1 | // Copyright 2012 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // Author: Jyrki Alakuijala (jyrki@google.com) |
11 | // |
12 | |
13 | #include <assert.h> |
14 | #include <math.h> |
15 | |
16 | #include "./backward_references_enc.h" |
17 | #include "./histogram_enc.h" |
18 | #include "../dsp/lossless.h" |
19 | #include "../dsp/lossless_common.h" |
20 | #include "../dsp/dsp.h" |
21 | #include "../utils/color_cache_utils.h" |
22 | #include "../utils/utils.h" |
23 | |
24 | #define VALUES_IN_BYTE 256 |
25 | |
26 | #define MIN_BLOCK_SIZE 256 // minimum block size for backward references |
27 | |
28 | #define MAX_ENTROPY (1e30f) |
29 | |
30 | // 1M window (4M bytes) minus 120 special codes for short distances. |
31 | #define WINDOW_SIZE_BITS 20 |
32 | #define WINDOW_SIZE ((1 << WINDOW_SIZE_BITS) - 120) |
33 | |
34 | // Minimum number of pixels for which it is cheaper to encode a |
35 | // distance + length instead of each pixel as a literal. |
36 | #define MIN_LENGTH 4 |
37 | // If you change this, you need MAX_LENGTH_BITS + WINDOW_SIZE_BITS <= 32 as it |
38 | // is used in VP8LHashChain. |
39 | #define MAX_LENGTH_BITS 12 |
40 | // We want the max value to be attainable and stored in MAX_LENGTH_BITS bits. |
41 | #define MAX_LENGTH ((1 << MAX_LENGTH_BITS) - 1) |
42 | #if MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32 |
43 | #error "MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32" |
44 | #endif |
45 | |
46 | // ----------------------------------------------------------------------------- |
47 | |
48 | static const uint8_t plane_to_code_lut[128] = { |
49 | 96, 73, 55, 39, 23, 13, 5, 1, 255, 255, 255, 255, 255, 255, 255, 255, |
50 | 101, 78, 58, 42, 26, 16, 8, 2, 0, 3, 9, 17, 27, 43, 59, 79, |
51 | 102, 86, 62, 46, 32, 20, 10, 6, 4, 7, 11, 21, 33, 47, 63, 87, |
52 | 105, 90, 70, 52, 37, 28, 18, 14, 12, 15, 19, 29, 38, 53, 71, 91, |
53 | 110, 99, 82, 66, 48, 35, 30, 24, 22, 25, 31, 36, 49, 67, 83, 100, |
54 | 115, 108, 94, 76, 64, 50, 44, 40, 34, 41, 45, 51, 65, 77, 95, 109, |
55 | 118, 113, 103, 92, 80, 68, 60, 56, 54, 57, 61, 69, 81, 93, 104, 114, |
56 | 119, 116, 111, 106, 97, 88, 84, 74, 72, 75, 85, 89, 98, 107, 112, 117 |
57 | }; |
58 | |
59 | static int DistanceToPlaneCode(int xsize, int dist) { |
60 | const int yoffset = dist / xsize; |
61 | const int xoffset = dist - yoffset * xsize; |
62 | if (xoffset <= 8 && yoffset < 8) { |
63 | return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1; |
64 | } else if (xoffset > xsize - 8 && yoffset < 7) { |
65 | return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1; |
66 | } |
67 | return dist + 120; |
68 | } |
69 | |
70 | // Returns the exact index where array1 and array2 are different. For an index |
71 | // inferior or equal to best_len_match, the return value just has to be strictly |
72 | // inferior to best_len_match. The current behavior is to return 0 if this index |
73 | // is best_len_match, and the index itself otherwise. |
74 | // If no two elements are the same, it returns max_limit. |
75 | static WEBP_INLINE int FindMatchLength(const uint32_t* const array1, |
76 | const uint32_t* const array2, |
77 | int best_len_match, int max_limit) { |
78 | // Before 'expensive' linear match, check if the two arrays match at the |
79 | // current best length index. |
80 | if (array1[best_len_match] != array2[best_len_match]) return 0; |
81 | |
82 | return VP8LVectorMismatch(array1, array2, max_limit); |
83 | } |
84 | |
85 | // ----------------------------------------------------------------------------- |
86 | // VP8LBackwardRefs |
87 | |
88 | struct PixOrCopyBlock { |
89 | PixOrCopyBlock* next_; // next block (or NULL) |
90 | PixOrCopy* start_; // data start |
91 | int size_; // currently used size |
92 | }; |
93 | |
94 | static void ClearBackwardRefs(VP8LBackwardRefs* const refs) { |
95 | assert(refs != NULL); |
96 | if (refs->tail_ != NULL) { |
97 | *refs->tail_ = refs->free_blocks_; // recycle all blocks at once |
98 | } |
99 | refs->free_blocks_ = refs->refs_; |
100 | refs->tail_ = &refs->refs_; |
101 | refs->last_block_ = NULL; |
102 | refs->refs_ = NULL; |
103 | } |
104 | |
105 | void VP8LBackwardRefsClear(VP8LBackwardRefs* const refs) { |
106 | assert(refs != NULL); |
107 | ClearBackwardRefs(refs); |
108 | while (refs->free_blocks_ != NULL) { |
109 | PixOrCopyBlock* const next = refs->free_blocks_->next_; |
110 | WebPSafeFree(refs->free_blocks_); |
111 | refs->free_blocks_ = next; |
112 | } |
113 | } |
114 | |
115 | void VP8LBackwardRefsInit(VP8LBackwardRefs* const refs, int block_size) { |
116 | assert(refs != NULL); |
117 | memset(refs, 0, sizeof(*refs)); |
118 | refs->tail_ = &refs->refs_; |
119 | refs->block_size_ = |
120 | (block_size < MIN_BLOCK_SIZE) ? MIN_BLOCK_SIZE : block_size; |
121 | } |
122 | |
123 | VP8LRefsCursor VP8LRefsCursorInit(const VP8LBackwardRefs* const refs) { |
124 | VP8LRefsCursor c; |
125 | c.cur_block_ = refs->refs_; |
126 | if (refs->refs_ != NULL) { |
127 | c.cur_pos = c.cur_block_->start_; |
128 | c.last_pos_ = c.cur_pos + c.cur_block_->size_; |
129 | } else { |
130 | c.cur_pos = NULL; |
131 | c.last_pos_ = NULL; |
132 | } |
133 | return c; |
134 | } |
135 | |
136 | void VP8LRefsCursorNextBlock(VP8LRefsCursor* const c) { |
137 | PixOrCopyBlock* const b = c->cur_block_->next_; |
138 | c->cur_pos = (b == NULL) ? NULL : b->start_; |
139 | c->last_pos_ = (b == NULL) ? NULL : b->start_ + b->size_; |
140 | c->cur_block_ = b; |
141 | } |
142 | |
143 | // Create a new block, either from the free list or allocated |
144 | static PixOrCopyBlock* BackwardRefsNewBlock(VP8LBackwardRefs* const refs) { |
145 | PixOrCopyBlock* b = refs->free_blocks_; |
146 | if (b == NULL) { // allocate new memory chunk |
147 | const size_t total_size = |
148 | sizeof(*b) + refs->block_size_ * sizeof(*b->start_); |
149 | b = (PixOrCopyBlock*)WebPSafeMalloc(1ULL, total_size); |
150 | if (b == NULL) { |
151 | refs->error_ |= 1; |
152 | return NULL; |
153 | } |
154 | b->start_ = (PixOrCopy*)((uint8_t*)b + sizeof(*b)); // not always aligned |
155 | } else { // recycle from free-list |
156 | refs->free_blocks_ = b->next_; |
157 | } |
158 | *refs->tail_ = b; |
159 | refs->tail_ = &b->next_; |
160 | refs->last_block_ = b; |
161 | b->next_ = NULL; |
162 | b->size_ = 0; |
163 | return b; |
164 | } |
165 | |
166 | static WEBP_INLINE void BackwardRefsCursorAdd(VP8LBackwardRefs* const refs, |
167 | const PixOrCopy v) { |
168 | PixOrCopyBlock* b = refs->last_block_; |
169 | if (b == NULL || b->size_ == refs->block_size_) { |
170 | b = BackwardRefsNewBlock(refs); |
171 | if (b == NULL) return; // refs->error_ is set |
172 | } |
173 | b->start_[b->size_++] = v; |
174 | } |
175 | |
176 | int VP8LBackwardRefsCopy(const VP8LBackwardRefs* const src, |
177 | VP8LBackwardRefs* const dst) { |
178 | const PixOrCopyBlock* b = src->refs_; |
179 | ClearBackwardRefs(dst); |
180 | assert(src->block_size_ == dst->block_size_); |
181 | while (b != NULL) { |
182 | PixOrCopyBlock* const new_b = BackwardRefsNewBlock(dst); |
183 | if (new_b == NULL) return 0; // dst->error_ is set |
184 | memcpy(new_b->start_, b->start_, b->size_ * sizeof(*b->start_)); |
185 | new_b->size_ = b->size_; |
186 | b = b->next_; |
187 | } |
188 | return 1; |
189 | } |
190 | |
191 | // ----------------------------------------------------------------------------- |
192 | // Hash chains |
193 | |
194 | int VP8LHashChainInit(VP8LHashChain* const p, int size) { |
195 | assert(p->size_ == 0); |
196 | assert(p->offset_length_ == NULL); |
197 | assert(size > 0); |
198 | p->offset_length_ = |
199 | (uint32_t*)WebPSafeMalloc(size, sizeof(*p->offset_length_)); |
200 | if (p->offset_length_ == NULL) return 0; |
201 | p->size_ = size; |
202 | |
203 | return 1; |
204 | } |
205 | |
206 | void VP8LHashChainClear(VP8LHashChain* const p) { |
207 | assert(p != NULL); |
208 | WebPSafeFree(p->offset_length_); |
209 | |
210 | p->size_ = 0; |
211 | p->offset_length_ = NULL; |
212 | } |
213 | |
214 | // ----------------------------------------------------------------------------- |
215 | |
216 | #define HASH_MULTIPLIER_HI (0xc6a4a793ULL) |
217 | #define HASH_MULTIPLIER_LO (0x5bd1e996ULL) |
218 | |
219 | static WEBP_INLINE uint32_t GetPixPairHash64(const uint32_t* const argb) { |
220 | uint32_t key; |
221 | key = (argb[1] * HASH_MULTIPLIER_HI) & 0xffffffffu; |
222 | key += (argb[0] * HASH_MULTIPLIER_LO) & 0xffffffffu; |
223 | key = key >> (32 - HASH_BITS); |
224 | return key; |
225 | } |
226 | |
227 | // Returns the maximum number of hash chain lookups to do for a |
228 | // given compression quality. Return value in range [8, 86]. |
229 | static int GetMaxItersForQuality(int quality) { |
230 | return 8 + (quality * quality) / 128; |
231 | } |
232 | |
233 | static int GetWindowSizeForHashChain(int quality, int xsize) { |
234 | const int max_window_size = (quality > 75) ? WINDOW_SIZE |
235 | : (quality > 50) ? (xsize << 8) |
236 | : (quality > 25) ? (xsize << 6) |
237 | : (xsize << 4); |
238 | assert(xsize > 0); |
239 | return (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE : max_window_size; |
