| 1 | // Copyright 2011 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // Macroblock analysis |
| 11 | // |
| 12 | // Author: Skal (pascal.massimino@gmail.com) |
| 13 | |
| 14 | #include <stdlib.h> |
| 15 | #include <string.h> |
| 16 | #include <assert.h> |
| 17 | |
| 18 | #include "./vp8i_enc.h" |
| 19 | #include "./cost_enc.h" |
| 20 | #include "../utils/utils.h" |
| 21 | |
| 22 | #define MAX_ITERS_K_MEANS 6 |
| 23 | |
| 24 | //------------------------------------------------------------------------------ |
| 25 | // Smooth the segment map by replacing isolated block by the majority of its |
| 26 | // neighbours. |
| 27 | |
| 28 | static void SmoothSegmentMap(VP8Encoder* const enc) { |
| 29 | int n, x, y; |
| 30 | const int w = enc->mb_w_; |
| 31 | const int h = enc->mb_h_; |
| 32 | const int majority_cnt_3_x_3_grid = 5; |
| 33 | uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp)); |
| 34 | assert((uint64_t)(w * h) == (uint64_t)w * h); // no overflow, as per spec |
| 35 | |
| 36 | if (tmp == NULL) return; |
| 37 | for (y = 1; y < h - 1; ++y) { |
| 38 | for (x = 1; x < w - 1; ++x) { |
| 39 | int cnt[NUM_MB_SEGMENTS] = { 0 }; |
| 40 | const VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; |
| 41 | int majority_seg = mb->segment_; |
| 42 | // Check the 8 neighbouring segment values. |
| 43 | cnt[mb[-w - 1].segment_]++; // top-left |
| 44 | cnt[mb[-w + 0].segment_]++; // top |
| 45 | cnt[mb[-w + 1].segment_]++; // top-right |
| 46 | cnt[mb[ - 1].segment_]++; // left |
| 47 | cnt[mb[ + 1].segment_]++; // right |
| 48 | cnt[mb[ w - 1].segment_]++; // bottom-left |
| 49 | cnt[mb[ w + 0].segment_]++; // bottom |
| 50 | cnt[mb[ w + 1].segment_]++; // bottom-right |
| 51 | for (n = 0; n < NUM_MB_SEGMENTS; ++n) { |
| 52 | if (cnt[n] >= majority_cnt_3_x_3_grid) { |
| 53 | majority_seg = n; |
| 54 | break; |
| 55 | } |
| 56 | } |
| 57 | tmp[x + y * w] = majority_seg; |
| 58 | } |
| 59 | } |
| 60 | for (y = 1; y < h - 1; ++y) { |
| 61 | for (x = 1; x < w - 1; ++x) { |
| 62 | VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; |
| 63 | mb->segment_ = tmp[x + y * w]; |
| 64 | } |
| 65 | } |
| 66 | WebPSafeFree(tmp); |
| 67 | } |
| 68 | |
| 69 | //------------------------------------------------------------------------------ |
| 70 | // set segment susceptibility alpha_ / beta_ |
| 71 | |
| 72 | static WEBP_INLINE int clip(int v, int m, int M) { |
| 73 | return (v < m) ? m : (v > M) ? M : v; |
| 74 | } |
| 75 | |
| 76 | static void SetSegmentAlphas(VP8Encoder* const enc, |
| 77 | const int centers[NUM_MB_SEGMENTS], |
| 78 | int mid) { |
| 79 | const int nb = enc->segment_hdr_.num_segments_; |
| 80 | int min = centers[0], max = centers[0]; |
| 81 | int n; |
| 82 | |
| 83 | if (nb > 1) { |
| 84 | for (n = 0; n < nb; ++n) { |
| 85 | if (min > centers[n]) min = centers[n]; |
| 86 | if (max < centers[n]) max = centers[n]; |
| 87 | } |
| 88 | } |
| 89 | if (max == min) max = min + 1; |
| 90 | assert(mid <= max && mid >= min); |
| 91 | for (n = 0; n < nb; ++n) { |
| 92 | const int alpha = 255 * (centers[n] - mid) / (max - min); |
| 93 | const int beta = 255 * (centers[n] - min) / (max - min); |
| 94 | enc->dqm_[n].alpha_ = clip(alpha, -127, 127); |
| 95 | enc->dqm_[n].beta_ = clip(beta, 0, 255); |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | //------------------------------------------------------------------------------ |
| 100 | // Compute susceptibility based on DCT-coeff histograms: |
