1 | // Copyright 2012 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // ARM NEON version of speed-critical encoding functions. |
11 | // |
12 | // adapted from libvpx (http://www.webmproject.org/code/) |
13 | |
14 | #include "./dsp.h" |
15 | |
16 | #if defined(WEBP_USE_NEON) |
17 | |
18 | #include <assert.h> |
19 | |
20 | #include "./neon.h" |
21 | #include "../enc/vp8i_enc.h" |
22 | |
23 | //------------------------------------------------------------------------------ |
24 | // Transforms (Paragraph 14.4) |
25 | |
26 | // Inverse transform. |
27 | // This code is pretty much the same as TransformOne in the dec_neon.c, except |
28 | // for subtraction to *ref. See the comments there for algorithmic explanations. |
29 | |
30 | static const int16_t kC1 = 20091; |
31 | static const int16_t kC2 = 17734; // half of kC2, actually. See comment above. |
32 | |
33 | // This code works but is *slower* than the inlined-asm version below |
34 | // (with gcc-4.6). So we disable it for now. Later, it'll be conditional to |
35 | // WEBP_USE_INTRINSICS define. |
36 | // With gcc-4.8, it's a little faster speed than inlined-assembly. |
37 | #if defined(WEBP_USE_INTRINSICS) |
38 | |
39 | // Treats 'v' as an uint8x8_t and zero extends to an int16x8_t. |
40 | static WEBP_INLINE int16x8_t ConvertU8ToS16(uint32x2_t v) { |
41 | return vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(v))); |
42 | } |
43 | |
44 | // Performs unsigned 8b saturation on 'dst01' and 'dst23' storing the result |
45 | // to the corresponding rows of 'dst'. |
46 | static WEBP_INLINE void SaturateAndStore4x4(uint8_t* const dst, |
47 | const int16x8_t dst01, |
48 | const int16x8_t dst23) { |
49 | // Unsigned saturate to 8b. |
50 | const uint8x8_t dst01_u8 = vqmovun_s16(dst01); |
51 | const uint8x8_t dst23_u8 = vqmovun_s16(dst23); |
52 | |
53 | // Store the results. |
54 | vst1_lane_u32((uint32_t*)(dst + 0 * BPS), vreinterpret_u32_u8(dst01_u8), 0); |
55 | vst1_lane_u32((uint32_t*)(dst + 1 * BPS), vreinterpret_u32_u8(dst01_u8), 1); |
56 | vst1_lane_u32((uint32_t*)(dst + 2 * BPS), vreinterpret_u32_u8(dst23_u8), 0); |
57 | vst1_lane_u32((uint32_t*)(dst + 3 * BPS), vreinterpret_u32_u8(dst23_u8), 1); |
58 | } |
59 | |
60 | static WEBP_INLINE void Add4x4(const int16x8_t row01, const int16x8_t row23, |
61 | const uint8_t* const ref, uint8_t* const dst) { |
62 | uint32x2_t dst01 = vdup_n_u32(0); |
63 | uint32x2_t dst23 = vdup_n_u32(0); |
64 | |
65 | // Load the source pixels. |
66 | dst01 = vld1_lane_u32((uint32_t*)(ref + 0 * BPS), dst01, 0); |
67 | dst23 = vld1_lane_u32((uint32_t*)(ref + 2 * BPS), dst23, 0); |
68 | dst01 = vld1_lane_u32((uint32_t*)(ref + 1 * BPS), dst01, 1); |
69 | dst23 = vld1_lane_u32((uint32_t*)(ref + 3 * BPS), dst23, 1); |
70 | |
71 | { |
72 | // Convert to 16b. |
73 | const int16x8_t dst01_s16 = ConvertU8ToS16(dst01); |
74 | const int16x8_t dst23_s16 = ConvertU8ToS16(dst23); |
75 | |
76 | // Descale with rounding. |
77 | const int16x8_t out01 = vrsraq_n_s16(dst01_s16, row01, 3); |
78 | const int16x8_t out23 = vrsraq_n_s16(dst23_s16, row23, 3); |
79 | // Add the inverse transform. |
80 | SaturateAndStore4x4(dst, out01, out23); |
81 | } |
82 | } |
83 | |
84 | static WEBP_INLINE void Transpose8x2(const int16x8_t in0, const int16x8_t in1, |
85 | int16x8x2_t* const out) { |
86 | // a0 a1 a2 a3 | b0 b1 b2 b3 => a0 b0 c0 d0 | a1 b1 c1 d1 |
87 | // c0 c1 c2 c3 | d0 d1 d2 d3 a2 b2 c2 d2 | a3 b3 c3 d3 |
88 | const int16x8x2_t tmp0 = vzipq_s16(in0, in1); // a0 c0 a1 c1 a2 c2 ... |
89 | // b0 d0 b1 d1 b2 d2 ... |
90 | *out = vzipq_s16(tmp0.val[0], tmp0.val[1]); |
91 | } |
92 | |
93 | static WEBP_INLINE void TransformPass(int16x8x2_t* const rows) { |
94 | // {rows} = in0 | in4 |
95 | // in8 | in12 |
96 | // B1 = in4 | in12 |
97 | const int16x8_t B1 = |
98 | vcombine_s16(vget_high_s16(rows->val[0]), vget_high_s16(rows->val[1])); |
99 | // C0 = kC1 * in4 | kC1 * in12 |
100 | // C1 = kC2 * in4 | kC2 * in12 |
101 | const int16x8_t C0 = vsraq_n_s16(B1, vqdmulhq_n_s16(B1, kC1), 1); |
102 | const int16x8_t C1 = vqdmulhq_n_s16(B1, kC2); |
103 | const int16x4_t a = vqadd_s16(vget_low_s16(rows->val[0]), |
104 | vget_low_s16(rows->val[1])); // in0 + in8 |
105 | const int16x4_t b = vqsub_s16(vget_low_s16(rows->val[0]), |
106 | vget_low_s16(rows->val[1])); // in0 - in8 |
107 | // c = kC2 * in4 - kC1 * in12 |
108 | // d = kC1 * in4 + kC2 * in12 |
109 | const int16x4_t c = vqsub_s16(vget_low_s16(C1), vget_high_s16(C0)); |
110 | const int16x4_t d = vqadd_s16(vget_low_s16(C0), vget_high_s16(C1)); |
111 | const int16x8_t D0 = vcombine_s16(a, b); // D0 = a | b |
112 | const int16x8_t D1 = vcombine_s16(d, c); // D1 = d | c |
