1 | // Copyright 2014 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // SSE2 variant of methods for lossless decoder |
11 | // |
12 | // Author: Skal (pascal.massimino@gmail.com) |
13 | |
14 | #include "./dsp.h" |
15 | |
16 | #if defined(WEBP_USE_SSE2) |
17 | |
18 | #include "./common_sse2.h" |
19 | #include "./lossless.h" |
20 | #include "./lossless_common.h" |
21 | #include <assert.h> |
22 | #include <emmintrin.h> |
23 | |
24 | //------------------------------------------------------------------------------ |
25 | // Predictor Transform |
26 | |
27 | static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1, |
28 | uint32_t c2) { |
29 | const __m128i zero = _mm_setzero_si128(); |
30 | const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero); |
31 | const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero); |
32 | const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero); |
33 | const __m128i V1 = _mm_add_epi16(C0, C1); |
34 | const __m128i V2 = _mm_sub_epi16(V1, C2); |
35 | const __m128i b = _mm_packus_epi16(V2, V2); |
36 | const uint32_t output = _mm_cvtsi128_si32(b); |
37 | return output; |
38 | } |
39 | |
40 | static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, |
41 | uint32_t c2) { |
42 | const __m128i zero = _mm_setzero_si128(); |
43 | const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero); |
44 | const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero); |
45 | const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero); |
46 | const __m128i avg = _mm_add_epi16(C1, C0); |
47 | const __m128i A0 = _mm_srli_epi16(avg, 1); |
48 | const __m128i A1 = _mm_sub_epi16(A0, B0); |
49 | const __m128i BgtA = _mm_cmpgt_epi16(B0, A0); |
50 | const __m128i A2 = _mm_sub_epi16(A1, BgtA); |
51 | const __m128i A3 = _mm_srai_epi16(A2, 1); |
52 | const __m128i A4 = _mm_add_epi16(A0, A3); |
53 | const __m128i A5 = _mm_packus_epi16(A4, A4); |
54 | const uint32_t output = _mm_cvtsi128_si32(A5); |
55 | return output; |
56 | } |
57 | |
58 | static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { |
59 | int pa_minus_pb; |
60 | const __m128i zero = _mm_setzero_si128(); |
61 | const __m128i A0 = _mm_cvtsi32_si128(a); |
62 | const __m128i B0 = _mm_cvtsi32_si128(b); |
63 | const __m128i C0 = _mm_cvtsi32_si128(c); |
64 | const __m128i AC0 = _mm_subs_epu8(A0, C0); |
65 | const __m128i CA0 = _mm_subs_epu8(C0, A0); |
66 | const __m128i BC0 = _mm_subs_epu8(B0, C0); |
67 | const __m128i CB0 = _mm_subs_epu8(C0, B0); |
68 | const __m128i AC = _mm_or_si128(AC0, CA0); |
69 | const __m128i BC = _mm_or_si128(BC0, CB0); |
70 | const __m128i pa = _mm_unpacklo_epi8(AC, zero); // |a - c| |
71 | const __m128i pb = _mm_unpacklo_epi8(BC, zero); // |b - c| |
72 | const __m128i diff = _mm_sub_epi16(pb, pa); |
73 | { |
74 | int16_t out[8]; |
75 | _mm_storeu_si128((__m128i*)out, diff); |
76 | pa_minus_pb = out[0] + out[1] + out[2] + out[3]; |
77 | } |
78 | return (pa_minus_pb <= 0) ? a : b; |
79 | } |
80 | |
81 | static WEBP_INLINE void Average2_m128i(const __m128i* const a0, |
82 | const __m128i* const a1, |
83 | __m128i* const avg) { |
84 | // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) |
85 | const __m128i ones = _mm_set1_epi8(1); |
86 | const __m128i avg1 = _mm_avg_epu8(*a0, *a1); |
87 | const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones); |
88 | *avg = _mm_sub_epi8(avg1, one); |
89 | } |
90 | |
91 | static WEBP_INLINE void Average2_uint32(const uint32_t a0, const uint32_t a1, |
92 | __m128i* const avg) { |
93 | // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) |
94 | const __m128i ones = _mm_set1_epi8(1); |
95 | const __m128i A0 = _mm_cvtsi32_si128(a0); |
96 | const __m128i A1 = _mm_cvtsi32_si128(a1); |
97 | const __m128i avg1 = _mm_avg_epu8(A0, A1); |
