1 | // Copyright 2012 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // Image transforms and color space conversion methods for lossless decoder. |
11 | // |
12 | // Authors: Vikas Arora (vikaas.arora@gmail.com) |
13 | // Jyrki Alakuijala (jyrki@google.com) |
14 | // Urvang Joshi (urvang@google.com) |
15 | |
16 | #include "./dsp.h" |
17 | |
18 | #include <math.h> |
19 | #include <stdlib.h> |
20 | #include "../dec/vp8li_dec.h" |
21 | #include "../utils/endian_inl_utils.h" |
22 | #include "./lossless.h" |
23 | #include "./lossless_common.h" |
24 | |
25 | #define MAX_DIFF_COST (1e30f) |
26 | |
27 | //------------------------------------------------------------------------------ |
28 | // Image transforms. |
29 | |
30 | static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) { |
31 | return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1); |
32 | } |
33 | |
34 | static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) { |
35 | return Average2(Average2(a0, a2), a1); |
36 | } |
37 | |
38 | static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, |
39 | uint32_t a2, uint32_t a3) { |
40 | return Average2(Average2(a0, a1), Average2(a2, a3)); |
41 | } |
42 | |
43 | static WEBP_INLINE uint32_t Clip255(uint32_t a) { |
44 | if (a < 256) { |
45 | return a; |
46 | } |
47 | // return 0, when a is a negative integer. |
48 | // return 255, when a is positive. |
49 | return ~a >> 24; |
50 | } |
51 | |
52 | static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) { |
53 | return Clip255(a + b - c); |
54 | } |
55 | |
56 | static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1, |
57 | uint32_t c2) { |
58 | const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24); |
59 | const int r = AddSubtractComponentFull((c0 >> 16) & 0xff, |
60 | (c1 >> 16) & 0xff, |
61 | (c2 >> 16) & 0xff); |
62 | const int g = AddSubtractComponentFull((c0 >> 8) & 0xff, |
63 | (c1 >> 8) & 0xff, |
64 | (c2 >> 8) & 0xff); |
65 | const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff); |
66 | return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; |
67 | } |
68 | |
69 | static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) { |
70 | return Clip255(a + (a - b) / 2); |
71 | } |
72 | |
73 | static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, |
74 | uint32_t c2) { |
75 | const uint32_t ave = Average2(c0, c1); |
76 | const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24); |
77 | const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff); |
78 | const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff); |
79 | const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff); |
80 | return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; |
81 | } |
82 | |
83 | // gcc-4.9 on ARM generates incorrect code in Select() when Sub3() is inlined. |
84 | #if defined(__arm__) && LOCAL_GCC_VERSION == 0x409 |
85 | # define LOCAL_INLINE __attribute__ ((noinline)) |
86 | #else |
87 | # define LOCAL_INLINE WEBP_INLINE |
88 | #endif |
89 | |
90 | static LOCAL_INLINE int Sub3(int a, int b, int c) { |
91 | const int pb = b - c; |
92 | const int pa = a - c; |
93 | return abs(pb) - abs(pa); |
94 | } |
95 | |
96 | #undef LOCAL_INLINE |
97 | |
98 | static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { |
99 | const int pa_minus_pb = |
100 | Sub3((a >> 24) , (b >> 24) , (c >> 24) ) + |
101 | Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) + |
102 | Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) + |
103 | Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff); |