113 | const int16x8_t E0 = vqaddq_s16(D0, D1); // a+d | b+c |
114 | const int16x8_t E_tmp = vqsubq_s16(D0, D1); // a-d | b-c |
115 | const int16x8_t E1 = vcombine_s16(vget_high_s16(E_tmp), vget_low_s16(E_tmp)); |
116 | Transpose8x2(E0, E1, rows); |
117 | } |
118 | |
119 | static void ITransformOne(const uint8_t* ref, |
120 | const int16_t* in, uint8_t* dst) { |
121 | int16x8x2_t rows; |
122 | INIT_VECTOR2(rows, vld1q_s16(in + 0), vld1q_s16(in + 8)); |
123 | TransformPass(&rows); |
124 | TransformPass(&rows); |
125 | Add4x4(rows.val[0], rows.val[1], ref, dst); |
126 | } |
127 | |
128 | #else |
129 | |
130 | static void ITransformOne(const uint8_t* ref, |
131 | const int16_t* in, uint8_t* dst) { |
132 | const int kBPS = BPS; |
133 | const int16_t kC1C2[] = { kC1, kC2, 0, 0 }; |
134 | |
135 | __asm__ volatile ( |
136 | "vld1.16 {q1, q2}, [%[in]] \n" |
137 | "vld1.16 {d0}, [%[kC1C2]] \n" |
138 | |
139 | // d2: in[0] |
140 | // d3: in[8] |
141 | // d4: in[4] |
142 | // d5: in[12] |
143 | "vswp d3, d4 \n" |
144 | |
145 | // q8 = {in[4], in[12]} * kC1 * 2 >> 16 |
146 | // q9 = {in[4], in[12]} * kC2 >> 16 |
147 | "vqdmulh.s16 q8, q2, d0[0] \n" |
148 | "vqdmulh.s16 q9, q2, d0[1] \n" |
149 | |
150 | // d22 = a = in[0] + in[8] |
151 | // d23 = b = in[0] - in[8] |
152 | "vqadd.s16 d22, d2, d3 \n" |
153 | "vqsub.s16 d23, d2, d3 \n" |
154 | |
155 | // q8 = in[4]/[12] * kC1 >> 16 |
156 | "vshr.s16 q8, q8, #1 \n" |
157 | |
158 | // Add {in[4], in[12]} back after the multiplication. |
159 | "vqadd.s16 q8, q2, q8 \n" |
160 | |
161 | // d20 = c = in[4]*kC2 - in[12]*kC1 |
162 | // d21 = d = in[4]*kC1 + in[12]*kC2 |
163 | "vqsub.s16 d20, d18, d17 \n" |
164 | "vqadd.s16 d21, d19, d16 \n" |
165 | |
166 | // d2 = tmp[0] = a + d |
167 | // d3 = tmp[1] = b + c |
168 | // d4 = tmp[2] = b - c |
169 | // d5 = tmp[3] = a - d |
170 | "vqadd.s16 d2, d22, d21 \n" |
171 | "vqadd.s16 d3, d23, d20 \n" |
172 | "vqsub.s16 d4, d23, d20 \n" |
173 | "vqsub.s16 d5, d22, d21 \n" |
174 | |
175 | "vzip.16 q1, q2 \n" |
176 | "vzip.16 q1, q2 \n" |
177 | |
178 | "vswp d3, d4 \n" |
179 | |
180 | // q8 = {tmp[4], tmp[12]} * kC1 * 2 >> 16 |
181 | // q9 = {tmp[4], tmp[12]} * kC2 >> 16 |
182 | "vqdmulh.s16 q8, q2, d0[0] \n" |
183 | "vqdmulh.s16 q9, q2, d0[1] \n" |
184 | |
185 | // d22 = a = tmp[0] + tmp[8] |
186 | // d23 = b = tmp[0] - tmp[8] |
187 | "vqadd.s16 d22, d2, d3 \n" |
188 | "vqsub.s16 d23, d2, d3 \n" |
189 | |
190 | "vshr.s16 q8, q8, #1 \n" |
191 | "vqadd.s16 q8, q2, q8 \n" |
192 | |
193 | // d20 = c = in[4]*kC2 - in[12]*kC1 |
194 | // d21 = d = in[4]*kC1 + in[12]*kC2 |
195 | "vqsub.s16 d20, d18, d17 \n" |
196 | "vqadd.s16 d21, d19, d16 \n" |
197 | |
198 | // d2 = tmp[0] = a + d |
199 | // d3 = tmp[1] = b + c |
200 | // d4 = tmp[2] = b - c |
201 | // d5 = tmp[3] = a - d |
202 | "vqadd.s16 d2, d22, d21 \n" |
203 | "vqadd.s16 d3, d23, d20 \n" |
204 | "vqsub.s16 d4, d23, d20 \n" |
205 | "vqsub.s16 d5, d22, d21 \n" |
206 | |
207 | "vld1.32 d6[0], [%[ref]], %[kBPS] \n" |
208 | "vld1.32 d6[1], [%[ref]], %[kBPS] \n" |
209 | "vld1.32 d7[0], [%[ref]], %[kBPS] \n" |
210 | "vld1.32 d7[1], [%[ref]], %[kBPS] \n" |
211 | |
212 | "sub %[ref], %[ref], %[kBPS], lsl #2 \n" |
213 | |
214 | // (val) + 4 >> 3 |
215 | "vrshr.s16 d2, d2, #3 \n" |
216 | "vrshr.s16 d3, d3, #3 \n" |
217 | "vrshr.s16 d4, d4, #3 \n" |
218 | "vrshr.s16 d5, d5, #3 \n" |
219 | |
220 | "vzip.16 q1, q2 \n" |
221 | "vzip.16 q1, q2 \n" |
222 | |
223 | // Must accumulate before saturating |
224 | "vmovl.u8 q8, d6 \n" |
225 | "vmovl.u8 q9, d7 \n" |
226 | |
227 | "vqadd.s16 q1, q1, q8 \n" |
228 | "vqadd.s16 q2, q2, q9 \n" |
229 | |
230 | "vqmovun.s16 d0, q1 \n" |
231 | "vqmovun.s16 d1, q2 \n" |
232 | |
233 | "vst1.32 d0[0], [%[dst]], %[kBPS] \n" |
234 | "vst1.32 d0[1], [%[dst]], %[kBPS] \n" |
235 | "vst1.32 d1[0], [%[dst]], %[kBPS] \n" |
236 | "vst1.32 d1[1], [%[dst]] \n" |
237 | |
238 | : [in] "+r" (in), [dst] "+r" (dst) // modified registers |
239 | : [kBPS] "r" (kBPS), [kC1C2] "r" (kC1C2), [ref] "r" (ref) // constants |
240 | : "memory" , "q0" , "q1" , "q2" , "q8" , "q9" , "q10" , "q11" // clobbered |
241 | ); |
242 | } |
243 | |
244 | #endif // WEBP_USE_INTRINSICS |
245 | |
246 | static void ITransform(const uint8_t* ref, |
247 | const int16_t* in, uint8_t* dst, int do_two) { |
248 | ITransformOne(ref, in, dst); |
249 | if (do_two) { |
250 | ITransformOne(ref + 4, in + 16, dst + 4); |
251 | } |
252 | } |
253 | |
254 | // Load all 4x4 pixels into a single uint8x16_t variable. |
255 | static uint8x16_t Load4x4(const uint8_t* src) { |
256 | uint32x4_t out = vdupq_n_u32(0); |
257 | out = vld1q_lane_u32((const uint32_t*)(src + 0 * BPS), out, 0); |
