| 1 | // Copyright 2015 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // SSE2 variant of methods for lossless encoder |
| 11 | // |
| 12 | // Author: Skal (pascal.massimino@gmail.com) |
| 13 | |
| 14 | #include "./dsp.h" |
| 15 | |
| 16 | #if defined(WEBP_USE_SSE2) |
| 17 | #include <assert.h> |
| 18 | #include <emmintrin.h> |
| 19 | #include "./lossless.h" |
| 20 | #include "./common_sse2.h" |
| 21 | #include "./lossless_common.h" |
| 22 | |
| 23 | // For sign-extended multiplying constants, pre-shifted by 5: |
| 24 | #define CST_5b(X) (((int16_t)((uint16_t)X << 8)) >> 5) |
| 25 | |
| 26 | //------------------------------------------------------------------------------ |
| 27 | // Subtract-Green Transform |
| 28 | |
| 29 | static void SubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixels) { |
| 30 | int i; |
| 31 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 32 | const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb |
| 33 | const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g |
| 34 | const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); |
| 35 | const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g |
| 36 | const __m128i out = _mm_sub_epi8(in, C); |
| 37 | _mm_storeu_si128((__m128i*)&argb_data[i], out); |
| 38 | } |
| 39 | // fallthrough and finish off with plain-C |
| 40 | if (i != num_pixels) { |
| 41 | VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i); |
| 42 | } |
| 43 | } |
| 44 | |
| 45 | //------------------------------------------------------------------------------ |
| 46 | // Color Transform |
| 47 | |
| 48 | static void TransformColor(const VP8LMultipliers* const m, |
| 49 | uint32_t* argb_data, int num_pixels) { |
| 50 | const __m128i mults_rb = _mm_set_epi16( |
| 51 | CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_), |
| 52 | CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_), |
| 53 | CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_), |
| 54 | CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_)); |
| 55 | const __m128i mults_b2 = _mm_set_epi16( |
| 56 | CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0, |
| 57 | CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0); |
| 58 | const __m128i mask_ag = _mm_set1_epi32(0xff00ff00); // alpha-green masks |
| 59 | const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff); // red-blue masks |
| 60 | int i; |
| 61 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 62 | const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb |
| 63 | const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0 |
| 64 | const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); |
| 65 | const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0 |
| 66 | const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1 |
| 67 | const __m128i E = _mm_slli_epi16(in, 8); // r 0 b 0 |
| 68 | const __m128i F = _mm_mulhi_epi16(E, mults_b2); // x db2 0 0 |
| 69 | const __m128i G = _mm_srli_epi32(F, 16); // 0 0 x db2 |
| 70 | const __m128i H = _mm_add_epi8(G, D); // x dr x db |
| 71 | const __m128i I = _mm_and_si128(H, mask_rb); // 0 dr 0 db |
| 72 | const __m128i out = _mm_sub_epi8(in, I); |
| 73 | _mm_storeu_si128((__m128i*)&argb_data[i], out); |
| 74 | } |
| 75 | // fallthrough and finish off with plain-C |
| 76 | if (i != num_pixels) { |
| 77 | VP8LTransformColor_C(m, argb_data + i, num_pixels - i); |
| 78 | } |
| 79 | } |
| 80 | |
| 81 | //------------------------------------------------------------------------------ |
| 82 | #define SPAN 8 |
| 83 | static void CollectColorBlueTransforms(const uint32_t* argb, int stride, |
| 84 | int tile_width, int tile_height, |
| 85 | int green_to_blue, int red_to_blue, |
| 86 | int histo[]) { |
| 87 | const __m128i mults_r = _mm_set_epi16( |
| 88 | CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0, |
| 89 | CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0); |
| 90 | const __m128i mults_g = _mm_set_epi16( |
| 91 | 0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue), |