104 | return (pa_minus_pb <= 0) ? a : b; |
105 | } |
106 | |
107 | //------------------------------------------------------------------------------ |
108 | // Predictors |
109 | |
110 | static uint32_t Predictor0(uint32_t left, const uint32_t* const top) { |
111 | (void)top; |
112 | (void)left; |
113 | return ARGB_BLACK; |
114 | } |
115 | static uint32_t Predictor1(uint32_t left, const uint32_t* const top) { |
116 | (void)top; |
117 | return left; |
118 | } |
119 | static uint32_t Predictor2(uint32_t left, const uint32_t* const top) { |
120 | (void)left; |
121 | return top[0]; |
122 | } |
123 | static uint32_t Predictor3(uint32_t left, const uint32_t* const top) { |
124 | (void)left; |
125 | return top[1]; |
126 | } |
127 | static uint32_t Predictor4(uint32_t left, const uint32_t* const top) { |
128 | (void)left; |
129 | return top[-1]; |
130 | } |
131 | static uint32_t Predictor5(uint32_t left, const uint32_t* const top) { |
132 | const uint32_t pred = Average3(left, top[0], top[1]); |
133 | return pred; |
134 | } |
135 | static uint32_t Predictor6(uint32_t left, const uint32_t* const top) { |
136 | const uint32_t pred = Average2(left, top[-1]); |
137 | return pred; |
138 | } |
139 | static uint32_t Predictor7(uint32_t left, const uint32_t* const top) { |
140 | const uint32_t pred = Average2(left, top[0]); |
141 | return pred; |
142 | } |
143 | static uint32_t Predictor8(uint32_t left, const uint32_t* const top) { |
144 | const uint32_t pred = Average2(top[-1], top[0]); |
145 | (void)left; |
146 | return pred; |
147 | } |
148 | static uint32_t Predictor9(uint32_t left, const uint32_t* const top) { |
149 | const uint32_t pred = Average2(top[0], top[1]); |
150 | (void)left; |
151 | return pred; |
152 | } |
153 | static uint32_t Predictor10(uint32_t left, const uint32_t* const top) { |
154 | const uint32_t pred = Average4(left, top[-1], top[0], top[1]); |
155 | return pred; |
156 | } |
157 | static uint32_t Predictor11(uint32_t left, const uint32_t* const top) { |
158 | const uint32_t pred = Select(top[0], left, top[-1]); |
159 | return pred; |
160 | } |
161 | static uint32_t Predictor12(uint32_t left, const uint32_t* const top) { |
162 | const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]); |
163 | return pred; |
164 | } |
165 | static uint32_t Predictor13(uint32_t left, const uint32_t* const top) { |
166 | const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]); |
167 | return pred; |
168 | } |
169 | |
170 | GENERATE_PREDICTOR_ADD(Predictor0, PredictorAdd0) |
171 | static void PredictorAdd1(const uint32_t* in, const uint32_t* upper, |
172 | int num_pixels, uint32_t* out) { |
173 | int i; |
174 | uint32_t left = out[-1]; |
175 | for (i = 0; i < num_pixels; ++i) { |
176 | out[i] = left = VP8LAddPixels(in[i], left); |
177 | } |
178 | (void)upper; |
179 | } |
180 | GENERATE_PREDICTOR_ADD(Predictor2, PredictorAdd2) |
181 | GENERATE_PREDICTOR_ADD(Predictor3, PredictorAdd3) |
182 | GENERATE_PREDICTOR_ADD(Predictor4, PredictorAdd4) |
183 | GENERATE_PREDICTOR_ADD(Predictor5, PredictorAdd5) |
184 | GENERATE_PREDICTOR_ADD(Predictor6, PredictorAdd6) |
185 | GENERATE_PREDICTOR_ADD(Predictor7, PredictorAdd7) |
186 | GENERATE_PREDICTOR_ADD(Predictor8, PredictorAdd8) |
187 | GENERATE_PREDICTOR_ADD(Predictor9, PredictorAdd9) |
188 | GENERATE_PREDICTOR_ADD(Predictor10, PredictorAdd10) |
189 | GENERATE_PREDICTOR_ADD(Predictor11, PredictorAdd11) |
190 | GENERATE_PREDICTOR_ADD(Predictor12, PredictorAdd12) |
191 | GENERATE_PREDICTOR_ADD(Predictor13, PredictorAdd13) |
