| 1 | // Copyright 2015 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // SSE4 version of some encoding functions. |
| 11 | // |
| 12 | // Author: Skal (pascal.massimino@gmail.com) |
| 13 | |
| 14 | #include "./dsp.h" |
| 15 | |
| 16 | #if defined(WEBP_USE_SSE41) |
| 17 | #include <smmintrin.h> |
| 18 | #include <stdlib.h> // for abs() |
| 19 | |
| 20 | #include "./common_sse2.h" |
| 21 | #include "../enc/vp8i_enc.h" |
| 22 | |
| 23 | //------------------------------------------------------------------------------ |
| 24 | // Compute susceptibility based on DCT-coeff histograms. |
| 25 | |
| 26 | static void CollectHistogram(const uint8_t* ref, const uint8_t* pred, |
| 27 | int start_block, int end_block, |
| 28 | VP8Histogram* const histo) { |
| 29 | const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH); |
| 30 | int j; |
| 31 | int distribution[MAX_COEFF_THRESH + 1] = { 0 }; |
| 32 | for (j = start_block; j < end_block; ++j) { |
| 33 | int16_t out[16]; |
| 34 | int k; |
| 35 | |
| 36 | VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); |
| 37 | |
| 38 | // Convert coefficients to bin (within out[]). |
| 39 | { |
| 40 | // Load. |
| 41 | const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]); |
| 42 | const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]); |
| 43 | // v = abs(out) >> 3 |
| 44 | const __m128i abs0 = _mm_abs_epi16(out0); |
| 45 | const __m128i abs1 = _mm_abs_epi16(out1); |
| 46 | const __m128i v0 = _mm_srai_epi16(abs0, 3); |
| 47 | const __m128i v1 = _mm_srai_epi16(abs1, 3); |
| 48 | // bin = min(v, MAX_COEFF_THRESH) |
| 49 | const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh); |
| 50 | const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh); |
| 51 | // Store. |
| 52 | _mm_storeu_si128((__m128i*)&out[0], bin0); |
| 53 | _mm_storeu_si128((__m128i*)&out[8], bin1); |
| 54 | } |
| 55 | |
| 56 | // Convert coefficients to bin. |
| 57 | for (k = 0; k < 16; ++k) { |
| 58 | ++distribution[out[k]]; |
| 59 | } |
| 60 | } |
| 61 | VP8SetHistogramData(distribution, histo); |
| 62 | } |
| 63 | |
| 64 | //------------------------------------------------------------------------------ |
| 65 | // Texture distortion |
| 66 | // |
| 67 | // We try to match the spectral content (weighted) between source and |
| 68 | // reconstructed samples. |
| 69 | |
| 70 | // Hadamard transform |
| 71 | // Returns the weighted sum of the absolute value of transformed coefficients. |
| 72 | // w[] contains a row-major 4 by 4 symmetric matrix. |
| 73 | static int TTransform(const uint8_t* inA, const uint8_t* inB, |
| 74 | const uint16_t* const w) { |
| 75 | int32_t sum[4]; |
| 76 | __m128i tmp_0, tmp_1, tmp_2, tmp_3; |
| 77 | |
| 78 | // Load and combine inputs. |
| 79 | { |
| 80 | const __m128i inA_0 = _mm_loadu_si128((const __m128i*)&inA[BPS * 0]); |
| 81 | const __m128i inA_1 = _mm_loadu_si128((const __m128i*)&inA[BPS * 1]); |
| 82 | const __m128i inA_2 = _mm_loadu_si128((const __m128i*)&inA[BPS * 2]); |
| 83 | // In SSE4.1, with gcc 4.8 at least (maybe other versions), |
| 84 | // _mm_loadu_si128 is faster than _mm_loadl_epi64. But for the last lump |
| 85 | // of inA and inB, _mm_loadl_epi64 is still used not to have an out of |
| 86 | // bound read. |
| 87 | const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]); |
| 88 | const __m128i inB_0 = _mm_loadu_si128((const __m128i*)&inB[BPS * 0]); |
| 89 | const __m128i inB_1 = _mm_loadu_si128((const __m128i*)&inB[BPS * 1]); |
| 90 | const __m128i inB_2 = _mm_loadu_si128((const __m128i*)&inB[BPS * 2]); |
| 91 | const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]); |
| 92 | |
| 93 | // Combine inA and inB (we'll do two transforms in parallel). |