| 101 | // the higher, the "easier" the macroblock is to compress. |
| 102 | |
| 103 | #define MAX_ALPHA 255 // 8b of precision for susceptibilities. |
| 104 | #define ALPHA_SCALE (2 * MAX_ALPHA) // scaling factor for alpha. |
| 105 | #define DEFAULT_ALPHA (-1) |
| 106 | #define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha)) |
| 107 | |
| 108 | static int FinalAlphaValue(int alpha) { |
| 109 | alpha = MAX_ALPHA - alpha; |
| 110 | return clip(alpha, 0, MAX_ALPHA); |
| 111 | } |
| 112 | |
| 113 | static int GetAlpha(const VP8Histogram* const histo) { |
| 114 | // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer |
| 115 | // values which happen to be mostly noise. This leaves the maximum precision |
| 116 | // for handling the useful small values which contribute most. |
| 117 | const int max_value = histo->max_value; |
| 118 | const int last_non_zero = histo->last_non_zero; |
| 119 | const int alpha = |
| 120 | (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0; |
| 121 | return alpha; |
| 122 | } |
| 123 | |
| 124 | static void InitHistogram(VP8Histogram* const histo) { |
| 125 | histo->max_value = 0; |
| 126 | histo->last_non_zero = 1; |
| 127 | } |
| 128 | |
| 129 | static void MergeHistograms(const VP8Histogram* const in, |
| 130 | VP8Histogram* const out) { |
| 131 | if (in->max_value > out->max_value) { |
| 132 | out->max_value = in->max_value; |
| 133 | } |
| 134 | if (in->last_non_zero > out->last_non_zero) { |
| 135 | out->last_non_zero = in->last_non_zero; |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | //------------------------------------------------------------------------------ |
| 140 | // Simplified k-Means, to assign Nb segments based on alpha-histogram |
| 141 | |
| 142 | static void AssignSegments(VP8Encoder* const enc, |
| 143 | const int alphas[MAX_ALPHA + 1]) { |
| 144 | // 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an |
| 145 | // explicit check is needed to avoid spurious warning about 'n + 1' exceeding |
| 146 | // array bounds of 'centers' with some compilers (noticed with gcc-4.9). |
| 147 | const int nb = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS) ? |
| 148 | enc->segment_hdr_.num_segments_ : NUM_MB_SEGMENTS; |
| 149 | int centers[NUM_MB_SEGMENTS]; |
| 150 | int weighted_average = 0; |
| 151 | int map[MAX_ALPHA + 1]; |
| 152 | int a, n, k; |
| 153 | int min_a = 0, max_a = MAX_ALPHA, range_a; |
| 154 | // 'int' type is ok for histo, and won't overflow |
| 155 | int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS]; |
| 156 | |
| 157 | assert(nb >= 1); |
| 158 | assert(nb <= NUM_MB_SEGMENTS); |
| 159 | |
| 160 | // bracket the input |
| 161 | for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {} |
| 162 | min_a = n; |
| 163 | for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {} |
| 164 | max_a = n; |
| 165 | range_a = max_a - min_a; |
| 166 | |
| 167 | // Spread initial centers evenly |
| 168 | for (k = 0, n = 1; k < nb; ++k, n += 2) { |
| 169 | assert(n < 2 * nb); |
| 170 | centers[k] = min_a + (n * range_a) / (2 * nb); |
| 171 | } |
| 172 | |
| 173 | for (k = 0; k < MAX_ITERS_K_MEANS; ++k) { // few iters are enough |
| 174 | int total_weight; |
| 175 | int displaced; |
| 176 | // Reset stats |
| 177 | for (n = 0; n < nb; ++n) { |
| 178 | accum[n] = 0; |
| 179 | dist_accum[n] = 0; |
| 180 | } |
| 181 | // Assign nearest center for each 'a' |
| 182 | n = 0; // track the nearest center for current 'a' |
| 183 | for (a = min_a; a <= max_a; ++a) { |