192 | |
193 | //------------------------------------------------------------------------------ |
194 | |
195 | // Inverse prediction. |
196 | static void PredictorInverseTransform(const VP8LTransform* const transform, |
197 | int y_start, int y_end, |
198 | const uint32_t* in, uint32_t* out) { |
199 | const int width = transform->xsize_; |
200 | if (y_start == 0) { // First Row follows the L (mode=1) mode. |
201 | PredictorAdd0(in, NULL, 1, out); |
202 | PredictorAdd1(in + 1, NULL, width - 1, out + 1); |
203 | in += width; |
204 | out += width; |
205 | ++y_start; |
206 | } |
207 | |
208 | { |
209 | int y = y_start; |
210 | const int tile_width = 1 << transform->bits_; |
211 | const int mask = tile_width - 1; |
212 | const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); |
213 | const uint32_t* pred_mode_base = |
214 | transform->data_ + (y >> transform->bits_) * tiles_per_row; |
215 | |
216 | while (y < y_end) { |
217 | const uint32_t* pred_mode_src = pred_mode_base; |
218 | int x = 1; |
219 | // First pixel follows the T (mode=2) mode. |
220 | PredictorAdd2(in, out - width, 1, out); |
221 | // .. the rest: |
222 | while (x < width) { |
223 | const VP8LPredictorAddSubFunc pred_func = |
224 | VP8LPredictorsAdd[((*pred_mode_src++) >> 8) & 0xf]; |
225 | int x_end = (x & ~mask) + tile_width; |
226 | if (x_end > width) x_end = width; |
227 | pred_func(in + x, out + x - width, x_end - x, out + x); |
228 | x = x_end; |
229 | } |
230 | in += width; |
231 | out += width; |
232 | ++y; |
233 | if ((y & mask) == 0) { // Use the same mask, since tiles are squares. |
234 | pred_mode_base += tiles_per_row; |
235 | } |
236 | } |
237 | } |
238 | } |
239 | |
240 | // Add green to blue and red channels (i.e. perform the inverse transform of |
241 | // 'subtract green'). |
242 | void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels, |
243 | uint32_t* dst) { |
244 | int i; |
245 | for (i = 0; i < num_pixels; ++i) { |
246 | const uint32_t argb = src[i]; |
247 | const uint32_t green = ((argb >> 8) & 0xff); |
248 | uint32_t red_blue = (argb & 0x00ff00ffu); |
249 | red_blue += (green << 16) | green; |
250 | red_blue &= 0x00ff00ffu; |
251 | dst[i] = (argb & 0xff00ff00u) | red_blue; |
252 | } |
253 | } |
254 | |
255 | static WEBP_INLINE int ColorTransformDelta(int8_t color_pred, |
256 | int8_t color) { |
257 | return ((int)color_pred * color) >> 5; |
258 | } |
259 | |
260 | static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, |
261 | VP8LMultipliers* const m) { |
262 | m->green_to_red_ = (color_code >> 0) & 0xff; |
263 | m->green_to_blue_ = (color_code >> 8) & 0xff; |
264 | m->red_to_blue_ = (color_code >> 16) & 0xff; |
265 | } |
266 | |
267 | void VP8LTransformColorInverse_C(const VP8LMultipliers* const m, |
268 | const uint32_t* src, int num_pixels, |
269 | uint32_t* dst) { |
270 | int i; |
271 | for (i = 0; i < num_pixels; ++i) { |
272 | const uint32_t argb = src[i]; |
273 | const uint32_t green = argb >> 8; |
274 | const uint32_t red = argb >> 16; |
275 | int new_red = red; |
276 | int new_blue = argb; |
277 | new_red += ColorTransformDelta(m->green_to_red_, green); |
278 | new_red &= 0xff; |
279 | new_blue += ColorTransformDelta(m->green_to_blue_, green); |
280 | new_blue += ColorTransformDelta(m->red_to_blue_, new_red); |
281 | new_blue &= 0xff; |
282 | dst[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue); |
283 | } |
284 | } |
285 | |
286 | // Color space inverse transform. |
287 | static void ColorSpaceInverseTransform(const VP8LTransform* const transform, |
