1 | // Copyright 2015 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // SSE2 variant of methods for lossless encoder |
11 | // |
12 | // Author: Skal (pascal.massimino@gmail.com) |
13 | |
14 | #include "./dsp.h" |
15 | |
16 | #if defined(WEBP_USE_SSE2) |
17 | #include <assert.h> |
18 | #include <emmintrin.h> |
19 | #include "./lossless.h" |
20 | #include "./common_sse2.h" |
21 | #include "./lossless_common.h" |
22 | |
23 | // For sign-extended multiplying constants, pre-shifted by 5: |
24 | #define CST_5b(X) (((int16_t)((uint16_t)X << 8)) >> 5) |
25 | |
26 | //------------------------------------------------------------------------------ |
27 | // Subtract-Green Transform |
28 | |
29 | static void SubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixels) { |
30 | int i; |
31 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
32 | const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb |
33 | const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g |
34 | const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); |
35 | const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g |
36 | const __m128i out = _mm_sub_epi8(in, C); |
37 | _mm_storeu_si128((__m128i*)&argb_data[i], out); |
38 | } |
39 | // fallthrough and finish off with plain-C |
40 | if (i != num_pixels) { |
41 | VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i); |
42 | } |
43 | } |
44 | |
45 | //------------------------------------------------------------------------------ |
46 | // Color Transform |
47 | |
48 | static void TransformColor(const VP8LMultipliers* const m, |
49 | uint32_t* argb_data, int num_pixels) { |
50 | const __m128i mults_rb = _mm_set_epi16( |
51 | CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_), |
52 | CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_), |
53 | CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_), |
54 | CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_)); |
55 | const __m128i mults_b2 = _mm_set_epi16( |
56 | CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0, |
57 | CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0); |
58 | const __m128i mask_ag = _mm_set1_epi32(0xff00ff00); // alpha-green masks |
59 | const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff); // red-blue masks |
60 | int i; |
61 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
62 | const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb |
63 | const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0 |
64 | const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); |
65 | const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0 |
66 | const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1 |
67 | const __m128i E = _mm_slli_epi16(in, 8); // r 0 b 0 |
68 | const __m128i F = _mm_mulhi_epi16(E, mults_b2); // x db2 0 0 |
69 | const __m128i G = _mm_srli_epi32(F, 16); // 0 0 x db2 |
70 | const __m128i H = _mm_add_epi8(G, D); // x dr x db |
71 | const __m128i I = _mm_and_si128(H, mask_rb); // 0 dr 0 db |
72 | const __m128i out = _mm_sub_epi8(in, I); |
73 | _mm_storeu_si128((__m128i*)&argb_data[i], out); |
74 | } |
75 | // fallthrough and finish off with plain-C |
76 | if (i != num_pixels) { |
77 | VP8LTransformColor_C(m, argb_data + i, num_pixels - i); |
78 | } |
79 | } |
80 | |
81 | //------------------------------------------------------------------------------ |
82 | #define SPAN 8 |
83 | static void CollectColorBlueTransforms(const uint32_t* argb, int stride, |
84 | int tile_width, int tile_height, |
85 | int green_to_blue, int red_to_blue, |
86 | int histo[]) { |
87 | const __m128i mults_r = _mm_set_epi16( |
88 | CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0, |
89 | CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0); |
90 | const __m128i mults_g = _mm_set_epi16( |
91 | 0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue), |