| 92 | 0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue)); |
| 93 | const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask |
| 94 | const __m128i mask_b = _mm_set1_epi32(0x0000ff); // blue mask |
| 95 | int y; |
| 96 | for (y = 0; y < tile_height; ++y) { |
| 97 | const uint32_t* const src = argb + y * stride; |
| 98 | int i, x; |
| 99 | for (x = 0; x + SPAN <= tile_width; x += SPAN) { |
| 100 | uint16_t values[SPAN]; |
| 101 | const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]); |
| 102 | const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]); |
| 103 | const __m128i A0 = _mm_slli_epi16(in0, 8); // r 0 | b 0 |
| 104 | const __m128i A1 = _mm_slli_epi16(in1, 8); |
| 105 | const __m128i B0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0 |
| 106 | const __m128i B1 = _mm_and_si128(in1, mask_g); |
| 107 | const __m128i C0 = _mm_mulhi_epi16(A0, mults_r); // x db | 0 0 |
| 108 | const __m128i C1 = _mm_mulhi_epi16(A1, mults_r); |
| 109 | const __m128i D0 = _mm_mulhi_epi16(B0, mults_g); // 0 0 | x db |
| 110 | const __m128i D1 = _mm_mulhi_epi16(B1, mults_g); |
| 111 | const __m128i E0 = _mm_sub_epi8(in0, D0); // x x | x b' |
| 112 | const __m128i E1 = _mm_sub_epi8(in1, D1); |
| 113 | const __m128i F0 = _mm_srli_epi32(C0, 16); // 0 0 | x db |
| 114 | const __m128i F1 = _mm_srli_epi32(C1, 16); |
| 115 | const __m128i G0 = _mm_sub_epi8(E0, F0); // 0 0 | x b' |
| 116 | const __m128i G1 = _mm_sub_epi8(E1, F1); |
| 117 | const __m128i H0 = _mm_and_si128(G0, mask_b); // 0 0 | 0 b |
| 118 | const __m128i H1 = _mm_and_si128(G1, mask_b); |
| 119 | const __m128i I = _mm_packs_epi32(H0, H1); // 0 b' | 0 b' |
| 120 | _mm_storeu_si128((__m128i*)values, I); |
| 121 | for (i = 0; i < SPAN; ++i) ++histo[values[i]]; |
| 122 | } |
| 123 | } |
| 124 | { |
| 125 | const int left_over = tile_width & (SPAN - 1); |
| 126 | if (left_over > 0) { |
| 127 | VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride, |
| 128 | left_over, tile_height, |
| 129 | green_to_blue, red_to_blue, histo); |
| 130 | } |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | static void CollectColorRedTransforms(const uint32_t* argb, int stride, |
| 135 | int tile_width, int tile_height, |
| 136 | int green_to_red, int histo[]) { |
| 137 | const __m128i mults_g = _mm_set_epi16( |
| 138 | 0, CST_5b(green_to_red), 0, CST_5b(green_to_red), |
| 139 | 0, CST_5b(green_to_red), 0, CST_5b(green_to_red)); |
| 140 | const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask |
| 141 | const __m128i mask = _mm_set1_epi32(0xff); |
| 142 | |
| 143 | int y; |
| 144 | for (y = 0; y < tile_height; ++y) { |
| 145 | const uint32_t* const src = argb + y * stride; |
| 146 | int i, x; |
| 147 | for (x = 0; x + SPAN <= tile_width; x += SPAN) { |
| 148 | uint16_t values[SPAN]; |
| 149 | const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]); |
| 150 | const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]); |
| 151 | const __m128i A0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0 |
| 152 | const __m128i A1 = _mm_and_si128(in1, mask_g); |
| 153 | const __m128i B0 = _mm_srli_epi32(in0, 16); // 0 0 | x r |
| 154 | const __m128i B1 = _mm_srli_epi32(in1, 16); |
| 155 | const __m128i C0 = _mm_mulhi_epi16(A0, mults_g); // 0 0 | x dr |
| 156 | const __m128i C1 = _mm_mulhi_epi16(A1, mults_g); |
| 157 | const __m128i E0 = _mm_sub_epi8(B0, C0); // x x | x r' |
| 158 | const __m128i E1 = _mm_sub_epi8(B1, C1); |
| 159 | const __m128i F0 = _mm_and_si128(E0, mask); // 0 0 | 0 r' |
| 160 | const __m128i F1 = _mm_and_si128(E1, mask); |
| 161 | const __m128i I = _mm_packs_epi32(F0, F1); |
| 162 | _mm_storeu_si128((__m128i*)values, I); |
| 163 | for (i = 0; i < SPAN; ++i) ++histo[values[i]]; |
| 164 | } |
| 165 | } |
| 166 | { |
| 167 | const int left_over = tile_width & (SPAN - 1); |
| 168 | if (left_over > 0) { |
| 169 | VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride, |
| 170 | left_over, tile_height, |
| 171 | green_to_red, histo); |
| 172 | } |
| 173 | } |
| 174 | } |
| 175 | #undef SPAN |
| 176 | |