288 | int y_start, int y_end, |
289 | const uint32_t* src, uint32_t* dst) { |
290 | const int width = transform->xsize_; |
291 | const int tile_width = 1 << transform->bits_; |
292 | const int mask = tile_width - 1; |
293 | const int safe_width = width & ~mask; |
294 | const int remaining_width = width - safe_width; |
295 | const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); |
296 | int y = y_start; |
297 | const uint32_t* pred_row = |
298 | transform->data_ + (y >> transform->bits_) * tiles_per_row; |
299 | |
300 | while (y < y_end) { |
301 | const uint32_t* pred = pred_row; |
302 | VP8LMultipliers m = { 0, 0, 0 }; |
303 | const uint32_t* const src_safe_end = src + safe_width; |
304 | const uint32_t* const src_end = src + width; |
305 | while (src < src_safe_end) { |
306 | ColorCodeToMultipliers(*pred++, &m); |
307 | VP8LTransformColorInverse(&m, src, tile_width, dst); |
308 | src += tile_width; |
309 | dst += tile_width; |
310 | } |
311 | if (src < src_end) { // Left-overs using C-version. |
312 | ColorCodeToMultipliers(*pred++, &m); |
313 | VP8LTransformColorInverse(&m, src, remaining_width, dst); |
314 | src += remaining_width; |
315 | dst += remaining_width; |
316 | } |
317 | ++y; |
318 | if ((y & mask) == 0) pred_row += tiles_per_row; |
319 | } |
320 | } |
321 | |
322 | // Separate out pixels packed together using pixel-bundling. |
323 | // We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t). |
324 | #define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX, \ |
325 | GET_INDEX, GET_VALUE) \ |
326 | static void F_NAME(const TYPE* src, const uint32_t* const color_map, \ |
327 | TYPE* dst, int y_start, int y_end, int width) { \ |
328 | int y; \ |
329 | for (y = y_start; y < y_end; ++y) { \ |
330 | int x; \ |
331 | for (x = 0; x < width; ++x) { \ |
332 | *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \ |
333 | } \ |
334 | } \ |
335 | } \ |
336 | STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform, \ |
337 | int y_start, int y_end, const TYPE* src, \ |
338 | TYPE* dst) { \ |
339 | int y; \ |
340 | const int bits_per_pixel = 8 >> transform->bits_; \ |
341 | const int width = transform->xsize_; \ |
342 | const uint32_t* const color_map = transform->data_; \ |
343 | if (bits_per_pixel < 8) { \ |
344 | const int pixels_per_byte = 1 << transform->bits_; \ |
345 | const int count_mask = pixels_per_byte - 1; \ |
346 | const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \ |
347 | for (y = y_start; y < y_end; ++y) { \ |
348 | uint32_t packed_pixels = 0; \ |
349 | int x; \ |
350 | for (x = 0; x < width; ++x) { \ |
351 | /* We need to load fresh 'packed_pixels' once every */ \ |
352 | /* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \ |
353 | /* is a power of 2, so can just use a mask for that, instead of */ \ |
354 | /* decrementing a counter. */ \ |
355 | if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \ |
356 | *dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \ |
357 | packed_pixels >>= bits_per_pixel; \ |
358 | } \ |
359 | } \ |
360 | } else { \ |
361 | VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width); \ |
362 | } \ |
363 | } |
364 | |
365 | COLOR_INDEX_INVERSE(ColorIndexInverseTransform, MapARGB, static, uint32_t, 32b, |
366 | VP8GetARGBIndex, VP8GetARGBValue) |
367 | COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha, , uint8_t, |
368 | 8b, VP8GetAlphaIndex, VP8GetAlphaValue) |
369 | |
370 | #undef COLOR_INDEX_INVERSE |
371 | |
