| 1 | // Copyright 2012 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // Author: Jyrki Alakuijala (jyrki@google.com) |
| 11 | // |
| 12 | |
| 13 | #include <assert.h> |
| 14 | #include <math.h> |
| 15 | |
| 16 | #include "./backward_references_enc.h" |
| 17 | #include "./histogram_enc.h" |
| 18 | #include "../dsp/lossless.h" |
| 19 | #include "../dsp/lossless_common.h" |
| 20 | #include "../dsp/dsp.h" |
| 21 | #include "../utils/color_cache_utils.h" |
| 22 | #include "../utils/utils.h" |
| 23 | |
| 24 | #define VALUES_IN_BYTE 256 |
| 25 | |
| 26 | #define MIN_BLOCK_SIZE 256 // minimum block size for backward references |
| 27 | |
| 28 | #define MAX_ENTROPY (1e30f) |
| 29 | |
| 30 | // 1M window (4M bytes) minus 120 special codes for short distances. |
| 31 | #define WINDOW_SIZE_BITS 20 |
| 32 | #define WINDOW_SIZE ((1 << WINDOW_SIZE_BITS) - 120) |
| 33 | |
| 34 | // Minimum number of pixels for which it is cheaper to encode a |
| 35 | // distance + length instead of each pixel as a literal. |
| 36 | #define MIN_LENGTH 4 |
| 37 | // If you change this, you need MAX_LENGTH_BITS + WINDOW_SIZE_BITS <= 32 as it |
| 38 | // is used in VP8LHashChain. |
| 39 | #define MAX_LENGTH_BITS 12 |
| 40 | // We want the max value to be attainable and stored in MAX_LENGTH_BITS bits. |
| 41 | #define MAX_LENGTH ((1 << MAX_LENGTH_BITS) - 1) |
| 42 | #if MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32 |
| 43 | #error "MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32" |
| 44 | #endif |
| 45 | |
| 46 | // ----------------------------------------------------------------------------- |
| 47 | |
| 48 | static const uint8_t plane_to_code_lut[128] = { |
| 49 | 96, 73, 55, 39, 23, 13, 5, 1, 255, 255, 255, 255, 255, 255, 255, 255, |
| 50 | 101, 78, 58, 42, 26, 16, 8, 2, 0, 3, 9, 17, 27, 43, 59, 79, |
| 51 | 102, 86, 62, 46, 32, 20, 10, 6, 4, 7, 11, 21, 33, 47, 63, 87, |
| 52 | 105, 90, 70, 52, 37, 28, 18, 14, 12, 15, 19, 29, 38, 53, 71, 91, |
| 53 | 110, 99, 82, 66, 48, 35, 30, 24, 22, 25, 31, 36, 49, 67, 83, 100, |
| 54 | 115, 108, 94, 76, 64, 50, 44, 40, 34, 41, 45, 51, 65, 77, 95, 109, |
| 55 | 118, 113, 103, 92, 80, 68, 60, 56, 54, 57, 61, 69, 81, 93, 104, 114, |
| 56 | 119, 116, 111, 106, 97, 88, 84, 74, 72, 75, 85, 89, 98, 107, 112, 117 |
| 57 | }; |
| 58 | |
| 59 | static int DistanceToPlaneCode(int xsize, int dist) { |
| 60 | const int yoffset = dist / xsize; |
| 61 | const int xoffset = dist - yoffset * xsize; |
| 62 | if (xoffset <= 8 && yoffset < 8) { |
| 63 | return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1; |
| 64 | } else if (xoffset > xsize - 8 && yoffset < 7) { |
| 65 | return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1; |
| 66 | } |
| 67 | return dist + 120; |
| 68 | } |
| 69 | |
| 70 | // Returns the exact index where array1 and array2 are different. For an index |
| 71 | // inferior or equal to best_len_match, the return value just has to be strictly |
| 72 | // inferior to best_len_match. The current behavior is to return 0 if this index |
| 73 | // is best_len_match, and the index itself otherwise. |
| 74 | // If no two elements are the same, it returns max_limit. |
| 75 | static WEBP_INLINE int FindMatchLength(const uint32_t* const array1, |
| 76 | const uint32_t* const array2, |
| 77 | int best_len_match, int max_limit) { |
| 78 | // Before 'expensive' linear match, check if the two arrays match at the |
| 79 | // current best length index. |
| 80 | if (array1[best_len_match] != array2[best_len_match]) return 0; |
| 81 | |
| 82 | return VP8LVectorMismatch(array1, array2, max_limit); |
| 83 | } |
| 84 | |
| 85 | // ----------------------------------------------------------------------------- |
| 86 | // VP8LBackwardRefs |
| 87 | |
| 88 | struct PixOrCopyBlock { |
| 89 | PixOrCopyBlock* next_; // next block (or NULL) |
| 90 | PixOrCopy* start_; // data start |
| 91 | int size_; // currently used size |
| 92 | }; |
| 93 | |
| 94 | static void ClearBackwardRefs(VP8LBackwardRefs* const refs) { |
| 95 | assert(refs != NULL); |
| 96 | if (refs->tail_ != NULL) { |
| 97 | *refs->tail_ = refs->free_blocks_; // recycle all blocks at once |
| 98 | } |
| 99 | refs->free_blocks_ = refs->refs_; |
| 100 | refs->tail_ = &refs->refs_; |
| 101 | refs->last_block_ = NULL; |
| 102 | refs->refs_ = NULL; |
| 103 | } |
| 104 | |
| 105 | void VP8LBackwardRefsClear(VP8LBackwardRefs* const refs) { |
| 106 | assert(refs != NULL); |
| 107 | ClearBackwardRefs(refs); |
| 108 | while (refs->free_blocks_ != NULL) { |
| 109 | PixOrCopyBlock* const next = refs->free_blocks_->next_; |