258 | out = vld1q_lane_u32((const uint32_t*)(src + 1 * BPS), out, 1); |
259 | out = vld1q_lane_u32((const uint32_t*)(src + 2 * BPS), out, 2); |
260 | out = vld1q_lane_u32((const uint32_t*)(src + 3 * BPS), out, 3); |
261 | return vreinterpretq_u8_u32(out); |
262 | } |
263 | |
264 | // Forward transform. |
265 | |
266 | #if defined(WEBP_USE_INTRINSICS) |
267 | |
268 | static WEBP_INLINE void Transpose4x4_S16(const int16x4_t A, const int16x4_t B, |
269 | const int16x4_t C, const int16x4_t D, |
270 | int16x8_t* const out01, |
271 | int16x8_t* const out32) { |
272 | const int16x4x2_t AB = vtrn_s16(A, B); |
273 | const int16x4x2_t CD = vtrn_s16(C, D); |
274 | const int32x2x2_t tmp02 = vtrn_s32(vreinterpret_s32_s16(AB.val[0]), |
275 | vreinterpret_s32_s16(CD.val[0])); |
276 | const int32x2x2_t tmp13 = vtrn_s32(vreinterpret_s32_s16(AB.val[1]), |
277 | vreinterpret_s32_s16(CD.val[1])); |
278 | *out01 = vreinterpretq_s16_s64( |
279 | vcombine_s64(vreinterpret_s64_s32(tmp02.val[0]), |
280 | vreinterpret_s64_s32(tmp13.val[0]))); |
281 | *out32 = vreinterpretq_s16_s64( |
282 | vcombine_s64(vreinterpret_s64_s32(tmp13.val[1]), |
283 | vreinterpret_s64_s32(tmp02.val[1]))); |
284 | } |
285 | |
286 | static WEBP_INLINE int16x8_t DiffU8ToS16(const uint8x8_t a, |
287 | const uint8x8_t b) { |
288 | return vreinterpretq_s16_u16(vsubl_u8(a, b)); |
289 | } |
290 | |
291 | static void FTransform(const uint8_t* src, const uint8_t* ref, |
292 | int16_t* out) { |
293 | int16x8_t d0d1, d3d2; // working 4x4 int16 variables |
294 | { |
295 | const uint8x16_t S0 = Load4x4(src); |
296 | const uint8x16_t R0 = Load4x4(ref); |
297 | const int16x8_t D0D1 = DiffU8ToS16(vget_low_u8(S0), vget_low_u8(R0)); |
298 | const int16x8_t D2D3 = DiffU8ToS16(vget_high_u8(S0), vget_high_u8(R0)); |
299 | const int16x4_t D0 = vget_low_s16(D0D1); |
300 | const int16x4_t D1 = vget_high_s16(D0D1); |
301 | const int16x4_t D2 = vget_low_s16(D2D3); |
302 | const int16x4_t D3 = vget_high_s16(D2D3); |
303 | Transpose4x4_S16(D0, D1, D2, D3, &d0d1, &d3d2); |
304 | } |
305 | { // 1rst pass |
306 | const int32x4_t kCst937 = vdupq_n_s32(937); |
307 | const int32x4_t kCst1812 = vdupq_n_s32(1812); |
308 | const int16x8_t a0a1 = vaddq_s16(d0d1, d3d2); // d0+d3 | d1+d2 (=a0|a1) |
309 | const int16x8_t a3a2 = vsubq_s16(d0d1, d3d2); // d0-d3 | d1-d2 (=a3|a2) |
310 | const int16x8_t a0a1_2 = vshlq_n_s16(a0a1, 3); |
311 | const int16x4_t tmp0 = vadd_s16(vget_low_s16(a0a1_2), |
312 | vget_high_s16(a0a1_2)); |
313 | const int16x4_t tmp2 = vsub_s16(vget_low_s16(a0a1_2), |
314 | vget_high_s16(a0a1_2)); |
315 | const int32x4_t a3_2217 = vmull_n_s16(vget_low_s16(a3a2), 2217); |
316 | const int32x4_t a2_2217 = vmull_n_s16(vget_high_s16(a3a2), 2217); |
317 | const int32x4_t a2_p_a3 = vmlal_n_s16(a2_2217, vget_low_s16(a3a2), 5352); |
318 | const int32x4_t a3_m_a2 = vmlsl_n_s16(a3_2217, vget_high_s16(a3a2), 5352); |
319 | const int16x4_t tmp1 = vshrn_n_s32(vaddq_s32(a2_p_a3, kCst1812), 9); |
320 | const int16x4_t tmp3 = vshrn_n_s32(vaddq_s32(a3_m_a2, kCst937), 9); |
321 | Transpose4x4_S16(tmp0, tmp1, tmp2, tmp3, &d0d1, &d3d2); |
322 | } |
323 | { // 2nd pass |
324 | // the (1<<16) addition is for the replacement: a3!=0 <-> 1-(a3==0) |
325 | const int32x4_t kCst12000 = vdupq_n_s32(12000 + (1 << 16)); |
326 | const int32x4_t kCst51000 = vdupq_n_s32(51000); |
327 | const int16x8_t a0a1 = vaddq_s16(d0d1, d3d2); // d0+d3 | d1+d2 (=a0|a1) |
328 | const int16x8_t a3a2 = vsubq_s16(d0d1, d3d2); // d0-d3 | d1-d2 (=a3|a2) |
329 | const int16x4_t a0_k7 = vadd_s16(vget_low_s16(a0a1), vdup_n_s16(7)); |
330 | const int16x4_t out0 = vshr_n_s16(vadd_s16(a0_k7, vget_high_s16(a0a1)), 4); |
331 | const int16x4_t out2 = vshr_n_s16(vsub_s16(a0_k7, vget_high_s16(a0a1)), 4); |
332 | const int32x4_t a3_2217 = vmull_n_s16(vget_low_s16(a3a2), 2217); |
333 | const int32x4_t a2_2217 = vmull_n_s16(vget_high_s16(a3a2), 2217); |
334 | const int32x4_t a2_p_a3 = vmlal_n_s16(a2_2217, vget_low_s16(a3a2), 5352); |
335 | const int32x4_t a3_m_a2 = vmlsl_n_s16(a3_2217, vget_high_s16(a3a2), 5352); |
336 | const int16x4_t tmp1 = vaddhn_s32(a2_p_a3, kCst12000); |
337 | const int16x4_t out3 = vaddhn_s32(a3_m_a2, kCst51000); |
338 | const int16x4_t a3_eq_0 = |
339 | vreinterpret_s16_u16(vceq_s16(vget_low_s16(a3a2), vdup_n_s16(0))); |
340 | const int16x4_t out1 = vadd_s16(tmp1, a3_eq_0); |
341 | vst1_s16(out + 0, out0); |
342 | vst1_s16(out + 4, out1); |
343 | vst1_s16(out + 8, out2); |
344 | vst1_s16(out + 12, out3); |
345 | } |
346 | } |
347 | |
348 | #else |
349 | |
350 | // adapted from vp8/encoder/arm/neon/shortfdct_neon.asm |
351 | static const int16_t kCoeff16[] = { |