| 177 | //------------------------------------------------------------------------------ |
| 178 | |
| 179 | #define LINE_SIZE 16 // 8 or 16 |
| 180 | static void AddVector(const uint32_t* a, const uint32_t* b, uint32_t* out, |
| 181 | int size) { |
| 182 | int i; |
| 183 | assert(size % LINE_SIZE == 0); |
| 184 | for (i = 0; i < size; i += LINE_SIZE) { |
| 185 | const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]); |
| 186 | const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]); |
| 187 | #if (LINE_SIZE == 16) |
| 188 | const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]); |
| 189 | const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]); |
| 190 | #endif |
| 191 | const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i + 0]); |
| 192 | const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i + 4]); |
| 193 | #if (LINE_SIZE == 16) |
| 194 | const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i + 8]); |
| 195 | const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]); |
| 196 | #endif |
| 197 | _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0)); |
| 198 | _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1)); |
| 199 | #if (LINE_SIZE == 16) |
| 200 | _mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2)); |
| 201 | _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3)); |
| 202 | #endif |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | static void AddVectorEq(const uint32_t* a, uint32_t* out, int size) { |
| 207 | int i; |
| 208 | assert(size % LINE_SIZE == 0); |
| 209 | for (i = 0; i < size; i += LINE_SIZE) { |
| 210 | const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]); |
| 211 | const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]); |
| 212 | #if (LINE_SIZE == 16) |
| 213 | const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]); |
| 214 | const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]); |
| 215 | #endif |
| 216 | const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i + 0]); |
| 217 | const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i + 4]); |
| 218 | #if (LINE_SIZE == 16) |
| 219 | const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i + 8]); |
| 220 | const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]); |
| 221 | #endif |
| 222 | _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0)); |
| 223 | _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1)); |
| 224 | #if (LINE_SIZE == 16) |
| 225 | _mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2)); |
| 226 | _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3)); |
| 227 | #endif |
| 228 | } |
| 229 | } |
| 230 | #undef LINE_SIZE |
| 231 | |
| 232 | // Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But |
| 233 | // that's ok since the histogram values are less than 1<<28 (max picture size). |
| 234 | static void HistogramAdd(const VP8LHistogram* const a, |
| 235 | const VP8LHistogram* const b, |
| 236 | VP8LHistogram* const out) { |
| 237 | int i; |
| 238 | const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_); |
| 239 | assert(a->palette_code_bits_ == b->palette_code_bits_); |
| 240 | if (b != out) { |
| 241 | AddVector(a->literal_, b->literal_, out->literal_, NUM_LITERAL_CODES); |
| 242 | AddVector(a->red_, b->red_, out->red_, NUM_LITERAL_CODES); |
| 243 | AddVector(a->blue_, b->blue_, out->blue_, NUM_LITERAL_CODES); |
| 244 | AddVector(a->alpha_, b->alpha_, out->alpha_, NUM_LITERAL_CODES); |
| 245 | } else { |
| 246 | AddVectorEq(a->literal_, out->literal_, NUM_LITERAL_CODES); |
| 247 | AddVectorEq(a->red_, out->red_, NUM_LITERAL_CODES); |
| 248 | AddVectorEq(a->blue_, out->blue_, NUM_LITERAL_CODES); |
| 249 | AddVectorEq(a->alpha_, out->alpha_, NUM_LITERAL_CODES); |
| 250 | } |
| 251 | for (i = NUM_LITERAL_CODES; i < literal_size; ++i) { |
| 252 | out->literal_[i] = a->literal_[i] + b->literal_[i]; |
| 253 | } |
| 254 | for (i = 0; i < NUM_DISTANCE_CODES; ++i) { |
| 255 | out->distance_[i] = a->distance_[i] + b->distance_[i]; |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | //------------------------------------------------------------------------------ |