| 184 | if (alphas[a]) { |
| 185 | while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) { |
| 186 | n++; |
| 187 | } |
| 188 | map[a] = n; |
| 189 | // accumulate contribution into best centroid |
| 190 | dist_accum[n] += a * alphas[a]; |
| 191 | accum[n] += alphas[a]; |
| 192 | } |
| 193 | } |
| 194 | // All point are classified. Move the centroids to the |
| 195 | // center of their respective cloud. |
| 196 | displaced = 0; |
| 197 | weighted_average = 0; |
| 198 | total_weight = 0; |
| 199 | for (n = 0; n < nb; ++n) { |
| 200 | if (accum[n]) { |
| 201 | const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n]; |
| 202 | displaced += abs(centers[n] - new_center); |
| 203 | centers[n] = new_center; |
| 204 | weighted_average += new_center * accum[n]; |
| 205 | total_weight += accum[n]; |
| 206 | } |
| 207 | } |
| 208 | weighted_average = (weighted_average + total_weight / 2) / total_weight; |
| 209 | if (displaced < 5) break; // no need to keep on looping... |
| 210 | } |
| 211 | |
| 212 | // Map each original value to the closest centroid |
| 213 | for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { |
| 214 | VP8MBInfo* const mb = &enc->mb_info_[n]; |
| 215 | const int alpha = mb->alpha_; |
| 216 | mb->segment_ = map[alpha]; |
| 217 | mb->alpha_ = centers[map[alpha]]; // for the record. |
| 218 | } |
| 219 | |
| 220 | if (nb > 1) { |
| 221 | const int smooth = (enc->config_->preprocessing & 1); |
| 222 | if (smooth) SmoothSegmentMap(enc); |
| 223 | } |
| 224 | |
| 225 | SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas. |
| 226 | } |
| 227 | |
| 228 | //------------------------------------------------------------------------------ |
| 229 | // Macroblock analysis: collect histogram for each mode, deduce the maximal |
| 230 | // susceptibility and set best modes for this macroblock. |
| 231 | // Segment assignment is done later. |
| 232 | |
| 233 | // Number of modes to inspect for alpha_ evaluation. We don't need to test all |
| 234 | // the possible modes during the analysis phase: we risk falling into a local |
| 235 | // optimum, or be subject to boundary effect |
| 236 | #define MAX_INTRA16_MODE 2 |
| 237 | #define MAX_INTRA4_MODE 2 |
| 238 | #define MAX_UV_MODE 2 |
| 239 | |
| 240 | static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) { |
| 241 | const int max_mode = MAX_INTRA16_MODE; |
| 242 | int mode; |
| 243 | int best_alpha = DEFAULT_ALPHA; |
| 244 | int best_mode = 0; |
| 245 | |
| 246 | VP8MakeLuma16Preds(it); |
| 247 | for (mode = 0; mode < max_mode; ++mode) { |
| 248 | VP8Histogram histo; |
| 249 | int alpha; |
| 250 | |
| 251 | InitHistogram(&histo); |
| 252 | VP8CollectHistogram(it->yuv_in_ + Y_OFF_ENC, |
| 253 | it->yuv_p_ + VP8I16ModeOffsets[mode], |
| 254 | 0, 16, &histo); |
| 255 | alpha = GetAlpha(&histo); |
| 256 | if (IS_BETTER_ALPHA(alpha, best_alpha)) { |
| 257 | best_alpha = alpha; |
| 258 | best_mode = mode; |
| 259 | } |
| 260 | } |
| 261 | VP8SetIntra16Mode(it, best_mode); |
| 262 | return best_alpha; |
| 263 | } |
| 264 | |
| 265 | static int FastMBAnalyze(VP8EncIterator* const it) { |
| 266 | // Empirical cut-off value, should be around 16 (~=block size). We use the |
| 267 | // [8-17] range and favor intra4 at high quality, intra16 for low quality. |
| 268 | const int q = (int)it->enc_->config_->quality; |
| 269 | const uint32_t kThreshold = 8 + (17 - 8) * q / 100; |
| 270 | int k; |
| 271 | uint32_t dc[16], m, m2; |
| 272 | for (k = 0; k < 16; k += 4) { |