98 | const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones); |
99 | *avg = _mm_sub_epi8(avg1, one); |
100 | } |
101 | |
102 | static WEBP_INLINE __m128i Average2_uint32_16(uint32_t a0, uint32_t a1) { |
103 | const __m128i zero = _mm_setzero_si128(); |
104 | const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a0), zero); |
105 | const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero); |
106 | const __m128i sum = _mm_add_epi16(A1, A0); |
107 | return _mm_srli_epi16(sum, 1); |
108 | } |
109 | |
110 | static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) { |
111 | __m128i output; |
112 | Average2_uint32(a0, a1, &output); |
113 | return _mm_cvtsi128_si32(output); |
114 | } |
115 | |
116 | static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) { |
117 | const __m128i zero = _mm_setzero_si128(); |
118 | const __m128i avg1 = Average2_uint32_16(a0, a2); |
119 | const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero); |
120 | const __m128i sum = _mm_add_epi16(avg1, A1); |
121 | const __m128i avg2 = _mm_srli_epi16(sum, 1); |
122 | const __m128i A2 = _mm_packus_epi16(avg2, avg2); |
123 | const uint32_t output = _mm_cvtsi128_si32(A2); |
124 | return output; |
125 | } |
126 | |
127 | static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, |
128 | uint32_t a2, uint32_t a3) { |
129 | const __m128i avg1 = Average2_uint32_16(a0, a1); |
130 | const __m128i avg2 = Average2_uint32_16(a2, a3); |
131 | const __m128i sum = _mm_add_epi16(avg2, avg1); |
132 | const __m128i avg3 = _mm_srli_epi16(sum, 1); |
133 | const __m128i A0 = _mm_packus_epi16(avg3, avg3); |
134 | const uint32_t output = _mm_cvtsi128_si32(A0); |
135 | return output; |
136 | } |
137 | |
138 | static uint32_t Predictor5_SSE2(uint32_t left, const uint32_t* const top) { |
139 | const uint32_t pred = Average3(left, top[0], top[1]); |
140 | return pred; |
141 | } |
142 | static uint32_t Predictor6_SSE2(uint32_t left, const uint32_t* const top) { |
143 | const uint32_t pred = Average2(left, top[-1]); |
144 | return pred; |
145 | } |
146 | static uint32_t Predictor7_SSE2(uint32_t left, const uint32_t* const top) { |
147 | const uint32_t pred = Average2(left, top[0]); |
148 | return pred; |
149 | } |
150 | static uint32_t Predictor8_SSE2(uint32_t left, const uint32_t* const top) { |
151 | const uint32_t pred = Average2(top[-1], top[0]); |
152 | (void)left; |
153 | return pred; |
154 | } |
155 | static uint32_t Predictor9_SSE2(uint32_t left, const uint32_t* const top) { |
156 | const uint32_t pred = Average2(top[0], top[1]); |
157 | (void)left; |
158 | return pred; |
159 | } |
160 | static uint32_t Predictor10_SSE2(uint32_t left, const uint32_t* const top) { |
161 | const uint32_t pred = Average4(left, top[-1], top[0], top[1]); |
162 | return pred; |
163 | } |
164 | static uint32_t Predictor11_SSE2(uint32_t left, const uint32_t* const top) { |
165 | const uint32_t pred = Select(top[0], left, top[-1]); |
166 | return pred; |
167 | } |
168 | static uint32_t Predictor12_SSE2(uint32_t left, const uint32_t* const top) { |
169 | const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]); |
170 | return pred; |
171 | } |
172 | static uint32_t Predictor13_SSE2(uint32_t left, const uint32_t* const top) { |
173 | const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]); |
174 | return pred; |
175 | } |
176 | |
177 | // Batch versions of those functions. |
178 | |
179 | // Predictor0: ARGB_BLACK. |
180 | static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper, |
181 | int num_pixels, uint32_t* out) { |
182 | int i; |
183 | const __m128i black = _mm_set1_epi32(ARGB_BLACK); |
184 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
185 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