| 110 | WebPSafeFree(refs->free_blocks_); |
| 111 | refs->free_blocks_ = next; |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | void VP8LBackwardRefsInit(VP8LBackwardRefs* const refs, int block_size) { |
| 116 | assert(refs != NULL); |
| 117 | memset(refs, 0, sizeof(*refs)); |
| 118 | refs->tail_ = &refs->refs_; |
| 119 | refs->block_size_ = |
| 120 | (block_size < MIN_BLOCK_SIZE) ? MIN_BLOCK_SIZE : block_size; |
| 121 | } |
| 122 | |
| 123 | VP8LRefsCursor VP8LRefsCursorInit(const VP8LBackwardRefs* const refs) { |
| 124 | VP8LRefsCursor c; |
| 125 | c.cur_block_ = refs->refs_; |
| 126 | if (refs->refs_ != NULL) { |
| 127 | c.cur_pos = c.cur_block_->start_; |
| 128 | c.last_pos_ = c.cur_pos + c.cur_block_->size_; |
| 129 | } else { |
| 130 | c.cur_pos = NULL; |
| 131 | c.last_pos_ = NULL; |
| 132 | } |
| 133 | return c; |
| 134 | } |
| 135 | |
| 136 | void VP8LRefsCursorNextBlock(VP8LRefsCursor* const c) { |
| 137 | PixOrCopyBlock* const b = c->cur_block_->next_; |
| 138 | c->cur_pos = (b == NULL) ? NULL : b->start_; |
| 139 | c->last_pos_ = (b == NULL) ? NULL : b->start_ + b->size_; |
| 140 | c->cur_block_ = b; |
| 141 | } |
| 142 | |
| 143 | // Create a new block, either from the free list or allocated |
| 144 | static PixOrCopyBlock* BackwardRefsNewBlock(VP8LBackwardRefs* const refs) { |
| 145 | PixOrCopyBlock* b = refs->free_blocks_; |
| 146 | if (b == NULL) { // allocate new memory chunk |
| 147 | const size_t total_size = |
| 148 | sizeof(*b) + refs->block_size_ * sizeof(*b->start_); |
| 149 | b = (PixOrCopyBlock*)WebPSafeMalloc(1ULL, total_size); |
| 150 | if (b == NULL) { |
| 151 | refs->error_ |= 1; |
| 152 | return NULL; |
| 153 | } |
| 154 | b->start_ = (PixOrCopy*)((uint8_t*)b + sizeof(*b)); // not always aligned |
| 155 | } else { // recycle from free-list |
| 156 | refs->free_blocks_ = b->next_; |
| 157 | } |
| 158 | *refs->tail_ = b; |
| 159 | refs->tail_ = &b->next_; |
| 160 | refs->last_block_ = b; |
| 161 | b->next_ = NULL; |
| 162 | b->size_ = 0; |
| 163 | return b; |
| 164 | } |
| 165 | |
| 166 | static WEBP_INLINE void BackwardRefsCursorAdd(VP8LBackwardRefs* const refs, |
| 167 | const PixOrCopy v) { |
| 168 | PixOrCopyBlock* b = refs->last_block_; |
| 169 | if (b == NULL || b->size_ == refs->block_size_) { |
| 170 | b = BackwardRefsNewBlock(refs); |
| 171 | if (b == NULL) return; // refs->error_ is set |
| 172 | } |
| 173 | b->start_[b->size_++] = v; |
| 174 | } |
| 175 | |
| 176 | int VP8LBackwardRefsCopy(const VP8LBackwardRefs* const src, |
| 177 | VP8LBackwardRefs* const dst) { |
| 178 | const PixOrCopyBlock* b = src->refs_; |
| 179 | ClearBackwardRefs(dst); |
| 180 | assert(src->block_size_ == dst->block_size_); |
| 181 | while (b != NULL) { |
| 182 | PixOrCopyBlock* const new_b = BackwardRefsNewBlock(dst); |
| 183 | if (new_b == NULL) return 0; // dst->error_ is set |
| 184 | memcpy(new_b->start_, b->start_, b->size_ * sizeof(*b->start_)); |
| 185 | new_b->size_ = b->size_; |
| 186 | b = b->next_; |
| 187 | } |
| 188 | return 1; |
| 189 | } |
| 190 | |
| 191 | // ----------------------------------------------------------------------------- |
| 192 | // Hash chains |
| 193 | |
| 194 | int VP8LHashChainInit(VP8LHashChain* const p, int size) { |
| 195 | assert(p->size_ == 0); |
| 196 | assert(p->offset_length_ == NULL); |
| 197 | assert(size > 0); |
| 198 | p->offset_length_ = |
| 199 | (uint32_t*)WebPSafeMalloc(size, sizeof(*p->offset_length_)); |
| 200 | if (p->offset_length_ == NULL) return 0; |
| 201 | p->size_ = size; |
| 202 | |
| 203 | return 1; |
| 204 | } |
| 205 | |
| 206 | void VP8LHashChainClear(VP8LHashChain* const p) { |
| 207 | assert(p != NULL); |
| 208 | WebPSafeFree(p->offset_length_); |
| 209 | |
| 210 | p->size_ = 0; |
| 211 | p->offset_length_ = NULL; |
| 212 | } |
| 213 | |
| 214 | // ----------------------------------------------------------------------------- |
| 215 | |
| 216 | #define HASH_MULTIPLIER_HI (0xc6a4a793ULL) |
| 217 | #define HASH_MULTIPLIER_LO (0x5bd1e996ULL) |
| 218 | |
| 219 | static WEBP_INLINE uint32_t GetPixPairHash64(const uint32_t* const argb) { |
| 220 | uint32_t key; |
| 221 | key = (argb[1] * HASH_MULTIPLIER_HI) & 0xffffffffu; |
| 222 | key += (argb[0] * HASH_MULTIPLIER_LO) & 0xffffffffu; |
| 223 | key = key >> (32 - HASH_BITS); |
| 224 | return key; |
| 225 | } |
| 226 | |
| 227 | // Returns the maximum number of hash chain lookups to do for a |
| 228 | // given compression quality. Return value in range [8, 86]. |
| 229 | static int GetMaxItersForQuality(int quality) { |
| 230 | return 8 + (quality * quality) / 128; |
| 231 | } |
