1 | // Copyright 2011 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // SSE2 version of speed-critical encoding functions. |
11 | // |
12 | // Author: Christian Duvivier (cduvivier@google.com) |
13 | |
14 | #include "./dsp.h" |
15 | |
16 | #if defined(WEBP_USE_SSE2) |
17 | #include <assert.h> |
18 | #include <stdlib.h> // for abs() |
19 | #include <emmintrin.h> |
20 | |
21 | #include "./common_sse2.h" |
22 | #include "../enc/cost_enc.h" |
23 | #include "../enc/vp8i_enc.h" |
24 | |
25 | //------------------------------------------------------------------------------ |
26 | // Transforms (Paragraph 14.4) |
27 | |
28 | // Does one or two inverse transforms. |
29 | static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst, |
30 | int do_two) { |
31 | // This implementation makes use of 16-bit fixed point versions of two |
32 | // multiply constants: |
33 | // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 |
34 | // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 |
35 | // |
36 | // To be able to use signed 16-bit integers, we use the following trick to |
37 | // have constants within range: |
38 | // - Associated constants are obtained by subtracting the 16-bit fixed point |
39 | // version of one: |
40 | // k = K - (1 << 16) => K = k + (1 << 16) |
41 | // K1 = 85267 => k1 = 20091 |
42 | // K2 = 35468 => k2 = -30068 |
43 | // - The multiplication of a variable by a constant become the sum of the |
44 | // variable and the multiplication of that variable by the associated |
45 | // constant: |
46 | // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x |
47 | const __m128i k1 = _mm_set1_epi16(20091); |
48 | const __m128i k2 = _mm_set1_epi16(-30068); |
49 | __m128i T0, T1, T2, T3; |
50 | |
51 | // Load and concatenate the transform coefficients (we'll do two inverse |
52 | // transforms in parallel). In the case of only one inverse transform, the |
53 | // second half of the vectors will just contain random value we'll never |
54 | // use nor store. |
55 | __m128i in0, in1, in2, in3; |
56 | { |
57 | in0 = _mm_loadl_epi64((const __m128i*)&in[0]); |
58 | in1 = _mm_loadl_epi64((const __m128i*)&in[4]); |
59 | in2 = _mm_loadl_epi64((const __m128i*)&in[8]); |
60 | in3 = _mm_loadl_epi64((const __m128i*)&in[12]); |
61 | // a00 a10 a20 a30 x x x x |
62 | // a01 a11 a21 a31 x x x x |
63 | // a02 a12 a22 a32 x x x x |
64 | // a03 a13 a23 a33 x x x x |
65 | if (do_two) { |
66 | const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]); |
67 | const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]); |
68 | const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]); |
69 | const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]); |
70 | in0 = _mm_unpacklo_epi64(in0, inB0); |
71 | in1 = _mm_unpacklo_epi64(in1, inB1); |
72 | in2 = _mm_unpacklo_epi64(in2, inB2); |
73 | in3 = _mm_unpacklo_epi64(in3, inB3); |
74 | // a00 a10 a20 a30 b00 b10 b20 b30 |
75 | // a01 a11 a21 a31 b01 b11 b21 b31 |
76 | // a02 a12 a22 a32 b02 b12 b22 b32 |
77 | // a03 a13 a23 a33 b03 b13 b23 b33 |
78 | } |
79 | } |
80 | |
81 | // Vertical pass and subsequent transpose. |
82 | { |
83 | // First pass, c and d calculations are longer because of the "trick" |
84 | // multiplications. |
85 | const __m128i a = _mm_add_epi16(in0, in2); |
86 | const __m128i b = _mm_sub_epi16(in0, in2); |
87 | // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 |
88 | const __m128i c1 = _mm_mulhi_epi16(in1, k2); |
89 | const __m128i c2 = _mm_mulhi_epi16(in3, k1); |
90 | const __m128i c3 = _mm_sub_epi16(in1, in3); |
91 | const __m128i c4 = _mm_sub_epi16(c1, c2); |
92 | const __m128i c = _mm_add_epi16(c3, c4); |
93 | // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 |
94 | const __m128i d1 = _mm_mulhi_epi16(in1, k1); |
95 | const __m128i d2 = _mm_mulhi_epi16(in3, k2); |
96 | const __m128i d3 = _mm_add_epi16(in1, in3); |
97 | const __m128i d4 = _mm_add_epi16(d1, d2); |
98 | const __m128i d = _mm_add_epi16(d3, d4); |
99 | |
100 | // Second pass. |
101 | const __m128i tmp0 = _mm_add_epi16(a, d); |
102 | const __m128i tmp1 = _mm_add_epi16(b, c); |
103 | const __m128i tmp2 = _mm_sub_epi16(b, c); |
104 | const __m128i tmp3 = _mm_sub_epi16(a, d); |
105 | |
106 | // Transpose the two 4x4. |
107 | VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3); |
108 | } |
109 | |
110 | // Horizontal pass and subsequent transpose. |
111 | { |
112 | // First pass, c and d calculations are longer because of the "trick" |
113 | // multiplications. |
114 | const __m128i four = _mm_set1_epi16(4); |
115 | const __m128i dc = _mm_add_epi16(T0, four); |
116 | const __m128i a = _mm_add_epi16(dc, T2); |
117 | const __m128i b = _mm_sub_epi16(dc, T2); |
118 | // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 |
119 | const __m128i c1 = _mm_mulhi_epi16(T1, k2); |
120 | const __m128i c2 = _mm_mulhi_epi16(T3, k1); |
121 | const __m128i c3 = _mm_sub_epi16(T1, T3); |
122 | const __m128i c4 = _mm_sub_epi16(c1, c2); |
123 | const __m128i c = _mm_add_epi16(c3, c4); |
124 | // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 |
125 | const __m128i d1 = _mm_mulhi_epi16(T1, k1); |
126 | const __m128i d2 = _mm_mulhi_epi16(T3, k2); |
127 | const __m128i d3 = _mm_add_epi16(T1, T3); |
128 | const __m128i d4 = _mm_add_epi16(d1, d2); |
129 | const __m128i d = _mm_add_epi16(d3, d4); |
130 | |
131 | // Second pass. |
132 | const __m128i tmp0 = _mm_add_epi16(a, d); |
133 | const __m128i tmp1 = _mm_add_epi16(b, c); |
134 | const __m128i tmp2 = _mm_sub_epi16(b, c); |
135 | const __m128i tmp3 = _mm_sub_epi16(a, d); |
136 | const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); |
137 | const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); |
138 | const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); |
139 | const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); |
140 | |
141 | // Transpose the two 4x4. |
142 | VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1, |
143 | &T2, &T3); |
144 | } |
145 | |
146 | // Add inverse transform to 'ref' and store. |
147 | { |
148 | const __m128i zero = _mm_setzero_si128(); |
149 | // Load the reference(s). |
150 | __m128i ref0, ref1, ref2, ref3; |
151 | if (do_two) { |
152 | // Load eight bytes/pixels per line. |
153 | ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); |
154 | ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); |
155 | ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); |
156 | ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); |
157 | } else { |
158 | // Load four bytes/pixels per line. |
159 | ref0 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[0 * BPS])); |
160 | ref1 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[1 * BPS])); |
161 | ref2 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[2 * BPS])); |
162 | ref3 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[3 * BPS])); |
163 | } |
164 | // Convert to 16b. |
165 | ref0 = _mm_unpacklo_epi8(ref0, zero); |
166 | ref1 = _mm_unpacklo_epi8(ref1, zero); |
167 | ref2 = _mm_unpacklo_epi8(ref2, zero); |
168 | ref3 = _mm_unpacklo_epi8(ref3, zero); |
169 | // Add the inverse transform(s). |
170 | ref0 = _mm_add_epi16(ref0, T0); |
171 | ref1 = _mm_add_epi16(ref1, T1); |
172 | ref2 = _mm_add_epi16(ref2, T2); |
173 | ref3 = _mm_add_epi16(ref3, T3); |
174 | // Unsigned saturate to 8b. |
175 | ref0 = _mm_packus_epi16(ref0, ref0); |
176 | ref1 = _mm_packus_epi16(ref1, ref1); |
177 | ref2 = _mm_packus_epi16(ref2, ref2); |
178 | ref3 = _mm_packus_epi16(ref3, ref3); |
179 | // Store the results. |
180 | if (do_two) { |
181 | // Store eight bytes/pixels per line. |
182 | _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0); |
183 | _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1); |
184 | _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2); |
185 | _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3); |
186 | } else { |
187 | // Store four bytes/pixels per line. |
188 | WebPUint32ToMem(&dst[0 * BPS], _mm_cvtsi128_si32(ref0)); |