| 94 | const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0); |
| 95 | const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1); |
| 96 | const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2); |
| 97 | const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3); |
| 98 | tmp_0 = _mm_cvtepu8_epi16(inAB_0); |
| 99 | tmp_1 = _mm_cvtepu8_epi16(inAB_1); |
| 100 | tmp_2 = _mm_cvtepu8_epi16(inAB_2); |
| 101 | tmp_3 = _mm_cvtepu8_epi16(inAB_3); |
| 102 | // a00 a01 a02 a03 b00 b01 b02 b03 |
| 103 | // a10 a11 a12 a13 b10 b11 b12 b13 |
| 104 | // a20 a21 a22 a23 b20 b21 b22 b23 |
| 105 | // a30 a31 a32 a33 b30 b31 b32 b33 |
| 106 | } |
| 107 | |
| 108 | // Vertical pass first to avoid a transpose (vertical and horizontal passes |
| 109 | // are commutative because w/kWeightY is symmetric) and subsequent transpose. |
| 110 | { |
| 111 | // Calculate a and b (two 4x4 at once). |
| 112 | const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); |
| 113 | const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); |
| 114 | const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); |
| 115 | const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); |
| 116 | const __m128i b0 = _mm_add_epi16(a0, a1); |
| 117 | const __m128i b1 = _mm_add_epi16(a3, a2); |
| 118 | const __m128i b2 = _mm_sub_epi16(a3, a2); |
| 119 | const __m128i b3 = _mm_sub_epi16(a0, a1); |
| 120 | // a00 a01 a02 a03 b00 b01 b02 b03 |
| 121 | // a10 a11 a12 a13 b10 b11 b12 b13 |
| 122 | // a20 a21 a22 a23 b20 b21 b22 b23 |
| 123 | // a30 a31 a32 a33 b30 b31 b32 b33 |
| 124 | |
| 125 | // Transpose the two 4x4. |
| 126 | VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3); |
| 127 | } |
| 128 | |
| 129 | // Horizontal pass and difference of weighted sums. |
| 130 | { |
| 131 | // Load all inputs. |
| 132 | const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]); |
| 133 | const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]); |
| 134 | |
| 135 | // Calculate a and b (two 4x4 at once). |
| 136 | const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); |
| 137 | const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); |
| 138 | const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); |
| 139 | const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); |
| 140 | const __m128i b0 = _mm_add_epi16(a0, a1); |
| 141 | const __m128i b1 = _mm_add_epi16(a3, a2); |
| 142 | const __m128i b2 = _mm_sub_epi16(a3, a2); |
| 143 | const __m128i b3 = _mm_sub_epi16(a0, a1); |
| 144 | |
| 145 | // Separate the transforms of inA and inB. |
| 146 | __m128i A_b0 = _mm_unpacklo_epi64(b0, b1); |
| 147 | __m128i A_b2 = _mm_unpacklo_epi64(b2, b3); |
| 148 | __m128i B_b0 = _mm_unpackhi_epi64(b0, b1); |
| 149 | __m128i B_b2 = _mm_unpackhi_epi64(b2, b3); |
| 150 | |
| 151 | A_b0 = _mm_abs_epi16(A_b0); |
| 152 | A_b2 = _mm_abs_epi16(A_b2); |
| 153 | B_b0 = _mm_abs_epi16(B_b0); |
| 154 | B_b2 = _mm_abs_epi16(B_b2); |
| 155 | |
| 156 | // weighted sums |
| 157 | A_b0 = _mm_madd_epi16(A_b0, w_0); |
| 158 | A_b2 = _mm_madd_epi16(A_b2, w_8); |
| 159 | B_b0 = _mm_madd_epi16(B_b0, w_0); |
| 160 | B_b2 = _mm_madd_epi16(B_b2, w_8); |
| 161 | A_b0 = _mm_add_epi32(A_b0, A_b2); |
| 162 | B_b0 = _mm_add_epi32(B_b0, B_b2); |
| 163 | |
| 164 | // difference of weighted sums |
| 165 | A_b2 = _mm_sub_epi32(A_b0, B_b0); |
| 166 | _mm_storeu_si128((__m128i*)&sum[0], A_b2); |
| 167 | } |
| 168 | return sum[0] + sum[1] + sum[2] + sum[3]; |
| 169 | } |
| 170 | |
| 171 | static int Disto4x4(const uint8_t* const a, const uint8_t* const b, |
| 172 | const uint16_t* const w) { |
| 173 | const int diff_sum = TTransform(a, b, w); |