240 | } |
241 | |
242 | static WEBP_INLINE int MaxFindCopyLength(int len) { |
243 | return (len < MAX_LENGTH) ? len : MAX_LENGTH; |
244 | } |
245 | |
246 | int VP8LHashChainFill(VP8LHashChain* const p, int quality, |
247 | const uint32_t* const argb, int xsize, int ysize, |
248 | int low_effort) { |
249 | const int size = xsize * ysize; |
250 | const int iter_max = GetMaxItersForQuality(quality); |
251 | const uint32_t window_size = GetWindowSizeForHashChain(quality, xsize); |
252 | int pos; |
253 | int argb_comp; |
254 | uint32_t base_position; |
255 | int32_t* hash_to_first_index; |
256 | // Temporarily use the p->offset_length_ as a hash chain. |
257 | int32_t* chain = (int32_t*)p->offset_length_; |
258 | assert(size > 0); |
259 | assert(p->size_ != 0); |
260 | assert(p->offset_length_ != NULL); |
261 | |
262 | if (size <= 2) { |
263 | p->offset_length_[0] = p->offset_length_[size - 1] = 0; |
264 | return 1; |
265 | } |
266 | |
267 | hash_to_first_index = |
268 | (int32_t*)WebPSafeMalloc(HASH_SIZE, sizeof(*hash_to_first_index)); |
269 | if (hash_to_first_index == NULL) return 0; |
270 | |
271 | // Set the int32_t array to -1. |
272 | memset(hash_to_first_index, 0xff, HASH_SIZE * sizeof(*hash_to_first_index)); |
273 | // Fill the chain linking pixels with the same hash. |
274 | argb_comp = (argb[0] == argb[1]); |
275 | for (pos = 0; pos < size - 2;) { |
276 | uint32_t hash_code; |
277 | const int argb_comp_next = (argb[pos + 1] == argb[pos + 2]); |
278 | if (argb_comp && argb_comp_next) { |
279 | // Consecutive pixels with the same color will share the same hash. |
280 | // We therefore use a different hash: the color and its repetition |
281 | // length. |
282 | uint32_t tmp[2]; |
283 | uint32_t len = 1; |
284 | tmp[0] = argb[pos]; |
285 | // Figure out how far the pixels are the same. |
286 | // The last pixel has a different 64 bit hash, as its next pixel does |
287 | // not have the same color, so we just need to get to the last pixel equal |
288 | // to its follower. |
289 | while (pos + (int)len + 2 < size && argb[pos + len + 2] == argb[pos]) { |
290 | ++len; |
291 | } |
292 | if (len > MAX_LENGTH) { |
293 | // Skip the pixels that match for distance=1 and length>MAX_LENGTH |
294 | // because they are linked to their predecessor and we automatically |
295 | // check that in the main for loop below. Skipping means setting no |
296 | // predecessor in the chain, hence -1. |
297 | memset(chain + pos, 0xff, (len - MAX_LENGTH) * sizeof(*chain)); |
298 | pos += len - MAX_LENGTH; |
299 | len = MAX_LENGTH; |
300 | } |
301 | // Process the rest of the hash chain. |
302 | while (len) { |
303 | tmp[1] = len--; |
304 | hash_code = GetPixPairHash64(tmp); |
305 | chain[pos] = hash_to_first_index[hash_code]; |
306 | hash_to_first_index[hash_code] = pos++; |
307 | } |
308 | argb_comp = 0; |
309 | } else { |
310 | // Just move one pixel forward. |
311 | hash_code = GetPixPairHash64(argb + pos); |
312 | chain[pos] = hash_to_first_index[hash_code]; |
313 | hash_to_first_index[hash_code] = pos++; |
314 | argb_comp = argb_comp_next; |
315 | } |
316 | } |
317 | // Process the penultimate pixel. |
318 | chain[pos] = hash_to_first_index[GetPixPairHash64(argb + pos)]; |
319 | |
320 | WebPSafeFree(hash_to_first_index); |
321 | |
322 | // Find the best match interval at each pixel, defined by an offset to the |
323 | // pixel and a length. The right-most pixel cannot match anything to the right |
324 | // (hence a best length of 0) and the left-most pixel nothing to the left |
325 | // (hence an offset of 0). |
326 | assert(size > 2); |
327 | p->offset_length_[0] = p->offset_length_[size - 1] = 0; |
328 | for (base_position = size - 2; base_position > 0;) { |
329 | const int max_len = MaxFindCopyLength(size - 1 - base_position); |
330 | const uint32_t* const argb_start = argb + base_position; |
331 | int iter = iter_max; |
332 | int best_length = 0; |
333 | uint32_t best_distance = 0; |
334 | uint32_t best_argb; |
335 | const int min_pos = |
336 | (base_position > window_size) ? base_position - window_size : 0; |
337 | const int length_max = (max_len < 256) ? max_len : 256; |
338 | uint32_t max_base_position; |
339 | |
340 | pos = chain[base_position]; |
341 | if (!low_effort) { |
342 | int curr_length; |
343 | // Heuristic: use the comparison with the above line as an initialization. |
344 | if (base_position >= (uint32_t)xsize) { |
345 | curr_length = FindMatchLength(argb_start - xsize, argb_start, |
346 | best_length, max_len); |
347 | if (curr_length > best_length) { |
348 | best_length = curr_length; |
349 | best_distance = xsize; |
350 | } |
351 | --iter; |
352 | } |
353 | // Heuristic: compare to the previous pixel. |
354 | curr_length = |
355 | FindMatchLength(argb_start - 1, argb_start, best_length, max_len); |
356 | if (curr_length > best_length) { |
357 | best_length = curr_length; |
358 | best_distance = 1; |
359 | } |
360 | --iter; |
361 | // Skip the for loop if we already have the maximum. |
362 | if (best_length == MAX_LENGTH) pos = min_pos - 1; |
363 | } |
364 | best_argb = argb_start[best_length]; |
365 | |
366 | for (; pos >= min_pos && --iter; pos = chain[pos]) { |
367 | int curr_length; |
368 | assert(base_position > (uint32_t)pos); |
369 | |
370 | if (argb[pos + best_length] != best_argb) continue; |
371 | |
372 | curr_length = VP8LVectorMismatch(argb + pos, argb_start, max_len); |
373 | if (best_length < curr_length) { |
374 | best_length = curr_length; |
375 | best_distance = base_position - pos; |
376 | best_argb = argb_start[best_length]; |
377 | // Stop if we have reached a good enough length. |
378 | if (best_length >= length_max) break; |
379 | } |
380 | } |
381 | // We have the best match but in case the two intervals continue matching |
382 | // to the left, we have the best matches for the left-extended pixels. |
383 | max_base_position = base_position; |
384 | while (1) { |
385 | assert(best_length <= MAX_LENGTH); |
386 | assert(best_distance <= WINDOW_SIZE); |
387 | p->offset_length_[base_position] = |
388 | (best_distance << MAX_LENGTH_BITS) | (uint32_t)best_length; |
389 | --base_position; |
390 | // Stop if we don't have a match or if we are out of bounds. |
391 | if (best_distance == 0 || base_position == 0) break; |
392 | // Stop if we cannot extend the matching intervals to the left. |
393 | if (base_position < best_distance || |
394 | argb[base_position - best_distance] != argb[base_position]) { |
395 | break; |
396 | } |
397 | // Stop if we are matching at its limit because there could be a closer |
398 | // matching interval with the same maximum length. Then again, if the |
399 | // matching interval is as close as possible (best_distance == 1), we will |
400 | // never find anything better so let's continue. |
401 | if (best_length == MAX_LENGTH && best_distance != 1 && |
402 | base_position + MAX_LENGTH < max_base_position) { |
403 | break; |
404 | } |
405 | if (best_length < MAX_LENGTH) { |
406 | ++best_length; |
407 | max_base_position = base_position; |
408 | } |
409 | } |
410 | } |
411 | return 1; |
412 | } |
413 | |
414 | static WEBP_INLINE int HashChainFindOffset(const VP8LHashChain* const p, |
415 | const int base_position) { |
416 | return p->offset_length_[base_position] >> MAX_LENGTH_BITS; |
417 | } |
418 | |
419 | static WEBP_INLINE int HashChainFindLength(const VP8LHashChain* const p, |
420 | const int base_position) { |
421 | return p->offset_length_[base_position] & ((1U << MAX_LENGTH_BITS) - 1); |
422 | } |
423 | |
424 | static WEBP_INLINE void HashChainFindCopy(const VP8LHashChain* const p, |
425 | int base_position, |
426 | int* const offset_ptr, |
427 | int* const length_ptr) { |
428 | *offset_ptr = HashChainFindOffset(p, base_position); |
429 | *length_ptr = HashChainFindLength(p, base_position); |
430 | } |
431 | |
432 | static WEBP_INLINE void AddSingleLiteral(uint32_t pixel, int use_color_cache, |
433 | VP8LColorCache* const hashers, |
434 | VP8LBackwardRefs* const refs) { |
435 | PixOrCopy v; |
436 | if (use_color_cache) { |
437 | const uint32_t key = VP8LColorCacheGetIndex(hashers, pixel); |
438 | if (VP8LColorCacheLookup(hashers, key) == pixel) { |
439 | v = PixOrCopyCreateCacheIdx(key); |
440 | } else { |
441 | v = PixOrCopyCreateLiteral(pixel); |
442 | VP8LColorCacheSet(hashers, key, pixel); |
443 | } |
444 | } else { |
445 | v = PixOrCopyCreateLiteral(pixel); |
446 | } |
447 | BackwardRefsCursorAdd(refs, v); |
448 | } |
449 | |
450 | static int BackwardReferencesRle(int xsize, int ysize, |
451 | const uint32_t* const argb, |
452 | int cache_bits, VP8LBackwardRefs* const refs) { |
453 | const int pix_count = xsize * ysize; |
454 | int i, k; |
455 | const int use_color_cache = (cache_bits > 0); |
456 | VP8LColorCache hashers; |
457 | |
458 | if (use_color_cache && !VP8LColorCacheInit(&hashers, cache_bits)) { |
459 | return 0; |
460 | } |
461 | ClearBackwardRefs(refs); |
462 | // Add first pixel as literal. |
463 | AddSingleLiteral(argb[0], use_color_cache, &hashers, refs); |
464 | i = 1; |
465 | while (i < pix_count) { |