| 232 | |
| 233 | static int GetWindowSizeForHashChain(int quality, int xsize) { |
| 234 | const int max_window_size = (quality > 75) ? WINDOW_SIZE |
| 235 | : (quality > 50) ? (xsize << 8) |
| 236 | : (quality > 25) ? (xsize << 6) |
| 237 | : (xsize << 4); |
| 238 | assert(xsize > 0); |
| 239 | return (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE : max_window_size; |
| 240 | } |
| 241 | |
| 242 | static WEBP_INLINE int MaxFindCopyLength(int len) { |
| 243 | return (len < MAX_LENGTH) ? len : MAX_LENGTH; |
| 244 | } |
| 245 | |
| 246 | int VP8LHashChainFill(VP8LHashChain* const p, int quality, |
| 247 | const uint32_t* const argb, int xsize, int ysize, |
| 248 | int low_effort) { |
| 249 | const int size = xsize * ysize; |
| 250 | const int iter_max = GetMaxItersForQuality(quality); |
| 251 | const uint32_t window_size = GetWindowSizeForHashChain(quality, xsize); |
| 252 | int pos; |
| 253 | int argb_comp; |
| 254 | uint32_t base_position; |
| 255 | int32_t* hash_to_first_index; |
| 256 | // Temporarily use the p->offset_length_ as a hash chain. |
| 257 | int32_t* chain = (int32_t*)p->offset_length_; |
| 258 | assert(size > 0); |
| 259 | assert(p->size_ != 0); |
| 260 | assert(p->offset_length_ != NULL); |
| 261 | |
| 262 | if (size <= 2) { |
| 263 | p->offset_length_[0] = p->offset_length_[size - 1] = 0; |
| 264 | return 1; |
| 265 | } |
| 266 | |
| 267 | hash_to_first_index = |
| 268 | (int32_t*)WebPSafeMalloc(HASH_SIZE, sizeof(*hash_to_first_index)); |
| 269 | if (hash_to_first_index == NULL) return 0; |
| 270 | |
| 271 | // Set the int32_t array to -1. |
| 272 | memset(hash_to_first_index, 0xff, HASH_SIZE * sizeof(*hash_to_first_index)); |
| 273 | // Fill the chain linking pixels with the same hash. |
| 274 | argb_comp = (argb[0] == argb[1]); |
| 275 | for (pos = 0; pos < size - 2;) { |
| 276 | uint32_t hash_code; |
| 277 | const int argb_comp_next = (argb[pos + 1] == argb[pos + 2]); |
| 278 | if (argb_comp && argb_comp_next) { |
| 279 | // Consecutive pixels with the same color will share the same hash. |
| 280 | // We therefore use a different hash: the color and its repetition |
| 281 | // length. |
| 282 | uint32_t tmp[2]; |
| 283 | uint32_t len = 1; |
| 284 | tmp[0] = argb[pos]; |
| 285 | // Figure out how far the pixels are the same. |
| 286 | // The last pixel has a different 64 bit hash, as its next pixel does |
| 287 | // not have the same color, so we just need to get to the last pixel equal |
| 288 | // to its follower. |
| 289 | while (pos + (int)len + 2 < size && argb[pos + len + 2] == argb[pos]) { |
| 290 | ++len; |
| 291 | } |
| 292 | if (len > MAX_LENGTH) { |
| 293 | // Skip the pixels that match for distance=1 and length>MAX_LENGTH |
| 294 | // because they are linked to their predecessor and we automatically |
| 295 | // check that in the main for loop below. Skipping means setting no |
| 296 | // predecessor in the chain, hence -1. |
| 297 | memset(chain + pos, 0xff, (len - MAX_LENGTH) * sizeof(*chain)); |
| 298 | pos += len - MAX_LENGTH; |
| 299 | len = MAX_LENGTH; |
| 300 | } |
| 301 | // Process the rest of the hash chain. |
| 302 | while (len) { |
| 303 | tmp[1] = len--; |
| 304 | hash_code = GetPixPairHash64(tmp); |
| 305 | chain[pos] = hash_to_first_index[hash_code]; |
| 306 | hash_to_first_index[hash_code] = pos++; |
| 307 | } |
| 308 | argb_comp = 0; |
| 309 | } else { |
| 310 | // Just move one pixel forward. |
| 311 | hash_code = GetPixPairHash64(argb + pos); |
| 312 | chain[pos] = hash_to_first_index[hash_code]; |
| 313 | hash_to_first_index[hash_code] = pos++; |
| 314 | argb_comp = argb_comp_next; |
| 315 | } |
| 316 | } |
| 317 | // Process the penultimate pixel. |
| 318 | chain[pos] = hash_to_first_index[GetPixPairHash64(argb + pos)]; |
| 319 | |
| 320 | WebPSafeFree(hash_to_first_index); |
| 321 | |
| 322 | // Find the best match interval at each pixel, defined by an offset to the |
| 323 | // pixel and a length. The right-most pixel cannot match anything to the right |
| 324 | // (hence a best length of 0) and the left-most pixel nothing to the left |
| 325 | // (hence an offset of 0). |
| 326 | assert(size > 2); |
| 327 | p->offset_length_[0] = p->offset_length_[size - 1] = 0; |
| 328 | for (base_position = size - 2; base_position > 0;) { |
| 329 | const int max_len = MaxFindCopyLength(size - 1 - base_position); |
| 330 | const uint32_t* const argb_start = argb + base_position; |
| 331 | int iter = iter_max; |
| 332 | int best_length = 0; |
| 333 | uint32_t best_distance = 0; |
| 334 | uint32_t best_argb; |
| 335 | const int min_pos = |