372 | void VP8LInverseTransform(const VP8LTransform* const transform, |
373 | int row_start, int row_end, |
374 | const uint32_t* const in, uint32_t* const out) { |
375 | const int width = transform->xsize_; |
376 | assert(row_start < row_end); |
377 | assert(row_end <= transform->ysize_); |
378 | switch (transform->type_) { |
379 | case SUBTRACT_GREEN: |
380 | VP8LAddGreenToBlueAndRed(in, (row_end - row_start) * width, out); |
381 | break; |
382 | case PREDICTOR_TRANSFORM: |
383 | PredictorInverseTransform(transform, row_start, row_end, in, out); |
384 | if (row_end != transform->ysize_) { |
385 | // The last predicted row in this iteration will be the top-pred row |
386 | // for the first row in next iteration. |
387 | memcpy(out - width, out + (row_end - row_start - 1) * width, |
388 | width * sizeof(*out)); |
389 | } |
390 | break; |
391 | case CROSS_COLOR_TRANSFORM: |
392 | ColorSpaceInverseTransform(transform, row_start, row_end, in, out); |
393 | break; |
394 | case COLOR_INDEXING_TRANSFORM: |
395 | if (in == out && transform->bits_ > 0) { |
396 | // Move packed pixels to the end of unpacked region, so that unpacking |
397 | // can occur seamlessly. |
398 | // Also, note that this is the only transform that applies on |
399 | // the effective width of VP8LSubSampleSize(xsize_, bits_). All other |
400 | // transforms work on effective width of xsize_. |
401 | const int out_stride = (row_end - row_start) * width; |
402 | const int in_stride = (row_end - row_start) * |
403 | VP8LSubSampleSize(transform->xsize_, transform->bits_); |
404 | uint32_t* const src = out + out_stride - in_stride; |
405 | memmove(src, out, in_stride * sizeof(*src)); |
406 | ColorIndexInverseTransform(transform, row_start, row_end, src, out); |
407 | } else { |
408 | ColorIndexInverseTransform(transform, row_start, row_end, in, out); |
409 | } |
410 | break; |
411 | } |
412 | } |
413 | |
414 | //------------------------------------------------------------------------------ |
415 | // Color space conversion. |
416 | |
417 | static int is_big_endian(void) { |
418 | static const union { |
419 | uint16_t w; |
420 | uint8_t b[2]; |
421 | } tmp = { 1 }; |
422 | return (tmp.b[0] != 1); |
423 | } |
424 | |
425 | void VP8LConvertBGRAToRGB_C(const uint32_t* src, |
426 | int num_pixels, uint8_t* dst) { |
427 | const uint32_t* const src_end = src + num_pixels; |
428 | while (src < src_end) { |
429 | const uint32_t argb = *src++; |
430 | *dst++ = (argb >> 16) & 0xff; |
431 | *dst++ = (argb >> 8) & 0xff; |
432 | *dst++ = (argb >> 0) & 0xff; |
433 | } |
434 | } |
435 | |
436 | void VP8LConvertBGRAToRGBA_C(const uint32_t* src, |
437 | int num_pixels, uint8_t* dst) { |
438 | const uint32_t* const src_end = src + num_pixels; |
439 | while (src < src_end) { |
440 | const uint32_t argb = *src++; |
441 | *dst++ = (argb >> 16) & 0xff; |
442 | *dst++ = (argb >> 8) & 0xff; |
443 | *dst++ = (argb >> 0) & 0xff; |
444 | *dst++ = (argb >> 24) & 0xff; |
445 | } |
446 | } |
447 | |
448 | void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src, |
449 | int num_pixels, uint8_t* dst) { |
450 | const uint32_t* const src_end = src + num_pixels; |
451 | while (src < src_end) { |
452 | const uint32_t argb = *src++; |
453 | const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf); |
454 | const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf); |
455 | #ifdef WEBP_SWAP_16BIT_CSP |
456 | *dst++ = ba; |
457 | *dst++ = rg; |
458 | #else |
459 | *dst++ = rg; |
460 | *dst++ = ba; |
461 | #endif |
462 | } |
463 | } |
464 | |