| 260 | // Entropy |
| 261 | |
| 262 | // Checks whether the X or Y contribution is worth computing and adding. |
| 263 | // Used in loop unrolling. |
| 264 | #define ANALYZE_X_OR_Y(x_or_y, j) \ |
| 265 | do { \ |
| 266 | if (x_or_y[i + j] != 0) retval -= VP8LFastSLog2(x_or_y[i + j]); \ |
| 267 | } while (0) |
| 268 | |
| 269 | // Checks whether the X + Y contribution is worth computing and adding. |
| 270 | // Used in loop unrolling. |
| 271 | #define ANALYZE_XY(j) \ |
| 272 | do { \ |
| 273 | if (tmp[j] != 0) { \ |
| 274 | retval -= VP8LFastSLog2(tmp[j]); \ |
| 275 | ANALYZE_X_OR_Y(X, j); \ |
| 276 | } \ |
| 277 | } while (0) |
| 278 | |
| 279 | static float CombinedShannonEntropy(const int X[256], const int Y[256]) { |
| 280 | int i; |
| 281 | double retval = 0.; |
| 282 | int sumX, sumXY; |
| 283 | int32_t tmp[4]; |
| 284 | __m128i zero = _mm_setzero_si128(); |
| 285 | // Sums up X + Y, 4 ints at a time (and will merge it at the end for sumXY). |
| 286 | __m128i sumXY_128 = zero; |
| 287 | __m128i sumX_128 = zero; |
| 288 | |
| 289 | for (i = 0; i < 256; i += 4) { |
| 290 | const __m128i x = _mm_loadu_si128((const __m128i*)(X + i)); |
| 291 | const __m128i y = _mm_loadu_si128((const __m128i*)(Y + i)); |
| 292 | |
| 293 | // Check if any X is non-zero: this actually provides a speedup as X is |
| 294 | // usually sparse. |
| 295 | if (_mm_movemask_epi8(_mm_cmpeq_epi32(x, zero)) != 0xFFFF) { |
| 296 | const __m128i xy_128 = _mm_add_epi32(x, y); |
| 297 | sumXY_128 = _mm_add_epi32(sumXY_128, xy_128); |
| 298 | |
| 299 | sumX_128 = _mm_add_epi32(sumX_128, x); |
| 300 | |
| 301 | // Analyze the different X + Y. |
| 302 | _mm_storeu_si128((__m128i*)tmp, xy_128); |
| 303 | |
| 304 | ANALYZE_XY(0); |
| 305 | ANALYZE_XY(1); |
| 306 | ANALYZE_XY(2); |
| 307 | ANALYZE_XY(3); |
| 308 | } else { |
| 309 | // X is fully 0, so only deal with Y. |
| 310 | sumXY_128 = _mm_add_epi32(sumXY_128, y); |
| 311 | |
| 312 | ANALYZE_X_OR_Y(Y, 0); |
| 313 | ANALYZE_X_OR_Y(Y, 1); |
| 314 | ANALYZE_X_OR_Y(Y, 2); |
| 315 | ANALYZE_X_OR_Y(Y, 3); |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | // Sum up sumX_128 to get sumX. |
| 320 | _mm_storeu_si128((__m128i*)tmp, sumX_128); |
| 321 | sumX = tmp[3] + tmp[2] + tmp[1] + tmp[0]; |
| 322 | |
| 323 | // Sum up sumXY_128 to get sumXY. |
| 324 | _mm_storeu_si128((__m128i*)tmp, sumXY_128); |
| 325 | sumXY = tmp[3] + tmp[2] + tmp[1] + tmp[0]; |
| 326 | |
| 327 | retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY); |
| 328 | return (float)retval; |
| 329 | } |
| 330 | #undef ANALYZE_X_OR_Y |
| 331 | #undef ANALYZE_XY |
| 332 | |
| 333 | //------------------------------------------------------------------------------ |
| 334 | |
| 335 | static int VectorMismatch(const uint32_t* const array1, |
| 336 | const uint32_t* const array2, int length) { |
| 337 | int match_len; |
| 338 | |
| 339 | if (length >= 12) { |
| 340 | __m128i A0 = _mm_loadu_si128((const __m128i*)&array1[0]); |
| 341 | __m128i A1 = _mm_loadu_si128((const __m128i*)&array2[0]); |
| 342 | match_len = 0; |
| 343 | do { |
| 344 | // Loop unrolling and early load both provide a speedup of 10% for the |
| 345 | // current function. Also, max_limit can be MAX_LENGTH=4096 at most. |
| 346 | const __m128i cmpA = _mm_cmpeq_epi32(A0, A1); |
| 347 | const __m128i B0 = |
| 348 | _mm_loadu_si128((const __m128i*)&array1[match_len + 4]); |
| 349 | const __m128i B1 = |
| 350 | _mm_loadu_si128((const __m128i*)&array2[match_len + 4]); |
| 351 | if (_mm_movemask_epi8(cmpA) != 0xffff) break; |
| 352 | match_len += 4; |
| 353 | |
| 354 | { |
| 355 | const __m128i cmpB = _mm_cmpeq_epi32(B0, B1); |
| 356 | A0 = _mm_loadu_si128((const __m128i*)&array1[match_len + 4]); |
| 357 | A1 = _mm_loadu_si128((const __m128i*)&array2[match_len + 4]); |
| 358 | if (_mm_movemask_epi8(cmpB) != 0xffff) break; |
| 359 | match_len += 4; |
| 360 | } |
| 361 | } while (match_len + 12 < length); |
| 362 | } else { |
| 363 | match_len = 0; |