186 | const __m128i res = _mm_add_epi8(src, black); |
187 | _mm_storeu_si128((__m128i*)&out[i], res); |
188 | } |
189 | if (i != num_pixels) { |
190 | VP8LPredictorsAdd_C[0](in + i, upper + i, num_pixels - i, out + i); |
191 | } |
192 | } |
193 | |
194 | // Predictor1: left. |
195 | static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper, |
196 | int num_pixels, uint32_t* out) { |
197 | int i; |
198 | __m128i prev = _mm_set1_epi32(out[-1]); |
199 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
200 | // a | b | c | d |
201 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
202 | // 0 | a | b | c |
203 | const __m128i shift0 = _mm_slli_si128(src, 4); |
204 | // a | a + b | b + c | c + d |
205 | const __m128i sum0 = _mm_add_epi8(src, shift0); |
206 | // 0 | 0 | a | a + b |
207 | const __m128i shift1 = _mm_slli_si128(sum0, 8); |
208 | // a | a + b | a + b + c | a + b + c + d |
209 | const __m128i sum1 = _mm_add_epi8(sum0, shift1); |
210 | const __m128i res = _mm_add_epi8(sum1, prev); |
211 | _mm_storeu_si128((__m128i*)&out[i], res); |
212 | // replicate prev output on the four lanes |
213 | prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6)); |
214 | } |
215 | if (i != num_pixels) { |
216 | VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i); |
217 | } |
218 | } |
219 | |
220 | // Macro that adds 32-bit integers from IN using mod 256 arithmetic |
221 | // per 8 bit channel. |
222 | #define GENERATE_PREDICTOR_1(X, IN) \ |
223 | static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ |
224 | int num_pixels, uint32_t* out) { \ |
225 | int i; \ |
226 | for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
227 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ |
228 | const __m128i other = _mm_loadu_si128((const __m128i*)&(IN)); \ |
229 | const __m128i res = _mm_add_epi8(src, other); \ |
230 | _mm_storeu_si128((__m128i*)&out[i], res); \ |
231 | } \ |
232 | if (i != num_pixels) { \ |
233 | VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
234 | } \ |
235 | } |
236 | |
237 | // Predictor2: Top. |
238 | GENERATE_PREDICTOR_1(2, upper[i]) |
239 | // Predictor3: Top-right. |
240 | GENERATE_PREDICTOR_1(3, upper[i + 1]) |
241 | // Predictor4: Top-left. |
242 | GENERATE_PREDICTOR_1(4, upper[i - 1]) |
243 | #undef GENERATE_PREDICTOR_1 |
244 | |
245 | // Due to averages with integers, values cannot be accumulated in parallel for |
246 | // predictors 5 to 7. |
247 | GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2) |
248 | GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2) |
249 | GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2) |
250 | |
251 | #define GENERATE_PREDICTOR_2(X, IN) \ |
252 | static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ |
253 | int num_pixels, uint32_t* out) { \ |
254 | int i; \ |
255 | for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
256 | const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN)); \ |
257 | const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); \ |
258 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ |
259 | __m128i avg, res; \ |
260 | Average2_m128i(&T, &Tother, &avg); \ |
261 | res = _mm_add_epi8(avg, src); \ |
262 | _mm_storeu_si128((__m128i*)&out[i], res); \ |
263 | } \ |
264 | if (i != num_pixels) { \ |
265 | VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
266 | } \ |
267 | } |
268 | // Predictor8: average TL T. |
269 | GENERATE_PREDICTOR_2(8, upper[i - 1]) |
270 | // Predictor9: average T TR. |
271 | GENERATE_PREDICTOR_2(9, upper[i + 1]) |
272 | #undef GENERATE_PREDICTOR_2 |
273 | |
274 | // Predictor10: average of (average of (L,TL), average of (T, TR)). |
275 | static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper, |
276 | int num_pixels, uint32_t* out) { |