| 336 | (base_position > window_size) ? base_position - window_size : 0; |
| 337 | const int length_max = (max_len < 256) ? max_len : 256; |
| 338 | uint32_t max_base_position; |
| 339 | |
| 340 | pos = chain[base_position]; |
| 341 | if (!low_effort) { |
| 342 | int curr_length; |
| 343 | // Heuristic: use the comparison with the above line as an initialization. |
| 344 | if (base_position >= (uint32_t)xsize) { |
| 345 | curr_length = FindMatchLength(argb_start - xsize, argb_start, |
| 346 | best_length, max_len); |
| 347 | if (curr_length > best_length) { |
| 348 | best_length = curr_length; |
| 349 | best_distance = xsize; |
| 350 | } |
| 351 | --iter; |
| 352 | } |
| 353 | // Heuristic: compare to the previous pixel. |
| 354 | curr_length = |
| 355 | FindMatchLength(argb_start - 1, argb_start, best_length, max_len); |
| 356 | if (curr_length > best_length) { |
| 357 | best_length = curr_length; |
| 358 | best_distance = 1; |
| 359 | } |
| 360 | --iter; |
| 361 | // Skip the for loop if we already have the maximum. |
| 362 | if (best_length == MAX_LENGTH) pos = min_pos - 1; |
| 363 | } |
| 364 | best_argb = argb_start[best_length]; |
| 365 | |
| 366 | for (; pos >= min_pos && --iter; pos = chain[pos]) { |
| 367 | int curr_length; |
| 368 | assert(base_position > (uint32_t)pos); |
| 369 | |
| 370 | if (argb[pos + best_length] != best_argb) continue; |
| 371 | |
| 372 | curr_length = VP8LVectorMismatch(argb + pos, argb_start, max_len); |
| 373 | if (best_length < curr_length) { |
| 374 | best_length = curr_length; |
| 375 | best_distance = base_position - pos; |
| 376 | best_argb = argb_start[best_length]; |
| 377 | // Stop if we have reached a good enough length. |
| 378 | if (best_length >= length_max) break; |
| 379 | } |
| 380 | } |
| 381 | // We have the best match but in case the two intervals continue matching |
| 382 | // to the left, we have the best matches for the left-extended pixels. |
| 383 | max_base_position = base_position; |
| 384 | while (1) { |
| 385 | assert(best_length <= MAX_LENGTH); |
| 386 | assert(best_distance <= WINDOW_SIZE); |
| 387 | p->offset_length_[base_position] = |
| 388 | (best_distance << MAX_LENGTH_BITS) | (uint32_t)best_length; |
| 389 | --base_position; |
| 390 | // Stop if we don't have a match or if we are out of bounds. |
| 391 | if (best_distance == 0 || base_position == 0) break; |
| 392 | // Stop if we cannot extend the matching intervals to the left. |
| 393 | if (base_position < best_distance || |
| 394 | argb[base_position - best_distance] != argb[base_position]) { |
| 395 | break; |
| 396 | } |
| 397 | // Stop if we are matching at its limit because there could be a closer |
| 398 | // matching interval with the same maximum length. Then again, if the |
| 399 | // matching interval is as close as possible (best_distance == 1), we will |
| 400 | // never find anything better so let's continue. |
| 401 | if (best_length == MAX_LENGTH && best_distance != 1 && |
| 402 | base_position + MAX_LENGTH < max_base_position) { |
| 403 | break; |
| 404 | } |
| 405 | if (best_length < MAX_LENGTH) { |
| 406 | ++best_length; |
| 407 | max_base_position = base_position; |
| 408 | } |
| 409 | } |
| 410 | } |
| 411 | return 1; |
| 412 | } |
| 413 | |
| 414 | static WEBP_INLINE int HashChainFindOffset(const VP8LHashChain* const p, |
| 415 | const int base_position) { |
| 416 | return p->offset_length_[base_position] >> MAX_LENGTH_BITS; |
| 417 | } |
| 418 | |
| 419 | static WEBP_INLINE int HashChainFindLength(const VP8LHashChain* const p, |
| 420 | const int base_position) { |
| 421 | return p->offset_length_[base_position] & ((1U << MAX_LENGTH_BITS) - 1); |
| 422 | } |
| 423 | |
| 424 | static WEBP_INLINE void HashChainFindCopy(const VP8LHashChain* const p, |
| 425 | int base_position, |
| 426 | int* const offset_ptr, |
| 427 | int* const length_ptr) { |
| 428 | *offset_ptr = HashChainFindOffset(p, base_position); |
| 429 | *length_ptr = HashChainFindLength(p, base_position); |
| 430 | } |
| 431 | |
| 432 | static WEBP_INLINE void AddSingleLiteral(uint32_t pixel, int use_color_cache, |
| 433 | VP8LColorCache* const hashers, |
| 434 | VP8LBackwardRefs* const refs) { |
| 435 | PixOrCopy v; |
| 436 | if (use_color_cache) { |
| 437 | const uint32_t key = VP8LColorCacheGetIndex(hashers, pixel); |
| 438 | if (VP8LColorCacheLookup(hashers, key) == pixel) { |
| 439 | v = PixOrCopyCreateCacheIdx(key); |
| 440 | } else { |
| 441 | v = PixOrCopyCreateLiteral(pixel); |
| 442 | VP8LColorCacheSet(hashers, key, pixel); |
| 443 | } |
| 444 | } else { |
| 445 | v = PixOrCopyCreateLiteral(pixel); |