352 | 5352, 5352, 5352, 5352, 2217, 2217, 2217, 2217 |
353 | }; |
354 | static const int32_t kCoeff32[] = { |
355 | 1812, 1812, 1812, 1812, |
356 | 937, 937, 937, 937, |
357 | 12000, 12000, 12000, 12000, |
358 | 51000, 51000, 51000, 51000 |
359 | }; |
360 | |
361 | static void FTransform(const uint8_t* src, const uint8_t* ref, |
362 | int16_t* out) { |
363 | const int kBPS = BPS; |
364 | const uint8_t* src_ptr = src; |
365 | const uint8_t* ref_ptr = ref; |
366 | const int16_t* coeff16 = kCoeff16; |
367 | const int32_t* coeff32 = kCoeff32; |
368 | |
369 | __asm__ volatile ( |
370 | // load src into q4, q5 in high half |
371 | "vld1.8 {d8}, [%[src_ptr]], %[kBPS] \n" |
372 | "vld1.8 {d10}, [%[src_ptr]], %[kBPS] \n" |
373 | "vld1.8 {d9}, [%[src_ptr]], %[kBPS] \n" |
374 | "vld1.8 {d11}, [%[src_ptr]] \n" |
375 | |
376 | // load ref into q6, q7 in high half |
377 | "vld1.8 {d12}, [%[ref_ptr]], %[kBPS] \n" |
378 | "vld1.8 {d14}, [%[ref_ptr]], %[kBPS] \n" |
379 | "vld1.8 {d13}, [%[ref_ptr]], %[kBPS] \n" |
380 | "vld1.8 {d15}, [%[ref_ptr]] \n" |
381 | |
382 | // Pack the high values in to q4 and q6 |
383 | "vtrn.32 q4, q5 \n" |
384 | "vtrn.32 q6, q7 \n" |
385 | |
386 | // d[0-3] = src - ref |
387 | "vsubl.u8 q0, d8, d12 \n" |
388 | "vsubl.u8 q1, d9, d13 \n" |
389 | |
390 | // load coeff16 into q8(d16=5352, d17=2217) |
391 | "vld1.16 {q8}, [%[coeff16]] \n" |
392 | |
393 | // load coeff32 high half into q9 = 1812, q10 = 937 |
394 | "vld1.32 {q9, q10}, [%[coeff32]]! \n" |
395 | |
396 | // load coeff32 low half into q11=12000, q12=51000 |
397 | "vld1.32 {q11,q12}, [%[coeff32]] \n" |
398 | |
399 | // part 1 |
400 | // Transpose. Register dN is the same as dN in C |
401 | "vtrn.32 d0, d2 \n" |
402 | "vtrn.32 d1, d3 \n" |
403 | "vtrn.16 d0, d1 \n" |
404 | "vtrn.16 d2, d3 \n" |
405 | |
406 | "vadd.s16 d4, d0, d3 \n" // a0 = d0 + d3 |
407 | "vadd.s16 d5, d1, d2 \n" // a1 = d1 + d2 |
408 | "vsub.s16 d6, d1, d2 \n" // a2 = d1 - d2 |
409 | "vsub.s16 d7, d0, d3 \n" // a3 = d0 - d3 |
410 | |
411 | "vadd.s16 d0, d4, d5 \n" // a0 + a1 |
412 | "vshl.s16 d0, d0, #3 \n" // temp[0+i*4] = (a0+a1) << 3 |
413 | "vsub.s16 d2, d4, d5 \n" // a0 - a1 |
414 | "vshl.s16 d2, d2, #3 \n" // (temp[2+i*4] = (a0-a1) << 3 |
415 | |
416 | "vmlal.s16 q9, d7, d16 \n" // a3*5352 + 1812 |
417 | "vmlal.s16 q10, d7, d17 \n" // a3*2217 + 937 |
418 | "vmlal.s16 q9, d6, d17 \n" // a2*2217 + a3*5352 + 1812 |
419 | "vmlsl.s16 q10, d6, d16 \n" // a3*2217 + 937 - a2*5352 |
420 | |
421 | // temp[1+i*4] = (d2*2217 + d3*5352 + 1812) >> 9 |
422 | // temp[3+i*4] = (d3*2217 + 937 - d2*5352) >> 9 |
423 | "vshrn.s32 d1, q9, #9 \n" |
424 | "vshrn.s32 d3, q10, #9 \n" |
425 | |
426 | // part 2 |
427 | // transpose d0=ip[0], d1=ip[4], d2=ip[8], d3=ip[12] |
428 | "vtrn.32 d0, d2 \n" |
429 | "vtrn.32 d1, d3 \n" |
430 | "vtrn.16 d0, d1 \n" |
431 | "vtrn.16 d2, d3 \n" |
432 | |
433 | "vmov.s16 d26, #7 \n" |
434 | |
435 | "vadd.s16 d4, d0, d3 \n" // a1 = ip[0] + ip[12] |
436 | "vadd.s16 d5, d1, d2 \n" // b1 = ip[4] + ip[8] |
437 | "vsub.s16 d6, d1, d2 \n" // c1 = ip[4] - ip[8] |
438 | "vadd.s16 d4, d4, d26 \n" // a1 + 7 |
439 | "vsub.s16 d7, d0, d3 \n" // d1 = ip[0] - ip[12] |
440 | |
441 | "vadd.s16 d0, d4, d5 \n" // op[0] = a1 + b1 + 7 |
442 | "vsub.s16 d2, d4, d5 \n" // op[8] = a1 - b1 + 7 |
443 | |
444 | "vmlal.s16 q11, d7, d16 \n" // d1*5352 + 12000 |
445 | "vmlal.s16 q12, d7, d17 \n" // d1*2217 + 51000 |
446 | |
447 | "vceq.s16 d4, d7, #0 \n" |
448 | |
449 | "vshr.s16 d0, d0, #4 \n" |
450 | "vshr.s16 d2, d2, #4 \n" |
451 | |
452 | "vmlal.s16 q11, d6, d17 \n" // c1*2217 + d1*5352 + 12000 |
453 | "vmlsl.s16 q12, d6, d16 \n" // d1*2217 - c1*5352 + 51000 |
454 | |
455 | "vmvn d4, d4 \n" // !(d1 == 0) |
456 | // op[4] = (c1*2217 + d1*5352 + 12000)>>16 |
457 | "vshrn.s32 d1, q11, #16 \n" |
458 | // op[4] += (d1!=0) |
459 | "vsub.s16 d1, d1, d4 \n" |
460 | // op[12]= (d1*2217 - c1*5352 + 51000)>>16 |
461 | "vshrn.s32 d3, q12, #16 \n" |
462 | |
463 | // set result to out array |
464 | "vst1.16 {q0, q1}, [%[out]] \n" |
465 | : [src_ptr] "+r" (src_ptr), [ref_ptr] "+r" (ref_ptr), |
466 | [coeff32] "+r" (coeff32) // modified registers |
467 | : [kBPS] "r" (kBPS), [coeff16] "r" (coeff16), |
468 | [out] "r" (out) // constants |
469 | : "memory" , "q0" , "q1" , "q2" , "q3" , "q4" , "q5" , "q6" , "q7" , "q8" , "q9" , |
470 | "q10" , "q11" , "q12" , "q13" // clobbered |
471 | ); |
472 | } |
473 | |
474 | #endif |
475 | |
476 | #define LOAD_LANE_16b(VALUE, LANE) do { \ |
477 | (VALUE) = vld1_lane_s16(src, (VALUE), (LANE)); \ |
478 | src += stride; \ |
479 | } while (0) |
480 | |
481 | static void FTransformWHT(const int16_t* src, int16_t* out) { |