277 | int i, j; |
278 | __m128i L = _mm_cvtsi32_si128(out[-1]); |
279 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
280 | __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
281 | __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
282 | const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
283 | const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); |
284 | __m128i avgTTR; |
285 | Average2_m128i(&T, &TR, &avgTTR); |
286 | for (j = 0; j < 4; ++j) { |
287 | __m128i avgLTL, avg; |
288 | Average2_m128i(&L, &TL, &avgLTL); |
289 | Average2_m128i(&avgTTR, &avgLTL, &avg); |
290 | L = _mm_add_epi8(avg, src); |
291 | out[i + j] = _mm_cvtsi128_si32(L); |
292 | // Rotate the pre-computed values for the next iteration. |
293 | avgTTR = _mm_srli_si128(avgTTR, 4); |
294 | TL = _mm_srli_si128(TL, 4); |
295 | src = _mm_srli_si128(src, 4); |
296 | } |
297 | } |
298 | if (i != num_pixels) { |
299 | VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i); |
300 | } |
301 | } |
302 | |
303 | // Predictor11: select. |
304 | static void GetSumAbsDiff32(const __m128i* const A, const __m128i* const B, |
305 | __m128i* const out) { |
306 | // We can unpack with any value on the upper 32 bits, provided it's the same |
307 | // on both operands (to that their sum of abs diff is zero). Here we use *A. |
308 | const __m128i A_lo = _mm_unpacklo_epi32(*A, *A); |
309 | const __m128i B_lo = _mm_unpacklo_epi32(*B, *A); |
310 | const __m128i A_hi = _mm_unpackhi_epi32(*A, *A); |
311 | const __m128i B_hi = _mm_unpackhi_epi32(*B, *A); |
312 | const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo); |
313 | const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi); |
314 | *out = _mm_packs_epi32(s_lo, s_hi); |
315 | } |
316 | |
317 | static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper, |
318 | int num_pixels, uint32_t* out) { |
319 | int i, j; |
320 | __m128i L = _mm_cvtsi32_si128(out[-1]); |
321 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
322 | __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
323 | __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
324 | __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
325 | __m128i pa; |
326 | GetSumAbsDiff32(&T, &TL, &pa); // pa = sum |T-TL| |
327 | for (j = 0; j < 4; ++j) { |
328 | const __m128i L_lo = _mm_unpacklo_epi32(L, L); |
329 | const __m128i TL_lo = _mm_unpacklo_epi32(TL, L); |
330 | const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); // pb = sum |L-TL| |
331 | const __m128i mask = _mm_cmpgt_epi32(pb, pa); |
332 | const __m128i A = _mm_and_si128(mask, L); |
333 | const __m128i B = _mm_andnot_si128(mask, T); |
334 | const __m128i pred = _mm_or_si128(A, B); // pred = (L > T)? L : T |
335 | L = _mm_add_epi8(src, pred); |
336 | out[i + j] = _mm_cvtsi128_si32(L); |
337 | // Shift the pre-computed value for the next iteration. |
338 | T = _mm_srli_si128(T, 4); |
339 | TL = _mm_srli_si128(TL, 4); |
340 | src = _mm_srli_si128(src, 4); |
341 | pa = _mm_srli_si128(pa, 4); |
342 | } |
343 | } |
344 | if (i != num_pixels) { |
345 | VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i); |
346 | } |
347 | } |
348 | |
349 | // Predictor12: ClampedAddSubtractFull. |
350 | #define DO_PRED12(DIFF, LANE, OUT) \ |
351 | do { \ |
352 | const __m128i all = _mm_add_epi16(L, (DIFF)); \ |
353 | const __m128i alls = _mm_packus_epi16(all, all); \ |
354 | const __m128i res = _mm_add_epi8(src, alls); \ |
355 | out[i + (OUT)] = _mm_cvtsi128_si32(res); \ |
356 | L = _mm_unpacklo_epi8(res, zero); \ |
357 | /* Shift the pre-computed value for the next iteration.*/ \ |
358 | if (LANE == 0) (DIFF) = _mm_srli_si128((DIFF), 8); \ |
359 | src = _mm_srli_si128(src, 4); \ |
360 | } while (0) |
361 | |