189 | WebPUint32ToMem(&dst[1 * BPS], _mm_cvtsi128_si32(ref1)); |
190 | WebPUint32ToMem(&dst[2 * BPS], _mm_cvtsi128_si32(ref2)); |
191 | WebPUint32ToMem(&dst[3 * BPS], _mm_cvtsi128_si32(ref3)); |
192 | } |
193 | } |
194 | } |
195 | |
196 | static void FTransformPass1(const __m128i* const in01, |
197 | const __m128i* const in23, |
198 | __m128i* const out01, |
199 | __m128i* const out32) { |
200 | const __m128i k937 = _mm_set1_epi32(937); |
201 | const __m128i k1812 = _mm_set1_epi32(1812); |
202 | |
203 | const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8); |
204 | const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8); |
205 | const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352, |
206 | 2217, 5352, 2217, 5352); |
207 | const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217, |
208 | -5352, 2217, -5352, 2217); |
209 | |
210 | // *in01 = 00 01 10 11 02 03 12 13 |
211 | // *in23 = 20 21 30 31 22 23 32 33 |
212 | const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1)); |
213 | const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1)); |
214 | // 00 01 10 11 03 02 13 12 |
215 | // 20 21 30 31 23 22 33 32 |
216 | const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p); |
217 | const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p); |
218 | // 00 01 10 11 20 21 30 31 |
219 | // 03 02 13 12 23 22 33 32 |
220 | const __m128i a01 = _mm_add_epi16(s01, s32); |
221 | const __m128i a32 = _mm_sub_epi16(s01, s32); |
222 | // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ] |
223 | // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ] |
224 | |
225 | const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ] |
226 | const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ] |
227 | const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p); |
228 | const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m); |
229 | const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812); |
230 | const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937); |
231 | const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9); |
232 | const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9); |
233 | const __m128i s03 = _mm_packs_epi32(tmp0, tmp2); |
234 | const __m128i s12 = _mm_packs_epi32(tmp1, tmp3); |
235 | const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1... |
236 | const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3 |
237 | const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi); |
238 | *out01 = _mm_unpacklo_epi32(s_lo, s_hi); |
239 | *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2.. |
240 | } |
241 | |
242 | static void FTransformPass2(const __m128i* const v01, const __m128i* const v32, |
243 | int16_t* out) { |
244 | const __m128i zero = _mm_setzero_si128(); |
245 | const __m128i seven = _mm_set1_epi16(7); |
246 | const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217, |
247 | 5352, 2217, 5352, 2217); |
248 | const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352, |
249 | 2217, -5352, 2217, -5352); |
250 | const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16)); |
251 | const __m128i k51000 = _mm_set1_epi32(51000); |
252 | |
253 | // Same operations are done on the (0,3) and (1,2) pairs. |
254 | // a3 = v0 - v3 |
255 | // a2 = v1 - v2 |
256 | const __m128i a32 = _mm_sub_epi16(*v01, *v32); |
257 | const __m128i a22 = _mm_unpackhi_epi64(a32, a32); |
258 | |
259 | const __m128i b23 = _mm_unpacklo_epi16(a22, a32); |
260 | const __m128i c1 = _mm_madd_epi16(b23, k5352_2217); |
261 | const __m128i c3 = _mm_madd_epi16(b23, k2217_5352); |
262 | const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one); |
263 | const __m128i d3 = _mm_add_epi32(c3, k51000); |
264 | const __m128i e1 = _mm_srai_epi32(d1, 16); |
265 | const __m128i e3 = _mm_srai_epi32(d3, 16); |
266 | // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16) |
267 | // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16) |
268 | const __m128i f1 = _mm_packs_epi32(e1, e1); |
269 | const __m128i f3 = _mm_packs_epi32(e3, e3); |
270 | // g1 = f1 + (a3 != 0); |
271 | // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the |
272 | // desired (0, 1), we add one earlier through k12000_plus_one. |
273 | // -> g1 = f1 + 1 - (a3 == 0) |
274 | const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero)); |
275 | |
276 | // a0 = v0 + v3 |
277 | // a1 = v1 + v2 |
278 | const __m128i a01 = _mm_add_epi16(*v01, *v32); |
279 | const __m128i a01_plus_7 = _mm_add_epi16(a01, seven); |
280 | const __m128i a11 = _mm_unpackhi_epi64(a01, a01); |
281 | const __m128i c0 = _mm_add_epi16(a01_plus_7, a11); |
282 | const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11); |
283 | // d0 = (a0 + a1 + 7) >> 4; |
284 | // d2 = (a0 - a1 + 7) >> 4; |
285 | const __m128i d0 = _mm_srai_epi16(c0, 4); |
286 | const __m128i d2 = _mm_srai_epi16(c2, 4); |
287 | |
288 | const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1); |
289 | const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3); |
290 | _mm_storeu_si128((__m128i*)&out[0], d0_g1); |
291 | _mm_storeu_si128((__m128i*)&out[8], d2_f3); |
292 | } |
293 | |
294 | static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) { |
295 | const __m128i zero = _mm_setzero_si128(); |
296 | // Load src. |
297 | const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]); |
298 | const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]); |
299 | const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]); |
300 | const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]); |
301 | // 00 01 02 03 * |
302 | // 10 11 12 13 * |
303 | // 20 21 22 23 * |
304 | // 30 31 32 33 * |
305 | // Shuffle. |
306 | const __m128i src_0 = _mm_unpacklo_epi16(src0, src1); |
307 | const __m128i src_1 = _mm_unpacklo_epi16(src2, src3); |
308 | // 00 01 10 11 02 03 12 13 * * ... |
309 | // 20 21 30 31 22 22 32 33 * * ... |
310 | |
311 | // Load ref. |
312 | const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); |
313 | const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); |
314 | const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); |
315 | const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); |
316 | const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1); |
317 | const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3); |
318 | |
319 | // Convert both to 16 bit. |
320 | const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero); |
321 | const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero); |
322 | const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero); |
323 | const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero); |
324 | |
325 | // Compute the difference. |
326 | const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b); |
327 | const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b); |
328 | __m128i v01, v32; |
329 | |
330 | // First pass |
331 | FTransformPass1(&row01, &row23, &v01, &v32); |
332 | |
333 | // Second pass |
334 | FTransformPass2(&v01, &v32, out); |
335 | } |
336 | |
337 | static void FTransform2(const uint8_t* src, const uint8_t* ref, int16_t* out) { |
338 | const __m128i zero = _mm_setzero_si128(); |
339 | |
340 | // Load src and convert to 16b. |
341 | const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]); |
342 | const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]); |
343 | const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]); |
344 | const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]); |
345 | const __m128i src_0 = _mm_unpacklo_epi8(src0, zero); |
346 | const __m128i src_1 = _mm_unpacklo_epi8(src1, zero); |
347 | const __m128i src_2 = _mm_unpacklo_epi8(src2, zero); |
348 | const __m128i src_3 = _mm_unpacklo_epi8(src3, zero); |
349 | // Load ref and convert to 16b. |
350 | const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); |
351 | const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); |