466 | const int max_len = MaxFindCopyLength(pix_count - i); |
467 | const int rle_len = FindMatchLength(argb + i, argb + i - 1, 0, max_len); |
468 | const int prev_row_len = (i < xsize) ? 0 : |
469 | FindMatchLength(argb + i, argb + i - xsize, 0, max_len); |
470 | if (rle_len >= prev_row_len && rle_len >= MIN_LENGTH) { |
471 | BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(1, rle_len)); |
472 | // We don't need to update the color cache here since it is always the |
473 | // same pixel being copied, and that does not change the color cache |
474 | // state. |
475 | i += rle_len; |
476 | } else if (prev_row_len >= MIN_LENGTH) { |
477 | BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(xsize, prev_row_len)); |
478 | if (use_color_cache) { |
479 | for (k = 0; k < prev_row_len; ++k) { |
480 | VP8LColorCacheInsert(&hashers, argb[i + k]); |
481 | } |
482 | } |
483 | i += prev_row_len; |
484 | } else { |
485 | AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); |
486 | i++; |
487 | } |
488 | } |
489 | if (use_color_cache) VP8LColorCacheClear(&hashers); |
490 | return !refs->error_; |
491 | } |
492 | |
493 | static int BackwardReferencesLz77(int xsize, int ysize, |
494 | const uint32_t* const argb, int cache_bits, |
495 | const VP8LHashChain* const hash_chain, |
496 | VP8LBackwardRefs* const refs) { |
497 | int i; |
498 | int i_last_check = -1; |
499 | int ok = 0; |
500 | int cc_init = 0; |
501 | const int use_color_cache = (cache_bits > 0); |
502 | const int pix_count = xsize * ysize; |
503 | VP8LColorCache hashers; |
504 | |
505 | if (use_color_cache) { |
506 | cc_init = VP8LColorCacheInit(&hashers, cache_bits); |
507 | if (!cc_init) goto Error; |
508 | } |
509 | ClearBackwardRefs(refs); |
510 | for (i = 0; i < pix_count;) { |
511 | // Alternative#1: Code the pixels starting at 'i' using backward reference. |
512 | int offset = 0; |
513 | int len = 0; |
514 | int j; |
515 | HashChainFindCopy(hash_chain, i, &offset, &len); |
516 | if (len >= MIN_LENGTH) { |
517 | const int len_ini = len; |
518 | int max_reach = 0; |
519 | assert(i + len < pix_count); |
520 | // Only start from what we have not checked already. |
521 | i_last_check = (i > i_last_check) ? i : i_last_check; |
522 | // We know the best match for the current pixel but we try to find the |
523 | // best matches for the current pixel AND the next one combined. |
524 | // The naive method would use the intervals: |
525 | // [i,i+len) + [i+len, length of best match at i+len) |
526 | // while we check if we can use: |
527 | // [i,j) (where j<=i+len) + [j, length of best match at j) |
528 | for (j = i_last_check + 1; j <= i + len_ini; ++j) { |
529 | const int len_j = HashChainFindLength(hash_chain, j); |
530 | const int reach = |
531 | j + (len_j >= MIN_LENGTH ? len_j : 1); // 1 for single literal. |
532 | if (reach > max_reach) { |
533 | len = j - i; |
534 | max_reach = reach; |
535 | } |
536 | } |
537 | } else { |
538 | len = 1; |
539 | } |
540 | // Go with literal or backward reference. |
541 | assert(len > 0); |
542 | if (len == 1) { |
543 | AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); |
544 | } else { |
545 | BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len)); |
546 | if (use_color_cache) { |
547 | for (j = i; j < i + len; ++j) VP8LColorCacheInsert(&hashers, argb[j]); |
548 | } |
549 | } |
550 | i += len; |
551 | } |
552 | |
553 | ok = !refs->error_; |
554 | Error: |
555 | if (cc_init) VP8LColorCacheClear(&hashers); |
556 | return ok; |
557 | } |
558 | |
559 | // ----------------------------------------------------------------------------- |
560 | |
561 | typedef struct { |
562 | double alpha_[VALUES_IN_BYTE]; |
563 | double red_[VALUES_IN_BYTE]; |
564 | double blue_[VALUES_IN_BYTE]; |
565 | double distance_[NUM_DISTANCE_CODES]; |
566 | double* literal_; |
567 | } CostModel; |
568 | |
569 | static int BackwardReferencesTraceBackwards( |
570 | int xsize, int ysize, const uint32_t* const argb, int quality, |
571 | int cache_bits, const VP8LHashChain* const hash_chain, |
572 | VP8LBackwardRefs* const refs); |
573 | |
574 | static void ConvertPopulationCountTableToBitEstimates( |
575 | int num_symbols, const uint32_t population_counts[], double output[]) { |
576 | uint32_t sum = 0; |
577 | int nonzeros = 0; |
578 | int i; |
579 | for (i = 0; i < num_symbols; ++i) { |
580 | sum += population_counts[i]; |
581 | if (population_counts[i] > 0) { |
582 | ++nonzeros; |
583 | } |
584 | } |
585 | if (nonzeros <= 1) { |
586 | memset(output, 0, num_symbols * sizeof(*output)); |
587 | } else { |
588 | const double logsum = VP8LFastLog2(sum); |
589 | for (i = 0; i < num_symbols; ++i) { |
590 | output[i] = logsum - VP8LFastLog2(population_counts[i]); |
591 | } |
592 | } |
593 | } |
594 | |
595 | static int CostModelBuild(CostModel* const m, int cache_bits, |
596 | VP8LBackwardRefs* const refs) { |
597 | int ok = 0; |
598 | VP8LHistogram* const histo = VP8LAllocateHistogram(cache_bits); |
599 | if (histo == NULL) goto Error; |
600 | |
601 | VP8LHistogramCreate(histo, refs, cache_bits); |
602 | |
603 | ConvertPopulationCountTableToBitEstimates( |
604 | VP8LHistogramNumCodes(histo->palette_code_bits_), |
605 | histo->literal_, m->literal_); |
606 | ConvertPopulationCountTableToBitEstimates( |
607 | VALUES_IN_BYTE, histo->red_, m->red_); |
608 | ConvertPopulationCountTableToBitEstimates( |
609 | VALUES_IN_BYTE, histo->blue_, m->blue_); |
610 | ConvertPopulationCountTableToBitEstimates( |
611 | VALUES_IN_BYTE, histo->alpha_, m->alpha_); |
612 | ConvertPopulationCountTableToBitEstimates( |
613 | NUM_DISTANCE_CODES, histo->distance_, m->distance_); |
614 | ok = 1; |
615 | |
616 | Error: |
617 | VP8LFreeHistogram(histo); |
618 | return ok; |
619 | } |
620 | |
621 | static WEBP_INLINE double GetLiteralCost(const CostModel* const m, uint32_t v) { |
622 | return m->alpha_[v >> 24] + |
623 | m->red_[(v >> 16) & 0xff] + |
624 | m->literal_[(v >> 8) & 0xff] + |
625 | m->blue_[v & 0xff]; |
626 | } |
627 | |
628 | static WEBP_INLINE double GetCacheCost(const CostModel* const m, uint32_t idx) { |
629 | const int literal_idx = VALUES_IN_BYTE + NUM_LENGTH_CODES + idx; |
630 | return m->literal_[literal_idx]; |
631 | } |
632 | |
633 | static WEBP_INLINE double GetLengthCost(const CostModel* const m, |
634 | uint32_t length) { |
635 | int code, ; |
636 | VP8LPrefixEncodeBits(length, &code, &extra_bits); |
637 | return m->literal_[VALUES_IN_BYTE + code] + extra_bits; |
638 | } |
639 | |
640 | static WEBP_INLINE double GetDistanceCost(const CostModel* const m, |
641 | uint32_t distance) { |
642 | int code, ; |
643 | VP8LPrefixEncodeBits(distance, &code, &extra_bits); |
644 | return m->distance_[code] + extra_bits; |
645 | } |
646 | |
647 | static void AddSingleLiteralWithCostModel(const uint32_t* const argb, |
648 | VP8LColorCache* const hashers, |
649 | const CostModel* const cost_model, |
650 | int idx, int use_color_cache, |
651 | double prev_cost, float* const cost, |
652 | uint16_t* const dist_array) { |
653 | double cost_val = prev_cost; |
654 | const uint32_t color = argb[0]; |
655 | const int ix = use_color_cache ? VP8LColorCacheContains(hashers, color) : -1; |
656 | if (ix >= 0) { |
657 | // use_color_cache is true and hashers contains color |
658 | const double mul0 = 0.68; |
659 | cost_val += GetCacheCost(cost_model, ix) * mul0; |
660 | } else { |
661 | const double mul1 = 0.82; |
662 | if (use_color_cache) VP8LColorCacheInsert(hashers, color); |
663 | cost_val += GetLiteralCost(cost_model, color) * mul1; |
664 | } |
665 | if (cost[idx] > cost_val) { |
666 | cost[idx] = (float)cost_val; |
667 | dist_array[idx] = 1; // only one is inserted. |
668 | } |
669 | } |
670 | |
671 | // ----------------------------------------------------------------------------- |
672 | // CostManager and interval handling |
673 | |
674 | // Empirical value to avoid high memory consumption but good for performance. |
675 | #define COST_CACHE_INTERVAL_SIZE_MAX 100 |
676 | |
677 | // To perform backward reference every pixel at index index_ is considered and |
678 | // the cost for the MAX_LENGTH following pixels computed. Those following pixels |
679 | // at index index_ + k (k from 0 to MAX_LENGTH) have a cost of: |
680 | // distance_cost_ at index_ + GetLengthCost(cost_model, k) |
681 | // (named cost) (named cached cost) |
682 | // and the minimum value is kept. GetLengthCost(cost_model, k) is cached in an |
683 | // array of size MAX_LENGTH. |
684 | // Instead of performing MAX_LENGTH comparisons per pixel, we keep track of the |
685 | // minimal values using intervals, for which lower_ and upper_ bounds are kept. |
686 | // An interval is defined by the index_ of the pixel that generated it and |
687 | // is only useful in a range of indices from start_ to end_ (exclusive), i.e. |
688 | // it contains the minimum value for pixels between start_ and end_. |
689 | // Intervals are stored in a linked list and ordered by start_. When a new |
690 | // interval has a better minimum, old intervals are split or removed. |