362 | static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper, |
363 | int num_pixels, uint32_t* out) { |
364 | int i; |
365 | const __m128i zero = _mm_setzero_si128(); |
366 | const __m128i L8 = _mm_cvtsi32_si128(out[-1]); |
367 | __m128i L = _mm_unpacklo_epi8(L8, zero); |
368 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
369 | // Load 4 pixels at a time. |
370 | __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
371 | const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
372 | const __m128i T_lo = _mm_unpacklo_epi8(T, zero); |
373 | const __m128i T_hi = _mm_unpackhi_epi8(T, zero); |
374 | const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
375 | const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); |
376 | const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero); |
377 | __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo); |
378 | __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi); |
379 | DO_PRED12(diff_lo, 0, 0); |
380 | DO_PRED12(diff_lo, 1, 1); |
381 | DO_PRED12(diff_hi, 0, 2); |
382 | DO_PRED12(diff_hi, 1, 3); |
383 | } |
384 | if (i != num_pixels) { |
385 | VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i); |
386 | } |
387 | } |
388 | #undef DO_PRED12 |
389 | |
390 | // Due to averages with integers, values cannot be accumulated in parallel for |
391 | // predictors 13. |
392 | GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2) |
393 | |
394 | //------------------------------------------------------------------------------ |
395 | // Subtract-Green Transform |
396 | |
397 | static void AddGreenToBlueAndRed(const uint32_t* const src, int num_pixels, |
398 | uint32_t* dst) { |
399 | int i; |
400 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
401 | const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb |
402 | const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g |
403 | const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); |
404 | const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g |
405 | const __m128i out = _mm_add_epi8(in, C); |
406 | _mm_storeu_si128((__m128i*)&dst[i], out); |
407 | } |
408 | // fallthrough and finish off with plain-C |
409 | if (i != num_pixels) { |
410 | VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i); |
411 | } |
412 | } |
413 | |
414 | //------------------------------------------------------------------------------ |
415 | // Color Transform |
416 | |
417 | static void TransformColorInverse(const VP8LMultipliers* const m, |
418 | const uint32_t* const src, int num_pixels, |
419 | uint32_t* dst) { |
420 | // sign-extended multiplying constants, pre-shifted by 5. |
421 | #define CST(X) (((int16_t)(m->X << 8)) >> 5) // sign-extend |
422 | const __m128i mults_rb = _mm_set_epi16( |
423 | CST(green_to_red_), CST(green_to_blue_), |
424 | CST(green_to_red_), CST(green_to_blue_), |
425 | CST(green_to_red_), CST(green_to_blue_), |
426 | CST(green_to_red_), CST(green_to_blue_)); |
427 | const __m128i mults_b2 = _mm_set_epi16( |
428 | CST(red_to_blue_), 0, CST(red_to_blue_), 0, |
429 | CST(red_to_blue_), 0, CST(red_to_blue_), 0); |
430 | #undef CST |
431 | const __m128i mask_ag = _mm_set1_epi32(0xff00ff00); // alpha-green masks |
432 | int i; |
433 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
434 | const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb |
435 | const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0 |
436 | const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); |
437 | const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0 |
438 | const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1 |
439 | const __m128i E = _mm_add_epi8(in, D); // x r' x b' |
440 | const __m128i F = _mm_slli_epi16(E, 8); // r' 0 b' 0 |