92 | 0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue)); |
93 | const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask |
94 | const __m128i mask_b = _mm_set1_epi32(0x0000ff); // blue mask |
95 | int y; |
96 | for (y = 0; y < tile_height; ++y) { |
97 | const uint32_t* const src = argb + y * stride; |
98 | int i, x; |
99 | for (x = 0; x + SPAN <= tile_width; x += SPAN) { |
100 | uint16_t values[SPAN]; |
101 | const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]); |
102 | const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]); |
103 | const __m128i A0 = _mm_slli_epi16(in0, 8); // r 0 | b 0 |
104 | const __m128i A1 = _mm_slli_epi16(in1, 8); |
105 | const __m128i B0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0 |
106 | const __m128i B1 = _mm_and_si128(in1, mask_g); |
107 | const __m128i C0 = _mm_mulhi_epi16(A0, mults_r); // x db | 0 0 |
108 | const __m128i C1 = _mm_mulhi_epi16(A1, mults_r); |
109 | const __m128i D0 = _mm_mulhi_epi16(B0, mults_g); // 0 0 | x db |
110 | const __m128i D1 = _mm_mulhi_epi16(B1, mults_g); |
111 | const __m128i E0 = _mm_sub_epi8(in0, D0); // x x | x b' |
112 | const __m128i E1 = _mm_sub_epi8(in1, D1); |
113 | const __m128i F0 = _mm_srli_epi32(C0, 16); // 0 0 | x db |
114 | const __m128i F1 = _mm_srli_epi32(C1, 16); |
115 | const __m128i G0 = _mm_sub_epi8(E0, F0); // 0 0 | x b' |
116 | const __m128i G1 = _mm_sub_epi8(E1, F1); |
117 | const __m128i H0 = _mm_and_si128(G0, mask_b); // 0 0 | 0 b |
118 | const __m128i H1 = _mm_and_si128(G1, mask_b); |
119 | const __m128i I = _mm_packs_epi32(H0, H1); // 0 b' | 0 b' |
120 | _mm_storeu_si128((__m128i*)values, I); |
121 | for (i = 0; i < SPAN; ++i) ++histo[values[i]]; |
122 | } |
123 | } |
124 | { |
125 | const int left_over = tile_width & (SPAN - 1); |
126 | if (left_over > 0) { |
127 | VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride, |
128 | left_over, tile_height, |
129 | green_to_blue, red_to_blue, histo); |
130 | } |
131 | } |
132 | } |
133 | |
134 | static void CollectColorRedTransforms(const uint32_t* argb, int stride, |
135 | int tile_width, int tile_height, |
136 | int green_to_red, int histo[]) { |
137 | const __m128i mults_g = _mm_set_epi16( |
138 | 0, CST_5b(green_to_red), 0, CST_5b(green_to_red), |
139 | 0, CST_5b(green_to_red), 0, CST_5b(green_to_red)); |
140 | const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask |
141 | const __m128i mask = _mm_set1_epi32(0xff); |
142 | |
143 | int y; |
144 | for (y = 0; y < tile_height; ++y) { |
145 | const uint32_t* const src = argb + y * stride; |
146 | int i, x; |
147 | for (x = 0; x + SPAN <= tile_width; x += SPAN) { |
148 | uint16_t values[SPAN]; |
149 | const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]); |
150 | const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]); |
151 | const __m128i A0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0 |
152 | const __m128i A1 = _mm_and_si128(in1, mask_g); |
153 | const __m128i B0 = _mm_srli_epi32(in0, 16); // 0 0 | x r |
154 | const __m128i B1 = _mm_srli_epi32(in1, 16); |
155 | const __m128i C0 = _mm_mulhi_epi16(A0, mults_g); // 0 0 | x dr |
156 | const __m128i C1 = _mm_mulhi_epi16(A1, mults_g); |
157 | const __m128i E0 = _mm_sub_epi8(B0, C0); // x x | x r' |
158 | const __m128i E1 = _mm_sub_epi8(B1, C1); |
159 | const __m128i F0 = _mm_and_si128(E0, mask); // 0 0 | 0 r' |
160 | const __m128i F1 = _mm_and_si128(E1, mask); |
161 | const __m128i I = _mm_packs_epi32(F0, F1); |
162 | _mm_storeu_si128((__m128i*)values, I); |
163 | for (i = 0; i < SPAN; ++i) ++histo[values[i]]; |
164 | } |
165 | } |
166 | { |
167 | const int left_over = tile_width & (SPAN - 1); |
168 | if (left_over > 0) { |
169 | VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride, |
170 | left_over, tile_height, |
171 | green_to_red, histo); |
172 | } |
173 | } |
174 | } |
175 | #undef SPAN |
176 | |