| 446 | } |
| 447 | BackwardRefsCursorAdd(refs, v); |
| 448 | } |
| 449 | |
| 450 | static int BackwardReferencesRle(int xsize, int ysize, |
| 451 | const uint32_t* const argb, |
| 452 | int cache_bits, VP8LBackwardRefs* const refs) { |
| 453 | const int pix_count = xsize * ysize; |
| 454 | int i, k; |
| 455 | const int use_color_cache = (cache_bits > 0); |
| 456 | VP8LColorCache hashers; |
| 457 | |
| 458 | if (use_color_cache && !VP8LColorCacheInit(&hashers, cache_bits)) { |
| 459 | return 0; |
| 460 | } |
| 461 | ClearBackwardRefs(refs); |
| 462 | // Add first pixel as literal. |
| 463 | AddSingleLiteral(argb[0], use_color_cache, &hashers, refs); |
| 464 | i = 1; |
| 465 | while (i < pix_count) { |
| 466 | const int max_len = MaxFindCopyLength(pix_count - i); |
| 467 | const int rle_len = FindMatchLength(argb + i, argb + i - 1, 0, max_len); |
| 468 | const int prev_row_len = (i < xsize) ? 0 : |
| 469 | FindMatchLength(argb + i, argb + i - xsize, 0, max_len); |
| 470 | if (rle_len >= prev_row_len && rle_len >= MIN_LENGTH) { |
| 471 | BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(1, rle_len)); |
| 472 | // We don't need to update the color cache here since it is always the |
| 473 | // same pixel being copied, and that does not change the color cache |
| 474 | // state. |
| 475 | i += rle_len; |
| 476 | } else if (prev_row_len >= MIN_LENGTH) { |
| 477 | BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(xsize, prev_row_len)); |
| 478 | if (use_color_cache) { |
| 479 | for (k = 0; k < prev_row_len; ++k) { |
| 480 | VP8LColorCacheInsert(&hashers, argb[i + k]); |
| 481 | } |
| 482 | } |
| 483 | i += prev_row_len; |
| 484 | } else { |
| 485 | AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); |
| 486 | i++; |
| 487 | } |
| 488 | } |
| 489 | if (use_color_cache) VP8LColorCacheClear(&hashers); |
| 490 | return !refs->error_; |
| 491 | } |
| 492 | |
| 493 | static int BackwardReferencesLz77(int xsize, int ysize, |
| 494 | const uint32_t* const argb, int cache_bits, |
| 495 | const VP8LHashChain* const hash_chain, |
| 496 | VP8LBackwardRefs* const refs) { |
| 497 | int i; |
| 498 | int i_last_check = -1; |
| 499 | int ok = 0; |
| 500 | int cc_init = 0; |
| 501 | const int use_color_cache = (cache_bits > 0); |
| 502 | const int pix_count = xsize * ysize; |
| 503 | VP8LColorCache hashers; |
| 504 | |
| 505 | if (use_color_cache) { |
| 506 | cc_init = VP8LColorCacheInit(&hashers, cache_bits); |
| 507 | if (!cc_init) goto Error; |
| 508 | } |
| 509 | ClearBackwardRefs(refs); |
| 510 | for (i = 0; i < pix_count;) { |
| 511 | // Alternative#1: Code the pixels starting at 'i' using backward reference. |
| 512 | int offset = 0; |
| 513 | int len = 0; |
| 514 | int j; |
| 515 | HashChainFindCopy(hash_chain, i, &offset, &len); |
| 516 | if (len >= MIN_LENGTH) { |
| 517 | const int len_ini = len; |
| 518 | int max_reach = 0; |
| 519 | assert(i + len < pix_count); |
| 520 | // Only start from what we have not checked already. |
| 521 | i_last_check = (i > i_last_check) ? i : i_last_check; |
| 522 | // We know the best match for the current pixel but we try to find the |
| 523 | // best matches for the current pixel AND the next one combined. |
| 524 | // The naive method would use the intervals: |
| 525 | // [i,i+len) + [i+len, length of best match at i+len) |
| 526 | // while we check if we can use: |
| 527 | // [i,j) (where j<=i+len) + [j, length of best match at j) |
| 528 | for (j = i_last_check + 1; j <= i + len_ini; ++j) { |
| 529 | const int len_j = HashChainFindLength(hash_chain, j); |
| 530 | const int reach = |
| 531 | j + (len_j >= MIN_LENGTH ? len_j : 1); // 1 for single literal. |
| 532 | if (reach > max_reach) { |
| 533 | len = j - i; |
| 534 | max_reach = reach; |
| 535 | } |
| 536 | } |
| 537 | } else { |
| 538 | len = 1; |
| 539 | } |
| 540 | // Go with literal or backward reference. |
| 541 | assert(len > 0); |
| 542 | if (len == 1) { |
| 543 | AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); |
| 544 | } else { |
| 545 | BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len)); |
| 546 | if (use_color_cache) { |
| 547 | for (j = i; j < i + len; ++j) VP8LColorCacheInsert(&hashers, argb[j]); |
| 548 | } |
| 549 | } |
| 550 | i += len; |
| 551 | } |
| 552 | |
| 553 | ok = !refs->error_; |
| 554 | Error: |
| 555 | if (cc_init) VP8LColorCacheClear(&hashers); |
| 556 | return ok; |
| 557 | } |
| 558 | |
| 559 | // ----------------------------------------------------------------------------- |
| 560 | |
| 561 | typedef struct { |
| 562 | double alpha_[VALUES_IN_BYTE]; |