352 | const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); |
353 | const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); |
354 | const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero); |
355 | const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero); |
356 | const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero); |
357 | const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero); |
358 | // Compute difference. -> 00 01 02 03 00' 01' 02' 03' |
359 | const __m128i diff0 = _mm_sub_epi16(src_0, ref_0); |
360 | const __m128i diff1 = _mm_sub_epi16(src_1, ref_1); |
361 | const __m128i diff2 = _mm_sub_epi16(src_2, ref_2); |
362 | const __m128i diff3 = _mm_sub_epi16(src_3, ref_3); |
363 | |
364 | // Unpack and shuffle |
365 | // 00 01 02 03 0 0 0 0 |
366 | // 10 11 12 13 0 0 0 0 |
367 | // 20 21 22 23 0 0 0 0 |
368 | // 30 31 32 33 0 0 0 0 |
369 | const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1); |
370 | const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3); |
371 | const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1); |
372 | const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3); |
373 | __m128i v01l, v32l; |
374 | __m128i v01h, v32h; |
375 | |
376 | // First pass |
377 | FTransformPass1(&shuf01l, &shuf23l, &v01l, &v32l); |
378 | FTransformPass1(&shuf01h, &shuf23h, &v01h, &v32h); |
379 | |
380 | // Second pass |
381 | FTransformPass2(&v01l, &v32l, out + 0); |
382 | FTransformPass2(&v01h, &v32h, out + 16); |
383 | } |
384 | |
385 | static void FTransformWHTRow(const int16_t* const in, __m128i* const out) { |
386 | const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1); |
387 | const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]); |
388 | const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]); |
389 | const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]); |
390 | const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]); |
391 | const __m128i A01 = _mm_unpacklo_epi16(src0, src1); // A0 A1 | ... |
392 | const __m128i A23 = _mm_unpacklo_epi16(src2, src3); // A2 A3 | ... |
393 | const __m128i B0 = _mm_adds_epi16(A01, A23); // a0 | a1 | ... |
394 | const __m128i B1 = _mm_subs_epi16(A01, A23); // a3 | a2 | ... |
395 | const __m128i C0 = _mm_unpacklo_epi32(B0, B1); // a0 | a1 | a3 | a2 | ... |
396 | const __m128i C1 = _mm_unpacklo_epi32(B1, B0); // a3 | a2 | a0 | a1 | ... |
397 | const __m128i D = _mm_unpacklo_epi64(C0, C1); // a0 a1 a3 a2 a3 a2 a0 a1 |
398 | *out = _mm_madd_epi16(D, kMult); |
399 | } |
400 | |
401 | static void FTransformWHT(const int16_t* in, int16_t* out) { |
402 | // Input is 12b signed. |
403 | __m128i row0, row1, row2, row3; |
404 | // Rows are 14b signed. |
405 | FTransformWHTRow(in + 0 * 64, &row0); |
406 | FTransformWHTRow(in + 1 * 64, &row1); |
407 | FTransformWHTRow(in + 2 * 64, &row2); |
408 | FTransformWHTRow(in + 3 * 64, &row3); |
409 | |
410 | { |
411 | // The a* are 15b signed. |
412 | const __m128i a0 = _mm_add_epi32(row0, row2); |
413 | const __m128i a1 = _mm_add_epi32(row1, row3); |
414 | const __m128i a2 = _mm_sub_epi32(row1, row3); |
415 | const __m128i a3 = _mm_sub_epi32(row0, row2); |
416 | const __m128i a0a3 = _mm_packs_epi32(a0, a3); |
417 | const __m128i a1a2 = _mm_packs_epi32(a1, a2); |
418 | |
419 | // The b* are 16b signed. |
420 | const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2); |
421 | const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2); |
422 | const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2); |
423 | const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2); |
424 | |
425 | _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1)); |
426 | _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1)); |
427 | } |
428 | } |
429 | |
430 | //------------------------------------------------------------------------------ |
431 | // Compute susceptibility based on DCT-coeff histograms: |
432 | // the higher, the "easier" the macroblock is to compress. |
433 | |
434 | static void CollectHistogram(const uint8_t* ref, const uint8_t* pred, |
435 | int start_block, int end_block, |
436 | VP8Histogram* const histo) { |
437 | const __m128i zero = _mm_setzero_si128(); |
438 | const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH); |
439 | int j; |
440 | int distribution[MAX_COEFF_THRESH + 1] = { 0 }; |
441 | for (j = start_block; j < end_block; ++j) { |
442 | int16_t out[16]; |
443 | int k; |
444 | |
445 | FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); |
446 | |
447 | // Convert coefficients to bin (within out[]). |
448 | { |
449 | // Load. |
450 | const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]); |
451 | const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]); |
452 | const __m128i d0 = _mm_sub_epi16(zero, out0); |
453 | const __m128i d1 = _mm_sub_epi16(zero, out1); |
454 | const __m128i abs0 = _mm_max_epi16(out0, d0); // abs(v), 16b |
455 | const __m128i abs1 = _mm_max_epi16(out1, d1); |
456 | // v = abs(out) >> 3 |
457 | const __m128i v0 = _mm_srai_epi16(abs0, 3); |
458 | const __m128i v1 = _mm_srai_epi16(abs1, 3); |
459 | // bin = min(v, MAX_COEFF_THRESH) |
460 | const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh); |
461 | const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh); |
462 | // Store. |
463 | _mm_storeu_si128((__m128i*)&out[0], bin0); |
464 | _mm_storeu_si128((__m128i*)&out[8], bin1); |
465 | } |
466 | |
467 | // Convert coefficients to bin. |
468 | for (k = 0; k < 16; ++k) { |
469 | ++distribution[out[k]]; |
470 | } |
471 | } |
472 | VP8SetHistogramData(distribution, histo); |
473 | } |
474 | |
475 | //------------------------------------------------------------------------------ |
476 | // Intra predictions |
477 | |
478 | // helper for chroma-DC predictions |
479 | static WEBP_INLINE void Put8x8uv(uint8_t v, uint8_t* dst) { |
480 | int j; |
481 | const __m128i values = _mm_set1_epi8(v); |
482 | for (j = 0; j < 8; ++j) { |
483 | _mm_storel_epi64((__m128i*)(dst + j * BPS), values); |
484 | } |
485 | } |
486 | |
487 | static WEBP_INLINE void Put16(uint8_t v, uint8_t* dst) { |
488 | int j; |
489 | const __m128i values = _mm_set1_epi8(v); |
490 | for (j = 0; j < 16; ++j) { |
491 | _mm_store_si128((__m128i*)(dst + j * BPS), values); |
492 | } |
493 | } |
494 | |
495 | static WEBP_INLINE void Fill(uint8_t* dst, int value, int size) { |
496 | if (size == 4) { |
497 | int j; |
498 | for (j = 0; j < 4; ++j) { |
499 | memset(dst + j * BPS, value, 4); |
500 | } |
501 | } else if (size == 8) { |
502 | Put8x8uv(value, dst); |
503 | } else { |
504 | Put16(value, dst); |
505 | } |
506 | } |
507 | |
508 | static WEBP_INLINE void VE8uv(uint8_t* dst, const uint8_t* top) { |
509 | int j; |
510 | const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
511 | for (j = 0; j < 8; ++j) { |
512 | _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values); |
513 | } |
514 | } |
515 | |
516 | static WEBP_INLINE void VE16(uint8_t* dst, const uint8_t* top) { |
517 | const __m128i top_values = _mm_load_si128((const __m128i*)top); |
518 | int j; |
519 | for (j = 0; j < 16; ++j) { |
520 | _mm_store_si128((__m128i*)(dst + j * BPS), top_values); |
521 | } |
522 | } |
523 | |
524 | static WEBP_INLINE void VerticalPred(uint8_t* dst, |
525 | const uint8_t* top, int size) { |
526 | if (top != NULL) { |
527 | if (size == 8) { |
528 | VE8uv(dst, top); |
529 | } else { |
530 | VE16(dst, top); |
531 | } |
532 | } else { |
533 | Fill(dst, 127, size); |
534 | } |
535 | } |
536 | |
537 | static WEBP_INLINE void HE8uv(uint8_t* dst, const uint8_t* left) { |
538 | int j; |
539 | for (j = 0; j < 8; ++j) { |
540 | const __m128i values = _mm_set1_epi8(left[j]); |
541 | _mm_storel_epi64((__m128i*)dst, values); |
542 | dst += BPS; |
543 | } |
544 | } |
545 | |
546 | static WEBP_INLINE void HE16(uint8_t* dst, const uint8_t* left) { |
547 | int j; |
548 | for (j = 0; j < 16; ++j) { |
549 | const __m128i values = _mm_set1_epi8(left[j]); |