465 | void VP8LConvertBGRAToRGB565_C(const uint32_t* src, |
466 | int num_pixels, uint8_t* dst) { |
467 | const uint32_t* const src_end = src + num_pixels; |
468 | while (src < src_end) { |
469 | const uint32_t argb = *src++; |
470 | const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7); |
471 | const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f); |
472 | #ifdef WEBP_SWAP_16BIT_CSP |
473 | *dst++ = gb; |
474 | *dst++ = rg; |
475 | #else |
476 | *dst++ = rg; |
477 | *dst++ = gb; |
478 | #endif |
479 | } |
480 | } |
481 | |
482 | void VP8LConvertBGRAToBGR_C(const uint32_t* src, |
483 | int num_pixels, uint8_t* dst) { |
484 | const uint32_t* const src_end = src + num_pixels; |
485 | while (src < src_end) { |
486 | const uint32_t argb = *src++; |
487 | *dst++ = (argb >> 0) & 0xff; |
488 | *dst++ = (argb >> 8) & 0xff; |
489 | *dst++ = (argb >> 16) & 0xff; |
490 | } |
491 | } |
492 | |
493 | static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst, |
494 | int swap_on_big_endian) { |
495 | if (is_big_endian() == swap_on_big_endian) { |
496 | const uint32_t* const src_end = src + num_pixels; |
497 | while (src < src_end) { |
498 | const uint32_t argb = *src++; |
499 | |
500 | #if !defined(WORDS_BIGENDIAN) |
501 | #if !defined(WEBP_REFERENCE_IMPLEMENTATION) |
502 | WebPUint32ToMem(dst, BSwap32(argb)); |
503 | #else // WEBP_REFERENCE_IMPLEMENTATION |
504 | dst[0] = (argb >> 24) & 0xff; |
505 | dst[1] = (argb >> 16) & 0xff; |
506 | dst[2] = (argb >> 8) & 0xff; |
507 | dst[3] = (argb >> 0) & 0xff; |
508 | #endif |
509 | #else // WORDS_BIGENDIAN |
510 | dst[0] = (argb >> 0) & 0xff; |
511 | dst[1] = (argb >> 8) & 0xff; |
512 | dst[2] = (argb >> 16) & 0xff; |
513 | dst[3] = (argb >> 24) & 0xff; |
514 | #endif |
515 | dst += sizeof(argb); |
516 | } |
517 | } else { |
518 | memcpy(dst, src, num_pixels * sizeof(*src)); |
519 | } |
520 | } |
521 | |
522 | void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels, |
523 | WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) { |
524 | switch (out_colorspace) { |
525 | case MODE_RGB: |
526 | VP8LConvertBGRAToRGB(in_data, num_pixels, rgba); |
527 | break; |
528 | case MODE_RGBA: |
529 | VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); |
530 | break; |
531 | case MODE_rgbA: |
532 | VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); |
533 | WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); |
534 | break; |
535 | case MODE_BGR: |
536 | VP8LConvertBGRAToBGR(in_data, num_pixels, rgba); |
537 | break; |
538 | case MODE_BGRA: |
539 | CopyOrSwap(in_data, num_pixels, rgba, 1); |
540 | break; |
541 | case MODE_bgrA: |
542 | CopyOrSwap(in_data, num_pixels, rgba, 1); |
543 | WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); |
544 | break; |
545 | case MODE_ARGB: |
546 | CopyOrSwap(in_data, num_pixels, rgba, 0); |
547 | break; |
548 | case MODE_Argb: |
549 | CopyOrSwap(in_data, num_pixels, rgba, 0); |
550 | WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0); |
551 | break; |
552 | case MODE_RGBA_4444: |
553 | VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); |
554 | break; |
555 | case MODE_rgbA_4444: |
556 | VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); |
557 | WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0); |
558 | break; |
559 | case MODE_RGB_565: |
560 | VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba); |
561 | break; |
562 | default: |
563 | assert(0); // Code flow should not reach here. |
564 | } |
565 | } |
566 | |