| 273 | VP8Mean16x4(it->yuv_in_ + Y_OFF_ENC + k * BPS, &dc[k]); |
| 274 | } |
| 275 | for (m = 0, m2 = 0, k = 0; k < 16; ++k) { |
| 276 | m += dc[k]; |
| 277 | m2 += dc[k] * dc[k]; |
| 278 | } |
| 279 | if (kThreshold * m2 < m * m) { |
| 280 | VP8SetIntra16Mode(it, 0); // DC16 |
| 281 | } else { |
| 282 | const uint8_t modes[16] = { 0 }; // DC4 |
| 283 | VP8SetIntra4Mode(it, modes); |
| 284 | } |
| 285 | return 0; |
| 286 | } |
| 287 | |
| 288 | static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it, |
| 289 | int best_alpha) { |
| 290 | uint8_t modes[16]; |
| 291 | const int max_mode = MAX_INTRA4_MODE; |
| 292 | int i4_alpha; |
| 293 | VP8Histogram total_histo; |
| 294 | int cur_histo = 0; |
| 295 | InitHistogram(&total_histo); |
| 296 | |
| 297 | VP8IteratorStartI4(it); |
| 298 | do { |
| 299 | int mode; |
| 300 | int best_mode_alpha = DEFAULT_ALPHA; |
| 301 | VP8Histogram histos[2]; |
| 302 | const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_]; |
| 303 | |
| 304 | VP8MakeIntra4Preds(it); |
| 305 | for (mode = 0; mode < max_mode; ++mode) { |
| 306 | int alpha; |
| 307 | |
| 308 | InitHistogram(&histos[cur_histo]); |
| 309 | VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode], |
| 310 | 0, 1, &histos[cur_histo]); |
| 311 | alpha = GetAlpha(&histos[cur_histo]); |
| 312 | if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) { |
| 313 | best_mode_alpha = alpha; |
| 314 | modes[it->i4_] = mode; |
| 315 | cur_histo ^= 1; // keep track of best histo so far. |
| 316 | } |
| 317 | } |
| 318 | // accumulate best histogram |
| 319 | MergeHistograms(&histos[cur_histo ^ 1], &total_histo); |
| 320 | // Note: we reuse the original samples for predictors |
| 321 | } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF_ENC)); |
| 322 | |
| 323 | i4_alpha = GetAlpha(&total_histo); |
| 324 | if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) { |
| 325 | VP8SetIntra4Mode(it, modes); |
| 326 | best_alpha = i4_alpha; |
| 327 | } |
| 328 | return best_alpha; |
| 329 | } |
| 330 | |
| 331 | static int MBAnalyzeBestUVMode(VP8EncIterator* const it) { |
| 332 | int best_alpha = DEFAULT_ALPHA; |
| 333 | int smallest_alpha = 0; |
| 334 | int best_mode = 0; |
| 335 | const int max_mode = MAX_UV_MODE; |
| 336 | int mode; |
| 337 | |
| 338 | VP8MakeChroma8Preds(it); |
| 339 | for (mode = 0; mode < max_mode; ++mode) { |
| 340 | VP8Histogram histo; |
| 341 | int alpha; |
| 342 | InitHistogram(&histo); |
| 343 | VP8CollectHistogram(it->yuv_in_ + U_OFF_ENC, |
| 344 | it->yuv_p_ + VP8UVModeOffsets[mode], |
| 345 | 16, 16 + 4 + 4, &histo); |
| 346 | alpha = GetAlpha(&histo); |
| 347 | if (IS_BETTER_ALPHA(alpha, best_alpha)) { |
| 348 | best_alpha = alpha; |
| 349 | } |
| 350 | // The best prediction mode tends to be the one with the smallest alpha. |
| 351 | if (mode == 0 || alpha < smallest_alpha) { |
| 352 | smallest_alpha = alpha; |
| 353 | best_mode = mode; |
| 354 | } |
| 355 | } |
| 356 | VP8SetIntraUVMode(it, best_mode); |
| 357 | return best_alpha; |
| 358 | } |
| 359 | |
| 360 | static void MBAnalyze(VP8EncIterator* const it, |
| 361 | int alphas[MAX_ALPHA + 1], |
| 362 | int* const alpha, int* const uv_alpha) { |
| 363 | const VP8Encoder* const enc = it->enc_; |
| 364 | int best_alpha, best_uv_alpha; |
| 365 | |
| 366 | VP8SetIntra16Mode(it, 0); // default: Intra16, DC_PRED |
| 367 | VP8SetSkip(it, 0); // not skipped |
| 368 | VP8SetSegment(it, 0); // default segment, spec-wise. |
| 369 | |