| 364 | // Unroll the potential first two loops. |
| 365 | if (length >= 4 && |
| 366 | _mm_movemask_epi8(_mm_cmpeq_epi32( |
| 367 | _mm_loadu_si128((const __m128i*)&array1[0]), |
| 368 | _mm_loadu_si128((const __m128i*)&array2[0]))) == 0xffff) { |
| 369 | match_len = 4; |
| 370 | if (length >= 8 && |
| 371 | _mm_movemask_epi8(_mm_cmpeq_epi32( |
| 372 | _mm_loadu_si128((const __m128i*)&array1[4]), |
| 373 | _mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) { |
| 374 | match_len = 8; |
| 375 | } |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | while (match_len < length && array1[match_len] == array2[match_len]) { |
| 380 | ++match_len; |
| 381 | } |
| 382 | return match_len; |
| 383 | } |
| 384 | |
| 385 | // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel. |
| 386 | static void BundleColorMap_SSE2(const uint8_t* const row, int width, int xbits, |
| 387 | uint32_t* dst) { |
| 388 | int x; |
| 389 | assert(xbits >= 0); |
| 390 | assert(xbits <= 3); |
| 391 | switch (xbits) { |
| 392 | case 0: { |
| 393 | const __m128i ff = _mm_set1_epi16(0xff00); |
| 394 | const __m128i zero = _mm_setzero_si128(); |
| 395 | // Store 0xff000000 | (row[x] << 8). |
| 396 | for (x = 0; x + 16 <= width; x += 16, dst += 16) { |
| 397 | const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); |
| 398 | const __m128i in_lo = _mm_unpacklo_epi8(zero, in); |
| 399 | const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff); |
| 400 | const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff); |
| 401 | const __m128i in_hi = _mm_unpackhi_epi8(zero, in); |
| 402 | const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff); |
| 403 | const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff); |
| 404 | _mm_storeu_si128((__m128i*)&dst[0], dst0); |
| 405 | _mm_storeu_si128((__m128i*)&dst[4], dst1); |
| 406 | _mm_storeu_si128((__m128i*)&dst[8], dst2); |
| 407 | _mm_storeu_si128((__m128i*)&dst[12], dst3); |
| 408 | } |
| 409 | break; |
| 410 | } |
| 411 | case 1: { |
| 412 | const __m128i ff = _mm_set1_epi16(0xff00); |
| 413 | const __m128i mul = _mm_set1_epi16(0x110); |
| 414 | for (x = 0; x + 16 <= width; x += 16, dst += 8) { |
| 415 | // 0a0b | (where a/b are 4 bits). |
| 416 | const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); |
| 417 | const __m128i tmp = _mm_mullo_epi16(in, mul); // aba0 |
| 418 | const __m128i pack = _mm_and_si128(tmp, ff); // ab00 |
| 419 | const __m128i dst0 = _mm_unpacklo_epi16(pack, ff); |
| 420 | const __m128i dst1 = _mm_unpackhi_epi16(pack, ff); |
| 421 | _mm_storeu_si128((__m128i*)&dst[0], dst0); |
| 422 | _mm_storeu_si128((__m128i*)&dst[4], dst1); |
| 423 | } |
| 424 | break; |
| 425 | } |
| 426 | case 2: { |
| 427 | const __m128i mask_or = _mm_set1_epi32(0xff000000); |
| 428 | const __m128i mul_cst = _mm_set1_epi16(0x0104); |
| 429 | const __m128i mask_mul = _mm_set1_epi16(0x0f00); |
| 430 | for (x = 0; x + 16 <= width; x += 16, dst += 4) { |
| 431 | // 000a000b000c000d | (where a/b/c/d are 2 bits). |
| 432 | const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); |
| 433 | const __m128i mul = _mm_mullo_epi16(in, mul_cst); // 00ab00b000cd00d0 |
| 434 | const __m128i tmp = _mm_and_si128(mul, mask_mul); // 00ab000000cd0000 |
| 435 | const __m128i shift = _mm_srli_epi32(tmp, 12); // 00000000ab000000 |
| 436 | const __m128i pack = _mm_or_si128(shift, tmp); // 00000000abcd0000 |
| 437 | // Convert to 0xff00**00. |
| 438 | const __m128i res = _mm_or_si128(pack, mask_or); |
| 439 | _mm_storeu_si128((__m128i*)dst, res); |
| 440 | } |
| 441 | break; |
| 442 | } |
| 443 | default: { |
| 444 | assert(xbits == 3); |
| 445 | for (x = 0; x + 16 <= width; x += 16, dst += 2) { |
| 446 | // 0000000a00000000b... | (where a/b are 1 bit). |
| 447 | const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); |
| 448 | const __m128i shift = _mm_slli_epi64(in, 7); |
| 449 | const uint32_t move = _mm_movemask_epi8(shift); |
| 450 | dst[0] = 0xff000000 | ((move & 0xff) << 8); |
| 451 | dst[1] = 0xff000000 | (move & 0xff00); |
| 452 | } |
| 453 | break; |
| 454 | } |