550 | _mm_store_si128((__m128i*)dst, values); |
551 | dst += BPS; |
552 | } |
553 | } |
554 | |
555 | static WEBP_INLINE void HorizontalPred(uint8_t* dst, |
556 | const uint8_t* left, int size) { |
557 | if (left != NULL) { |
558 | if (size == 8) { |
559 | HE8uv(dst, left); |
560 | } else { |
561 | HE16(dst, left); |
562 | } |
563 | } else { |
564 | Fill(dst, 129, size); |
565 | } |
566 | } |
567 | |
568 | static WEBP_INLINE void TM(uint8_t* dst, const uint8_t* left, |
569 | const uint8_t* top, int size) { |
570 | const __m128i zero = _mm_setzero_si128(); |
571 | int y; |
572 | if (size == 8) { |
573 | const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
574 | const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); |
575 | for (y = 0; y < 8; ++y, dst += BPS) { |
576 | const int val = left[y] - left[-1]; |
577 | const __m128i base = _mm_set1_epi16(val); |
578 | const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); |
579 | _mm_storel_epi64((__m128i*)dst, out); |
580 | } |
581 | } else { |
582 | const __m128i top_values = _mm_load_si128((const __m128i*)top); |
583 | const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero); |
584 | const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero); |
585 | for (y = 0; y < 16; ++y, dst += BPS) { |
586 | const int val = left[y] - left[-1]; |
587 | const __m128i base = _mm_set1_epi16(val); |
588 | const __m128i out_0 = _mm_add_epi16(base, top_base_0); |
589 | const __m128i out_1 = _mm_add_epi16(base, top_base_1); |
590 | const __m128i out = _mm_packus_epi16(out_0, out_1); |
591 | _mm_store_si128((__m128i*)dst, out); |
592 | } |
593 | } |
594 | } |
595 | |
596 | static WEBP_INLINE void TrueMotion(uint8_t* dst, const uint8_t* left, |
597 | const uint8_t* top, int size) { |
598 | if (left != NULL) { |
599 | if (top != NULL) { |
600 | TM(dst, left, top, size); |
601 | } else { |
602 | HorizontalPred(dst, left, size); |
603 | } |
604 | } else { |
605 | // true motion without left samples (hence: with default 129 value) |
606 | // is equivalent to VE prediction where you just copy the top samples. |
607 | // Note that if top samples are not available, the default value is |
608 | // then 129, and not 127 as in the VerticalPred case. |
609 | if (top != NULL) { |
610 | VerticalPred(dst, top, size); |
611 | } else { |
612 | Fill(dst, 129, size); |
613 | } |
614 | } |
615 | } |
616 | |
617 | static WEBP_INLINE void DC8uv(uint8_t* dst, const uint8_t* left, |
618 | const uint8_t* top) { |
619 | const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
620 | const __m128i left_values = _mm_loadl_epi64((const __m128i*)left); |
621 | const __m128i combined = _mm_unpacklo_epi64(top_values, left_values); |
622 | const int DC = VP8HorizontalAdd8b(&combined) + 8; |
623 | Put8x8uv(DC >> 4, dst); |
624 | } |
625 | |
626 | static WEBP_INLINE void DC8uvNoLeft(uint8_t* dst, const uint8_t* top) { |
627 | const __m128i zero = _mm_setzero_si128(); |
628 | const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
629 | const __m128i sum = _mm_sad_epu8(top_values, zero); |
630 | const int DC = _mm_cvtsi128_si32(sum) + 4; |
631 | Put8x8uv(DC >> 3, dst); |
632 | } |
633 | |
634 | static WEBP_INLINE void DC8uvNoTop(uint8_t* dst, const uint8_t* left) { |
635 | // 'left' is contiguous so we can reuse the top summation. |
636 | DC8uvNoLeft(dst, left); |
637 | } |
638 | |
639 | static WEBP_INLINE void DC8uvNoTopLeft(uint8_t* dst) { |
640 | Put8x8uv(0x80, dst); |
641 | } |
642 | |
643 | static WEBP_INLINE void DC8uvMode(uint8_t* dst, const uint8_t* left, |
644 | const uint8_t* top) { |
645 | if (top != NULL) { |
646 | if (left != NULL) { // top and left present |
647 | DC8uv(dst, left, top); |
648 | } else { // top, but no left |
649 | DC8uvNoLeft(dst, top); |
650 | } |
651 | } else if (left != NULL) { // left but no top |
652 | DC8uvNoTop(dst, left); |
653 | } else { // no top, no left, nothing. |
654 | DC8uvNoTopLeft(dst); |
655 | } |
656 | } |
657 | |
658 | static WEBP_INLINE void DC16(uint8_t* dst, const uint8_t* left, |
659 | const uint8_t* top) { |
660 | const __m128i top_row = _mm_load_si128((const __m128i*)top); |
661 | const __m128i left_row = _mm_load_si128((const __m128i*)left); |
662 | const int DC = |
663 | VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16; |
664 | Put16(DC >> 5, dst); |
665 | } |
666 | |
667 | static WEBP_INLINE void DC16NoLeft(uint8_t* dst, const uint8_t* top) { |
668 | const __m128i top_row = _mm_load_si128((const __m128i*)top); |
669 | const int DC = VP8HorizontalAdd8b(&top_row) + 8; |
670 | Put16(DC >> 4, dst); |
671 | } |
672 | |
673 | static WEBP_INLINE void DC16NoTop(uint8_t* dst, const uint8_t* left) { |
674 | // 'left' is contiguous so we can reuse the top summation. |
675 | DC16NoLeft(dst, left); |
676 | } |
677 | |
678 | static WEBP_INLINE void DC16NoTopLeft(uint8_t* dst) { |
679 | Put16(0x80, dst); |
680 | } |
681 | |
682 | static WEBP_INLINE void DC16Mode(uint8_t* dst, const uint8_t* left, |
683 | const uint8_t* top) { |
684 | if (top != NULL) { |
685 | if (left != NULL) { // top and left present |
686 | DC16(dst, left, top); |
687 | } else { // top, but no left |
688 | DC16NoLeft(dst, top); |
689 | } |
690 | } else if (left != NULL) { // left but no top |
691 | DC16NoTop(dst, left); |
692 | } else { // no top, no left, nothing. |
693 | DC16NoTopLeft(dst); |
694 | } |
695 | } |
696 | |
697 | //------------------------------------------------------------------------------ |
698 | // 4x4 predictions |
699 | |
700 | #define DST(x, y) dst[(x) + (y) * BPS] |
701 | #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) |
702 | #define AVG2(a, b) (((a) + (b) + 1) >> 1) |
703 | |
704 | // We use the following 8b-arithmetic tricks: |
705 | // (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1 |
706 | // where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1] |
707 | // and: |
708 | // (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb |
709 | // where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1 |
710 | // and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1 |
711 | |
712 | static WEBP_INLINE void VE4(uint8_t* dst, const uint8_t* top) { // vertical |
713 | const __m128i one = _mm_set1_epi8(1); |
714 | const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1)); |
715 | const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); |
716 | const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); |
717 | const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00); |
718 | const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one); |
719 | const __m128i b = _mm_subs_epu8(a, lsb); |
720 | const __m128i avg = _mm_avg_epu8(b, BCDEFGH0); |
721 | const uint32_t vals = _mm_cvtsi128_si32(avg); |
722 | int i; |
723 | for (i = 0; i < 4; ++i) { |
724 | WebPUint32ToMem(dst + i * BPS, vals); |
725 | } |
726 | } |
727 | |
728 | static WEBP_INLINE void HE4(uint8_t* dst, const uint8_t* top) { // horizontal |
729 | const int X = top[-1]; |
730 | const int I = top[-2]; |
731 | const int J = top[-3]; |
732 | const int K = top[-4]; |
733 | const int L = top[-5]; |
734 | WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J)); |
735 | WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K)); |
736 | WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L)); |
737 | WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L)); |
738 | } |
739 | |
740 | static WEBP_INLINE void DC4(uint8_t* dst, const uint8_t* top) { |
741 | uint32_t dc = 4; |
742 | int i; |
743 | for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i]; |
744 | Fill(dst, dc >> 3, 4); |
745 | } |
746 | |
747 | static WEBP_INLINE void LD4(uint8_t* dst, const uint8_t* top) { // Down-Left |
748 | const __m128i one = _mm_set1_epi8(1); |
749 | const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top); |
750 | const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); |
751 | const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); |
752 | const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3); |