| 370 | if (enc->method_ <= 1) { |
| 371 | best_alpha = FastMBAnalyze(it); |
| 372 | } else { |
| 373 | best_alpha = MBAnalyzeBestIntra16Mode(it); |
| 374 | if (enc->method_ >= 5) { |
| 375 | // We go and make a fast decision for intra4/intra16. |
| 376 | // It's usually not a good and definitive pick, but helps seeding the |
| 377 | // stats about level bit-cost. |
| 378 | // TODO(skal): improve criterion. |
| 379 | best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha); |
| 380 | } |
| 381 | } |
| 382 | best_uv_alpha = MBAnalyzeBestUVMode(it); |
| 383 | |
| 384 | // Final susceptibility mix |
| 385 | best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2; |
| 386 | best_alpha = FinalAlphaValue(best_alpha); |
| 387 | alphas[best_alpha]++; |
| 388 | it->mb_->alpha_ = best_alpha; // for later remapping. |
| 389 | |
| 390 | // Accumulate for later complexity analysis. |
| 391 | *alpha += best_alpha; // mixed susceptibility (not just luma) |
| 392 | *uv_alpha += best_uv_alpha; |
| 393 | } |
| 394 | |
| 395 | static void DefaultMBInfo(VP8MBInfo* const mb) { |
| 396 | mb->type_ = 1; // I16x16 |
| 397 | mb->uv_mode_ = 0; |
| 398 | mb->skip_ = 0; // not skipped |
| 399 | mb->segment_ = 0; // default segment |
| 400 | mb->alpha_ = 0; |
| 401 | } |
| 402 | |
| 403 | //------------------------------------------------------------------------------ |
| 404 | // Main analysis loop: |
| 405 | // Collect all susceptibilities for each macroblock and record their |
| 406 | // distribution in alphas[]. Segments is assigned a-posteriori, based on |
| 407 | // this histogram. |
| 408 | // We also pick an intra16 prediction mode, which shouldn't be considered |
| 409 | // final except for fast-encode settings. We can also pick some intra4 modes |
| 410 | // and decide intra4/intra16, but that's usually almost always a bad choice at |
| 411 | // this stage. |
| 412 | |
| 413 | static void ResetAllMBInfo(VP8Encoder* const enc) { |
| 414 | int n; |
| 415 | for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { |
| 416 | DefaultMBInfo(&enc->mb_info_[n]); |
| 417 | } |
| 418 | // Default susceptibilities. |
| 419 | enc->dqm_[0].alpha_ = 0; |
| 420 | enc->dqm_[0].beta_ = 0; |
| 421 | // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value. |
| 422 | enc->alpha_ = 0; |
| 423 | enc->uv_alpha_ = 0; |
| 424 | WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_); |
| 425 | } |
| 426 | |
| 427 | // struct used to collect job result |
| 428 | typedef struct { |
| 429 | WebPWorker worker; |
| 430 | int alphas[MAX_ALPHA + 1]; |
| 431 | int alpha, uv_alpha; |
| 432 | VP8EncIterator it; |
| 433 | int delta_progress; |
| 434 | } SegmentJob; |
| 435 | |
| 436 | // main work call |
| 437 | static int DoSegmentsJob(SegmentJob* const job, VP8EncIterator* const it) { |
| 438 | int ok = 1; |
| 439 | if (!VP8IteratorIsDone(it)) { |
| 440 | uint8_t tmp[32 + WEBP_ALIGN_CST]; |
| 441 | uint8_t* const scratch = (uint8_t*)WEBP_ALIGN(tmp); |
| 442 | do { |
| 443 | // Let's pretend we have perfect lossless reconstruction. |
| 444 | VP8IteratorImport(it, scratch); |
| 445 | MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha); |
| 446 | ok = VP8IteratorProgress(it, job->delta_progress); |
| 447 | } while (ok && VP8IteratorNext(it)); |
| 448 | } |
| 449 | return ok; |
| 450 | } |
| 451 | |
| 452 | static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) { |
| 453 | int i; |
| 454 | for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i]; |