691 | typedef struct CostInterval CostInterval; |
692 | struct CostInterval { |
693 | double lower_; |
694 | double upper_; |
695 | int start_; |
696 | int end_; |
697 | double distance_cost_; |
698 | int index_; |
699 | CostInterval* previous_; |
700 | CostInterval* next_; |
701 | }; |
702 | |
703 | // The GetLengthCost(cost_model, k) part of the costs is also bounded for |
704 | // efficiency in a set of intervals of a different type. |
705 | // If those intervals are small enough, they are not used for comparison and |
706 | // written into the costs right away. |
707 | typedef struct { |
708 | double lower_; // Lower bound of the interval. |
709 | double upper_; // Upper bound of the interval. |
710 | int start_; |
711 | int end_; // Exclusive. |
712 | int do_write_; // If !=0, the interval is saved to cost instead of being kept |
713 | // for comparison. |
714 | } CostCacheInterval; |
715 | |
716 | // This structure is in charge of managing intervals and costs. |
717 | // It caches the different CostCacheInterval, caches the different |
718 | // GetLengthCost(cost_model, k) in cost_cache_ and the CostInterval's (whose |
719 | // count_ is limited by COST_CACHE_INTERVAL_SIZE_MAX). |
720 | #define COST_MANAGER_MAX_FREE_LIST 10 |
721 | typedef struct { |
722 | CostInterval* head_; |
723 | int count_; // The number of stored intervals. |
724 | CostCacheInterval* cache_intervals_; |
725 | size_t cache_intervals_size_; |
726 | double cost_cache_[MAX_LENGTH]; // Contains the GetLengthCost(cost_model, k). |
727 | double min_cost_cache_; // The minimum value in cost_cache_[1:]. |
728 | double max_cost_cache_; // The maximum value in cost_cache_[1:]. |
729 | float* costs_; |
730 | uint16_t* dist_array_; |
731 | // Most of the time, we only need few intervals -> use a free-list, to avoid |
732 | // fragmentation with small allocs in most common cases. |
733 | CostInterval intervals_[COST_MANAGER_MAX_FREE_LIST]; |
734 | CostInterval* free_intervals_; |
735 | // These are regularly malloc'd remains. This list can't grow larger than than |
736 | // size COST_CACHE_INTERVAL_SIZE_MAX - COST_MANAGER_MAX_FREE_LIST, note. |
737 | CostInterval* recycled_intervals_; |
738 | // Buffer used in BackwardReferencesHashChainDistanceOnly to store the ends |
739 | // of the intervals that can have impacted the cost at a pixel. |
740 | int* interval_ends_; |
741 | int interval_ends_size_; |
742 | } CostManager; |
743 | |
744 | static int IsCostCacheIntervalWritable(int start, int end) { |
745 | // 100 is the length for which we consider an interval for comparison, and not |
746 | // for writing. |
747 | // The first intervals are very small and go in increasing size. This constant |
748 | // helps merging them into one big interval (up to index 150/200 usually from |
749 | // which intervals start getting much bigger). |
750 | // This value is empirical. |
751 | return (end - start + 1 < 100); |
752 | } |
753 | |
754 | static void CostIntervalAddToFreeList(CostManager* const manager, |
755 | CostInterval* const interval) { |
756 | interval->next_ = manager->free_intervals_; |
757 | manager->free_intervals_ = interval; |
758 | } |
759 | |
760 | static int CostIntervalIsInFreeList(const CostManager* const manager, |
761 | const CostInterval* const interval) { |
762 | return (interval >= &manager->intervals_[0] && |
763 | interval <= &manager->intervals_[COST_MANAGER_MAX_FREE_LIST - 1]); |
764 | } |
765 | |
766 | static void CostManagerInitFreeList(CostManager* const manager) { |
767 | int i; |
768 | manager->free_intervals_ = NULL; |
769 | for (i = 0; i < COST_MANAGER_MAX_FREE_LIST; ++i) { |
770 | CostIntervalAddToFreeList(manager, &manager->intervals_[i]); |
771 | } |
772 | } |
773 | |
774 | static void DeleteIntervalList(CostManager* const manager, |
775 | const CostInterval* interval) { |
776 | while (interval != NULL) { |
777 | const CostInterval* const next = interval->next_; |
778 | if (!CostIntervalIsInFreeList(manager, interval)) { |
779 | WebPSafeFree((void*)interval); |
780 | } // else: do nothing |
781 | interval = next; |
782 | } |
783 | } |
784 | |
785 | static void CostManagerClear(CostManager* const manager) { |
786 | if (manager == NULL) return; |
787 | |
788 | WebPSafeFree(manager->costs_); |
789 | WebPSafeFree(manager->cache_intervals_); |
790 | WebPSafeFree(manager->interval_ends_); |
791 | |
792 | // Clear the interval lists. |
793 | DeleteIntervalList(manager, manager->head_); |
794 | manager->head_ = NULL; |
795 | DeleteIntervalList(manager, manager->recycled_intervals_); |
796 | manager->recycled_intervals_ = NULL; |
797 | |
798 | // Reset pointers, count_ and cache_intervals_size_. |
799 | memset(manager, 0, sizeof(*manager)); |
800 | CostManagerInitFreeList(manager); |
801 | } |
802 | |
803 | static int CostManagerInit(CostManager* const manager, |
804 | uint16_t* const dist_array, int pix_count, |
805 | const CostModel* const cost_model) { |
806 | int i; |
807 | const int cost_cache_size = (pix_count > MAX_LENGTH) ? MAX_LENGTH : pix_count; |
808 | // This constant is tied to the cost_model we use. |
809 | // Empirically, differences between intervals is usually of more than 1. |
810 | const double min_cost_diff = 0.1; |
811 | |
812 | manager->costs_ = NULL; |
813 | manager->cache_intervals_ = NULL; |
814 | manager->interval_ends_ = NULL; |
815 | manager->head_ = NULL; |
816 | manager->recycled_intervals_ = NULL; |
817 | manager->count_ = 0; |
818 | manager->dist_array_ = dist_array; |
819 | CostManagerInitFreeList(manager); |
820 | |
821 | // Fill in the cost_cache_. |
822 | manager->cache_intervals_size_ = 1; |
823 | manager->cost_cache_[0] = 0; |
824 | for (i = 1; i < cost_cache_size; ++i) { |
825 | manager->cost_cache_[i] = GetLengthCost(cost_model, i); |
826 | // Get an approximation of the number of bound intervals. |
827 | if (fabs(manager->cost_cache_[i] - manager->cost_cache_[i - 1]) > |
828 | min_cost_diff) { |
829 | ++manager->cache_intervals_size_; |
830 | } |
831 | // Compute the minimum of cost_cache_. |
832 | if (i == 1) { |
833 | manager->min_cost_cache_ = manager->cost_cache_[1]; |
834 | manager->max_cost_cache_ = manager->cost_cache_[1]; |
835 | } else if (manager->cost_cache_[i] < manager->min_cost_cache_) { |
836 | manager->min_cost_cache_ = manager->cost_cache_[i]; |
837 | } else if (manager->cost_cache_[i] > manager->max_cost_cache_) { |
838 | manager->max_cost_cache_ = manager->cost_cache_[i]; |
839 | } |
840 | } |
841 | |
842 | // With the current cost models, we have 15 intervals, so we are safe by |
843 | // setting a maximum of COST_CACHE_INTERVAL_SIZE_MAX. |
844 | if (manager->cache_intervals_size_ > COST_CACHE_INTERVAL_SIZE_MAX) { |
845 | manager->cache_intervals_size_ = COST_CACHE_INTERVAL_SIZE_MAX; |
846 | } |
847 | manager->cache_intervals_ = (CostCacheInterval*)WebPSafeMalloc( |
848 | manager->cache_intervals_size_, sizeof(*manager->cache_intervals_)); |
849 | if (manager->cache_intervals_ == NULL) { |
850 | CostManagerClear(manager); |
851 | return 0; |
852 | } |
853 | |
854 | // Fill in the cache_intervals_. |
855 | { |
856 | double cost_prev = -1e38f; // unprobably low initial value |
857 | CostCacheInterval* prev = NULL; |
858 | CostCacheInterval* cur = manager->cache_intervals_; |
859 | const CostCacheInterval* const end = |
860 | manager->cache_intervals_ + manager->cache_intervals_size_; |
861 | |
862 | // Consecutive values in cost_cache_ are compared and if a big enough |
863 | // difference is found, a new interval is created and bounded. |
864 | for (i = 0; i < cost_cache_size; ++i) { |
865 | const double cost_val = manager->cost_cache_[i]; |
866 | if (i == 0 || |
867 | (fabs(cost_val - cost_prev) > min_cost_diff && cur + 1 < end)) { |
868 | if (i > 1) { |
869 | const int is_writable = |
870 | IsCostCacheIntervalWritable(cur->start_, cur->end_); |
871 | // Merge with the previous interval if both are writable. |
872 | if (is_writable && cur != manager->cache_intervals_ && |
873 | prev->do_write_) { |
874 | // Update the previous interval. |
875 | prev->end_ = cur->end_; |
876 | if (cur->lower_ < prev->lower_) { |
877 | prev->lower_ = cur->lower_; |
878 | } else if (cur->upper_ > prev->upper_) { |
879 | prev->upper_ = cur->upper_; |
880 | } |
881 | } else { |
882 | cur->do_write_ = is_writable; |
883 | prev = cur; |
884 | ++cur; |
885 | } |
886 | } |
887 | // Initialize an interval. |
888 | cur->start_ = i; |
889 | cur->do_write_ = 0; |
890 | cur->lower_ = cost_val; |
891 | cur->upper_ = cost_val; |
892 | } else { |
893 | // Update the current interval bounds. |
894 | if (cost_val < cur->lower_) { |
895 | cur->lower_ = cost_val; |
896 | } else if (cost_val > cur->upper_) { |
897 | cur->upper_ = cost_val; |
898 | } |
899 | } |
900 | cur->end_ = i + 1; |
901 | cost_prev = cost_val; |
902 | } |
903 | manager->cache_intervals_size_ = cur + 1 - manager->cache_intervals_; |
904 | } |
905 | |
906 | manager->costs_ = (float*)WebPSafeMalloc(pix_count, sizeof(*manager->costs_)); |
907 | if (manager->costs_ == NULL) { |
908 | CostManagerClear(manager); |
909 | return 0; |