| 174 | return abs(diff_sum) >> 5; |
| 175 | } |
| 176 | |
| 177 | static int Disto16x16(const uint8_t* const a, const uint8_t* const b, |
| 178 | const uint16_t* const w) { |
| 179 | int D = 0; |
| 180 | int x, y; |
| 181 | for (y = 0; y < 16 * BPS; y += 4 * BPS) { |
| 182 | for (x = 0; x < 16; x += 4) { |
| 183 | D += Disto4x4(a + x + y, b + x + y, w); |
| 184 | } |
| 185 | } |
| 186 | return D; |
| 187 | } |
| 188 | |
| 189 | //------------------------------------------------------------------------------ |
| 190 | // Quantization |
| 191 | // |
| 192 | |
| 193 | // Generates a pshufb constant for shuffling 16b words. |
| 194 | #define PSHUFB_CST(A,B,C,D,E,F,G,H) \ |
| 195 | _mm_set_epi8(2 * (H) + 1, 2 * (H) + 0, 2 * (G) + 1, 2 * (G) + 0, \ |
| 196 | 2 * (F) + 1, 2 * (F) + 0, 2 * (E) + 1, 2 * (E) + 0, \ |
| 197 | 2 * (D) + 1, 2 * (D) + 0, 2 * (C) + 1, 2 * (C) + 0, \ |
| 198 | 2 * (B) + 1, 2 * (B) + 0, 2 * (A) + 1, 2 * (A) + 0) |
| 199 | |
| 200 | static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16], |
| 201 | const uint16_t* const sharpen, |
| 202 | const VP8Matrix* const mtx) { |
| 203 | const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL); |
| 204 | const __m128i zero = _mm_setzero_si128(); |
| 205 | __m128i out0, out8; |
| 206 | __m128i packed_out; |
| 207 | |
| 208 | // Load all inputs. |
| 209 | __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); |
| 210 | __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); |
| 211 | const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]); |
| 212 | const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]); |
| 213 | const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]); |
| 214 | const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]); |
| 215 | |
| 216 | // coeff = abs(in) |
| 217 | __m128i coeff0 = _mm_abs_epi16(in0); |
| 218 | __m128i coeff8 = _mm_abs_epi16(in8); |
| 219 | |
| 220 | // coeff = abs(in) + sharpen |
| 221 | if (sharpen != NULL) { |
| 222 | const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]); |
| 223 | const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]); |
| 224 | coeff0 = _mm_add_epi16(coeff0, sharpen0); |
| 225 | coeff8 = _mm_add_epi16(coeff8, sharpen8); |
| 226 | } |
| 227 | |
| 228 | // out = (coeff * iQ + B) >> QFIX |
| 229 | { |
| 230 | // doing calculations with 32b precision (QFIX=17) |
| 231 | // out = (coeff * iQ) |
| 232 | const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); |
| 233 | const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); |
| 234 | const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); |
| 235 | const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); |
| 236 | __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); |
| 237 | __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); |
| 238 | __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); |
| 239 | __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); |
| 240 | // out = (coeff * iQ + B) |
| 241 | const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]); |
| 242 | const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]); |
| 243 | const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]); |
| 244 | const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]); |
| 245 | out_00 = _mm_add_epi32(out_00, bias_00); |
| 246 | out_04 = _mm_add_epi32(out_04, bias_04); |
| 247 | out_08 = _mm_add_epi32(out_08, bias_08); |
| 248 | out_12 = _mm_add_epi32(out_12, bias_12); |
| 249 | // out = QUANTDIV(coeff, iQ, B, QFIX) |
| 250 | out_00 = _mm_srai_epi32(out_00, QFIX); |
| 251 | out_04 = _mm_srai_epi32(out_04, QFIX); |
| 252 | out_08 = _mm_srai_epi32(out_08, QFIX); |