| 455 | dst->alpha += src->alpha; |
| 456 | dst->uv_alpha += src->uv_alpha; |
| 457 | } |
| 458 | |
| 459 | // initialize the job struct with some TODOs |
| 460 | static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job, |
| 461 | int start_row, int end_row) { |
| 462 | WebPGetWorkerInterface()->Init(&job->worker); |
| 463 | job->worker.data1 = job; |
| 464 | job->worker.data2 = &job->it; |
| 465 | job->worker.hook = (WebPWorkerHook)DoSegmentsJob; |
| 466 | VP8IteratorInit(enc, &job->it); |
| 467 | VP8IteratorSetRow(&job->it, start_row); |
| 468 | VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_); |
| 469 | memset(job->alphas, 0, sizeof(job->alphas)); |
| 470 | job->alpha = 0; |
| 471 | job->uv_alpha = 0; |
| 472 | // only one of both jobs can record the progress, since we don't |
| 473 | // expect the user's hook to be multi-thread safe |
| 474 | job->delta_progress = (start_row == 0) ? 20 : 0; |
| 475 | } |
| 476 | |
| 477 | // main entry point |
| 478 | int VP8EncAnalyze(VP8Encoder* const enc) { |
| 479 | int ok = 1; |
| 480 | const int do_segments = |
| 481 | enc->config_->emulate_jpeg_size || // We need the complexity evaluation. |
| 482 | (enc->segment_hdr_.num_segments_ > 1) || |
| 483 | (enc->method_ <= 1); // for method 0 - 1, we need preds_[] to be filled. |
| 484 | if (do_segments) { |
| 485 | const int last_row = enc->mb_h_; |
| 486 | // We give a little more than a half work to the main thread. |
| 487 | const int split_row = (9 * last_row + 15) >> 4; |
| 488 | const int total_mb = last_row * enc->mb_w_; |
| 489 | #ifdef WEBP_USE_THREAD |
| 490 | const int kMinSplitRow = 2; // minimal rows needed for mt to be worth it |
| 491 | const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow); |
| 492 | #else |
| 493 | const int do_mt = 0; |
| 494 | #endif |
| 495 | const WebPWorkerInterface* const worker_interface = |
| 496 | WebPGetWorkerInterface(); |
| 497 | SegmentJob main_job; |
| 498 | if (do_mt) { |
| 499 | SegmentJob side_job; |
| 500 | // Note the use of '&' instead of '&&' because we must call the functions |
| 501 | // no matter what. |
| 502 | InitSegmentJob(enc, &main_job, 0, split_row); |
| 503 | InitSegmentJob(enc, &side_job, split_row, last_row); |
| 504 | // we don't need to call Reset() on main_job.worker, since we're calling |
| 505 | // WebPWorkerExecute() on it |
| 506 | ok &= worker_interface->Reset(&side_job.worker); |
| 507 | // launch the two jobs in parallel |
| 508 | if (ok) { |
| 509 | worker_interface->Launch(&side_job.worker); |
| 510 | worker_interface->Execute(&main_job.worker); |
| 511 | ok &= worker_interface->Sync(&side_job.worker); |
| 512 | ok &= worker_interface->Sync(&main_job.worker); |
| 513 | } |
| 514 | worker_interface->End(&side_job.worker); |
| 515 | if (ok) MergeJobs(&side_job, &main_job); // merge results together |
| 516 | } else { |
| 517 | // Even for single-thread case, we use the generic Worker tools. |
| 518 | InitSegmentJob(enc, &main_job, 0, last_row); |
| 519 | worker_interface->Execute(&main_job.worker); |
| 520 | ok &= worker_interface->Sync(&main_job.worker); |
| 521 | } |
| 522 | worker_interface->End(&main_job.worker); |
| 523 | if (ok) { |
| 524 | enc->alpha_ = main_job.alpha / total_mb; |
| 525 | enc->uv_alpha_ = main_job.uv_alpha / total_mb; |
| 526 | AssignSegments(enc, main_job.alphas); |
| 527 | } |
| 528 | } else { // Use only one default segment. |
| 529 | ResetAllMBInfo(enc); |
| 530 | } |
| 531 | return ok; |
| 532 | } |
| 533 | |
| 534 | |