910 | } |
911 | // Set the initial costs_ high for every pixel as we will keep the minimum. |
912 | for (i = 0; i < pix_count; ++i) manager->costs_[i] = 1e38f; |
913 | |
914 | // The cost at pixel is influenced by the cost intervals from previous pixels. |
915 | // Let us take the specific case where the offset is the same (which actually |
916 | // happens a lot in case of uniform regions). |
917 | // pixel i contributes to j>i a cost of: offset cost + cost_cache_[j-i] |
918 | // pixel i+1 contributes to j>i a cost of: 2*offset cost + cost_cache_[j-i-1] |
919 | // pixel i+2 contributes to j>i a cost of: 3*offset cost + cost_cache_[j-i-2] |
920 | // and so on. |
921 | // A pixel i influences the following length(j) < MAX_LENGTH pixels. What is |
922 | // the value of j such that pixel i + j cannot influence any of those pixels? |
923 | // This value is such that: |
924 | // max of cost_cache_ < j*offset cost + min of cost_cache_ |
925 | // (pixel i + j 's cost cannot beat the worst cost given by pixel i). |
926 | // This value will be used to optimize the cost computation in |
927 | // BackwardReferencesHashChainDistanceOnly. |
928 | { |
929 | // The offset cost is computed in GetDistanceCost and has a minimum value of |
930 | // the minimum in cost_model->distance_. The case where the offset cost is 0 |
931 | // will be dealt with differently later so we are only interested in the |
932 | // minimum non-zero offset cost. |
933 | double offset_cost_min = 0.; |
934 | int size; |
935 | for (i = 0; i < NUM_DISTANCE_CODES; ++i) { |
936 | if (cost_model->distance_[i] != 0) { |
937 | if (offset_cost_min == 0.) { |
938 | offset_cost_min = cost_model->distance_[i]; |
939 | } else if (cost_model->distance_[i] < offset_cost_min) { |
940 | offset_cost_min = cost_model->distance_[i]; |
941 | } |
942 | } |
943 | } |
944 | // In case all the cost_model->distance_ is 0, the next non-zero cost we |
945 | // can have is from the extra bit in GetDistanceCost, hence 1. |
946 | if (offset_cost_min < 1.) offset_cost_min = 1.; |
947 | |
948 | size = 1 + (int)ceil((manager->max_cost_cache_ - manager->min_cost_cache_) / |
949 | offset_cost_min); |
950 | // Empirically, we usually end up with a value below 100. |
951 | if (size > MAX_LENGTH) size = MAX_LENGTH; |
952 | |
953 | manager->interval_ends_ = |
954 | (int*)WebPSafeMalloc(size, sizeof(*manager->interval_ends_)); |
955 | if (manager->interval_ends_ == NULL) { |
956 | CostManagerClear(manager); |
957 | return 0; |
958 | } |
959 | manager->interval_ends_size_ = size; |
960 | } |
961 | |
962 | return 1; |
963 | } |
964 | |
965 | // Given the distance_cost for pixel 'index', update the cost at pixel 'i' if it |
966 | // is smaller than the previously computed value. |
967 | static WEBP_INLINE void UpdateCost(CostManager* const manager, int i, int index, |
968 | double distance_cost) { |
969 | int k = i - index; |
970 | double cost_tmp; |
971 | assert(k >= 0 && k < MAX_LENGTH); |
972 | cost_tmp = distance_cost + manager->cost_cache_[k]; |
973 | |
974 | if (manager->costs_[i] > cost_tmp) { |
975 | manager->costs_[i] = (float)cost_tmp; |
976 | manager->dist_array_[i] = k + 1; |
977 | } |
978 | } |
979 | |
980 | // Given the distance_cost for pixel 'index', update the cost for all the pixels |
981 | // between 'start' and 'end' excluded. |
982 | static WEBP_INLINE void UpdateCostPerInterval(CostManager* const manager, |
983 | int start, int end, int index, |
984 | double distance_cost) { |
985 | int i; |
986 | for (i = start; i < end; ++i) UpdateCost(manager, i, index, distance_cost); |
987 | } |
988 | |
989 | // Given two intervals, make 'prev' be the previous one of 'next' in 'manager'. |
990 | static WEBP_INLINE void ConnectIntervals(CostManager* const manager, |
991 | CostInterval* const prev, |
992 | CostInterval* const next) { |
993 | if (prev != NULL) { |
994 | prev->next_ = next; |
995 | } else { |
996 | manager->head_ = next; |
997 | } |
998 | |
999 | if (next != NULL) next->previous_ = prev; |
1000 | } |
1001 | |
1002 | // Pop an interval in the manager. |
1003 | static WEBP_INLINE void PopInterval(CostManager* const manager, |
1004 | CostInterval* const interval) { |
1005 | CostInterval* const next = interval->next_; |
1006 | |
1007 | if (interval == NULL) return; |
1008 | |
1009 | ConnectIntervals(manager, interval->previous_, next); |
1010 | if (CostIntervalIsInFreeList(manager, interval)) { |
1011 | CostIntervalAddToFreeList(manager, interval); |
1012 | } else { // recycle regularly malloc'd intervals too |
1013 | interval->next_ = manager->recycled_intervals_; |
1014 | manager->recycled_intervals_ = interval; |
1015 | } |
1016 | --manager->count_; |
1017 | assert(manager->count_ >= 0); |
1018 | } |
1019 | |
1020 | // Update the cost at index i by going over all the stored intervals that |
1021 | // overlap with i. |
1022 | static WEBP_INLINE void UpdateCostPerIndex(CostManager* const manager, int i) { |
1023 | CostInterval* current = manager->head_; |
1024 | |
1025 | while (current != NULL && current->start_ <= i) { |
1026 | if (current->end_ <= i) { |
1027 | // We have an outdated interval, remove it. |
1028 | CostInterval* next = current->next_; |
1029 | PopInterval(manager, current); |
1030 | current = next; |
1031 | } else { |
1032 | UpdateCost(manager, i, current->index_, current->distance_cost_); |
1033 | current = current->next_; |
1034 | } |
1035 | } |
1036 | } |
1037 | |
1038 | // Given a current orphan interval and its previous interval, before |
1039 | // it was orphaned (which can be NULL), set it at the right place in the list |
1040 | // of intervals using the start_ ordering and the previous interval as a hint. |
1041 | static WEBP_INLINE void PositionOrphanInterval(CostManager* const manager, |
1042 | CostInterval* const current, |
1043 | CostInterval* previous) { |
1044 | assert(current != NULL); |
1045 | |
1046 | if (previous == NULL) previous = manager->head_; |
1047 | while (previous != NULL && current->start_ < previous->start_) { |
1048 | previous = previous->previous_; |
1049 | } |
1050 | while (previous != NULL && previous->next_ != NULL && |
1051 | previous->next_->start_ < current->start_) { |
1052 | previous = previous->next_; |
1053 | } |
1054 | |
1055 | if (previous != NULL) { |
1056 | ConnectIntervals(manager, current, previous->next_); |
1057 | } else { |
1058 | ConnectIntervals(manager, current, manager->head_); |
1059 | } |
1060 | ConnectIntervals(manager, previous, current); |
1061 | } |
1062 | |
1063 | // Insert an interval in the list contained in the manager by starting at |
1064 | // interval_in as a hint. The intervals are sorted by start_ value. |
1065 | static WEBP_INLINE void InsertInterval(CostManager* const manager, |
1066 | CostInterval* const interval_in, |
1067 | double distance_cost, double lower, |
1068 | double upper, int index, int start, |
1069 | int end) { |
1070 | CostInterval* interval_new; |
1071 | |
1072 | if (IsCostCacheIntervalWritable(start, end) || |
1073 | manager->count_ >= COST_CACHE_INTERVAL_SIZE_MAX) { |
1074 | // Write down the interval if it is too small. |
1075 | UpdateCostPerInterval(manager, start, end, index, distance_cost); |
1076 | return; |
1077 | } |
1078 | if (manager->free_intervals_ != NULL) { |
1079 | interval_new = manager->free_intervals_; |
1080 | manager->free_intervals_ = interval_new->next_; |
1081 | } else if (manager->recycled_intervals_ != NULL) { |
1082 | interval_new = manager->recycled_intervals_; |
1083 | manager->recycled_intervals_ = interval_new->next_; |
1084 | } else { // malloc for good |
1085 | interval_new = (CostInterval*)WebPSafeMalloc(1, sizeof(*interval_new)); |
1086 | if (interval_new == NULL) { |
1087 | // Write down the interval if we cannot create it. |
1088 | UpdateCostPerInterval(manager, start, end, index, distance_cost); |
1089 | return; |
1090 | } |
1091 | } |
1092 | |
1093 | interval_new->distance_cost_ = distance_cost; |
1094 | interval_new->lower_ = lower; |
1095 | interval_new->upper_ = upper; |
1096 | interval_new->index_ = index; |
1097 | interval_new->start_ = start; |
1098 | interval_new->end_ = end; |
1099 | PositionOrphanInterval(manager, interval_new, interval_in); |
1100 | |
1101 | ++manager->count_; |
1102 | } |
1103 | |
1104 | // When an interval has its start_ or end_ modified, it needs to be |
1105 | // repositioned in the linked list. |
1106 | static WEBP_INLINE void RepositionInterval(CostManager* const manager, |
1107 | CostInterval* const interval) { |
1108 | if (IsCostCacheIntervalWritable(interval->start_, interval->end_)) { |
1109 | // Maybe interval has been resized and is small enough to be removed. |
1110 | UpdateCostPerInterval(manager, interval->start_, interval->end_, |
1111 | interval->index_, interval->distance_cost_); |
1112 | PopInterval(manager, interval); |
1113 | return; |
1114 | } |
1115 | |
1116 | // Early exit if interval is at the right spot. |
1117 | if ((interval->previous_ == NULL || |
1118 | interval->previous_->start_ <= interval->start_) && |
1119 | (interval->next_ == NULL || |
