSE; |
803 | |
804 | extern void VP8SSIMDspInitSSE2(void); |
805 | |
806 | static volatile VP8CPUInfo ssim_last_cpuinfo_used = |
807 | (VP8CPUInfo)&ssim_last_cpuinfo_used; |
808 | |
809 | WEBP_TSAN_IGNORE_FUNCTION void VP8SSIMDspInit(void) { |
810 | if (ssim_last_cpuinfo_used == VP8GetCPUInfo) return; |
811 | |
812 | VP8SSIMGetClipped = SSIMGetClipped_C; |
813 | VP8SSIMGet = SSIMGet_C; |
814 | |
815 | VP8AccumulateSSE = AccumulateSSE; |
816 | if (VP8GetCPUInfo != NULL) { |
817 | #if defined(WEBP_USE_SSE2) |
818 | if (VP8GetCPUInfo(kSSE2)) { |
819 | VP8SSIMDspInitSSE2(); |
820 | } |
821 | #endif |
822 | } |
823 | |
824 | ssim_last_cpuinfo_used = VP8GetCPUInfo; |
825 | } |
826 | |
827 | //------------------------------------------------------------------------------ |
828 | // Initialization |
829 | |
830 | // Speed-critical function pointers. We have to initialize them to the default |
831 | // implementations within VP8EncDspInit(). |
832 | VP8CHisto VP8CollectHistogram; |
833 | VP8Idct VP8ITransform; |
834 | VP8Fdct VP8FTransform; |
835 | VP8Fdct VP8FTransform2; |
836 | VP8WHT VP8FTransformWHT; |
837 | VP8Intra4Preds VP8EncPredLuma4; |
838 | VP8IntraPreds VP8EncPredLuma16; |
839 | VP8IntraPreds VP8EncPredChroma8; |
840 | VP8Metric VP8SSE16x16; |
841 | VP8Metric VP8SSE8x8; |
842 | VP8Metric VP8SSE16x8; |
843 | VP8Metric VP8SSE4x4; |
844 | VP8WMetric VP8TDisto4x4; |
845 | VP8WMetric VP8TDisto16x16; |
846 | VP8MeanMetric VP8Mean16x4; |
847 | VP8QuantizeBlock VP8EncQuantizeBlock; |
848 | VP8Quantize2Blocks VP8EncQuantize2Blocks; |
849 | VP8QuantizeBlockWHT VP8EncQuantizeBlockWHT; |
850 | VP8BlockCopy VP8Copy4x4; |
851 | VP8BlockCopy VP8Copy16x8; |
852 | |
853 | extern void VP8EncDspInitSSE2(void); |
854 | extern void VP8EncDspInitSSE41(void); |
855 | extern void VP8EncDspInitAVX2(void); |
856 | extern void VP8EncDspInitNEON(void); |
857 | extern void VP8EncDspInitMIPS32(void); |
858 | extern void VP8EncDspInitMIPSdspR2(void); |
859 | extern void VP8EncDspInitMSA(void); |
860 | |
861 | static volatile VP8CPUInfo enc_last_cpuinfo_used = |
862 | (VP8CPUInfo)&enc_last_cpuinfo_used; |
863 | |
864 | WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInit(void) { |
865 | if (enc_last_cpuinfo_used == VP8GetCPUInfo) return; |
866 | |
867 | VP8DspInit(); // common inverse transforms |
868 | InitTables(); |
869 | |
870 | // default C implementations |
871 | VP8CollectHistogram = CollectHistogram; |
872 | VP8ITransform = ITransform; |
873 | VP8FTransform = FTransform; |
874 | VP8FTransform2 = FTransform2; |
875 | VP8FTransformWHT = FTransformWHT; |
876 | VP8EncPredLuma4 = Intra4Preds; |
877 | VP8EncPredLuma16 = Intra16Preds; |
878 | VP8EncPredChroma8 = IntraChromaPreds; |
879 | VP8SSE16x16 = SSE16x16; |
880 | VP8SSE8x8 = SSE8x8; |
881 | VP8SSE16x8 = SSE16x8; |
882 | VP8SSE4x4 = SSE4x4; |
883 | VP8TDisto4x4 = Disto4x4; |
884 | VP8TDisto16x16 = Disto16x16; |
885 | VP8Mean16x4 = Mean16x4; |
886 | VP8EncQuantizeBlock = QuantizeBlock; |
887 | VP8EncQuantize2Blocks = Quantize2Blocks; |
888 | VP8EncQuantizeBlockWHT = QuantizeBlock; |
889 | VP8Copy4x4 = Copy4x4; |
890 | VP8Copy16x8 = Copy16x8; |
891 | |
892 | // If defined, use CPUInfo() to overwrite some pointers with faster versions. |
893 | if (VP8GetCPUInfo != NULL) { |
894 | #if defined(WEBP_USE_SSE2) |
895 | if (VP8GetCPUInfo(kSSE2)) { |
896 | VP8EncDspInitSSE2(); |
897 | #if defined(WEBP_USE_SSE41) |
898 | if (VP8GetCPUInfo(kSSE4_1)) { |
899 | VP8EncDspInitSSE41(); |
900 | } |
901 | #endif |
902 | } |
903 | #endif |
904 | #if defined(WEBP_USE_AVX2) |
905 | if (VP8GetCPUInfo(kAVX2)) { |
906 | VP8EncDspInitAVX2(); |
907 | } |
908 | #endif |
909 | #if defined(WEBP_USE_NEON) |
910 | if (VP8GetCPUInfo(kNEON)) { |
911 | VP8EncDspInitNEON(); |
912 | } |
913 | #endif |
914 | #if defined(WEBP_USE_MIPS32) |
915 | if (VP8GetCPUInfo(kMIPS32)) { |
916 | VP8EncDspInitMIPS32(); |
917 | } |
918 | #endif |
919 | #if defined(WEBP_USE_MIPS_DSP_R2) |
920 | if (VP8GetCPUInfo(kMIPSdspR2)) { |
921 | VP8EncDspInitMIPSdspR2(); |
922 | } |
923 | #endif |
924 | #if defined(WEBP_USE_MSA) |
925 | if (VP8GetCPUInfo(kMSA)) { |
926 | VP8EncDspInitMSA(); |
927 | } |
928 | #endif |
929 | } |
930 | enc_last_cpuinfo_used = VP8GetCPUInfo; |
931 | } |
932 | |