753 | const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0); |
754 | const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one); |
755 | const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
756 | const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0); |
757 | WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg )); |
758 | WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); |
759 | WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); |
760 | WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); |
761 | } |
762 | |
763 | static WEBP_INLINE void VR4(uint8_t* dst, |
764 | const uint8_t* top) { // Vertical-Right |
765 | const __m128i one = _mm_set1_epi8(1); |
766 | const int I = top[-2]; |
767 | const int J = top[-3]; |
768 | const int K = top[-4]; |
769 | const int X = top[-1]; |
770 | const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1)); |
771 | const __m128i ABCD0 = _mm_srli_si128(XABCD, 1); |
772 | const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0); |
773 | const __m128i _XABCD = _mm_slli_si128(XABCD, 1); |
774 | const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0); |
775 | const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0); |
776 | const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one); |
777 | const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
778 | const __m128i efgh = _mm_avg_epu8(avg2, XABCD); |
779 | WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd )); |
780 | WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh )); |
781 | WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1))); |
782 | WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1))); |
783 | |
784 | // these two are hard to implement in SSE2, so we keep the C-version: |
785 | DST(0, 2) = AVG3(J, I, X); |
786 | DST(0, 3) = AVG3(K, J, I); |
787 | } |
788 | |
789 | static WEBP_INLINE void VL4(uint8_t* dst, |
790 | const uint8_t* top) { // Vertical-Left |
791 | const __m128i one = _mm_set1_epi8(1); |
792 | const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top); |
793 | const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1); |
794 | const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2); |
795 | const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_); |
796 | const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_); |
797 | const __m128i avg3 = _mm_avg_epu8(avg1, avg2); |
798 | const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one); |
799 | const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_); |
800 | const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_); |
801 | const __m128i abbc = _mm_or_si128(ab, bc); |
802 | const __m128i lsb2 = _mm_and_si128(abbc, lsb1); |
803 | const __m128i avg4 = _mm_subs_epu8(avg3, lsb2); |
804 | const uint32_t = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4)); |
805 | WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 )); |
806 | WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 )); |
807 | WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1))); |
808 | WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1))); |
809 | |
810 | // these two are hard to get and irregular |
811 | DST(3, 2) = (extra_out >> 0) & 0xff; |
812 | DST(3, 3) = (extra_out >> 8) & 0xff; |
813 | } |
814 | |
815 | static WEBP_INLINE void RD4(uint8_t* dst, const uint8_t* top) { // Down-right |
816 | const __m128i one = _mm_set1_epi8(1); |
817 | const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5)); |
818 | const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4); |
819 | const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1); |
820 | const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2); |
821 | const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD); |
822 | const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one); |
823 | const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
824 | const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_); |
825 | WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg )); |
826 | WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); |
827 | WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); |
828 | WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); |
829 | } |
830 | |
831 | static WEBP_INLINE void HU4(uint8_t* dst, const uint8_t* top) { |
832 | const int I = top[-2]; |
833 | const int J = top[-3]; |
834 | const int K = top[-4]; |
835 | const int L = top[-5]; |
836 | DST(0, 0) = AVG2(I, J); |
837 | DST(2, 0) = DST(0, 1) = AVG2(J, K); |
838 | DST(2, 1) = DST(0, 2) = AVG2(K, L); |
839 | DST(1, 0) = AVG3(I, J, K); |
840 | DST(3, 0) = DST(1, 1) = AVG3(J, K, L); |
841 | DST(3, 1) = DST(1, 2) = AVG3(K, L, L); |
842 | DST(3, 2) = DST(2, 2) = |
843 | DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L; |
844 | } |
845 | |
846 | static WEBP_INLINE void HD4(uint8_t* dst, const uint8_t* top) { |
847 | const int X = top[-1]; |
848 | const int I = top[-2]; |
849 | const int J = top[-3]; |
850 | const int K = top[-4]; |
851 | const int L = top[-5]; |
852 | const int A = top[0]; |
853 | const int B = top[1]; |
854 | const int C = top[2]; |
855 | |
856 | DST(0, 0) = DST(2, 1) = AVG2(I, X); |
857 | DST(0, 1) = DST(2, 2) = AVG2(J, I); |
858 | DST(0, 2) = DST(2, 3) = AVG2(K, J); |
859 | DST(0, 3) = AVG2(L, K); |
860 | |
861 | DST(3, 0) = AVG3(A, B, C); |
862 | DST(2, 0) = AVG3(X, A, B); |
863 | DST(1, 0) = DST(3, 1) = AVG3(I, X, A); |
864 | DST(1, 1) = DST(3, 2) = AVG3(J, I, X); |
865 | DST(1, 2) = DST(3, 3) = AVG3(K, J, I); |
866 | DST(1, 3) = AVG3(L, K, J); |
867 | } |
868 | |
869 | static WEBP_INLINE void TM4(uint8_t* dst, const uint8_t* top) { |
870 | const __m128i zero = _mm_setzero_si128(); |
871 | const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top)); |
872 | const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); |
873 | int y; |
874 | for (y = 0; y < 4; ++y, dst += BPS) { |
875 | const int val = top[-2 - y] - top[-1]; |
876 | const __m128i base = _mm_set1_epi16(val); |
877 | const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); |
878 | WebPUint32ToMem(dst, _mm_cvtsi128_si32(out)); |
879 | } |
880 | } |
881 | |
882 | #undef DST |
883 | #undef AVG3 |
884 | #undef AVG2 |
885 | |
886 | //------------------------------------------------------------------------------ |
887 | // luma 4x4 prediction |
888 | |
889 | // Left samples are top[-5 .. -2], top_left is top[-1], top are |
890 | // located at top[0..3], and top right is top[4..7] |
891 | static void Intra4Preds(uint8_t* dst, const uint8_t* top) { |
892 | DC4(I4DC4 + dst, top); |
893 | TM4(I4TM4 + dst, top); |
894 | VE4(I4VE4 + dst, top); |
895 | HE4(I4HE4 + dst, top); |
896 | RD4(I4RD4 + dst, top); |
897 | VR4(I4VR4 + dst, top); |
898 | LD4(I4LD4 + dst, top); |
899 | VL4(I4VL4 + dst, top); |
900 | HD4(I4HD4 + dst, top); |
901 | HU4(I4HU4 + dst, top); |
902 | } |
903 | |
904 | //------------------------------------------------------------------------------ |
905 | // Chroma 8x8 prediction (paragraph 12.2) |
906 | |
907 | static void IntraChromaPreds(uint8_t* dst, const uint8_t* left, |
908 | const uint8_t* top) { |
909 | // U block |
910 | DC8uvMode(C8DC8 + dst, left, top); |
911 | VerticalPred(C8VE8 + dst, top, 8); |
912 | HorizontalPred(C8HE8 + dst, left, 8); |
913 | TrueMotion(C8TM8 + dst, left, top, 8); |
914 | // V block |
915 | dst += 8; |
916 | if (top != NULL) top += 8; |
917 | if (left != NULL) left += 16; |
918 | DC8uvMode(C8DC8 + dst, left, top); |
919 | VerticalPred(C8VE8 + dst, top, 8); |
920 | HorizontalPred(C8HE8 + dst, left, 8); |
921 | TrueMotion(C8TM8 + dst, left, top, 8); |
922 | } |
923 | |
924 | //------------------------------------------------------------------------------ |
925 | // luma 16x16 prediction (paragraph 12.3) |
926 | |
927 | static void Intra16Preds(uint8_t* dst, |
928 | const uint8_t* left, const uint8_t* top) { |
929 | DC16Mode(I16DC16 + dst, left, top); |