177 | //------------------------------------------------------------------------------ |
178 | |
179 | #define LINE_SIZE 16 // 8 or 16 |
180 | static void AddVector(const uint32_t* a, const uint32_t* b, uint32_t* out, |
181 | int size) { |
182 | int i; |
183 | assert(size % LINE_SIZE == 0); |
184 | for (i = 0; i < size; i += LINE_SIZE) { |
185 | const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]); |
186 | const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]); |
187 | #if (LINE_SIZE == 16) |
188 | const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]); |
189 | const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]); |
190 | #endif |
191 | const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i + 0]); |
192 | const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i + 4]); |
193 | #if (LINE_SIZE == 16) |
194 | const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i + 8]); |
195 | const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]); |
196 | #endif |
197 | _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0)); |
198 | _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1)); |
199 | #if (LINE_SIZE == 16) |
200 | _mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2)); |
201 | _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3)); |
202 | #endif |
203 | } |
204 | } |
205 | |
206 | static void AddVectorEq(const uint32_t* a, uint32_t* out, int size) { |
207 | int i; |
208 | assert(size % LINE_SIZE == 0); |
209 | for (i = 0; i < size; i += LINE_SIZE) { |
210 | const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]); |
211 | const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]); |
212 | #if (LINE_SIZE == 16) |
213 | const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]); |
214 | const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]); |
215 | #endif |
216 | const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i + 0]); |
217 | const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i + 4]); |
218 | #if (LINE_SIZE == 16) |
219 | const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i + 8]); |
220 | const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]); |
221 | #endif |
222 | _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0)); |
223 | _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1)); |
224 | #if (LINE_SIZE == 16) |
225 | _mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2)); |
226 | _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3)); |
227 | #endif |
228 | } |
229 | } |
230 | #undef LINE_SIZE |
231 | |
232 | // Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But |
233 | // that's ok since the histogram values are less than 1<<28 (max picture size). |
234 | static void HistogramAdd(const VP8LHistogram* const a, |
235 | const VP8LHistogram* const b, |
236 | VP8LHistogram* const out) { |
237 | int i; |
238 | const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_); |
239 | assert(a->palette_code_bits_ == b->palette_code_bits_); |
240 | if (b != out) { |
241 | AddVector(a->literal_, b->literal_, out->literal_, NUM_LITERAL_CODES); |
242 | AddVector(a->red_, b->red_, out->red_, NUM_LITERAL_CODES); |
243 | AddVector(a->blue_, b->blue_, out->blue_, NUM_LITERAL_CODES); |
244 | AddVector(a->alpha_, b->alpha_, out->alpha_, NUM_LITERAL_CODES); |
245 | } else { |
246 | AddVectorEq(a->literal_, out->literal_, NUM_LITERAL_CODES); |
247 | AddVectorEq(a->red_, out->red_, NUM_LITERAL_CODES); |
248 | AddVectorEq(a->blue_, out->blue_, NUM_LITERAL_CODES); |
249 | AddVectorEq(a->alpha_, out->alpha_, NUM_LITERAL_CODES); |
250 | } |
251 | for (i = NUM_LITERAL_CODES; i < literal_size; ++i) { |
252 | out->literal_[i] = a->literal_[i] + b->literal_[i]; |
253 | } |
254 | for (i = 0; i < NUM_DISTANCE_CODES; ++i) { |
255 | out->distance_[i] = a->distance_[i] + b->distance_[i]; |
256 | } |
257 | } |
258 | |