| 253 | out_12 = _mm_srai_epi32(out_12, QFIX); |
| 254 | |
| 255 | // pack result as 16b |
| 256 | out0 = _mm_packs_epi32(out_00, out_04); |
| 257 | out8 = _mm_packs_epi32(out_08, out_12); |
| 258 | |
| 259 | // if (coeff > 2047) coeff = 2047 |
| 260 | out0 = _mm_min_epi16(out0, max_coeff_2047); |
| 261 | out8 = _mm_min_epi16(out8, max_coeff_2047); |
| 262 | } |
| 263 | |
| 264 | // put sign back |
| 265 | out0 = _mm_sign_epi16(out0, in0); |
| 266 | out8 = _mm_sign_epi16(out8, in8); |
| 267 | |
| 268 | // in = out * Q |
| 269 | in0 = _mm_mullo_epi16(out0, q0); |
| 270 | in8 = _mm_mullo_epi16(out8, q8); |
| 271 | |
| 272 | _mm_storeu_si128((__m128i*)&in[0], in0); |
| 273 | _mm_storeu_si128((__m128i*)&in[8], in8); |
| 274 | |
| 275 | // zigzag the output before storing it. The re-ordering is: |
| 276 | // 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15 |
| 277 | // -> 0 1 4[8]5 2 3 6 | 9 12 13 10 [7]11 14 15 |
| 278 | // There's only two misplaced entries ([8] and [7]) that are crossing the |
| 279 | // reg's boundaries. |
| 280 | // We use pshufb instead of pshuflo/pshufhi. |
| 281 | { |
| 282 | const __m128i kCst_lo = PSHUFB_CST(0, 1, 4, -1, 5, 2, 3, 6); |
| 283 | const __m128i kCst_7 = PSHUFB_CST(-1, -1, -1, -1, 7, -1, -1, -1); |
| 284 | const __m128i tmp_lo = _mm_shuffle_epi8(out0, kCst_lo); |
| 285 | const __m128i tmp_7 = _mm_shuffle_epi8(out0, kCst_7); // extract #7 |
| 286 | const __m128i kCst_hi = PSHUFB_CST(1, 4, 5, 2, -1, 3, 6, 7); |
| 287 | const __m128i kCst_8 = PSHUFB_CST(-1, -1, -1, 0, -1, -1, -1, -1); |
| 288 | const __m128i tmp_hi = _mm_shuffle_epi8(out8, kCst_hi); |
| 289 | const __m128i tmp_8 = _mm_shuffle_epi8(out8, kCst_8); // extract #8 |
| 290 | const __m128i out_z0 = _mm_or_si128(tmp_lo, tmp_8); |
| 291 | const __m128i out_z8 = _mm_or_si128(tmp_hi, tmp_7); |
| 292 | _mm_storeu_si128((__m128i*)&out[0], out_z0); |
| 293 | _mm_storeu_si128((__m128i*)&out[8], out_z8); |
| 294 | packed_out = _mm_packs_epi16(out_z0, out_z8); |
| 295 | } |
| 296 | |
| 297 | // detect if all 'out' values are zeroes or not |
| 298 | return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff); |
| 299 | } |
| 300 | |
| 301 | #undef PSHUFB_CST |
| 302 | |
| 303 | static int QuantizeBlock(int16_t in[16], int16_t out[16], |
| 304 | const VP8Matrix* const mtx) { |
| 305 | return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx); |
| 306 | } |
| 307 | |
| 308 | static int QuantizeBlockWHT(int16_t in[16], int16_t out[16], |
| 309 | const VP8Matrix* const mtx) { |
| 310 | return DoQuantizeBlock(in, out, NULL, mtx); |
| 311 | } |
| 312 | |
| 313 | static int Quantize2Blocks(int16_t in[32], int16_t out[32], |
| 314 | const VP8Matrix* const mtx) { |
| 315 | int nz; |
| 316 | const uint16_t* const sharpen = &mtx->sharpen_[0]; |
| 317 | nz = DoQuantizeBlock(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0; |
| 318 | nz |= DoQuantizeBlock(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1; |
| 319 | return nz; |
| 320 | } |
| 321 | |
| 322 | //------------------------------------------------------------------------------ |
| 323 | // Entry point |
| 324 | |
| 325 | extern void VP8EncDspInitSSE41(void); |
| 326 | WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE41(void) { |
| 327 | VP8CollectHistogram = CollectHistogram; |
| 328 | VP8EncQuantizeBlock = QuantizeBlock; |
| 329 | VP8EncQuantize2Blocks = Quantize2Blocks; |
| 330 | VP8EncQuantizeBlockWHT = QuantizeBlockWHT; |
| 331 | VP8TDisto4x4 = Disto4x4; |
| 332 | VP8TDisto16x16 = Disto16x16; |
| 333 | } |
| 334 | |
| 335 | #else // !WEBP_USE_SSE41 |
| 336 | |
| 337 | WEBP_DSP_INIT_STUB(VP8EncDspInitSSE41) |
| 338 | |
| 339 | #endif // WEBP_USE_SSE41 |
| 340 | |