441 | const __m128i G = _mm_mulhi_epi16(F, mults_b2); // x db2 0 0 |
442 | const __m128i H = _mm_srli_epi32(G, 8); // 0 x db2 0 |
443 | const __m128i I = _mm_add_epi8(H, F); // r' x b'' 0 |
444 | const __m128i J = _mm_srli_epi16(I, 8); // 0 r' 0 b'' |
445 | const __m128i out = _mm_or_si128(J, A); |
446 | _mm_storeu_si128((__m128i*)&dst[i], out); |
447 | } |
448 | // Fall-back to C-version for left-overs. |
449 | if (i != num_pixels) { |
450 | VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i); |
451 | } |
452 | } |
453 | |
454 | //------------------------------------------------------------------------------ |
455 | // Color-space conversion functions |
456 | |
457 | static void ConvertBGRAToRGB(const uint32_t* src, int num_pixels, |
458 | uint8_t* dst) { |
459 | const __m128i* in = (const __m128i*)src; |
460 | __m128i* out = (__m128i*)dst; |
461 | |
462 | while (num_pixels >= 32) { |
463 | // Load the BGRA buffers. |
464 | __m128i in0 = _mm_loadu_si128(in + 0); |
465 | __m128i in1 = _mm_loadu_si128(in + 1); |
466 | __m128i in2 = _mm_loadu_si128(in + 2); |
467 | __m128i in3 = _mm_loadu_si128(in + 3); |
468 | __m128i in4 = _mm_loadu_si128(in + 4); |
469 | __m128i in5 = _mm_loadu_si128(in + 5); |
470 | __m128i in6 = _mm_loadu_si128(in + 6); |
471 | __m128i in7 = _mm_loadu_si128(in + 7); |
472 | VP8L32bToPlanar(&in0, &in1, &in2, &in3); |
473 | VP8L32bToPlanar(&in4, &in5, &in6, &in7); |
474 | // At this points, in1/in5 contains red only, in2/in6 green only ... |
475 | // Pack the colors in 24b RGB. |
476 | VP8PlanarTo24b(&in1, &in5, &in2, &in6, &in3, &in7); |
477 | _mm_storeu_si128(out + 0, in1); |
478 | _mm_storeu_si128(out + 1, in5); |
479 | _mm_storeu_si128(out + 2, in2); |
480 | _mm_storeu_si128(out + 3, in6); |
481 | _mm_storeu_si128(out + 4, in3); |
482 | _mm_storeu_si128(out + 5, in7); |
483 | in += 8; |
484 | out += 6; |
485 | num_pixels -= 32; |
486 | } |
487 | // left-overs |
488 | if (num_pixels > 0) { |
489 | VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out); |
490 | } |
491 | } |
492 | |
493 | static void ConvertBGRAToRGBA(const uint32_t* src, |
494 | int num_pixels, uint8_t* dst) { |
495 | const __m128i* in = (const __m128i*)src; |
496 | __m128i* out = (__m128i*)dst; |
497 | while (num_pixels >= 8) { |
498 | const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 |
499 | const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 |
500 | const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... |
501 | const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... |
502 | const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... |
503 | const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... |
504 | const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 |
505 | const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 |
506 | const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 |
507 | const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 |
508 | const __m128i rg0 = _mm_unpacklo_epi8(rb0, ga0); // r0g0r1g1 ... r6g6r7g7 |
509 | const __m128i ba0 = _mm_unpackhi_epi8(rb0, ga0); // b0a0b1a1 ... b6a6b7a7 |
510 | const __m128i rgba0 = _mm_unpacklo_epi16(rg0, ba0); // rgba0|rgba1... |
511 | const __m128i rgba4 = _mm_unpackhi_epi16(rg0, ba0); // rgba4|rgba5... |
512 | _mm_storeu_si128(out++, rgba0); |
513 | _mm_storeu_si128(out++, rgba4); |
514 | num_pixels -= 8; |
515 | } |
516 | // left-overs |
517 | if (num_pixels > 0) { |
518 | VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out); |
519 | } |
520 | } |
521 | |
522 | static void ConvertBGRAToRGBA4444(const uint32_t* src, |
523 | int num_pixels, uint8_t* dst) { |
524 | const __m128i mask_0x0f = _mm_set1_epi8(0x0f); |
525 | const __m128i mask_0xf0 = _mm_set1_epi8(0xf0); |