259 | //------------------------------------------------------------------------------ |
260 | // Entropy |
261 | |
262 | // Checks whether the X or Y contribution is worth computing and adding. |
263 | // Used in loop unrolling. |
264 | #define ANALYZE_X_OR_Y(x_or_y, j) \ |
265 | do { \ |
266 | if (x_or_y[i + j] != 0) retval -= VP8LFastSLog2(x_or_y[i + j]); \ |
267 | } while (0) |
268 | |
269 | // Checks whether the X + Y contribution is worth computing and adding. |
270 | // Used in loop unrolling. |
271 | #define ANALYZE_XY(j) \ |
272 | do { \ |
273 | if (tmp[j] != 0) { \ |
274 | retval -= VP8LFastSLog2(tmp[j]); \ |
275 | ANALYZE_X_OR_Y(X, j); \ |
276 | } \ |
277 | } while (0) |
278 | |
279 | static float CombinedShannonEntropy(const int X[256], const int Y[256]) { |
280 | int i; |
281 | double retval = 0.; |
282 | int sumX, sumXY; |
283 | int32_t tmp[4]; |
284 | __m128i zero = _mm_setzero_si128(); |
285 | // Sums up X + Y, 4 ints at a time (and will merge it at the end for sumXY). |
286 | __m128i sumXY_128 = zero; |
287 | __m128i sumX_128 = zero; |
288 | |
289 | for (i = 0; i < 256; i += 4) { |
290 | const __m128i x = _mm_loadu_si128((const __m128i*)(X + i)); |
291 | const __m128i y = _mm_loadu_si128((const __m128i*)(Y + i)); |
292 | |
293 | // Check if any X is non-zero: this actually provides a speedup as X is |
294 | // usually sparse. |
295 | if (_mm_movemask_epi8(_mm_cmpeq_epi32(x, zero)) != 0xFFFF) { |
296 | const __m128i xy_128 = _mm_add_epi32(x, y); |
297 | sumXY_128 = _mm_add_epi32(sumXY_128, xy_128); |
298 | |
299 | sumX_128 = _mm_add_epi32(sumX_128, x); |
300 | |
301 | // Analyze the different X + Y. |
302 | _mm_storeu_si128((__m128i*)tmp, xy_128); |
303 | |
304 | ANALYZE_XY(0); |
305 | ANALYZE_XY(1); |
306 | ANALYZE_XY(2); |
307 | ANALYZE_XY(3); |
308 | } else { |
309 | // X is fully 0, so only deal with Y. |
310 | sumXY_128 = _mm_add_epi32(sumXY_128, y); |
311 | |
312 | ANALYZE_X_OR_Y(Y, 0); |
313 | ANALYZE_X_OR_Y(Y, 1); |
314 | ANALYZE_X_OR_Y(Y, 2); |
315 | ANALYZE_X_OR_Y(Y, 3); |
316 | } |
317 | } |
318 | |
319 | // Sum up sumX_128 to get sumX. |
320 | _mm_storeu_si128((__m128i*)tmp, sumX_128); |
321 | sumX = tmp[3] + tmp[2] + tmp[1] + tmp[0]; |
322 | |
323 | // Sum up sumXY_128 to get sumXY. |
324 | _mm_storeu_si128((__m128i*)tmp, sumXY_128); |
325 | sumXY = tmp[3] + tmp[2] + tmp[1] + tmp[0]; |
326 | |
327 | retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY); |
328 | return (float)retval; |
329 | } |
330 | #undef ANALYZE_X_OR_Y |
331 | #undef ANALYZE_XY |
332 | |
333 | //------------------------------------------------------------------------------ |
334 | |
335 | static int VectorMismatch(const uint32_t* const array1, |
336 | const uint32_t* const array2, int length) { |
337 | int match_len; |
338 | |
339 | if (length >= 12) { |
340 | __m128i A0 = _mm_loadu_si128((const __m128i*)&array1[0]); |
341 | __m128i A1 = _mm_loadu_si128((const __m128i*)&array2[0]); |
342 | match_len = 0; |
343 | do { |
344 | // Loop unrolling and early load both provide a speedup of 10% for the |
345 | // current function. Also, max_limit can be MAX_LENGTH=4096 at most. |
346 | const __m128i cmpA = _mm_cmpeq_epi32(A0, A1); |
347 | const __m128i B0 = |
348 | _mm_loadu_si128((const __m128i*)&array1[match_len + 4]); |
349 | const __m128i B1 = |
350 | _mm_loadu_si128((const __m128i*)&array2[match_len + 4]); |
351 | if (_mm_movemask_epi8(cmpA) != 0xffff) break; |
352 | match_len += 4; |
353 | |
354 | { |
355 | const __m128i cmpB = _mm_cmpeq_epi32(B0, B1); |
356 | A0 = _mm_loadu_si128((const __m128i*)&array1[match_len + 4]); |
357 | A1 = _mm_loadu_si128((const __m128i*)&array2[match_len + 4]); |
358 | if (_mm_movemask_epi8(cmpB) != 0xffff) break; |
359 | match_len += 4; |
360 | } |
361 | } while (match_len + 12 < length); |
362 | } else { |
363 | match_len = 0; |
364 | // Unroll the potential first two loops. |