482 | const int stride = 16; |
483 | const int16x4_t zero = vdup_n_s16(0); |
484 | int32x4x4_t tmp0; |
485 | int16x4x4_t in; |
486 | INIT_VECTOR4(in, zero, zero, zero, zero); |
487 | LOAD_LANE_16b(in.val[0], 0); |
488 | LOAD_LANE_16b(in.val[1], 0); |
489 | LOAD_LANE_16b(in.val[2], 0); |
490 | LOAD_LANE_16b(in.val[3], 0); |
491 | LOAD_LANE_16b(in.val[0], 1); |
492 | LOAD_LANE_16b(in.val[1], 1); |
493 | LOAD_LANE_16b(in.val[2], 1); |
494 | LOAD_LANE_16b(in.val[3], 1); |
495 | LOAD_LANE_16b(in.val[0], 2); |
496 | LOAD_LANE_16b(in.val[1], 2); |
497 | LOAD_LANE_16b(in.val[2], 2); |
498 | LOAD_LANE_16b(in.val[3], 2); |
499 | LOAD_LANE_16b(in.val[0], 3); |
500 | LOAD_LANE_16b(in.val[1], 3); |
501 | LOAD_LANE_16b(in.val[2], 3); |
502 | LOAD_LANE_16b(in.val[3], 3); |
503 | |
504 | { |
505 | // a0 = in[0 * 16] + in[2 * 16] |
506 | // a1 = in[1 * 16] + in[3 * 16] |
507 | // a2 = in[1 * 16] - in[3 * 16] |
508 | // a3 = in[0 * 16] - in[2 * 16] |
509 | const int32x4_t a0 = vaddl_s16(in.val[0], in.val[2]); |
510 | const int32x4_t a1 = vaddl_s16(in.val[1], in.val[3]); |
511 | const int32x4_t a2 = vsubl_s16(in.val[1], in.val[3]); |
512 | const int32x4_t a3 = vsubl_s16(in.val[0], in.val[2]); |
513 | tmp0.val[0] = vaddq_s32(a0, a1); |
514 | tmp0.val[1] = vaddq_s32(a3, a2); |
515 | tmp0.val[2] = vsubq_s32(a3, a2); |
516 | tmp0.val[3] = vsubq_s32(a0, a1); |
517 | } |
518 | { |
519 | const int32x4x4_t tmp1 = Transpose4x4(tmp0); |
520 | // a0 = tmp[0 + i] + tmp[ 8 + i] |
521 | // a1 = tmp[4 + i] + tmp[12 + i] |
522 | // a2 = tmp[4 + i] - tmp[12 + i] |
523 | // a3 = tmp[0 + i] - tmp[ 8 + i] |
524 | const int32x4_t a0 = vaddq_s32(tmp1.val[0], tmp1.val[2]); |
525 | const int32x4_t a1 = vaddq_s32(tmp1.val[1], tmp1.val[3]); |
526 | const int32x4_t a2 = vsubq_s32(tmp1.val[1], tmp1.val[3]); |
527 | const int32x4_t a3 = vsubq_s32(tmp1.val[0], tmp1.val[2]); |
528 | const int32x4_t b0 = vhaddq_s32(a0, a1); // (a0 + a1) >> 1 |
529 | const int32x4_t b1 = vhaddq_s32(a3, a2); // (a3 + a2) >> 1 |
530 | const int32x4_t b2 = vhsubq_s32(a3, a2); // (a3 - a2) >> 1 |
531 | const int32x4_t b3 = vhsubq_s32(a0, a1); // (a0 - a1) >> 1 |
532 | const int16x4_t out0 = vmovn_s32(b0); |
533 | const int16x4_t out1 = vmovn_s32(b1); |
534 | const int16x4_t out2 = vmovn_s32(b2); |
535 | const int16x4_t out3 = vmovn_s32(b3); |
536 | |
537 | vst1_s16(out + 0, out0); |
538 | vst1_s16(out + 4, out1); |
539 | vst1_s16(out + 8, out2); |
540 | vst1_s16(out + 12, out3); |
541 | } |
542 | } |
543 | #undef LOAD_LANE_16b |
544 | |
545 | //------------------------------------------------------------------------------ |
546 | // Texture distortion |
547 | // |
548 | // We try to match the spectral content (weighted) between source and |
549 | // reconstructed samples. |
550 | |
551 | // a 0123, b 0123 |
552 | // a 4567, b 4567 |
553 | // a 89ab, b 89ab |
554 | // a cdef, b cdef |
555 | // |
556 | // transpose |
557 | // |
558 | // a 048c, b 048c |
559 | // a 159d, b 159d |
560 | // a 26ae, b 26ae |
561 | // a 37bf, b 37bf |
562 | // |
563 | static WEBP_INLINE int16x8x4_t DistoTranspose4x4S16(int16x8x4_t q4_in) { |
564 | const int16x8x2_t q2_tmp0 = vtrnq_s16(q4_in.val[0], q4_in.val[1]); |
565 | const int16x8x2_t q2_tmp1 = vtrnq_s16(q4_in.val[2], q4_in.val[3]); |
566 | const int32x4x2_t q2_tmp2 = vtrnq_s32(vreinterpretq_s32_s16(q2_tmp0.val[0]), |
567 | vreinterpretq_s32_s16(q2_tmp1.val[0])); |
568 | const int32x4x2_t q2_tmp3 = vtrnq_s32(vreinterpretq_s32_s16(q2_tmp0.val[1]), |
569 | vreinterpretq_s32_s16(q2_tmp1.val[1])); |
570 | q4_in.val[0] = vreinterpretq_s16_s32(q2_tmp2.val[0]); |
571 | q4_in.val[2] = vreinterpretq_s16_s32(q2_tmp2.val[1]); |
572 | q4_in.val[1] = vreinterpretq_s16_s32(q2_tmp3.val[0]); |
573 | q4_in.val[3] = vreinterpretq_s16_s32(q2_tmp3.val[1]); |
574 | return q4_in; |
575 | } |
576 | |
577 | static WEBP_INLINE int16x8x4_t DistoHorizontalPass(const int16x8x4_t q4_in) { |
578 | // {a0, a1} = {in[0] + in[2], in[1] + in[3]} |
579 | // {a3, a2} = {in[0] - in[2], in[1] - in[3]} |
580 | const int16x8_t q_a0 = vaddq_s16(q4_in.val[0], q4_in.val[2]); |
581 | const int16x8_t q_a1 = vaddq_s16(q4_in.val[1], q4_in.val[3]); |
582 | const int16x8_t q_a3 = vsubq_s16(q4_in.val[0], q4_in.val[2]); |
583 | const int16x8_t q_a2 = vsubq_s16(q4_in.val[1], q4_in.val[3]); |
584 | int16x8x4_t q4_out; |
585 | // tmp[0] = a0 + a1 |
586 | // tmp[1] = a3 + a2 |
587 | // tmp[2] = a3 - a2 |
588 | // tmp[3] = a0 - a1 |
589 | INIT_VECTOR4(q4_out, |
590 | vabsq_s16(vaddq_s16(q_a0, q_a1)), |
591 | vabsq_s16(vaddq_s16(q_a3, q_a2)), |
592 | vabdq_s16(q_a3, q_a2), vabdq_s16(q_a0, q_a1)); |
593 | return q4_out; |