| 455 | } |
| 456 | if (x != width) { |
| 457 | VP8LBundleColorMap_C(row + x, width - x, xbits, dst); |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | //------------------------------------------------------------------------------ |
| 462 | // Batch version of Predictor Transform subtraction |
| 463 | |
| 464 | static WEBP_INLINE void Average2_m128i(const __m128i* const a0, |
| 465 | const __m128i* const a1, |
| 466 | __m128i* const avg) { |
| 467 | // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) |
| 468 | const __m128i ones = _mm_set1_epi8(1); |
| 469 | const __m128i avg1 = _mm_avg_epu8(*a0, *a1); |
| 470 | const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones); |
| 471 | *avg = _mm_sub_epi8(avg1, one); |
| 472 | } |
| 473 | |
| 474 | // Predictor0: ARGB_BLACK. |
| 475 | static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper, |
| 476 | int num_pixels, uint32_t* out) { |
| 477 | int i; |
| 478 | const __m128i black = _mm_set1_epi32(ARGB_BLACK); |
| 479 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 480 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| 481 | const __m128i res = _mm_sub_epi8(src, black); |
| 482 | _mm_storeu_si128((__m128i*)&out[i], res); |
| 483 | } |
| 484 | if (i != num_pixels) { |
| 485 | VP8LPredictorsSub_C[0](in + i, upper + i, num_pixels - i, out + i); |
| 486 | } |
| 487 | } |
| 488 | |
| 489 | #define GENERATE_PREDICTOR_1(X, IN) \ |
| 490 | static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ |
| 491 | int num_pixels, uint32_t* out) { \ |
| 492 | int i; \ |
| 493 | for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
| 494 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ |
| 495 | const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN)); \ |
| 496 | const __m128i res = _mm_sub_epi8(src, pred); \ |
| 497 | _mm_storeu_si128((__m128i*)&out[i], res); \ |
| 498 | } \ |
| 499 | if (i != num_pixels) { \ |
| 500 | VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
| 501 | } \ |
| 502 | } |
| 503 | |
| 504 | GENERATE_PREDICTOR_1(1, in[i - 1]) // Predictor1: L |
| 505 | GENERATE_PREDICTOR_1(2, upper[i]) // Predictor2: T |
| 506 | GENERATE_PREDICTOR_1(3, upper[i + 1]) // Predictor3: TR |
| 507 | GENERATE_PREDICTOR_1(4, upper[i - 1]) // Predictor4: TL |
| 508 | #undef GENERATE_PREDICTOR_1 |
| 509 | |
| 510 | // Predictor5: avg2(avg2(L, TR), T) |
| 511 | static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper, |
| 512 | int num_pixels, uint32_t* out) { |
| 513 | int i; |
| 514 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 515 | const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); |
| 516 | const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
| 517 | const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); |
| 518 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| 519 | __m128i avg, pred, res; |
| 520 | Average2_m128i(&L, &TR, &avg); |
| 521 | Average2_m128i(&avg, &T, &pred); |
| 522 | res = _mm_sub_epi8(src, pred); |
| 523 | _mm_storeu_si128((__m128i*)&out[i], res); |
| 524 | } |
| 525 | if (i != num_pixels) { |
| 526 | VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i); |
| 527 | } |
| 528 | } |
| 529 | |
| 530 | #define GENERATE_PREDICTOR_2(X, A, B) \ |
| 531 | static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ |
| 532 | int num_pixels, uint32_t* out) { \ |
| 533 | int i; \ |
| 534 | for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
| 535 | const __m128i tA = _mm_loadu_si128((const __m128i*)&(A)); \ |
| 536 | const __m128i tB = _mm_loadu_si128((const __m128i*)&(B)); \ |
| 537 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ |
| 538 | __m128i pred, res; \ |
| 539 | Average2_m128i(&tA, &tB, &pred); \ |
| 540 | res = _mm_sub_epi8(src, pred); \ |
| 541 | _mm_storeu_si128((__m128i*)&out[i], res); \ |
| 542 | } \ |
| 543 | if (i != num_pixels) { \ |
| 544 | VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
| 545 | } \ |
| 546 | } |
| 547 | |
| 548 | GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1]) // Predictor6: avg(L, TL) |