365 | if (length >= 4 && |
366 | _mm_movemask_epi8(_mm_cmpeq_epi32( |
367 | _mm_loadu_si128((const __m128i*)&array1[0]), |
368 | _mm_loadu_si128((const __m128i*)&array2[0]))) == 0xffff) { |
369 | match_len = 4; |
370 | if (length >= 8 && |
371 | _mm_movemask_epi8(_mm_cmpeq_epi32( |
372 | _mm_loadu_si128((const __m128i*)&array1[4]), |
373 | _mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) { |
374 | match_len = 8; |
375 | } |
376 | } |
377 | } |
378 | |
379 | while (match_len < length && array1[match_len] == array2[match_len]) { |
380 | ++match_len; |
381 | } |
382 | return match_len; |
383 | } |
384 | |
385 | // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel. |
386 | static void BundleColorMap_SSE2(const uint8_t* const row, int width, int xbits, |
387 | uint32_t* dst) { |
388 | int x; |
389 | assert(xbits >= 0); |
390 | assert(xbits <= 3); |
391 | switch (xbits) { |
392 | case 0: { |
393 | const __m128i ff = _mm_set1_epi16(0xff00); |
394 | const __m128i zero = _mm_setzero_si128(); |
395 | // Store 0xff000000 | (row[x] << 8). |
396 | for (x = 0; x + 16 <= width; x += 16, dst += 16) { |
397 | const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); |
398 | const __m128i in_lo = _mm_unpacklo_epi8(zero, in); |
399 | const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff); |
400 | const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff); |
401 | const __m128i in_hi = _mm_unpackhi_epi8(zero, in); |
402 | const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff); |
403 | const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff); |
404 | _mm_storeu_si128((__m128i*)&dst[0], dst0); |
405 | _mm_storeu_si128((__m128i*)&dst[4], dst1); |
406 | _mm_storeu_si128((__m128i*)&dst[8], dst2); |
407 | _mm_storeu_si128((__m128i*)&dst[12], dst3); |
408 | } |
409 | break; |
410 | } |
411 | case 1: { |
412 | const __m128i ff = _mm_set1_epi16(0xff00); |
413 | const __m128i mul = _mm_set1_epi16(0x110); |
414 | for (x = 0; x + 16 <= width; x += 16, dst += 8) { |
415 | // 0a0b | (where a/b are 4 bits). |
416 | const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); |
417 | const __m128i tmp = _mm_mullo_epi16(in, mul); // aba0 |
418 | const __m128i pack = _mm_and_si128(tmp, ff); // ab00 |
419 | const __m128i dst0 = _mm_unpacklo_epi16(pack, ff); |
420 | const __m128i dst1 = _mm_unpackhi_epi16(pack, ff); |
421 | _mm_storeu_si128((__m128i*)&dst[0], dst0); |
422 | _mm_storeu_si128((__m128i*)&dst[4], dst1); |
423 | } |
424 | break; |
425 | } |
426 | case 2: { |
427 | const __m128i mask_or = _mm_set1_epi32(0xff000000); |
428 | const __m128i mul_cst = _mm_set1_epi16(0x0104); |
429 | const __m128i mask_mul = _mm_set1_epi16(0x0f00); |
430 | for (x = 0; x + 16 <= width; x += 16, dst += 4) { |
431 | // 000a000b000c000d | (where a/b/c/d are 2 bits). |
432 | const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); |
433 | const __m128i mul = _mm_mullo_epi16(in, mul_cst); // 00ab00b000cd00d0 |
434 | const __m128i tmp = _mm_and_si128(mul, mask_mul); // 00ab000000cd0000 |
435 | const __m128i shift = _mm_srli_epi32(tmp, 12); // 00000000ab000000 |
436 | const __m128i pack = _mm_or_si128(shift, tmp); // 00000000abcd0000 |
437 | // Convert to 0xff00**00. |
438 | const __m128i res = _mm_or_si128(pack, mask_or); |
439 | _mm_storeu_si128((__m128i*)dst, res); |
440 | } |
441 | break; |
442 | } |
443 | default: { |
444 | assert(xbits == 3); |
445 | for (x = 0; x + 16 <= width; x += 16, dst += 2) { |
446 | // 0000000a00000000b... | (where a/b are 1 bit). |
447 | const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); |
448 | const __m128i shift = _mm_slli_epi64(in, 7); |
449 | const uint32_t move = _mm_movemask_epi8(shift); |
450 | dst[0] = 0xff000000 | ((move & 0xff) << 8); |
451 | dst[1] = 0xff000000 | (move & 0xff00); |
452 | } |
453 | break; |
454 | } |
455 | } |
456 | if (x != width) { |