| 563 | double red_[VALUES_IN_BYTE]; |
| 564 | double blue_[VALUES_IN_BYTE]; |
| 565 | double distance_[NUM_DISTANCE_CODES]; |
| 566 | double* literal_; |
| 567 | } CostModel; |
| 568 | |
| 569 | static int BackwardReferencesTraceBackwards( |
| 570 | int xsize, int ysize, const uint32_t* const argb, int quality, |
| 571 | int cache_bits, const VP8LHashChain* const hash_chain, |
| 572 | VP8LBackwardRefs* const refs); |
| 573 | |
| 574 | static void ConvertPopulationCountTableToBitEstimates( |
| 575 | int num_symbols, const uint32_t population_counts[], double output[]) { |
| 576 | uint32_t sum = 0; |
| 577 | int nonzeros = 0; |
| 578 | int i; |
| 579 | for (i = 0; i < num_symbols; ++i) { |
| 580 | sum += population_counts[i]; |
| 581 | if (population_counts[i] > 0) { |
| 582 | ++nonzeros; |
| 583 | } |
| 584 | } |
| 585 | if (nonzeros <= 1) { |
| 586 | memset(output, 0, num_symbols * sizeof(*output)); |
| 587 | } else { |
| 588 | const double logsum = VP8LFastLog2(sum); |
| 589 | for (i = 0; i < num_symbols; ++i) { |
| 590 | output[i] = logsum - VP8LFastLog2(population_counts[i]); |
| 591 | } |
| 592 | } |
| 593 | } |
| 594 | |
| 595 | static int CostModelBuild(CostModel* const m, int cache_bits, |
| 596 | VP8LBackwardRefs* const refs) { |
| 597 | int ok = 0; |
| 598 | VP8LHistogram* const histo = VP8LAllocateHistogram(cache_bits); |
| 599 | if (histo == NULL) goto Error; |
| 600 | |
| 601 | VP8LHistogramCreate(histo, refs, cache_bits); |
| 602 | |
| 603 | ConvertPopulationCountTableToBitEstimates( |
| 604 | VP8LHistogramNumCodes(histo->palette_code_bits_), |
| 605 | histo->literal_, m->literal_); |
| 606 | ConvertPopulationCountTableToBitEstimates( |
| 607 | VALUES_IN_BYTE, histo->red_, m->red_); |
| 608 | ConvertPopulationCountTableToBitEstimates( |
| 609 | VALUES_IN_BYTE, histo->blue_, m->blue_); |
| 610 | ConvertPopulationCountTableToBitEstimates( |
| 611 | VALUES_IN_BYTE, histo->alpha_, m->alpha_); |
| 612 | ConvertPopulationCountTableToBitEstimates( |
| 613 | NUM_DISTANCE_CODES, histo->distance_, m->distance_); |
| 614 | ok = 1; |
| 615 | |
| 616 | Error: |
| 617 | VP8LFreeHistogram(histo); |
| 618 | return ok; |
| 619 | } |
| 620 | |
| 621 | static WEBP_INLINE double GetLiteralCost(const CostModel* const m, uint32_t v) { |
| 622 | return m->alpha_[v >> 24] + |
| 623 | m->red_[(v >> 16) & 0xff] + |
| 624 | m->literal_[(v >> 8) & 0xff] + |
| 625 | m->blue_[v & 0xff]; |
| 626 | } |
| 627 | |
| 628 | static WEBP_INLINE double GetCacheCost(const CostModel* const m, uint32_t idx) { |
| 629 | const int literal_idx = VALUES_IN_BYTE + NUM_LENGTH_CODES + idx; |
| 630 | return m->literal_[literal_idx]; |
| 631 | } |
| 632 | |
| 633 | static WEBP_INLINE double GetLengthCost(const CostModel* const m, |
| 634 | uint32_t length) { |
| 635 | int code, ; |
| 636 | VP8LPrefixEncodeBits(length, &code, &extra_bits); |
| 637 | return m->literal_[VALUES_IN_BYTE + code] + extra_bits; |
| 638 | } |
| 639 | |
| 640 | static WEBP_INLINE double GetDistanceCost(const CostModel* const m, |
| 641 | uint32_t distance) { |
| 642 | int code, ; |
| 643 | VP8LPrefixEncodeBits(distance, &code, &extra_bits); |
| 644 | return m->distance_[code] + extra_bits; |
| 645 | } |
| 646 | |
| 647 | static void AddSingleLiteralWithCostModel(const uint32_t* const argb, |
| 648 | VP8LColorCache* const hashers, |
| 649 | const CostModel* const cost_model, |
| 650 | int idx, int use_color_cache, |
| 651 | double prev_cost, float* const cost, |
| 652 | uint16_t* const dist_array) { |
| 653 | double cost_val = prev_cost; |
| 654 | const uint32_t color = argb[0]; |
| 655 | const int ix = use_color_cache ? VP8LColorCacheContains(hashers, color) : -1; |
| 656 | if (ix >= 0) { |
| 657 | // use_color_cache is true and hashers contains color |
| 658 | const double mul0 = 0.68; |
| 659 | cost_val += GetCacheCost(cost_model, ix) * mul0; |
| 660 | } else { |
| 661 | const double mul1 = 0.82; |
| 662 | if (use_color_cache) VP8LColorCacheInsert(hashers, color); |
| 663 | cost_val += GetLiteralCost(cost_model, color) * mul1; |
| 664 | } |
| 665 | if (cost[idx] > cost_val) { |
| 666 | cost[idx] = (float)cost_val; |
| 667 | dist_array[idx] = 1; // only one is inserted. |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | // ----------------------------------------------------------------------------- |
| 672 | // CostManager and interval handling |
| 673 | |
| 674 | // Empirical value to avoid high memory consumption but good for performance. |
| 675 | #define COST_CACHE_INTERVAL_SIZE_MAX 100 |
| 676 | |
| 677 | // To perform backward reference every pixel at index index_ is considered and |