930 | VerticalPred(I16VE16 + dst, top, 16); |
931 | HorizontalPred(I16HE16 + dst, left, 16); |
932 | TrueMotion(I16TM16 + dst, left, top, 16); |
933 | } |
934 | |
935 | //------------------------------------------------------------------------------ |
936 | // Metric |
937 | |
938 | static WEBP_INLINE void SubtractAndAccumulate(const __m128i a, const __m128i b, |
939 | __m128i* const sum) { |
940 | // take abs(a-b) in 8b |
941 | const __m128i a_b = _mm_subs_epu8(a, b); |
942 | const __m128i b_a = _mm_subs_epu8(b, a); |
943 | const __m128i abs_a_b = _mm_or_si128(a_b, b_a); |
944 | // zero-extend to 16b |
945 | const __m128i zero = _mm_setzero_si128(); |
946 | const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero); |
947 | const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero); |
948 | // multiply with self |
949 | const __m128i sum1 = _mm_madd_epi16(C0, C0); |
950 | const __m128i sum2 = _mm_madd_epi16(C1, C1); |
951 | *sum = _mm_add_epi32(sum1, sum2); |
952 | } |
953 | |
954 | static WEBP_INLINE int SSE_16xN(const uint8_t* a, const uint8_t* b, |
955 | int num_pairs) { |
956 | __m128i sum = _mm_setzero_si128(); |
957 | int32_t tmp[4]; |
958 | int i; |
959 | |
960 | for (i = 0; i < num_pairs; ++i) { |
961 | const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]); |
962 | const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]); |
963 | const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]); |
964 | const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]); |
965 | __m128i sum1, sum2; |
966 | SubtractAndAccumulate(a0, b0, &sum1); |
967 | SubtractAndAccumulate(a1, b1, &sum2); |
968 | sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2)); |
969 | a += 2 * BPS; |
970 | b += 2 * BPS; |
971 | } |
972 | _mm_storeu_si128((__m128i*)tmp, sum); |
973 | return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
974 | } |
975 | |
976 | static int SSE16x16(const uint8_t* a, const uint8_t* b) { |
977 | return SSE_16xN(a, b, 8); |
978 | } |
979 | |
980 | static int SSE16x8(const uint8_t* a, const uint8_t* b) { |
981 | return SSE_16xN(a, b, 4); |
982 | } |
983 | |
984 | #define LOAD_8x16b(ptr) \ |
985 | _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero) |
986 | |
987 | static int SSE8x8(const uint8_t* a, const uint8_t* b) { |
988 | const __m128i zero = _mm_setzero_si128(); |
989 | int num_pairs = 4; |
990 | __m128i sum = zero; |
991 | int32_t tmp[4]; |
992 | while (num_pairs-- > 0) { |
993 | const __m128i a0 = LOAD_8x16b(&a[BPS * 0]); |
994 | const __m128i a1 = LOAD_8x16b(&a[BPS * 1]); |
995 | const __m128i b0 = LOAD_8x16b(&b[BPS * 0]); |
996 | const __m128i b1 = LOAD_8x16b(&b[BPS * 1]); |
997 | // subtract |
998 | const __m128i c0 = _mm_subs_epi16(a0, b0); |
999 | const __m128i c1 = _mm_subs_epi16(a1, b1); |
1000 | // multiply/accumulate with self |
1001 | const __m128i d0 = _mm_madd_epi16(c0, c0); |
1002 | const __m128i d1 = _mm_madd_epi16(c1, c1); |
1003 | // collect |
1004 | const __m128i sum01 = _mm_add_epi32(d0, d1); |
1005 | sum = _mm_add_epi32(sum, sum01); |
1006 | a += 2 * BPS; |
1007 | b += 2 * BPS; |
1008 | } |
1009 | _mm_storeu_si128((__m128i*)tmp, sum); |
1010 | return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
1011 | } |
1012 | #undef LOAD_8x16b |
1013 | |
1014 | static int SSE4x4(const uint8_t* a, const uint8_t* b) { |
1015 | const __m128i zero = _mm_setzero_si128(); |
1016 | |
1017 | // Load values. Note that we read 8 pixels instead of 4, |
1018 | // but the a/b buffers are over-allocated to that effect. |
1019 | const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]); |
1020 | const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]); |
1021 | const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]); |
1022 | const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]); |
1023 | const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]); |
1024 | const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]); |
1025 | const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]); |
1026 | const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]); |
1027 | // Combine pair of lines. |
1028 | const __m128i a01 = _mm_unpacklo_epi32(a0, a1); |
1029 | const __m128i a23 = _mm_unpacklo_epi32(a2, a3); |
1030 | const __m128i b01 = _mm_unpacklo_epi32(b0, b1); |
1031 | const __m128i b23 = _mm_unpacklo_epi32(b2, b3); |
1032 | // Convert to 16b. |
1033 | const __m128i a01s = _mm_unpacklo_epi8(a01, zero); |
1034 | const __m128i a23s = _mm_unpacklo_epi8(a23, zero); |
1035 | const __m128i b01s = _mm_unpacklo_epi8(b01, zero); |
1036 | const __m128i b23s = _mm_unpacklo_epi8(b23, zero); |
1037 | // subtract, square and accumulate |
1038 | const __m128i d0 = _mm_subs_epi16(a01s, b01s); |
1039 | const __m128i d1 = _mm_subs_epi16(a23s, b23s); |
1040 | const __m128i e0 = _mm_madd_epi16(d0, d0); |
1041 | const __m128i e1 = _mm_madd_epi16(d1, d1); |
1042 | const __m128i sum = _mm_add_epi32(e0, e1); |
1043 | |
1044 | int32_t tmp[4]; |
1045 | _mm_storeu_si128((__m128i*)tmp, sum); |
1046 | return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
1047 | } |
1048 | |
1049 | //------------------------------------------------------------------------------ |
1050 | |
1051 | static void Mean16x4(const uint8_t* ref, uint32_t dc[4]) { |
1052 | const __m128i mask = _mm_set1_epi16(0x00ff); |
1053 | const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]); |
1054 | const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]); |
1055 | const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]); |
1056 | const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]); |
1057 | const __m128i b0 = _mm_srli_epi16(a0, 8); // hi byte |
1058 | const __m128i b1 = _mm_srli_epi16(a1, 8); |
1059 | const __m128i b2 = _mm_srli_epi16(a2, 8); |
1060 | const __m128i b3 = _mm_srli_epi16(a3, 8); |
1061 | const __m128i c0 = _mm_and_si128(a0, mask); // lo byte |
1062 | const __m128i c1 = _mm_and_si128(a1, mask); |
1063 | const __m128i c2 = _mm_and_si128(a2, mask); |
1064 | const __m128i c3 = _mm_and_si128(a3, mask); |
1065 | const __m128i d0 = _mm_add_epi32(b0, c0); |
1066 | const __m128i d1 = _mm_add_epi32(b1, c1); |
1067 | const __m128i d2 = _mm_add_epi32(b2, c2); |
1068 | const __m128i d3 = _mm_add_epi32(b3, c3); |
1069 | const __m128i e0 = _mm_add_epi32(d0, d1); |
1070 | const __m128i e1 = _mm_add_epi32(d2, d3); |
1071 | const __m128i f0 = _mm_add_epi32(e0, e1); |
1072 | uint16_t tmp[8]; |
1073 | _mm_storeu_si128((__m128i*)tmp, f0); |
1074 | dc[0] = tmp[0] + tmp[1]; |
1075 | dc[1] = tmp[2] + tmp[3]; |
1076 | dc[2] = tmp[4] + tmp[5]; |
1077 | dc[3] = tmp[6] + tmp[7]; |
1078 | } |
1079 | |
1080 | //------------------------------------------------------------------------------ |
1081 | // Texture distortion |
1082 | // |
1083 | // We try to match the spectral content (weighted) between source and |
1084 | // reconstructed samples. |
1085 | |
1086 | // Hadamard transform |
1087 | // Returns the weighted sum of the absolute value of transformed coefficients. |
1088 | // w[] contains a row-major 4 by 4 symmetric matrix. |
1089 | static int TTransform(const uint8_t* inA, const uint8_t* inB, |
1090 | const uint16_t* const w) { |
1091 | int32_t sum[4]; |
1092 | __m128i tmp_0, tmp_1, tmp_2, tmp_3; |
1093 | const __m128i zero = _mm_setzero_si128(); |
1094 | |
1095 | // Load and combine inputs. |
1096 | { |
1097 | const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]); |
1098 | const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]); |
1099 | const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]); |
1100 | const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]); |
1101 | const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]); |
1102 | const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]); |
1103 | const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]); |
1104 | const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]); |
1105 | |
1106 | // Combine inA and inB (we'll do two transforms in parallel). |