457 | VP8LBundleColorMap_C(row + x, width - x, xbits, dst); |
458 | } |
459 | } |
460 | |
461 | //------------------------------------------------------------------------------ |
462 | // Batch version of Predictor Transform subtraction |
463 | |
464 | static WEBP_INLINE void Average2_m128i(const __m128i* const a0, |
465 | const __m128i* const a1, |
466 | __m128i* const avg) { |
467 | // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) |
468 | const __m128i ones = _mm_set1_epi8(1); |
469 | const __m128i avg1 = _mm_avg_epu8(*a0, *a1); |
470 | const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones); |
471 | *avg = _mm_sub_epi8(avg1, one); |
472 | } |
473 | |
474 | // Predictor0: ARGB_BLACK. |
475 | static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper, |
476 | int num_pixels, uint32_t* out) { |
477 | int i; |
478 | const __m128i black = _mm_set1_epi32(ARGB_BLACK); |
479 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
480 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
481 | const __m128i res = _mm_sub_epi8(src, black); |
482 | _mm_storeu_si128((__m128i*)&out[i], res); |
483 | } |
484 | if (i != num_pixels) { |
485 | VP8LPredictorsSub_C[0](in + i, upper + i, num_pixels - i, out + i); |
486 | } |
487 | } |
488 | |
489 | #define GENERATE_PREDICTOR_1(X, IN) \ |
490 | static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ |
491 | int num_pixels, uint32_t* out) { \ |
492 | int i; \ |
493 | for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
494 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ |
495 | const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN)); \ |
496 | const __m128i res = _mm_sub_epi8(src, pred); \ |
497 | _mm_storeu_si128((__m128i*)&out[i], res); \ |
498 | } \ |
499 | if (i != num_pixels) { \ |
500 | VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
501 | } \ |
502 | } |
503 | |
504 | GENERATE_PREDICTOR_1(1, in[i - 1]) // Predictor1: L |
505 | GENERATE_PREDICTOR_1(2, upper[i]) // Predictor2: T |
506 | GENERATE_PREDICTOR_1(3, upper[i + 1]) // Predictor3: TR |
507 | GENERATE_PREDICTOR_1(4, upper[i - 1]) // Predictor4: TL |
508 | #undef GENERATE_PREDICTOR_1 |
509 | |
510 | // Predictor5: avg2(avg2(L, TR), T) |
511 | static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper, |
512 | int num_pixels, uint32_t* out) { |
513 | int i; |
514 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
515 | const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); |
516 | const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
517 | const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); |
518 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
519 | __m128i avg, pred, res; |
520 | Average2_m128i(&L, &TR, &avg); |
521 | Average2_m128i(&avg, &T, &pred); |
522 | res = _mm_sub_epi8(src, pred); |
523 | _mm_storeu_si128((__m128i*)&out[i], res); |
524 | } |
525 | if (i != num_pixels) { |
526 | VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i); |
527 | } |
528 | } |
529 | |
530 | #define GENERATE_PREDICTOR_2(X, A, B) \ |
531 | static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ |
532 | int num_pixels, uint32_t* out) { \ |
533 | int i; \ |
534 | for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
535 | const __m128i tA = _mm_loadu_si128((const __m128i*)&(A)); \ |
536 | const __m128i tB = _mm_loadu_si128((const __m128i*)&(B)); \ |
537 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ |
538 | __m128i pred, res; \ |
539 | Average2_m128i(&tA, &tB, &pred); \ |
540 | res = _mm_sub_epi8(src, pred); \ |
541 | _mm_storeu_si128((__m128i*)&out[i], res); \ |
542 | } \ |
543 | if (i != num_pixels) { \ |
544 | VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
545 | } \ |
546 | } |
547 | |
548 | GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1]) // Predictor6: avg(L, TL) |
549 | GENERATE_PREDICTOR_2(7, in[i - 1], upper[i]) // Predictor7: avg(L, T) |