| 678 | // the cost for the MAX_LENGTH following pixels computed. Those following pixels |
| 679 | // at index index_ + k (k from 0 to MAX_LENGTH) have a cost of: |
| 680 | // distance_cost_ at index_ + GetLengthCost(cost_model, k) |
| 681 | // (named cost) (named cached cost) |
| 682 | // and the minimum value is kept. GetLengthCost(cost_model, k) is cached in an |
| 683 | // array of size MAX_LENGTH. |
| 684 | // Instead of performing MAX_LENGTH comparisons per pixel, we keep track of the |
| 685 | // minimal values using intervals, for which lower_ and upper_ bounds are kept. |
| 686 | // An interval is defined by the index_ of the pixel that generated it and |
| 687 | // is only useful in a range of indices from start_ to end_ (exclusive), i.e. |
| 688 | // it contains the minimum value for pixels between start_ and end_. |
| 689 | // Intervals are stored in a linked list and ordered by start_. When a new |
| 690 | // interval has a better minimum, old intervals are split or removed. |
| 691 | typedef struct CostInterval CostInterval; |
| 692 | struct CostInterval { |
| 693 | double lower_; |
| 694 | double upper_; |
| 695 | int start_; |
| 696 | int end_; |
| 697 | double distance_cost_; |
| 698 | int index_; |
| 699 | CostInterval* previous_; |
| 700 | CostInterval* next_; |
| 701 | }; |
| 702 | |
| 703 | // The GetLengthCost(cost_model, k) part of the costs is also bounded for |
| 704 | // efficiency in a set of intervals of a different type. |
| 705 | // If those intervals are small enough, they are not used for comparison and |
| 706 | // written into the costs right away. |
| 707 | typedef struct { |
| 708 | double lower_; // Lower bound of the interval. |
| 709 | double upper_; // Upper bound of the interval. |
| 710 | int start_; |
| 711 | int end_; // Exclusive. |
| 712 | int do_write_; // If !=0, the interval is saved to cost instead of being kept |
| 713 | // for comparison. |
| 714 | } CostCacheInterval; |
| 715 | |
| 716 | // This structure is in charge of managing intervals and costs. |
| 717 | // It caches the different CostCacheInterval, caches the different |
| 718 | // GetLengthCost(cost_model, k) in cost_cache_ and the CostInterval's (whose |
| 719 | // count_ is limited by COST_CACHE_INTERVAL_SIZE_MAX). |
| 720 | #define COST_MANAGER_MAX_FREE_LIST 10 |
| 721 | typedef struct { |
| 722 | CostInterval* head_; |
| 723 | int count_; // The number of stored intervals. |
| 724 | CostCacheInterval* cache_intervals_; |
| 725 | size_t cache_intervals_size_; |
| 726 | double cost_cache_[MAX_LENGTH]; // Contains the GetLengthCost(cost_model, k). |
| 727 | double min_cost_cache_; // The minimum value in cost_cache_[1:]. |
| 728 | double max_cost_cache_; // The maximum value in cost_cache_[1:]. |
| 729 | float* costs_; |
| 730 | uint16_t* dist_array_; |
| 731 | // Most of the time, we only need few intervals -> use a free-list, to avoid |
| 732 | // fragmentation with small allocs in most common cases. |
| 733 | CostInterval intervals_[COST_MANAGER_MAX_FREE_LIST]; |
| 734 | CostInterval* free_intervals_; |
| 735 | // These are regularly malloc'd remains. This list can't grow larger than than |
| 736 | // size COST_CACHE_INTERVAL_SIZE_MAX - COST_MANAGER_MAX_FREE_LIST, note. |
| 737 | CostInterval* recycled_intervals_; |
| 738 | // Buffer used in BackwardReferencesHashChainDistanceOnly to store the ends |
| 739 | // of the intervals that can have impacted the cost at a pixel. |
| 740 | int* interval_ends_; |
| 741 | int interval_ends_size_; |
| 742 | } CostManager; |
| 743 | |
| 744 | static int IsCostCacheIntervalWritable(int start, int end) { |
| 745 | // 100 is the length for which we consider an interval for comparison, and not |
| 746 | // for writing. |
| 747 | // The first intervals are very small and go in increasing size. This constant |
| 748 | // helps merging them into one big interval (up to index 150/200 usually from |
| 749 | // which intervals start getting much bigger). |
| 750 | // This value is empirical. |
| 751 | return (end - start + 1 < 100); |
| 752 | } |
| 753 | |
| 754 | static void CostIntervalAddToFreeList(CostManager* const manager, |
| 755 | CostInterval* const interval) { |
| 756 | interval->next_ = manager->free_intervals_; |
| 757 | manager->free_intervals_ = interval; |
| 758 | } |
| 759 | |
| 760 | static int CostIntervalIsInFreeList(const CostManager* const manager, |
| 761 | const CostInterval* const interval) { |
| 762 | return (interval >= &manager->intervals_[0] && |
| 763 | interval <= &manager->intervals_[COST_MANAGER_MAX_FREE_LIST - 1]); |