| 549 | GENERATE_PREDICTOR_2(7, in[i - 1], upper[i]) // Predictor7: avg(L, T) |
| 550 | GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i]) // Predictor8: avg(TL, T) |
| 551 | GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1]) // Predictor9: average(T, TR) |
| 552 | #undef GENERATE_PREDICTOR_2 |
| 553 | |
| 554 | // Predictor10: avg(avg(L,TL), avg(T, TR)). |
| 555 | static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper, |
| 556 | int num_pixels, uint32_t* out) { |
| 557 | int i; |
| 558 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 559 | const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); |
| 560 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| 561 | const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
| 562 | const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
| 563 | const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); |
| 564 | __m128i avgTTR, avgLTL, avg, res; |
| 565 | Average2_m128i(&T, &TR, &avgTTR); |
| 566 | Average2_m128i(&L, &TL, &avgLTL); |
| 567 | Average2_m128i(&avgTTR, &avgLTL, &avg); |
| 568 | res = _mm_sub_epi8(src, avg); |
| 569 | _mm_storeu_si128((__m128i*)&out[i], res); |
| 570 | } |
| 571 | if (i != num_pixels) { |
| 572 | VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i); |
| 573 | } |
| 574 | } |
| 575 | |
| 576 | // Predictor11: select. |
| 577 | static void GetSumAbsDiff32(const __m128i* const A, const __m128i* const B, |
| 578 | __m128i* const out) { |
| 579 | // We can unpack with any value on the upper 32 bits, provided it's the same |
| 580 | // on both operands (to that their sum of abs diff is zero). Here we use *A. |
| 581 | const __m128i A_lo = _mm_unpacklo_epi32(*A, *A); |
| 582 | const __m128i B_lo = _mm_unpacklo_epi32(*B, *A); |
| 583 | const __m128i A_hi = _mm_unpackhi_epi32(*A, *A); |
| 584 | const __m128i B_hi = _mm_unpackhi_epi32(*B, *A); |
| 585 | const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo); |
| 586 | const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi); |
| 587 | *out = _mm_packs_epi32(s_lo, s_hi); |
| 588 | } |
| 589 | |
| 590 | static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper, |
| 591 | int num_pixels, uint32_t* out) { |
| 592 | int i; |
| 593 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 594 | const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); |
| 595 | const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
| 596 | const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
| 597 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| 598 | __m128i pa, pb; |
| 599 | GetSumAbsDiff32(&T, &TL, &pa); // pa = sum |T-TL| |
| 600 | GetSumAbsDiff32(&L, &TL, &pb); // pb = sum |L-TL| |
| 601 | { |
| 602 | const __m128i mask = _mm_cmpgt_epi32(pb, pa); |
| 603 | const __m128i A = _mm_and_si128(mask, L); |
| 604 | const __m128i B = _mm_andnot_si128(mask, T); |
| 605 | const __m128i pred = _mm_or_si128(A, B); // pred = (L > T)? L : T |
| 606 | const __m128i res = _mm_sub_epi8(src, pred); |
| 607 | _mm_storeu_si128((__m128i*)&out[i], res); |
| 608 | } |
| 609 | } |
| 610 | if (i != num_pixels) { |
| 611 | VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i); |
| 612 | } |
| 613 | } |
| 614 | |
| 615 | // Predictor12: ClampedSubSubtractFull. |
| 616 | static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper, |
| 617 | int num_pixels, uint32_t* out) { |
| 618 | int i; |
| 619 | const __m128i zero = _mm_setzero_si128(); |
| 620 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 621 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| 622 | const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); |
| 623 | const __m128i L_lo = _mm_unpacklo_epi8(L, zero); |
| 624 | const __m128i L_hi = _mm_unpackhi_epi8(L, zero); |
| 625 | const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
| 626 | const __m128i T_lo = _mm_unpacklo_epi8(T, zero); |
| 627 | const __m128i T_hi = _mm_unpackhi_epi8(T, zero); |
| 628 | const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
| 629 | const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); |