550 | GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i]) // Predictor8: avg(TL, T) |
551 | GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1]) // Predictor9: average(T, TR) |
552 | #undef GENERATE_PREDICTOR_2 |
553 | |
554 | // Predictor10: avg(avg(L,TL), avg(T, TR)). |
555 | static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper, |
556 | int num_pixels, uint32_t* out) { |
557 | int i; |
558 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
559 | const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); |
560 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
561 | const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
562 | const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
563 | const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); |
564 | __m128i avgTTR, avgLTL, avg, res; |
565 | Average2_m128i(&T, &TR, &avgTTR); |
566 | Average2_m128i(&L, &TL, &avgLTL); |
567 | Average2_m128i(&avgTTR, &avgLTL, &avg); |
568 | res = _mm_sub_epi8(src, avg); |
569 | _mm_storeu_si128((__m128i*)&out[i], res); |
570 | } |
571 | if (i != num_pixels) { |
572 | VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i); |
573 | } |
574 | } |
575 | |
576 | // Predictor11: select. |
577 | static void GetSumAbsDiff32(const __m128i* const A, const __m128i* const B, |
578 | __m128i* const out) { |
579 | // We can unpack with any value on the upper 32 bits, provided it's the same |
580 | // on both operands (to that their sum of abs diff is zero). Here we use *A. |
581 | const __m128i A_lo = _mm_unpacklo_epi32(*A, *A); |
582 | const __m128i B_lo = _mm_unpacklo_epi32(*B, *A); |
583 | const __m128i A_hi = _mm_unpackhi_epi32(*A, *A); |
584 | const __m128i B_hi = _mm_unpackhi_epi32(*B, *A); |
585 | const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo); |
586 | const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi); |
587 | *out = _mm_packs_epi32(s_lo, s_hi); |
588 | } |
589 | |
590 | static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper, |
591 | int num_pixels, uint32_t* out) { |
592 | int i; |
593 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
594 | const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); |
595 | const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
596 | const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
597 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
598 | __m128i pa, pb; |
599 | GetSumAbsDiff32(&T, &TL, &pa); // pa = sum |T-TL| |
600 | GetSumAbsDiff32(&L, &TL, &pb); // pb = sum |L-TL| |
601 | { |
602 | const __m128i mask = _mm_cmpgt_epi32(pb, pa); |
603 | const __m128i A = _mm_and_si128(mask, L); |
604 | const __m128i B = _mm_andnot_si128(mask, T); |
605 | const __m128i pred = _mm_or_si128(A, B); // pred = (L > T)? L : T |
606 | const __m128i res = _mm_sub_epi8(src, pred); |
607 | _mm_storeu_si128((__m128i*)&out[i], res); |
608 | } |
609 | } |
610 | if (i != num_pixels) { |
611 | VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i); |
612 | } |
613 | } |
614 | |
615 | // Predictor12: ClampedSubSubtractFull. |
616 | static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper, |
617 | int num_pixels, uint32_t* out) { |
618 | int i; |
619 | const __m128i zero = _mm_setzero_si128(); |
620 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
621 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
622 | const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); |
623 | const __m128i L_lo = _mm_unpacklo_epi8(L, zero); |
624 | const __m128i L_hi = _mm_unpackhi_epi8(L, zero); |
625 | const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
626 | const __m128i T_lo = _mm_unpacklo_epi8(T, zero); |
627 | const __m128i T_hi = _mm_unpackhi_epi8(T, zero); |
628 | const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
629 | const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); |