1120 | interval->start_ <= interval->next_->start_)) { |
1121 | return; |
1122 | } |
1123 | |
1124 | ConnectIntervals(manager, interval->previous_, interval->next_); |
1125 | PositionOrphanInterval(manager, interval, interval->previous_); |
1126 | } |
1127 | |
1128 | // Given a new cost interval defined by its start at index, its last value and |
1129 | // distance_cost, add its contributions to the previous intervals and costs. |
1130 | // If handling the interval or one of its subintervals becomes to heavy, its |
1131 | // contribution is added to the costs right away. |
1132 | static WEBP_INLINE void PushInterval(CostManager* const manager, |
1133 | double distance_cost, int index, |
1134 | int last) { |
1135 | size_t i; |
1136 | CostInterval* interval = manager->head_; |
1137 | CostInterval* interval_next; |
1138 | const CostCacheInterval* const cost_cache_intervals = |
1139 | manager->cache_intervals_; |
1140 | |
1141 | for (i = 0; i < manager->cache_intervals_size_ && |
1142 | cost_cache_intervals[i].start_ < last; |
1143 | ++i) { |
1144 | // Define the intersection of the ith interval with the new one. |
1145 | int start = index + cost_cache_intervals[i].start_; |
1146 | const int end = index + (cost_cache_intervals[i].end_ > last |
1147 | ? last |
1148 | : cost_cache_intervals[i].end_); |
1149 | const double lower_in = cost_cache_intervals[i].lower_; |
1150 | const double upper_in = cost_cache_intervals[i].upper_; |
1151 | const double lower_full_in = distance_cost + lower_in; |
1152 | const double upper_full_in = distance_cost + upper_in; |
1153 | |
1154 | if (cost_cache_intervals[i].do_write_) { |
1155 | UpdateCostPerInterval(manager, start, end, index, distance_cost); |
1156 | continue; |
1157 | } |
1158 | |
1159 | for (; interval != NULL && interval->start_ < end && start < end; |
1160 | interval = interval_next) { |
1161 | const double lower_full_interval = |
1162 | interval->distance_cost_ + interval->lower_; |
1163 | const double upper_full_interval = |
1164 | interval->distance_cost_ + interval->upper_; |
1165 | |
1166 | interval_next = interval->next_; |
1167 | |
1168 | // Make sure we have some overlap |
1169 | if (start >= interval->end_) continue; |
1170 | |
1171 | if (lower_full_in >= upper_full_interval) { |
1172 | // When intervals are represented, the lower, the better. |
1173 | // [**********************************************************] |
1174 | // start end |
1175 | // [----------------------------------] |
1176 | // interval->start_ interval->end_ |
1177 | // If we are worse than what we already have, add whatever we have so |
1178 | // far up to interval. |
1179 | const int start_new = interval->end_; |
1180 | InsertInterval(manager, interval, distance_cost, lower_in, upper_in, |
1181 | index, start, interval->start_); |
1182 | start = start_new; |
1183 | continue; |
1184 | } |
1185 | |
1186 | // We know the two intervals intersect. |
1187 | if (upper_full_in >= lower_full_interval) { |
1188 | // There is no clear cut on which is best, so let's keep both. |
1189 | // [*********[*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*]***********] |
1190 | // start interval->start_ interval->end_ end |
1191 | // OR |
1192 | // [*********[*-*-*-*-*-*-*-*-*-*-*-]----------------------] |
1193 | // start interval->start_ end interval->end_ |
1194 | const int end_new = (interval->end_ <= end) ? interval->end_ : end; |
1195 | InsertInterval(manager, interval, distance_cost, lower_in, upper_in, |
1196 | index, start, end_new); |
1197 | start = end_new; |
1198 | } else if (start <= interval->start_ && interval->end_ <= end) { |
1199 | // [----------------------------------] |
1200 | // interval->start_ interval->end_ |
1201 | // [**************************************************************] |
1202 | // start end |
1203 | // We can safely remove the old interval as it is fully included. |
1204 | PopInterval(manager, interval); |
1205 | } else { |
1206 | if (interval->start_ <= start && end <= interval->end_) { |
1207 | // [--------------------------------------------------------------] |
1208 | // interval->start_ interval->end_ |
1209 | // [*****************************] |
1210 | // start end |
1211 | // We have to split the old interval as it fully contains the new one. |
1212 | const int end_original = interval->end_; |
1213 | interval->end_ = start; |
1214 | InsertInterval(manager, interval, interval->distance_cost_, |
1215 | interval->lower_, interval->upper_, interval->index_, |
1216 | end, end_original); |
1217 | } else if (interval->start_ < start) { |
1218 | // [------------------------------------] |
1219 | // interval->start_ interval->end_ |
1220 | // [*****************************] |
1221 | // start end |
1222 | interval->end_ = start; |
1223 | } else { |
1224 | // [------------------------------------] |
1225 | // interval->start_ interval->end_ |
1226 | // [*****************************] |
1227 | // start end |
1228 | interval->start_ = end; |
1229 | } |
1230 | |
1231 | // The interval has been modified, we need to reposition it or write it. |
1232 | RepositionInterval(manager, interval); |
1233 | } |
1234 | } |
1235 | // Insert the remaining interval from start to end. |
1236 | InsertInterval(manager, interval, distance_cost, lower_in, upper_in, index, |
1237 | start, end); |
1238 | } |
1239 | } |
1240 | |
1241 | static int BackwardReferencesHashChainDistanceOnly( |
1242 | int xsize, int ysize, const uint32_t* const argb, int quality, |
1243 | int cache_bits, const VP8LHashChain* const hash_chain, |
1244 | VP8LBackwardRefs* const refs, uint16_t* const dist_array) { |
1245 | int i; |
1246 | int ok = 0; |
1247 | int cc_init = 0; |
1248 | const int pix_count = xsize * ysize; |
1249 | const int use_color_cache = (cache_bits > 0); |
1250 | const size_t literal_array_size = sizeof(double) * |
1251 | (NUM_LITERAL_CODES + NUM_LENGTH_CODES + |
1252 | ((cache_bits > 0) ? (1 << cache_bits) : 0)); |
1253 | const size_t cost_model_size = sizeof(CostModel) + literal_array_size; |
1254 | CostModel* const cost_model = |
1255 | (CostModel*)WebPSafeCalloc(1ULL, cost_model_size); |
1256 | VP8LColorCache hashers; |
1257 | const int skip_length = 32 + quality; |
1258 | const int skip_min_distance_code = 2; |
1259 | CostManager* cost_manager = |
1260 | (CostManager*)WebPSafeMalloc(1ULL, sizeof(*cost_manager)); |
1261 | |
1262 | if (cost_model == NULL || cost_manager == NULL) goto Error; |
1263 | |
1264 | cost_model->literal_ = (double*)(cost_model + 1); |
1265 | if (use_color_cache) { |
1266 | cc_init = VP8LColorCacheInit(&hashers, cache_bits); |
1267 | if (!cc_init) goto Error; |
1268 | } |
1269 | |
1270 | if (!CostModelBuild(cost_model, cache_bits, refs)) { |
1271 | goto Error; |
1272 | } |
1273 | |
1274 | if (!CostManagerInit(cost_manager, dist_array, pix_count, cost_model)) { |
1275 | goto Error; |
1276 | } |
1277 | |
1278 | // We loop one pixel at a time, but store all currently best points to |
1279 | // non-processed locations from this point. |
1280 | dist_array[0] = 0; |
1281 | // Add first pixel as literal. |
1282 | AddSingleLiteralWithCostModel(argb + 0, &hashers, cost_model, 0, |
1283 | use_color_cache, 0.0, cost_manager->costs_, |
1284 | dist_array); |
1285 | |
1286 | for (i = 1; i < pix_count - 1; ++i) { |
1287 | int offset = 0, len = 0; |
1288 | double prev_cost = cost_manager->costs_[i - 1]; |
1289 | HashChainFindCopy(hash_chain, i, &offset, &len); |
1290 | if (len >= 2) { |
1291 | // If we are dealing with a non-literal. |
1292 | const int code = DistanceToPlaneCode(xsize, offset); |
1293 | const double offset_cost = GetDistanceCost(cost_model, code); |
1294 | const int first_i = i; |
1295 | int j_max = 0, interval_ends_index = 0; |
1296 | const int is_offset_zero = (offset_cost == 0.); |
1297 | |
1298 | if (!is_offset_zero) { |
1299 | j_max = (int)ceil( |
1300 | (cost_manager->max_cost_cache_ - cost_manager->min_cost_cache_) / |
1301 | offset_cost); |
1302 | if (j_max < 1) { |
1303 | j_max = 1; |
1304 | } else if (j_max > cost_manager->interval_ends_size_ - 1) { |
1305 | // This could only happen in the case of MAX_LENGTH. |
1306 | j_max = cost_manager->interval_ends_size_ - 1; |
1307 | } |
1308 | } // else j_max is unused anyway. |
1309 | |
1310 | // Instead of considering all contributions from a pixel i by calling: |
1311 | // PushInterval(cost_manager, prev_cost + offset_cost, i, len); |
1312 | // we optimize these contributions in case offset_cost stays the same for |
1313 | // consecutive pixels. This describes a set of pixels similar to a |
1314 | // previous set (e.g. constant color regions). |
1315 | for (; i < pix_count - 1; ++i) { |
1316 | int offset_next, len_next; |
1317 | prev_cost = cost_manager->costs_[i - 1]; |
1318 | |
1319 | if (is_offset_zero) { |
1320 | // No optimization can be made so we just push all of the |
1321 | // contributions from i. |
1322 | PushInterval(cost_manager, prev_cost, i, len); |
1323 | } else { |
1324 | // j_max is chosen as the smallest j such that: |
1325 | // max of cost_cache_ < j*offset cost + min of cost_cache_ |