526 | const __m128i* in = (const __m128i*)src; |
527 | __m128i* out = (__m128i*)dst; |
528 | while (num_pixels >= 8) { |
529 | const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 |
530 | const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 |
531 | const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... |
532 | const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... |
533 | const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... |
534 | const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... |
535 | const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 |
536 | const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 |
537 | const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 |
538 | const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 |
539 | const __m128i ga1 = _mm_srli_epi16(ga0, 4); // g0-|g1-|...|a6-|a7- |
540 | const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0); // -r0|-r1|...|-b6|-a7 |
541 | const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f); // g0-|g1-|...|a6-|a7- |
542 | const __m128i rgba0 = _mm_or_si128(ga2, rb1); // rg0..rg7 | ba0..ba7 |
543 | const __m128i rgba1 = _mm_srli_si128(rgba0, 8); // ba0..ba7 | 0 |
544 | #ifdef WEBP_SWAP_16BIT_CSP |
545 | const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0); // barg0...barg7 |
546 | #else |
547 | const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1); // rgba0...rgba7 |
548 | #endif |
549 | _mm_storeu_si128(out++, rgba); |
550 | num_pixels -= 8; |
551 | } |
552 | // left-overs |
553 | if (num_pixels > 0) { |
554 | VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out); |
555 | } |
556 | } |
557 | |
558 | static void ConvertBGRAToRGB565(const uint32_t* src, |
559 | int num_pixels, uint8_t* dst) { |
560 | const __m128i mask_0xe0 = _mm_set1_epi8(0xe0); |
561 | const __m128i mask_0xf8 = _mm_set1_epi8(0xf8); |
562 | const __m128i mask_0x07 = _mm_set1_epi8(0x07); |
563 | const __m128i* in = (const __m128i*)src; |
564 | __m128i* out = (__m128i*)dst; |
565 | while (num_pixels >= 8) { |
566 | const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 |
567 | const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 |
568 | const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... |
569 | const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... |
570 | const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... |
571 | const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... |
572 | const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 |
573 | const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 |
574 | const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 |
575 | const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 |
576 | const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8); // -r0..-r7|-b0..-b7 |
577 | const __m128i g_lo1 = _mm_srli_epi16(ga0, 5); |
578 | const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07); // g0-...g7-|xx (3b) |
579 | const __m128i g_hi1 = _mm_slli_epi16(ga0, 3); |
580 | const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0); // -g0...-g7|xx (3b) |
581 | const __m128i b0 = _mm_srli_si128(rb1, 8); // -b0...-b7|0 |
582 | const __m128i rg1 = _mm_or_si128(rb1, g_lo2); // gr0...gr7|xx |
583 | const __m128i b1 = _mm_srli_epi16(b0, 3); |
584 | const __m128i gb1 = _mm_or_si128(b1, g_hi2); // bg0...bg7|xx |
585 | #ifdef WEBP_SWAP_16BIT_CSP |
586 | const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1); // rggb0...rggb7 |
587 | #else |
588 | const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1); // bgrb0...bgrb7 |
589 | #endif |
590 | _mm_storeu_si128(out++, rgba); |
591 | num_pixels -= 8; |
592 | } |
593 | // left-overs |
594 | if (num_pixels > 0) { |