567 | //------------------------------------------------------------------------------ |
568 | |
569 | VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed; |
570 | VP8LPredictorAddSubFunc VP8LPredictorsAdd[16]; |
571 | VP8LPredictorFunc VP8LPredictors[16]; |
572 | |
573 | // exposed plain-C implementations |
574 | VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16]; |
575 | VP8LPredictorFunc VP8LPredictors_C[16]; |
576 | |
577 | VP8LTransformColorInverseFunc VP8LTransformColorInverse; |
578 | |
579 | VP8LConvertFunc VP8LConvertBGRAToRGB; |
580 | VP8LConvertFunc VP8LConvertBGRAToRGBA; |
581 | VP8LConvertFunc VP8LConvertBGRAToRGBA4444; |
582 | VP8LConvertFunc VP8LConvertBGRAToRGB565; |
583 | VP8LConvertFunc VP8LConvertBGRAToBGR; |
584 | |
585 | VP8LMapARGBFunc VP8LMapColor32b; |
586 | VP8LMapAlphaFunc VP8LMapColor8b; |
587 | |
588 | extern void VP8LDspInitSSE2(void); |
589 | extern void VP8LDspInitNEON(void); |
590 | extern void VP8LDspInitMIPSdspR2(void); |
591 | extern void VP8LDspInitMSA(void); |
592 | |
593 | static volatile VP8CPUInfo lossless_last_cpuinfo_used = |
594 | (VP8CPUInfo)&lossless_last_cpuinfo_used; |
595 | |
596 | #define COPY_PREDICTOR_ARRAY(IN, OUT) do { \ |
597 | (OUT)[0] = IN##0; \ |
598 | (OUT)[1] = IN##1; \ |
599 | (OUT)[2] = IN##2; \ |
600 | (OUT)[3] = IN##3; \ |
601 | (OUT)[4] = IN##4; \ |
602 | (OUT)[5] = IN##5; \ |
603 | (OUT)[6] = IN##6; \ |
604 | (OUT)[7] = IN##7; \ |
605 | (OUT)[8] = IN##8; \ |
606 | (OUT)[9] = IN##9; \ |
607 | (OUT)[10] = IN##10; \ |
608 | (OUT)[11] = IN##11; \ |
609 | (OUT)[12] = IN##12; \ |
610 | (OUT)[13] = IN##13; \ |
611 | (OUT)[14] = IN##0; /* <- padding security sentinels*/ \ |
612 | (OUT)[15] = IN##0; \ |
613 | } while (0); |
614 | |
615 | WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInit(void) { |
616 | if (lossless_last_cpuinfo_used == VP8GetCPUInfo) return; |
617 | |
618 | COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors) |
619 | COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors_C) |
620 | COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd) |
621 | COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd_C) |
622 | |
623 | VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C; |
624 | |
625 | VP8LTransformColorInverse = VP8LTransformColorInverse_C; |
626 | |
627 | VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C; |
628 | VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C; |
629 | VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C; |
630 | VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C; |
631 | VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C; |
632 | |
633 | VP8LMapColor32b = MapARGB; |
634 | VP8LMapColor8b = MapAlpha; |
635 | |
636 | // If defined, use CPUInfo() to overwrite some pointers with faster versions. |
637 | if (VP8GetCPUInfo != NULL) { |
638 | #if defined(WEBP_USE_SSE2) |
639 | if (VP8GetCPUInfo(kSSE2)) { |
640 | VP8LDspInitSSE2(); |
641 | } |
642 | #endif |
643 | #if defined(WEBP_USE_NEON) |
644 | if (VP8GetCPUInfo(kNEON)) { |
645 | VP8LDspInitNEON(); |
646 | } |
647 | #endif |
648 | #if defined(WEBP_USE_MIPS_DSP_R2) |
649 | if (VP8GetCPUInfo(kMIPSdspR2)) { |
650 | VP8LDspInitMIPSdspR2(); |
651 | } |
652 | #endif |
653 | #if defined(WEBP_USE_MSA) |
654 | if (VP8GetCPUInfo(kMSA)) { |
655 | VP8LDspInitMSA(); |
656 | } |
657 | #endif |
658 | } |
659 | lossless_last_cpuinfo_used = VP8GetCPUInfo; |
660 | } |
661 | #undef COPY_PREDICTOR_ARRAY |
662 | |
663 | //------------------------------------------------------------------------------ |
664 | |