1107 | const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0); |
1108 | const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1); |
1109 | const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2); |
1110 | const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3); |
1111 | tmp_0 = _mm_unpacklo_epi8(inAB_0, zero); |
1112 | tmp_1 = _mm_unpacklo_epi8(inAB_1, zero); |
1113 | tmp_2 = _mm_unpacklo_epi8(inAB_2, zero); |
1114 | tmp_3 = _mm_unpacklo_epi8(inAB_3, zero); |
1115 | // a00 a01 a02 a03 b00 b01 b02 b03 |
1116 | // a10 a11 a12 a13 b10 b11 b12 b13 |
1117 | // a20 a21 a22 a23 b20 b21 b22 b23 |
1118 | // a30 a31 a32 a33 b30 b31 b32 b33 |
1119 | } |
1120 | |
1121 | // Vertical pass first to avoid a transpose (vertical and horizontal passes |
1122 | // are commutative because w/kWeightY is symmetric) and subsequent transpose. |
1123 | { |
1124 | // Calculate a and b (two 4x4 at once). |
1125 | const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); |
1126 | const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); |
1127 | const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); |
1128 | const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); |
1129 | const __m128i b0 = _mm_add_epi16(a0, a1); |
1130 | const __m128i b1 = _mm_add_epi16(a3, a2); |
1131 | const __m128i b2 = _mm_sub_epi16(a3, a2); |
1132 | const __m128i b3 = _mm_sub_epi16(a0, a1); |
1133 | // a00 a01 a02 a03 b00 b01 b02 b03 |
1134 | // a10 a11 a12 a13 b10 b11 b12 b13 |
1135 | // a20 a21 a22 a23 b20 b21 b22 b23 |
1136 | // a30 a31 a32 a33 b30 b31 b32 b33 |
1137 | |
1138 | // Transpose the two 4x4. |
1139 | VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3); |
1140 | } |
1141 | |
1142 | // Horizontal pass and difference of weighted sums. |
1143 | { |
1144 | // Load all inputs. |
1145 | const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]); |
1146 | const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]); |
1147 | |
1148 | // Calculate a and b (two 4x4 at once). |
1149 | const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); |
1150 | const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); |
1151 | const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); |
1152 | const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); |
1153 | const __m128i b0 = _mm_add_epi16(a0, a1); |
1154 | const __m128i b1 = _mm_add_epi16(a3, a2); |
1155 | const __m128i b2 = _mm_sub_epi16(a3, a2); |
1156 | const __m128i b3 = _mm_sub_epi16(a0, a1); |
1157 | |
1158 | // Separate the transforms of inA and inB. |
1159 | __m128i A_b0 = _mm_unpacklo_epi64(b0, b1); |
1160 | __m128i A_b2 = _mm_unpacklo_epi64(b2, b3); |
1161 | __m128i B_b0 = _mm_unpackhi_epi64(b0, b1); |
1162 | __m128i B_b2 = _mm_unpackhi_epi64(b2, b3); |
1163 | |
1164 | { |
1165 | const __m128i d0 = _mm_sub_epi16(zero, A_b0); |
1166 | const __m128i d1 = _mm_sub_epi16(zero, A_b2); |
1167 | const __m128i d2 = _mm_sub_epi16(zero, B_b0); |
1168 | const __m128i d3 = _mm_sub_epi16(zero, B_b2); |
1169 | A_b0 = _mm_max_epi16(A_b0, d0); // abs(v), 16b |
1170 | A_b2 = _mm_max_epi16(A_b2, d1); |
1171 | B_b0 = _mm_max_epi16(B_b0, d2); |
1172 | B_b2 = _mm_max_epi16(B_b2, d3); |
1173 | } |
1174 | |
1175 | // weighted sums |
1176 | A_b0 = _mm_madd_epi16(A_b0, w_0); |
1177 | A_b2 = _mm_madd_epi16(A_b2, w_8); |
1178 | B_b0 = _mm_madd_epi16(B_b0, w_0); |
1179 | B_b2 = _mm_madd_epi16(B_b2, w_8); |
1180 | A_b0 = _mm_add_epi32(A_b0, A_b2); |
1181 | B_b0 = _mm_add_epi32(B_b0, B_b2); |
1182 | |
1183 | // difference of weighted sums |
1184 | A_b0 = _mm_sub_epi32(A_b0, B_b0); |
1185 | _mm_storeu_si128((__m128i*)&sum[0], A_b0); |
1186 | } |
1187 | return sum[0] + sum[1] + sum[2] + sum[3]; |
1188 | } |
1189 | |
1190 | static int Disto4x4(const uint8_t* const a, const uint8_t* const b, |
1191 | const uint16_t* const w) { |
1192 | const int diff_sum = TTransform(a, b, w); |
1193 | return abs(diff_sum) >> 5; |
1194 | } |
1195 | |
1196 | static int Disto16x16(const uint8_t* const a, const uint8_t* const b, |
1197 | const uint16_t* const w) { |
1198 | int D = 0; |
1199 | int x, y; |
1200 | for (y = 0; y < 16 * BPS; y += 4 * BPS) { |
1201 | for (x = 0; x < 16; x += 4) { |
1202 | D += Disto4x4(a + x + y, b + x + y, w); |
1203 | } |
1204 | } |
1205 | return D; |
1206 | } |
1207 | |
1208 | //------------------------------------------------------------------------------ |
1209 | // Quantization |
1210 | // |
1211 | |
1212 | static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16], |
1213 | const uint16_t* const sharpen, |
1214 | const VP8Matrix* const mtx) { |
1215 | const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL); |
1216 | const __m128i zero = _mm_setzero_si128(); |
1217 | __m128i coeff0, coeff8; |
1218 | __m128i out0, out8; |
1219 | __m128i packed_out; |
1220 | |
1221 | // Load all inputs. |
1222 | __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); |
1223 | __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); |
1224 | const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]); |
1225 | const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]); |
1226 | const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]); |
1227 | const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]); |
1228 | |
1229 | // extract sign(in) (0x0000 if positive, 0xffff if negative) |
1230 | const __m128i sign0 = _mm_cmpgt_epi16(zero, in0); |
1231 | const __m128i sign8 = _mm_cmpgt_epi16(zero, in8); |
1232 | |
1233 | // coeff = abs(in) = (in ^ sign) - sign |
1234 | coeff0 = _mm_xor_si128(in0, sign0); |
1235 | coeff8 = _mm_xor_si128(in8, sign8); |
1236 | coeff0 = _mm_sub_epi16(coeff0, sign0); |
1237 | coeff8 = _mm_sub_epi16(coeff8, sign8); |
1238 | |
1239 | // coeff = abs(in) + sharpen |
1240 | if (sharpen != NULL) { |
1241 | const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]); |
1242 | const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]); |
1243 | coeff0 = _mm_add_epi16(coeff0, sharpen0); |
1244 | coeff8 = _mm_add_epi16(coeff8, sharpen8); |
1245 | } |
1246 | |
1247 | // out = (coeff * iQ + B) >> QFIX |
1248 | { |
1249 | // doing calculations with 32b precision (QFIX=17) |
1250 | // out = (coeff * iQ) |
1251 | const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); |
1252 | const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); |
1253 | const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); |
1254 | const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); |
1255 | __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); |
1256 | __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); |
1257 | __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); |
1258 | __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); |
1259 | // out = (coeff * iQ + B) |
1260 | const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]); |
1261 | const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]); |
1262 | const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]); |
1263 | const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]); |
1264 | out_00 = _mm_add_epi32(out_00, bias_00); |
1265 | out_04 = _mm_add_epi32(out_04, bias_04); |
1266 | out_08 = _mm_add_epi32(out_08, bias_08); |
1267 | out_12 = _mm_add_epi32(out_12, bias_12); |
1268 | // out = QUANTDIV(coeff, iQ, B, QFIX) |
1269 | out_00 = _mm_srai_epi32(out_00, QFIX); |
1270 | out_04 = _mm_srai_epi32(out_04, QFIX); |
1271 | out_08 = _mm_srai_epi32(out_08, QFIX); |
1272 | out_12 = _mm_srai_epi32(out_12, QFIX); |
1273 | |
1274 | // pack result as 16b |
1275 | out0 = _mm_packs_epi32(out_00, out_04); |
1276 | out8 = _mm_packs_epi32(out_08, out_12); |
1277 | |
1278 | // if (coeff > 2047) coeff = 2047 |
1279 | out0 = _mm_min_epi16(out0, max_coeff_2047); |
1280 | out8 = _mm_min_epi16(out8, max_coeff_2047); |
1281 | } |
1282 | |
1283 | // get sign back (if (sign[j]) out_n = -out_n) |
1284 | out0 = _mm_xor_si128(out0, sign0); |
1285 | out8 = _mm_xor_si128(out8, sign8); |