594 | } |
595 | |
596 | static WEBP_INLINE int16x8x4_t DistoVerticalPass(const uint8x8x4_t q4_in) { |
597 | const int16x8_t q_a0 = vreinterpretq_s16_u16(vaddl_u8(q4_in.val[0], |
598 | q4_in.val[2])); |
599 | const int16x8_t q_a1 = vreinterpretq_s16_u16(vaddl_u8(q4_in.val[1], |
600 | q4_in.val[3])); |
601 | const int16x8_t q_a2 = vreinterpretq_s16_u16(vsubl_u8(q4_in.val[1], |
602 | q4_in.val[3])); |
603 | const int16x8_t q_a3 = vreinterpretq_s16_u16(vsubl_u8(q4_in.val[0], |
604 | q4_in.val[2])); |
605 | int16x8x4_t q4_out; |
606 | |
607 | INIT_VECTOR4(q4_out, |
608 | vaddq_s16(q_a0, q_a1), vaddq_s16(q_a3, q_a2), |
609 | vsubq_s16(q_a3, q_a2), vsubq_s16(q_a0, q_a1)); |
610 | return q4_out; |
611 | } |
612 | |
613 | static WEBP_INLINE int16x4x4_t DistoLoadW(const uint16_t* w) { |
614 | const uint16x8_t q_w07 = vld1q_u16(&w[0]); |
615 | const uint16x8_t q_w8f = vld1q_u16(&w[8]); |
616 | int16x4x4_t d4_w; |
617 | INIT_VECTOR4(d4_w, |
618 | vget_low_s16(vreinterpretq_s16_u16(q_w07)), |
619 | vget_high_s16(vreinterpretq_s16_u16(q_w07)), |
620 | vget_low_s16(vreinterpretq_s16_u16(q_w8f)), |
621 | vget_high_s16(vreinterpretq_s16_u16(q_w8f))); |
622 | return d4_w; |
623 | } |
624 | |
625 | static WEBP_INLINE int32x2_t DistoSum(const int16x8x4_t q4_in, |
626 | const int16x4x4_t d4_w) { |
627 | int32x2_t d_sum; |
628 | // sum += w[ 0] * abs(b0); |
629 | // sum += w[ 4] * abs(b1); |
630 | // sum += w[ 8] * abs(b2); |
631 | // sum += w[12] * abs(b3); |
632 | int32x4_t q_sum0 = vmull_s16(d4_w.val[0], vget_low_s16(q4_in.val[0])); |
633 | int32x4_t q_sum1 = vmull_s16(d4_w.val[1], vget_low_s16(q4_in.val[1])); |
634 | int32x4_t q_sum2 = vmull_s16(d4_w.val[2], vget_low_s16(q4_in.val[2])); |
635 | int32x4_t q_sum3 = vmull_s16(d4_w.val[3], vget_low_s16(q4_in.val[3])); |
636 | q_sum0 = vmlsl_s16(q_sum0, d4_w.val[0], vget_high_s16(q4_in.val[0])); |
637 | q_sum1 = vmlsl_s16(q_sum1, d4_w.val[1], vget_high_s16(q4_in.val[1])); |
638 | q_sum2 = vmlsl_s16(q_sum2, d4_w.val[2], vget_high_s16(q4_in.val[2])); |
639 | q_sum3 = vmlsl_s16(q_sum3, d4_w.val[3], vget_high_s16(q4_in.val[3])); |
640 | |
641 | q_sum0 = vaddq_s32(q_sum0, q_sum1); |
642 | q_sum2 = vaddq_s32(q_sum2, q_sum3); |
643 | q_sum2 = vaddq_s32(q_sum0, q_sum2); |
644 | d_sum = vpadd_s32(vget_low_s32(q_sum2), vget_high_s32(q_sum2)); |
645 | d_sum = vpadd_s32(d_sum, d_sum); |
646 | return d_sum; |
647 | } |
648 | |
649 | #define LOAD_LANE_32b(src, VALUE, LANE) \ |
650 | (VALUE) = vld1_lane_u32((const uint32_t*)(src), (VALUE), (LANE)) |
651 | |
652 | // Hadamard transform |
653 | // Returns the weighted sum of the absolute value of transformed coefficients. |
654 | // w[] contains a row-major 4 by 4 symmetric matrix. |
655 | static int Disto4x4(const uint8_t* const a, const uint8_t* const b, |
656 | const uint16_t* const w) { |
657 | uint32x2_t d_in_ab_0123 = vdup_n_u32(0); |
658 | uint32x2_t d_in_ab_4567 = vdup_n_u32(0); |
659 | uint32x2_t d_in_ab_89ab = vdup_n_u32(0); |
660 | uint32x2_t d_in_ab_cdef = vdup_n_u32(0); |
661 | uint8x8x4_t d4_in; |
662 | |
663 | // load data a, b |
664 | LOAD_LANE_32b(a + 0 * BPS, d_in_ab_0123, 0); |
665 | LOAD_LANE_32b(a + 1 * BPS, d_in_ab_4567, 0); |
666 | LOAD_LANE_32b(a + 2 * BPS, d_in_ab_89ab, 0); |
667 | LOAD_LANE_32b(a + 3 * BPS, d_in_ab_cdef, 0); |
668 | LOAD_LANE_32b(b + 0 * BPS, d_in_ab_0123, 1); |
669 | LOAD_LANE_32b(b + 1 * BPS, d_in_ab_4567, 1); |
670 | LOAD_LANE_32b(b + 2 * BPS, d_in_ab_89ab, 1); |
671 | LOAD_LANE_32b(b + 3 * BPS, d_in_ab_cdef, 1); |
672 | INIT_VECTOR4(d4_in, |
673 | vreinterpret_u8_u32(d_in_ab_0123), |
674 | vreinterpret_u8_u32(d_in_ab_4567), |
675 | vreinterpret_u8_u32(d_in_ab_89ab), |
676 | vreinterpret_u8_u32(d_in_ab_cdef)); |
677 | |
678 | { |
679 | // Vertical pass first to avoid a transpose (vertical and horizontal passes |
680 | // are commutative because w/kWeightY is symmetric) and subsequent |
681 | // transpose. |
682 | const int16x8x4_t q4_v = DistoVerticalPass(d4_in); |
683 | const int16x4x4_t d4_w = DistoLoadW(w); |
684 | // horizontal pass |
685 | const int16x8x4_t q4_t = DistoTranspose4x4S16(q4_v); |
686 | const int16x8x4_t q4_h = DistoHorizontalPass(q4_t); |
687 | int32x2_t d_sum = DistoSum(q4_h, d4_w); |
688 | |
689 | // abs(sum2 - sum1) >> 5 |
690 | d_sum = vabs_s32(d_sum); |
691 | d_sum = vshr_n_s32(d_sum, 5); |
692 | return vget_lane_s32(d_sum, 0); |
693 | } |
694 | } |
695 | #undef LOAD_LANE_32b |
696 | |
697 | static int Disto16x16(const uint8_t* const a, const uint8_t* const b, |
698 | const uint16_t* const w) { |
699 | int D = 0; |
700 | int x, y; |
701 | for (y = 0; y < 16 * BPS; y += 4 * BPS) { |
702 | for (x = 0; x < 16; x += 4) { |