595 | VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out); |
596 | } |
597 | } |
598 | |
599 | static void ConvertBGRAToBGR(const uint32_t* src, |
600 | int num_pixels, uint8_t* dst) { |
601 | const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff); |
602 | const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0); |
603 | const __m128i* in = (const __m128i*)src; |
604 | const uint8_t* const end = dst + num_pixels * 3; |
605 | // the last storel_epi64 below writes 8 bytes starting at offset 18 |
606 | while (dst + 26 <= end) { |
607 | const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 |
608 | const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 |
609 | const __m128i a0l = _mm_and_si128(bgra0, mask_l); // bgr0|0|bgr0|0 |
610 | const __m128i a4l = _mm_and_si128(bgra4, mask_l); // bgr0|0|bgr0|0 |
611 | const __m128i a0h = _mm_and_si128(bgra0, mask_h); // 0|bgr0|0|bgr0 |
612 | const __m128i a4h = _mm_and_si128(bgra4, mask_h); // 0|bgr0|0|bgr0 |
613 | const __m128i b0h = _mm_srli_epi64(a0h, 8); // 000b|gr00|000b|gr00 |
614 | const __m128i b4h = _mm_srli_epi64(a4h, 8); // 000b|gr00|000b|gr00 |
615 | const __m128i c0 = _mm_or_si128(a0l, b0h); // rgbrgb00|rgbrgb00 |
616 | const __m128i c4 = _mm_or_si128(a4l, b4h); // rgbrgb00|rgbrgb00 |
617 | const __m128i c2 = _mm_srli_si128(c0, 8); |
618 | const __m128i c6 = _mm_srli_si128(c4, 8); |
619 | _mm_storel_epi64((__m128i*)(dst + 0), c0); |
620 | _mm_storel_epi64((__m128i*)(dst + 6), c2); |
621 | _mm_storel_epi64((__m128i*)(dst + 12), c4); |
622 | _mm_storel_epi64((__m128i*)(dst + 18), c6); |
623 | dst += 24; |
624 | num_pixels -= 8; |
625 | } |
626 | // left-overs |
627 | if (num_pixels > 0) { |
628 | VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst); |
629 | } |
630 | } |
631 | |
632 | //------------------------------------------------------------------------------ |
633 | // Entry point |
634 | |
635 | extern void VP8LDspInitSSE2(void); |
636 | |
637 | WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) { |
638 | VP8LPredictors[5] = Predictor5_SSE2; |
639 | VP8LPredictors[6] = Predictor6_SSE2; |
640 | VP8LPredictors[7] = Predictor7_SSE2; |
641 | VP8LPredictors[8] = Predictor8_SSE2; |
642 | VP8LPredictors[9] = Predictor9_SSE2; |
643 | VP8LPredictors[10] = Predictor10_SSE2; |
644 | VP8LPredictors[11] = Predictor11_SSE2; |
645 | VP8LPredictors[12] = Predictor12_SSE2; |
646 | VP8LPredictors[13] = Predictor13_SSE2; |
647 | |
648 | VP8LPredictorsAdd[0] = PredictorAdd0_SSE2; |
649 | VP8LPredictorsAdd[1] = PredictorAdd1_SSE2; |
650 | VP8LPredictorsAdd[2] = PredictorAdd2_SSE2; |
651 | VP8LPredictorsAdd[3] = PredictorAdd3_SSE2; |
652 | VP8LPredictorsAdd[4] = PredictorAdd4_SSE2; |
653 | VP8LPredictorsAdd[5] = PredictorAdd5_SSE2; |
654 | VP8LPredictorsAdd[6] = PredictorAdd6_SSE2; |
655 | VP8LPredictorsAdd[7] = PredictorAdd7_SSE2; |
656 | VP8LPredictorsAdd[8] = PredictorAdd8_SSE2; |
657 | VP8LPredictorsAdd[9] = PredictorAdd9_SSE2; |
658 | VP8LPredictorsAdd[10] = PredictorAdd10_SSE2; |
659 | VP8LPredictorsAdd[11] = PredictorAdd11_SSE2; |
660 | VP8LPredictorsAdd[12] = PredictorAdd12_SSE2; |
661 | VP8LPredictorsAdd[13] = PredictorAdd13_SSE2; |
662 | |
663 | VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed; |
664 | VP8LTransformColorInverse = TransformColorInverse; |
665 | |
666 | VP8LConvertBGRAToRGB = ConvertBGRAToRGB; |
667 | VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA; |
668 | VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444; |
669 | VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565; |
670 | VP8LConvertBGRAToBGR = ConvertBGRAToBGR; |
671 | } |
672 | |
673 | #else // !WEBP_USE_SSE2 |
674 | |
675 | WEBP_DSP_INIT_STUB(VP8LDspInitSSE2) |
676 | |
677 | #endif // WEBP_USE_SSE2 |
678 | |