| 630 | const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero); |
| 631 | const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo); |
| 632 | const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi); |
| 633 | const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo); |
| 634 | const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi); |
| 635 | const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi); |
| 636 | const __m128i res = _mm_sub_epi8(src, pred); |
| 637 | _mm_storeu_si128((__m128i*)&out[i], res); |
| 638 | } |
| 639 | if (i != num_pixels) { |
| 640 | VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i); |
| 641 | } |
| 642 | } |
| 643 | |
| 644 | // Predictors13: ClampedAddSubtractHalf |
| 645 | static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper, |
| 646 | int num_pixels, uint32_t* out) { |
| 647 | int i; |
| 648 | const __m128i zero = _mm_setzero_si128(); |
| 649 | for (i = 0; i + 2 <= num_pixels; i += 2) { |
| 650 | // we can only process two pixels at a time |
| 651 | const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]); |
| 652 | const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]); |
| 653 | const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]); |
| 654 | const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]); |
| 655 | const __m128i L_lo = _mm_unpacklo_epi8(L, zero); |
| 656 | const __m128i T_lo = _mm_unpacklo_epi8(T, zero); |
| 657 | const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); |
| 658 | const __m128i sum = _mm_add_epi16(T_lo, L_lo); |
| 659 | const __m128i avg = _mm_srli_epi16(sum, 1); |
| 660 | const __m128i A1 = _mm_sub_epi16(avg, TL_lo); |
| 661 | const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg); |
| 662 | const __m128i A2 = _mm_sub_epi16(A1, bit_fix); |
| 663 | const __m128i A3 = _mm_srai_epi16(A2, 1); |
| 664 | const __m128i A4 = _mm_add_epi16(avg, A3); |
| 665 | const __m128i pred = _mm_packus_epi16(A4, A4); |
| 666 | const __m128i res = _mm_sub_epi8(src, pred); |
| 667 | _mm_storel_epi64((__m128i*)&out[i], res); |
| 668 | } |
| 669 | if (i != num_pixels) { |
| 670 | VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i); |
| 671 | } |
| 672 | } |
| 673 | |
| 674 | //------------------------------------------------------------------------------ |
| 675 | // Entry point |
| 676 | |
| 677 | extern void VP8LEncDspInitSSE2(void); |
| 678 | |
| 679 | WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) { |
| 680 | VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed; |
| 681 | VP8LTransformColor = TransformColor; |
| 682 | VP8LCollectColorBlueTransforms = CollectColorBlueTransforms; |
| 683 | VP8LCollectColorRedTransforms = CollectColorRedTransforms; |
| 684 | VP8LHistogramAdd = HistogramAdd; |
| 685 | VP8LCombinedShannonEntropy = CombinedShannonEntropy; |
| 686 | VP8LVectorMismatch = VectorMismatch; |
| 687 | VP8LBundleColorMap = BundleColorMap_SSE2; |
| 688 | |
| 689 | VP8LPredictorsSub[0] = PredictorSub0_SSE2; |
| 690 | VP8LPredictorsSub[1] = PredictorSub1_SSE2; |
| 691 | VP8LPredictorsSub[2] = PredictorSub2_SSE2; |
| 692 | VP8LPredictorsSub[3] = PredictorSub3_SSE2; |
| 693 | VP8LPredictorsSub[4] = PredictorSub4_SSE2; |
| 694 | VP8LPredictorsSub[5] = PredictorSub5_SSE2; |
| 695 | VP8LPredictorsSub[6] = PredictorSub6_SSE2; |
| 696 | VP8LPredictorsSub[7] = PredictorSub7_SSE2; |
| 697 | VP8LPredictorsSub[8] = PredictorSub8_SSE2; |
| 698 | VP8LPredictorsSub[9] = PredictorSub9_SSE2; |
| 699 | VP8LPredictorsSub[10] = PredictorSub10_SSE2; |
| 700 | VP8LPredictorsSub[11] = PredictorSub11_SSE2; |
| 701 | VP8LPredictorsSub[12] = PredictorSub12_SSE2; |
| 702 | VP8LPredictorsSub[13] = PredictorSub13_SSE2; |
| 703 | VP8LPredictorsSub[14] = PredictorSub0_SSE2; // <- padding security sentinels |
| 704 | VP8LPredictorsSub[15] = PredictorSub0_SSE2; |
| 705 | } |
| 706 | |
| 707 | #else // !WEBP_USE_SSE2 |
| 708 | |
| 709 | WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2) |
| 710 | |
| 711 | #endif // WEBP_USE_SSE2 |
| 712 | |