703 | D += Disto4x4(a + x + y, b + x + y, w); |
704 | } |
705 | } |
706 | return D; |
707 | } |
708 | |
709 | //------------------------------------------------------------------------------ |
710 | |
711 | static void CollectHistogram(const uint8_t* ref, const uint8_t* pred, |
712 | int start_block, int end_block, |
713 | VP8Histogram* const histo) { |
714 | const uint16x8_t max_coeff_thresh = vdupq_n_u16(MAX_COEFF_THRESH); |
715 | int j; |
716 | int distribution[MAX_COEFF_THRESH + 1] = { 0 }; |
717 | for (j = start_block; j < end_block; ++j) { |
718 | int16_t out[16]; |
719 | FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); |
720 | { |
721 | int k; |
722 | const int16x8_t a0 = vld1q_s16(out + 0); |
723 | const int16x8_t b0 = vld1q_s16(out + 8); |
724 | const uint16x8_t a1 = vreinterpretq_u16_s16(vabsq_s16(a0)); |
725 | const uint16x8_t b1 = vreinterpretq_u16_s16(vabsq_s16(b0)); |
726 | const uint16x8_t a2 = vshrq_n_u16(a1, 3); |
727 | const uint16x8_t b2 = vshrq_n_u16(b1, 3); |
728 | const uint16x8_t a3 = vminq_u16(a2, max_coeff_thresh); |
729 | const uint16x8_t b3 = vminq_u16(b2, max_coeff_thresh); |
730 | vst1q_s16(out + 0, vreinterpretq_s16_u16(a3)); |
731 | vst1q_s16(out + 8, vreinterpretq_s16_u16(b3)); |
732 | // Convert coefficients to bin. |
733 | for (k = 0; k < 16; ++k) { |
734 | ++distribution[out[k]]; |
735 | } |
736 | } |
737 | } |
738 | VP8SetHistogramData(distribution, histo); |
739 | } |
740 | |
741 | //------------------------------------------------------------------------------ |
742 | |
743 | static WEBP_INLINE void AccumulateSSE16(const uint8_t* const a, |
744 | const uint8_t* const b, |
745 | uint32x4_t* const sum) { |
746 | const uint8x16_t a0 = vld1q_u8(a); |
747 | const uint8x16_t b0 = vld1q_u8(b); |
748 | const uint8x16_t abs_diff = vabdq_u8(a0, b0); |
749 | const uint16x8_t prod1 = vmull_u8(vget_low_u8(abs_diff), |
750 | vget_low_u8(abs_diff)); |
751 | const uint16x8_t prod2 = vmull_u8(vget_high_u8(abs_diff), |
752 | vget_high_u8(abs_diff)); |
753 | /* pair-wise adds and widen */ |
754 | const uint32x4_t sum1 = vpaddlq_u16(prod1); |
755 | const uint32x4_t sum2 = vpaddlq_u16(prod2); |
756 | *sum = vaddq_u32(*sum, vaddq_u32(sum1, sum2)); |
757 | } |
758 | |
759 | // Horizontal sum of all four uint32_t values in 'sum'. |
760 | static int SumToInt(uint32x4_t sum) { |
761 | const uint64x2_t sum2 = vpaddlq_u32(sum); |
762 | const uint64_t sum3 = vgetq_lane_u64(sum2, 0) + vgetq_lane_u64(sum2, 1); |
763 | return (int)sum3; |
764 | } |
765 | |
766 | static int SSE16x16_NEON(const uint8_t* a, const uint8_t* b) { |
767 | uint32x4_t sum = vdupq_n_u32(0); |
768 | int y; |
769 | for (y = 0; y < 16; ++y) { |
770 | AccumulateSSE16(a + y * BPS, b + y * BPS, &sum); |
771 | } |
772 | return SumToInt(sum); |
773 | } |
774 | |
775 | static int SSE16x8_NEON(const uint8_t* a, const uint8_t* b) { |
776 | uint32x4_t sum = vdupq_n_u32(0); |
777 | int y; |
778 | for (y = 0; y < 8; ++y) { |
779 | AccumulateSSE16(a + y * BPS, b + y * BPS, &sum); |
780 | } |
781 | return SumToInt(sum); |
782 | } |
783 | |
784 | static int SSE8x8_NEON(const uint8_t* a, const uint8_t* b) { |
785 | uint32x4_t sum = vdupq_n_u32(0); |
786 | int y; |
787 | for (y = 0; y < 8; ++y) { |
788 | const uint8x8_t a0 = vld1_u8(a + y * BPS); |
789 | const uint8x8_t b0 = vld1_u8(b + y * BPS); |
790 | const uint8x8_t abs_diff = vabd_u8(a0, b0); |
791 | const uint16x8_t prod = vmull_u8(abs_diff, abs_diff); |
792 | sum = vpadalq_u16(sum, prod); |
793 | } |
794 | return SumToInt(sum); |
795 | } |
796 | |
797 | static int SSE4x4_NEON(const uint8_t* a, const uint8_t* b) { |
798 | const uint8x16_t a0 = Load4x4(a); |
799 | const uint8x16_t b0 = Load4x4(b); |
800 | const uint8x16_t abs_diff = vabdq_u8(a0, b0); |
801 | const uint16x8_t prod1 = vmull_u8(vget_low_u8(abs_diff), |
802 | vget_low_u8(abs_diff)); |
803 | const uint16x8_t prod2 = vmull_u8(vget_high_u8(abs_diff), |
804 | vget_high_u8(abs_diff)); |
805 | /* pair-wise adds and widen */ |
806 | const uint32x4_t sum1 = vpaddlq_u16(prod1); |
807 | const uint32x4_t sum2 = vpaddlq_u16(prod2); |
808 | return SumToInt(vaddq_u32(sum1, sum2)); |
809 | } |
810 | |
811 | //------------------------------------------------------------------------------ |
812 | |
813 | // Compilation with gcc-4.6.x is problematic for now. |
814 | #if !defined(WORK_AROUND_GCC) |
815 | |
816 | static int16x8_t Quantize(int16_t* const in, |
817 | const VP8Matrix* const mtx, int offset) { |
818 | const uint16x8_t sharp = vld1q_u16(&mtx->sharpen_[offset]); |
819 | const uint16x8_t q = vld1q_u16(&mtx->q_[offset]); |
820 | const uint16x8_t iq = vld1q_u16(&mtx->iq_[offset]); |