1326 | // Therefore, the pixel influenced by i-j_max, cannot be influenced |
1327 | // by i. Only the costs after the end of what i contributed need to be |
1328 | // updated. cost_manager->interval_ends_ is a circular buffer that |
1329 | // stores those ends. |
1330 | const double distance_cost = prev_cost + offset_cost; |
1331 | int j = cost_manager->interval_ends_[interval_ends_index]; |
1332 | if (i - first_i <= j_max || |
1333 | !IsCostCacheIntervalWritable(j, i + len)) { |
1334 | PushInterval(cost_manager, distance_cost, i, len); |
1335 | } else { |
1336 | for (; j < i + len; ++j) { |
1337 | UpdateCost(cost_manager, j, i, distance_cost); |
1338 | } |
1339 | } |
1340 | // Store the new end in the circular buffer. |
1341 | assert(interval_ends_index < cost_manager->interval_ends_size_); |
1342 | cost_manager->interval_ends_[interval_ends_index] = i + len; |
1343 | if (++interval_ends_index > j_max) interval_ends_index = 0; |
1344 | } |
1345 | |
1346 | // Check whether i is the last pixel to consider, as it is handled |
1347 | // differently. |
1348 | if (i + 1 >= pix_count - 1) break; |
1349 | HashChainFindCopy(hash_chain, i + 1, &offset_next, &len_next); |
1350 | if (offset_next != offset) break; |
1351 | len = len_next; |
1352 | UpdateCostPerIndex(cost_manager, i); |
1353 | AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i, |
1354 | use_color_cache, prev_cost, |
1355 | cost_manager->costs_, dist_array); |
1356 | } |
1357 | // Submit the last pixel. |
1358 | UpdateCostPerIndex(cost_manager, i + 1); |
1359 | |
1360 | // This if is for speedup only. It roughly doubles the speed, and |
1361 | // makes compression worse by .1 %. |
1362 | if (len >= skip_length && code <= skip_min_distance_code) { |
1363 | // Long copy for short distances, let's skip the middle |
1364 | // lookups for better copies. |
1365 | // 1) insert the hashes. |
1366 | if (use_color_cache) { |
1367 | int k; |
1368 | for (k = 0; k < len; ++k) { |
1369 | VP8LColorCacheInsert(&hashers, argb[i + k]); |
1370 | } |
1371 | } |
1372 | // 2) jump. |
1373 | { |
1374 | const int i_next = i + len - 1; // for loop does ++i, thus -1 here. |
1375 | for (; i <= i_next; ++i) UpdateCostPerIndex(cost_manager, i + 1); |
1376 | i = i_next; |
1377 | } |
1378 | goto next_symbol; |
1379 | } |
1380 | if (len > 2) { |
1381 | // Also try the smallest interval possible (size 2). |
1382 | double cost_total = |
1383 | prev_cost + offset_cost + GetLengthCost(cost_model, 1); |
1384 | if (cost_manager->costs_[i + 1] > cost_total) { |
1385 | cost_manager->costs_[i + 1] = (float)cost_total; |
1386 | dist_array[i + 1] = 2; |
1387 | } |
1388 | } |
1389 | } else { |
1390 | // The pixel is added as a single literal so just update the costs. |
1391 | UpdateCostPerIndex(cost_manager, i + 1); |
1392 | } |
1393 | |
1394 | AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i, |
1395 | use_color_cache, prev_cost, |
1396 | cost_manager->costs_, dist_array); |
1397 | |
1398 | next_symbol: ; |
1399 | } |
1400 | // Handle the last pixel. |
1401 | if (i == (pix_count - 1)) { |
1402 | AddSingleLiteralWithCostModel( |
1403 | argb + i, &hashers, cost_model, i, use_color_cache, |
1404 | cost_manager->costs_[pix_count - 2], cost_manager->costs_, dist_array); |
1405 | } |
1406 | |
1407 | ok = !refs->error_; |
1408 | Error: |
1409 | if (cc_init) VP8LColorCacheClear(&hashers); |
1410 | CostManagerClear(cost_manager); |
1411 | WebPSafeFree(cost_model); |
1412 | WebPSafeFree(cost_manager); |
1413 | return ok; |
1414 | } |
1415 | |
1416 | // We pack the path at the end of *dist_array and return |
1417 | // a pointer to this part of the array. Example: |
1418 | // dist_array = [1x2xx3x2] => packed [1x2x1232], chosen_path = [1232] |
1419 | static void TraceBackwards(uint16_t* const dist_array, |
1420 | int dist_array_size, |
1421 | uint16_t** const chosen_path, |
1422 | int* const chosen_path_size) { |
1423 | uint16_t* path = dist_array + dist_array_size; |
1424 | uint16_t* cur = dist_array + dist_array_size - 1; |
1425 | while (cur >= dist_array) { |
1426 | const int k = *cur; |
1427 | --path; |
1428 | *path = k; |
1429 | cur -= k; |
1430 | } |
1431 | *chosen_path = path; |
1432 | *chosen_path_size = (int)(dist_array + dist_array_size - path); |
1433 | } |
1434 | |
1435 | static int BackwardReferencesHashChainFollowChosenPath( |
1436 | const uint32_t* const argb, int cache_bits, |
1437 | const uint16_t* const chosen_path, int chosen_path_size, |
1438 | const VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs) { |
1439 | const int use_color_cache = (cache_bits > 0); |
1440 | int ix; |
1441 | int i = 0; |
1442 | int ok = 0; |
1443 | int cc_init = 0; |
1444 | VP8LColorCache hashers; |
1445 | |
1446 | if (use_color_cache) { |
1447 | cc_init = VP8LColorCacheInit(&hashers, cache_bits); |
1448 | if (!cc_init) goto Error; |
1449 | } |
1450 | |
1451 | ClearBackwardRefs(refs); |
1452 | for (ix = 0; ix < chosen_path_size; ++ix) { |
1453 | const int len = chosen_path[ix]; |
1454 | if (len != 1) { |
1455 | int k; |
1456 | const int offset = HashChainFindOffset(hash_chain, i); |
1457 | BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len)); |
1458 | if (use_color_cache) { |
1459 | for (k = 0; k < len; ++k) { |
1460 | VP8LColorCacheInsert(&hashers, argb[i + k]); |
1461 | } |
1462 | } |
1463 | i += len; |
1464 | } else { |
1465 | PixOrCopy v; |
1466 | const int idx = |
1467 | use_color_cache ? VP8LColorCacheContains(&hashers, argb[i]) : -1; |
1468 | if (idx >= 0) { |
1469 | // use_color_cache is true and hashers contains argb[i] |
1470 | // push pixel as a color cache index |
1471 | v = PixOrCopyCreateCacheIdx(idx); |
1472 | } else { |
1473 | if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]); |
1474 | v = PixOrCopyCreateLiteral(argb[i]); |
1475 | } |
1476 | BackwardRefsCursorAdd(refs, v); |
1477 | ++i; |
1478 | } |
1479 | } |
1480 | ok = !refs->error_; |
1481 | Error: |
1482 | if (cc_init) VP8LColorCacheClear(&hashers); |
1483 | return ok; |
1484 | } |
1485 | |
1486 | // Returns 1 on success. |
1487 | static int BackwardReferencesTraceBackwards( |
1488 | int xsize, int ysize, const uint32_t* const argb, int quality, |
1489 | int cache_bits, const VP8LHashChain* const hash_chain, |
1490 | VP8LBackwardRefs* const refs) { |
1491 | int ok = 0; |
1492 | const int dist_array_size = xsize * ysize; |
1493 | uint16_t* chosen_path = NULL; |
1494 | int chosen_path_size = 0; |
1495 | uint16_t* dist_array = |
1496 | (uint16_t*)WebPSafeMalloc(dist_array_size, sizeof(*dist_array)); |
1497 | |
1498 | if (dist_array == NULL) goto Error; |
1499 | |
1500 | if (!BackwardReferencesHashChainDistanceOnly( |
1501 | xsize, ysize, argb, quality, cache_bits, hash_chain, |
1502 | refs, dist_array)) { |
1503 | goto Error; |
1504 | } |
1505 | TraceBackwards(dist_array, dist_array_size, &chosen_path, &chosen_path_size); |
1506 | if (!BackwardReferencesHashChainFollowChosenPath( |
1507 | argb, cache_bits, chosen_path, chosen_path_size, hash_chain, refs)) { |
1508 | goto Error; |
1509 | } |
1510 | ok = 1; |
1511 | Error: |
1512 | WebPSafeFree(dist_array); |
1513 | return ok; |
1514 | } |
1515 | |
1516 | static void BackwardReferences2DLocality(int xsize, |
1517 | const VP8LBackwardRefs* const refs) { |
1518 | VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
1519 | while (VP8LRefsCursorOk(&c)) { |
1520 | if (PixOrCopyIsCopy(c.cur_pos)) { |
1521 | const int dist = c.cur_pos->argb_or_distance; |
1522 | const int transformed_dist = DistanceToPlaneCode(xsize, dist); |
1523 | c.cur_pos->argb_or_distance = transformed_dist; |
1524 | } |
1525 | VP8LRefsCursorNext(&c); |
1526 | } |
1527 | } |
1528 | |
1529 | // Computes the entropies for a color cache size (in bits) between 0 (unused) |
1530 | // and cache_bits_max (inclusive). |
1531 | // Returns 1 on success, 0 in case of allocation error. |
1532 | static int ComputeCacheEntropies(const uint32_t* argb, |
1533 | const VP8LBackwardRefs* const refs, |
1534 | int cache_bits_max, double entropies[]) { |
1535 | int cc_init[MAX_COLOR_CACHE_BITS + 1] = { 0 }; |
1536 | VP8LColorCache hashers[MAX_COLOR_CACHE_BITS + 1]; |
1537 | VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
1538 | VP8LHistogram* histos[MAX_COLOR_CACHE_BITS + 1] = { NULL }; |
1539 | int ok = 0; |
1540 | int i; |
1541 | |
1542 | for (i = 0; i <= cache_bits_max; ++i) { |
1543 | histos[i] = VP8LAllocateHistogram(i); |
1544 | if (histos[i] == NULL) goto Error; |
1545 | if (i == 0) continue; |
1546 | cc_init[i] = VP8LColorCacheInit(&hashers[i], i); |
1547 | if (!cc_init[i]) goto Error; |
1548 | } |
1549 | |
1550 | assert(cache_bits_max >= 0); |
1551 | // Do not use the color cache for cache_bits=0. |
1552 | while (VP8LRefsCursorOk(&c)) { |
1553 | VP8LHistogramAddSinglePixOrCopy(histos[0], c.cur_pos); |
1554 | VP8LRefsCursorNext(&c); |
1555 | } |
1556 | if (cache_bits_max > 0) { |
1557 | c = VP8LRefsCursorInit(refs); |
1558 | while (VP8LRefsCursorOk(&c)) { |
1559 | const PixOrCopy* const v = c.cur_pos; |
1560 | if (PixOrCopyIsLiteral(v)) { |
1561 | const uint32_t pix = *argb++; |