630 | const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero); |
631 | const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo); |
632 | const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi); |
633 | const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo); |
634 | const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi); |
635 | const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi); |
636 | const __m128i res = _mm_sub_epi8(src, pred); |
637 | _mm_storeu_si128((__m128i*)&out[i], res); |
638 | } |
639 | if (i != num_pixels) { |
640 | VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i); |
641 | } |
642 | } |
643 | |
644 | // Predictors13: ClampedAddSubtractHalf |
645 | static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper, |
646 | int num_pixels, uint32_t* out) { |
647 | int i; |
648 | const __m128i zero = _mm_setzero_si128(); |
649 | for (i = 0; i + 2 <= num_pixels; i += 2) { |
650 | // we can only process two pixels at a time |
651 | const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]); |
652 | const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]); |
653 | const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]); |
654 | const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]); |
655 | const __m128i L_lo = _mm_unpacklo_epi8(L, zero); |
656 | const __m128i T_lo = _mm_unpacklo_epi8(T, zero); |
657 | const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); |
658 | const __m128i sum = _mm_add_epi16(T_lo, L_lo); |
659 | const __m128i avg = _mm_srli_epi16(sum, 1); |
660 | const __m128i A1 = _mm_sub_epi16(avg, TL_lo); |
661 | const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg); |
662 | const __m128i A2 = _mm_sub_epi16(A1, bit_fix); |
663 | const __m128i A3 = _mm_srai_epi16(A2, 1); |
664 | const __m128i A4 = _mm_add_epi16(avg, A3); |
665 | const __m128i pred = _mm_packus_epi16(A4, A4); |
666 | const __m128i res = _mm_sub_epi8(src, pred); |
667 | _mm_storel_epi64((__m128i*)&out[i], res); |
668 | } |
669 | if (i != num_pixels) { |
670 | VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i); |
671 | } |
672 | } |
673 | |
674 | //------------------------------------------------------------------------------ |
675 | // Entry point |
676 | |
677 | extern void VP8LEncDspInitSSE2(void); |
678 | |
679 | WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) { |
680 | VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed; |
681 | VP8LTransformColor = TransformColor; |
682 | VP8LCollectColorBlueTransforms = CollectColorBlueTransforms; |
683 | VP8LCollectColorRedTransforms = CollectColorRedTransforms; |
684 | VP8LHistogramAdd = HistogramAdd; |
685 | VP8LCombinedShannonEntropy = CombinedShannonEntropy; |
686 | VP8LVectorMismatch = VectorMismatch; |
687 | VP8LBundleColorMap = BundleColorMap_SSE2; |
688 | |
689 | VP8LPredictorsSub[0] = PredictorSub0_SSE2; |
690 | VP8LPredictorsSub[1] = PredictorSub1_SSE2; |
691 | VP8LPredictorsSub[2] = PredictorSub2_SSE2; |
692 | VP8LPredictorsSub[3] = PredictorSub3_SSE2; |
693 | VP8LPredictorsSub[4] = PredictorSub4_SSE2; |
694 | VP8LPredictorsSub[5] = PredictorSub5_SSE2; |
695 | VP8LPredictorsSub[6] = PredictorSub6_SSE2; |
696 | VP8LPredictorsSub[7] = PredictorSub7_SSE2; |
697 | VP8LPredictorsSub[8] = PredictorSub8_SSE2; |
698 | VP8LPredictorsSub[9] = PredictorSub9_SSE2; |
699 | VP8LPredictorsSub[10] = PredictorSub10_SSE2; |
700 | VP8LPredictorsSub[11] = PredictorSub11_SSE2; |
701 | VP8LPredictorsSub[12] = PredictorSub12_SSE2; |
702 | VP8LPredictorsSub[13] = PredictorSub13_SSE2; |
703 | VP8LPredictorsSub[14] = PredictorSub0_SSE2; // <- padding security sentinels |
704 | VP8LPredictorsSub[15] = PredictorSub0_SSE2; |
705 | } |
706 | |
707 | #else // !WEBP_USE_SSE2 |
708 | |
709 | WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2) |
710 | |
711 | #endif // WEBP_USE_SSE2 |
712 | |