821 | const uint32x4_t bias0 = vld1q_u32(&mtx->bias_[offset + 0]); |
822 | const uint32x4_t bias1 = vld1q_u32(&mtx->bias_[offset + 4]); |
823 | |
824 | const int16x8_t a = vld1q_s16(in + offset); // in |
825 | const uint16x8_t b = vreinterpretq_u16_s16(vabsq_s16(a)); // coeff = abs(in) |
826 | const int16x8_t sign = vshrq_n_s16(a, 15); // sign |
827 | const uint16x8_t c = vaddq_u16(b, sharp); // + sharpen |
828 | const uint32x4_t m0 = vmull_u16(vget_low_u16(c), vget_low_u16(iq)); |
829 | const uint32x4_t m1 = vmull_u16(vget_high_u16(c), vget_high_u16(iq)); |
830 | const uint32x4_t m2 = vhaddq_u32(m0, bias0); |
831 | const uint32x4_t m3 = vhaddq_u32(m1, bias1); // (coeff * iQ + bias) >> 1 |
832 | const uint16x8_t c0 = vcombine_u16(vshrn_n_u32(m2, 16), |
833 | vshrn_n_u32(m3, 16)); // QFIX=17 = 16+1 |
834 | const uint16x8_t c1 = vminq_u16(c0, vdupq_n_u16(MAX_LEVEL)); |
835 | const int16x8_t c2 = veorq_s16(vreinterpretq_s16_u16(c1), sign); |
836 | const int16x8_t c3 = vsubq_s16(c2, sign); // restore sign |
837 | const int16x8_t c4 = vmulq_s16(c3, vreinterpretq_s16_u16(q)); |
838 | vst1q_s16(in + offset, c4); |
839 | assert(QFIX == 17); // this function can't work as is if QFIX != 16+1 |
840 | return c3; |
841 | } |
842 | |
843 | static const uint8_t kShuffles[4][8] = { |
844 | { 0, 1, 2, 3, 8, 9, 16, 17 }, |
845 | { 10, 11, 4, 5, 6, 7, 12, 13 }, |
846 | { 18, 19, 24, 25, 26, 27, 20, 21 }, |
847 | { 14, 15, 22, 23, 28, 29, 30, 31 } |
848 | }; |
849 | |
850 | static int QuantizeBlock(int16_t in[16], int16_t out[16], |
851 | const VP8Matrix* const mtx) { |
852 | const int16x8_t out0 = Quantize(in, mtx, 0); |
853 | const int16x8_t out1 = Quantize(in, mtx, 8); |
854 | uint8x8x4_t shuffles; |
855 | // vtbl?_u8 are marked unavailable for iOS arm64 with Xcode < 6.3, use |
856 | // non-standard versions there. |
857 | #if defined(__APPLE__) && defined(__aarch64__) && \ |
858 | defined(__apple_build_version__) && (__apple_build_version__< 6020037) |
859 | uint8x16x2_t all_out; |
860 | INIT_VECTOR2(all_out, vreinterpretq_u8_s16(out0), vreinterpretq_u8_s16(out1)); |
861 | INIT_VECTOR4(shuffles, |
862 | vtbl2q_u8(all_out, vld1_u8(kShuffles[0])), |
863 | vtbl2q_u8(all_out, vld1_u8(kShuffles[1])), |
864 | vtbl2q_u8(all_out, vld1_u8(kShuffles[2])), |
865 | vtbl2q_u8(all_out, vld1_u8(kShuffles[3]))); |
866 | #else |
867 | uint8x8x4_t all_out; |
868 | INIT_VECTOR4(all_out, |
869 | vreinterpret_u8_s16(vget_low_s16(out0)), |
870 | vreinterpret_u8_s16(vget_high_s16(out0)), |
871 | vreinterpret_u8_s16(vget_low_s16(out1)), |
872 | vreinterpret_u8_s16(vget_high_s16(out1))); |
873 | INIT_VECTOR4(shuffles, |
874 | vtbl4_u8(all_out, vld1_u8(kShuffles[0])), |
875 | vtbl4_u8(all_out, vld1_u8(kShuffles[1])), |
876 | vtbl4_u8(all_out, vld1_u8(kShuffles[2])), |
877 | vtbl4_u8(all_out, vld1_u8(kShuffles[3]))); |
878 | #endif |
879 | // Zigzag reordering |
880 | vst1_u8((uint8_t*)(out + 0), shuffles.val[0]); |
881 | vst1_u8((uint8_t*)(out + 4), shuffles.val[1]); |
882 | vst1_u8((uint8_t*)(out + 8), shuffles.val[2]); |
883 | vst1_u8((uint8_t*)(out + 12), shuffles.val[3]); |
884 | // test zeros |
885 | if (*(uint64_t*)(out + 0) != 0) return 1; |
886 | if (*(uint64_t*)(out + 4) != 0) return 1; |
887 | if (*(uint64_t*)(out + 8) != 0) return 1; |
888 | if (*(uint64_t*)(out + 12) != 0) return 1; |
889 | return 0; |
890 | } |
891 | |
892 | static int Quantize2Blocks(int16_t in[32], int16_t out[32], |
893 | const VP8Matrix* const mtx) { |
894 | int nz; |
895 | nz = QuantizeBlock(in + 0 * 16, out + 0 * 16, mtx) << 0; |
896 | nz |= QuantizeBlock(in + 1 * 16, out + 1 * 16, mtx) << 1; |
897 | return nz; |
898 | } |
899 | |
900 | #endif // !WORK_AROUND_GCC |
901 | |
902 | //------------------------------------------------------------------------------ |
903 | // Entry point |
904 | |
905 | extern void VP8EncDspInitNEON(void); |
906 | |
907 | WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitNEON(void) { |
908 | VP8ITransform = ITransform; |
909 | VP8FTransform = FTransform; |
910 | |
911 | VP8FTransformWHT = FTransformWHT; |
912 | |
913 | VP8TDisto4x4 = Disto4x4; |
914 | VP8TDisto16x16 = Disto16x16; |
915 | VP8CollectHistogram = CollectHistogram; |
916 | |
917 | VP8SSE16x16 = SSE16x16_NEON; |
918 | VP8SSE16x8 = SSE16x8_NEON; |
919 | VP8SSE8x8 = SSE8x8_NEON; |
920 | VP8SSE4x4 = SSE4x4_NEON; |
921 | |
922 | #if !defined(WORK_AROUND_GCC) |
923 | VP8EncQuantizeBlock = QuantizeBlock; |
924 | VP8EncQuantize2Blocks = Quantize2Blocks; |
925 | #endif |
926 | } |
927 | |
928 | #else // !WEBP_USE_NEON |
929 | |
930 | WEBP_DSP_INIT_STUB(VP8EncDspInitNEON) |
931 | |
932 | #endif // WEBP_USE_NEON |
933 | |