1562 | // The keys of the caches can be derived from the longest one. |
1563 | int key = HashPix(pix, 32 - cache_bits_max); |
1564 | for (i = cache_bits_max; i >= 1; --i, key >>= 1) { |
1565 | if (VP8LColorCacheLookup(&hashers[i], key) == pix) { |
1566 | ++histos[i]->literal_[NUM_LITERAL_CODES + NUM_LENGTH_CODES + key]; |
1567 | } else { |
1568 | VP8LColorCacheSet(&hashers[i], key, pix); |
1569 | ++histos[i]->blue_[pix & 0xff]; |
1570 | ++histos[i]->literal_[(pix >> 8) & 0xff]; |
1571 | ++histos[i]->red_[(pix >> 16) & 0xff]; |
1572 | ++histos[i]->alpha_[pix >> 24]; |
1573 | } |
1574 | } |
1575 | } else { |
1576 | // Update the histograms for distance/length. |
1577 | int len = PixOrCopyLength(v); |
1578 | int code_dist, code_len, ; |
1579 | uint32_t argb_prev = *argb ^ 0xffffffffu; |
1580 | VP8LPrefixEncodeBits(len, &code_len, &extra_bits); |
1581 | VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code_dist, &extra_bits); |
1582 | for (i = 1; i <= cache_bits_max; ++i) { |
1583 | ++histos[i]->literal_[NUM_LITERAL_CODES + code_len]; |
1584 | ++histos[i]->distance_[code_dist]; |
1585 | } |
1586 | // Update the colors caches. |
1587 | do { |
1588 | if (*argb != argb_prev) { |
1589 | // Efficiency: insert only if the color changes. |
1590 | int key = HashPix(*argb, 32 - cache_bits_max); |
1591 | for (i = cache_bits_max; i >= 1; --i, key >>= 1) { |
1592 | hashers[i].colors_[key] = *argb; |
1593 | } |
1594 | argb_prev = *argb; |
1595 | } |
1596 | argb++; |
1597 | } while (--len != 0); |
1598 | } |
1599 | VP8LRefsCursorNext(&c); |
1600 | } |
1601 | } |
1602 | for (i = 0; i <= cache_bits_max; ++i) { |
1603 | entropies[i] = VP8LHistogramEstimateBits(histos[i]); |
1604 | } |
1605 | ok = 1; |
1606 | Error: |
1607 | for (i = 0; i <= cache_bits_max; ++i) { |
1608 | if (cc_init[i]) VP8LColorCacheClear(&hashers[i]); |
1609 | VP8LFreeHistogram(histos[i]); |
1610 | } |
1611 | return ok; |
1612 | } |
1613 | |
1614 | // Evaluate optimal cache bits for the local color cache. |
1615 | // The input *best_cache_bits sets the maximum cache bits to use (passing 0 |
1616 | // implies disabling the local color cache). The local color cache is also |
1617 | // disabled for the lower (<= 25) quality. |
1618 | // Returns 0 in case of memory error. |
1619 | static int CalculateBestCacheSize(const uint32_t* const argb, |
1620 | int xsize, int ysize, int quality, |
1621 | const VP8LHashChain* const hash_chain, |
1622 | VP8LBackwardRefs* const refs, |
1623 | int* const lz77_computed, |
1624 | int* const best_cache_bits) { |
1625 | int i; |
1626 | int cache_bits_high = (quality <= 25) ? 0 : *best_cache_bits; |
1627 | double entropy_min = MAX_ENTROPY; |
1628 | double entropies[MAX_COLOR_CACHE_BITS + 1]; |
1629 | |
1630 | assert(cache_bits_high <= MAX_COLOR_CACHE_BITS); |
1631 | |
1632 | *lz77_computed = 0; |
1633 | if (cache_bits_high == 0) { |
1634 | *best_cache_bits = 0; |
1635 | // Local color cache is disabled. |
1636 | return 1; |
1637 | } |
1638 | // Compute LZ77 with no cache (0 bits), as the ideal LZ77 with a color cache |
1639 | // is not that different in practice. |
1640 | if (!BackwardReferencesLz77(xsize, ysize, argb, 0, hash_chain, refs)) { |
1641 | return 0; |
1642 | } |
1643 | // Find the cache_bits giving the lowest entropy. The search is done in a |
1644 | // brute-force way as the function (entropy w.r.t cache_bits) can be |
1645 | // anything in practice. |
1646 | if (!ComputeCacheEntropies(argb, refs, cache_bits_high, entropies)) { |
1647 | return 0; |
1648 | } |
1649 | for (i = 0; i <= cache_bits_high; ++i) { |
1650 | if (i == 0 || entropies[i] < entropy_min) { |
1651 | entropy_min = entropies[i]; |
1652 | *best_cache_bits = i; |
1653 | } |
1654 | } |
1655 | return 1; |
1656 | } |
1657 | |
1658 | // Update (in-place) backward references for specified cache_bits. |
1659 | static int BackwardRefsWithLocalCache(const uint32_t* const argb, |
1660 | int cache_bits, |
1661 | VP8LBackwardRefs* const refs) { |
1662 | int pixel_index = 0; |
1663 | VP8LColorCache hashers; |
1664 | VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
1665 | if (!VP8LColorCacheInit(&hashers, cache_bits)) return 0; |
1666 | |
1667 | while (VP8LRefsCursorOk(&c)) { |
1668 | PixOrCopy* const v = c.cur_pos; |
1669 | if (PixOrCopyIsLiteral(v)) { |
1670 | const uint32_t argb_literal = v->argb_or_distance; |
1671 | const int ix = VP8LColorCacheContains(&hashers, argb_literal); |
1672 | if (ix >= 0) { |
1673 | // hashers contains argb_literal |
1674 | *v = PixOrCopyCreateCacheIdx(ix); |
1675 | } else { |
1676 | VP8LColorCacheInsert(&hashers, argb_literal); |
1677 | } |
1678 | ++pixel_index; |
1679 | } else { |
1680 | // refs was created without local cache, so it can not have cache indexes. |
1681 | int k; |
1682 | assert(PixOrCopyIsCopy(v)); |
1683 | for (k = 0; k < v->len; ++k) { |
1684 | VP8LColorCacheInsert(&hashers, argb[pixel_index++]); |
1685 | } |
1686 | } |
1687 | VP8LRefsCursorNext(&c); |
1688 | } |
1689 | VP8LColorCacheClear(&hashers); |
1690 | return 1; |
1691 | } |
1692 | |
1693 | static VP8LBackwardRefs* GetBackwardReferencesLowEffort( |
1694 | int width, int height, const uint32_t* const argb, |
1695 | int* const cache_bits, const VP8LHashChain* const hash_chain, |
1696 | VP8LBackwardRefs refs_array[2]) { |
1697 | VP8LBackwardRefs* refs_lz77 = &refs_array[0]; |
1698 | *cache_bits = 0; |
1699 | if (!BackwardReferencesLz77(width, height, argb, 0, hash_chain, refs_lz77)) { |
1700 | return NULL; |
1701 | } |
1702 | BackwardReferences2DLocality(width, refs_lz77); |
1703 | return refs_lz77; |
1704 | } |
1705 | |
1706 | static VP8LBackwardRefs* GetBackwardReferences( |
1707 | int width, int height, const uint32_t* const argb, int quality, |
1708 | int* const cache_bits, const VP8LHashChain* const hash_chain, |
1709 | VP8LBackwardRefs refs_array[2]) { |
1710 | int lz77_is_useful; |
1711 | int lz77_computed; |
1712 | double bit_cost_lz77, bit_cost_rle; |
1713 | VP8LBackwardRefs* best = NULL; |
1714 | VP8LBackwardRefs* refs_lz77 = &refs_array[0]; |
1715 | VP8LBackwardRefs* refs_rle = &refs_array[1]; |
1716 | VP8LHistogram* histo = NULL; |
1717 | |
1718 | if (!CalculateBestCacheSize(argb, width, height, quality, hash_chain, |
1719 | refs_lz77, &lz77_computed, cache_bits)) { |
1720 | goto Error; |
1721 | } |
1722 | |
1723 | if (lz77_computed) { |
1724 | // Transform refs_lz77 for the optimized cache_bits. |
1725 | if (*cache_bits > 0) { |
1726 | if (!BackwardRefsWithLocalCache(argb, *cache_bits, refs_lz77)) { |
1727 | goto Error; |
1728 | } |
1729 | } |
1730 | } else { |
1731 | if (!BackwardReferencesLz77(width, height, argb, *cache_bits, hash_chain, |
1732 | refs_lz77)) { |
1733 | goto Error; |
1734 | } |
1735 | } |
1736 | |
1737 | if (!BackwardReferencesRle(width, height, argb, *cache_bits, refs_rle)) { |
1738 | goto Error; |
1739 | } |
1740 | |
1741 | histo = VP8LAllocateHistogram(*cache_bits); |
1742 | if (histo == NULL) goto Error; |
1743 | |
1744 | { |
1745 | // Evaluate LZ77 coding. |
1746 | VP8LHistogramCreate(histo, refs_lz77, *cache_bits); |
1747 | bit_cost_lz77 = VP8LHistogramEstimateBits(histo); |
1748 | // Evaluate RLE coding. |
1749 | VP8LHistogramCreate(histo, refs_rle, *cache_bits); |
1750 | bit_cost_rle = VP8LHistogramEstimateBits(histo); |
1751 | // Decide if LZ77 is useful. |
1752 | lz77_is_useful = (bit_cost_lz77 < bit_cost_rle); |
1753 | } |
1754 | |
1755 | // Choose appropriate backward reference. |
1756 | if (lz77_is_useful) { |
1757 | // TraceBackwards is costly. Don't execute it at lower quality. |
1758 | const int try_lz77_trace_backwards = (quality >= 25); |
1759 | best = refs_lz77; // default guess: lz77 is better |
1760 | if (try_lz77_trace_backwards) { |
1761 | VP8LBackwardRefs* const refs_trace = refs_rle; |
1762 | if (!VP8LBackwardRefsCopy(refs_lz77, refs_trace)) { |
1763 | best = NULL; |
1764 | goto Error; |
1765 | } |
1766 | if (BackwardReferencesTraceBackwards(width, height, argb, quality, |
1767 | *cache_bits, hash_chain, |
1768 | refs_trace)) { |
1769 | double bit_cost_trace; |
1770 | // Evaluate LZ77 coding. |
1771 | VP8LHistogramCreate(histo, refs_trace, *cache_bits); |
1772 | bit_cost_trace = VP8LHistogramEstimateBits(histo); |
1773 | if (bit_cost_trace < bit_cost_lz77) { |
1774 | best = refs_trace; |
1775 | } |
1776 | } |
1777 | } |
1778 | } else { |
1779 | best = refs_rle; |
1780 | } |
1781 | |
1782 | BackwardReferences2DLocality(width, best); |
1783 | |
1784 | Error: |
1785 | VP8LFreeHistogram(histo); |
1786 | return best; |
1787 | } |
1788 | |
1789 | VP8LBackwardRefs* VP8LGetBackwardReferences( |
1790 | int width, int height, const uint32_t* const argb, int quality, |
1791 | int low_effort, int* const cache_bits, |
1792 | const VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[2]) { |
1793 | if (low_effort) { |
1794 | return GetBackwardReferencesLowEffort(width, height, argb, cache_bits, |
1795 | hash_chain, refs_array); |
1796 | } else { |
1797 | return GetBackwardReferences(width, height, argb, quality, cache_bits, |
1798 | hash_chain, refs_array); |
1799 | } |
1800 | } |
1801 | |