1286 | out0 = _mm_sub_epi16(out0, sign0); |
1287 | out8 = _mm_sub_epi16(out8, sign8); |
1288 | |
1289 | // in = out * Q |
1290 | in0 = _mm_mullo_epi16(out0, q0); |
1291 | in8 = _mm_mullo_epi16(out8, q8); |
1292 | |
1293 | _mm_storeu_si128((__m128i*)&in[0], in0); |
1294 | _mm_storeu_si128((__m128i*)&in[8], in8); |
1295 | |
1296 | // zigzag the output before storing it. |
1297 | // |
1298 | // The zigzag pattern can almost be reproduced with a small sequence of |
1299 | // shuffles. After it, we only need to swap the 7th (ending up in third |
1300 | // position instead of twelfth) and 8th values. |
1301 | { |
1302 | __m128i outZ0, outZ8; |
1303 | outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0)); |
1304 | outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0)); |
1305 | outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2)); |
1306 | outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1)); |
1307 | outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0)); |
1308 | outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0)); |
1309 | _mm_storeu_si128((__m128i*)&out[0], outZ0); |
1310 | _mm_storeu_si128((__m128i*)&out[8], outZ8); |
1311 | packed_out = _mm_packs_epi16(outZ0, outZ8); |
1312 | } |
1313 | { |
1314 | const int16_t outZ_12 = out[12]; |
1315 | const int16_t outZ_3 = out[3]; |
1316 | out[3] = outZ_12; |
1317 | out[12] = outZ_3; |
1318 | } |
1319 | |
1320 | // detect if all 'out' values are zeroes or not |
1321 | return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff); |
1322 | } |
1323 | |
1324 | static int QuantizeBlock(int16_t in[16], int16_t out[16], |
1325 | const VP8Matrix* const mtx) { |
1326 | return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx); |
1327 | } |
1328 | |
1329 | static int QuantizeBlockWHT(int16_t in[16], int16_t out[16], |
1330 | const VP8Matrix* const mtx) { |
1331 | return DoQuantizeBlock(in, out, NULL, mtx); |
1332 | } |
1333 | |
1334 | static int Quantize2Blocks(int16_t in[32], int16_t out[32], |
1335 | const VP8Matrix* const mtx) { |
1336 | int nz; |
1337 | const uint16_t* const sharpen = &mtx->sharpen_[0]; |
1338 | nz = DoQuantizeBlock(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0; |
1339 | nz |= DoQuantizeBlock(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1; |
1340 | return nz; |
1341 | } |
1342 | |
1343 | //------------------------------------------------------------------------------ |
1344 | // Entry point |
1345 | |
1346 | extern void VP8EncDspInitSSE2(void); |
1347 | |
1348 | WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) { |
1349 | VP8CollectHistogram = CollectHistogram; |
1350 | VP8EncPredLuma16 = Intra16Preds; |
1351 | VP8EncPredChroma8 = IntraChromaPreds; |
1352 | VP8EncPredLuma4 = Intra4Preds; |
1353 | VP8EncQuantizeBlock = QuantizeBlock; |
1354 | VP8EncQuantize2Blocks = Quantize2Blocks; |
1355 | VP8EncQuantizeBlockWHT = QuantizeBlockWHT; |
1356 | VP8ITransform = ITransform; |
1357 | VP8FTransform = FTransform; |
1358 | VP8FTransform2 = FTransform2; |
1359 | VP8FTransformWHT = FTransformWHT; |
1360 | VP8SSE16x16 = SSE16x16; |
1361 | VP8SSE16x8 = SSE16x8; |
1362 | VP8SSE8x8 = SSE8x8; |
1363 | VP8SSE4x4 = SSE4x4; |
1364 | VP8TDisto4x4 = Disto4x4; |
1365 | VP8TDisto16x16 = Disto16x16; |
1366 | VP8Mean16x4 = Mean16x4; |
1367 | } |
1368 | |
1369 | //------------------------------------------------------------------------------ |
1370 | // SSIM / PSNR entry point (TODO(skal): move to its own file later) |
1371 | |
1372 | static uint32_t AccumulateSSE_SSE2(const uint8_t* src1, |
1373 | const uint8_t* src2, int len) { |
1374 | int i = 0; |
1375 | uint32_t sse2 = 0; |
1376 | if (len >= 16) { |
1377 | const int limit = len - 32; |
1378 | int32_t tmp[4]; |
1379 | __m128i sum1; |
1380 | __m128i sum = _mm_setzero_si128(); |
1381 | __m128i a0 = _mm_loadu_si128((const __m128i*)&src1[i]); |
1382 | __m128i b0 = _mm_loadu_si128((const __m128i*)&src2[i]); |
1383 | i += 16; |
1384 | while (i <= limit) { |
1385 | const __m128i a1 = _mm_loadu_si128((const __m128i*)&src1[i]); |
1386 | const __m128i b1 = _mm_loadu_si128((const __m128i*)&src2[i]); |
1387 | __m128i sum2; |
1388 | i += 16; |
1389 | SubtractAndAccumulate(a0, b0, &sum1); |
1390 | sum = _mm_add_epi32(sum, sum1); |
1391 | a0 = _mm_loadu_si128((const __m128i*)&src1[i]); |
1392 | b0 = _mm_loadu_si128((const __m128i*)&src2[i]); |
1393 | i += 16; |
1394 | SubtractAndAccumulate(a1, b1, &sum2); |
1395 | sum = _mm_add_epi32(sum, sum2); |
1396 | } |
1397 | SubtractAndAccumulate(a0, b0, &sum1); |
1398 | sum = _mm_add_epi32(sum, sum1); |
1399 | _mm_storeu_si128((__m128i*)tmp, sum); |
1400 | sse2 += (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
1401 | } |
1402 | |
1403 | for (; i < len; ++i) { |
1404 | const int32_t diff = src1[i] - src2[i]; |
1405 | sse2 += diff * diff; |
1406 | } |
1407 | return sse2; |
1408 | } |
1409 | |
1410 | static uint32_t HorizontalAdd16b(const __m128i* const m) { |
1411 | uint16_t tmp[8]; |
1412 | const __m128i a = _mm_srli_si128(*m, 8); |
1413 | const __m128i b = _mm_add_epi16(*m, a); |
1414 | _mm_storeu_si128((__m128i*)tmp, b); |
1415 | return (uint32_t)tmp[3] + tmp[2] + tmp[1] + tmp[0]; |
1416 | } |
1417 | |
1418 | static uint32_t HorizontalAdd32b(const __m128i* const m) { |
1419 | const __m128i a = _mm_srli_si128(*m, 8); |
1420 | const __m128i b = _mm_add_epi32(*m, a); |
1421 | const __m128i c = _mm_add_epi32(b, _mm_srli_si128(b, 4)); |
1422 | return (uint32_t)_mm_cvtsi128_si32(c); |
1423 | } |
1424 | |
1425 | static const uint16_t kWeight[] = { 1, 2, 3, 4, 3, 2, 1, 0 }; |
1426 | |
1427 | #define ACCUMULATE_ROW(WEIGHT) do { \ |
1428 | /* compute row weight (Wx * Wy) */ \ |
1429 | const __m128i Wy = _mm_set1_epi16((WEIGHT)); \ |
1430 | const __m128i W = _mm_mullo_epi16(Wx, Wy); \ |
1431 | /* process 8 bytes at a time (7 bytes, actually) */ \ |
1432 | const __m128i a0 = _mm_loadl_epi64((const __m128i*)src1); \ |
1433 | const __m128i b0 = _mm_loadl_epi64((const __m128i*)src2); \ |
1434 | /* convert to 16b and multiply by weight */ \ |
1435 | const __m128i a1 = _mm_unpacklo_epi8(a0, zero); \ |
1436 | const __m128i b1 = _mm_unpacklo_epi8(b0, zero); \ |
1437 | const __m128i wa1 = _mm_mullo_epi16(a1, W); \ |
1438 | const __m128i wb1 = _mm_mullo_epi16(b1, W); \ |
1439 | /* accumulate */ \ |
1440 | xm = _mm_add_epi16(xm, wa1); \ |
1441 | ym = _mm_add_epi16(ym, wb1); \ |
1442 | xxm = _mm_add_epi32(xxm, _mm_madd_epi16(a1, wa1)); \ |
1443 | xym = _mm_add_epi32(xym, _mm_madd_epi16(a1, wb1)); \ |
1444 | yym = _mm_add_epi32(yym, _mm_madd_epi16(b1, wb1)); \ |
1445 | src1 += stride1; \ |
1446 | src2 += stride2; \ |
1447 | } while (0) |
1448 | |
1449 | static double SSIMGet_SSE2(const uint8_t* src1, int stride1, |
1450 | const uint8_t* src2, int stride2) { |
1451 | VP8DistoStats stats; |
1452 | const __m128i zero = _mm_setzero_si128(); |
1453 | __m128i xm = zero, ym = zero; // 16b accums |
1454 | __m128i xxm = zero, yym = zero, xym = zero; // 32b accum |
1455 | const __m128i Wx = _mm_loadu_si128((const __m128i*)kWeight); |
1456 | assert(2 * VP8_SSIM_KERNEL + 1 == 7); |
1457 | ACCUMULATE_ROW(1); |
1458 | ACCUMULATE_ROW(2); |
1459 | ACCUMULATE_ROW(3); |
1460 | ACCUMULATE_ROW(4); |
1461 | ACCUMULATE_ROW(3); |
1462 | ACCUMULATE_ROW(2); |
1463 | ACCUMULATE_ROW(1); |
1464 | stats.xm = HorizontalAdd16b(&xm); |
1465 | stats.ym = HorizontalAdd16b(&ym); |
1466 | stats.xxm = HorizontalAdd32b(&xxm); |
1467 | stats.xym = HorizontalAdd32b(&xym); |
1468 | stats.yym = HorizontalAdd32b(&yym); |
1469 | return VP8SSIMFromStats(&stats); |
1470 | } |
1471 | |
1472 | extern void VP8SSIMDspInitSSE2(void); |
1473 | |
1474 | WEBP_TSAN_IGNORE_FUNCTION void VP8SSIMDspInitSSE2(void) { |
1475 | VP8AccumulateSSE = AccumulateSSE_SSE2; |
1476 | VP8SSIMGet = SSIMGet_SSE2; |
1477 | } |
1478 | |
1479 | #else // !WEBP_USE_SSE2 |
1480 | |
1481 | WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2) |
1482 | WEBP_DSP_INIT_STUB(VP8SSIMDspInitSSE2) |
1483 | |
1484 | #endif // WEBP_USE_SSE2 |
1485 | |