| 764 | } |
| 765 | |
| 766 | static void CostManagerInitFreeList(CostManager* const manager) { |
| 767 | int i; |
| 768 | manager->free_intervals_ = NULL; |
| 769 | for (i = 0; i < COST_MANAGER_MAX_FREE_LIST; ++i) { |
| 770 | CostIntervalAddToFreeList(manager, &manager->intervals_[i]); |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | static void DeleteIntervalList(CostManager* const manager, |
| 775 | const CostInterval* interval) { |
| 776 | while (interval != NULL) { |
| 777 | const CostInterval* const next = interval->next_; |
| 778 | if (!CostIntervalIsInFreeList(manager, interval)) { |
| 779 | WebPSafeFree((void*)interval); |
| 780 | } // else: do nothing |
| 781 | interval = next; |
| 782 | } |
| 783 | } |
| 784 | |
| 785 | static void CostManagerClear(CostManager* const manager) { |
| 786 | if (manager == NULL) return; |
| 787 | |
| 788 | WebPSafeFree(manager->costs_); |
| 789 | WebPSafeFree(manager->cache_intervals_); |
| 790 | WebPSafeFree(manager->interval_ends_); |
| 791 | |
| 792 | // Clear the interval lists. |
| 793 | DeleteIntervalList(manager, manager->head_); |
| 794 | manager->head_ = NULL; |
| 795 | DeleteIntervalList(manager, manager->recycled_intervals_); |
| 796 | manager->recycled_intervals_ = NULL; |
| 797 | |
| 798 | // Reset pointers, count_ and cache_intervals_size_. |
| 799 | memset(manager, 0, sizeof(*manager)); |
| 800 | CostManagerInitFreeList(manager); |
| 801 | } |
| 802 | |
| 803 | static int CostManagerInit(CostManager* const manager, |
| 804 | uint16_t* const dist_array, int pix_count, |
| 805 | const CostModel* const cost_model) { |
| 806 | int i; |
| 807 | const int cost_cache_size = (pix_count > MAX_LENGTH) ? MAX_LENGTH : pix_count; |
| 808 | // This constant is tied to the cost_model we use. |
| 809 | // Empirically, differences between intervals is usually of more than 1. |
| 810 | const double min_cost_diff = 0.1; |
| 811 | |
| 812 | manager->costs_ = NULL; |
| 813 | manager->cache_intervals_ = NULL; |
| 814 | manager->interval_ends_ = NULL; |
| 815 | manager->head_ = NULL; |
| 816 | manager->recycled_intervals_ = NULL; |
| 817 | manager->count_ = 0; |
| 818 | manager->dist_array_ = dist_array; |
| 819 | CostManagerInitFreeList(manager); |
| 820 | |
| 821 | // Fill in the cost_cache_. |
| 822 | manager->cache_intervals_size_ = 1; |
| 823 | manager->cost_cache_[0] = 0; |
| 824 | for (i = 1; i < cost_cache_size; ++i) { |
| 825 | manager->cost_cache_[i] = GetLengthCost(cost_model, i); |
| 826 | // Get an approximation of the number of bound intervals. |
| 827 | if (fabs(manager->cost_cache_[i] - manager->cost_cache_[i - 1]) > |
| 828 | min_cost_diff) { |
| 829 | ++manager->cache_intervals_size_; |
| 830 | } |
| 831 | // Compute the minimum of cost_cache_. |
| 832 | if (i == 1) { |
| 833 | manager->min_cost_cache_ = manager->cost_cache_[1]; |
| 834 | manager->max_cost_cache_ = manager->cost_cache_[1]; |
| 835 | } else if (manager->cost_cache_[i] < manager->min_cost_cache_) { |
| 836 | manager->min_cost_cache_ = manager->cost_cache_[i]; |
| 837 | } else if (manager->cost_cache_[i] > manager->max_cost_cache_) { |
| 838 | manager->max_cost_cache_ = manager->cost_cache_[i]; |
| 839 | } |
| 840 | } |
| 841 | |
| 842 | // With the current cost models, we have 15 intervals, so we are safe by |
| 843 | // setting a maximum of COST_CACHE_INTERVAL_SIZE_MAX. |
| 844 | if (manager->cache_intervals_size_ > COST_CACHE_INTERVAL_SIZE_MAX) { |
| 845 | manager->cache_intervals_size_ = COST_CACHE_INTERVAL_SIZE_MAX; |
| 846 | } |
| 847 | manager->cache_intervals_ = (CostCacheInterval*)WebPSafeMalloc( |
| 848 | manager->cache_intervals_size_, sizeof(*manager->cache_intervals_)); |
| 849 | if (manager->cache_intervals_ == NULL) { |
| 850 | CostManagerClear(manager); |
| 851 | return 0; |
| 852 | } |
| 853 | |
| 854 | // Fill in the cache_intervals_. |
| 855 | { |
| 856 | double cost_prev = -1e38f; // unprobably low initial value |
| 857 | CostCacheInterval* prev = NULL; |
| 858 | CostCacheInterval* cur = manager->cache_intervals_; |
| 859 | const CostCacheInterval* const end = |
| 860 | manager->cache_intervals_ + manager->cache_intervals_size_; |
| 861 | |
| 862 | // Consecutive values in cost_cache_ are compared and if a big enough |
| 863 | // difference is found, a new interval is created and bounded. |
| 864 | for (i = 0; i < cost_cache_size; ++i) { |
| 865 | const double cost_val = manager->cost_cache_[i]; |
| 866 | if (i == 0 || |
| 867 | (fabs(cost_val - cost_prev) > min_cost_diff && cur + 1 < end)) { |
| 868 | if (i > 1) { |
| 869 | const int is_writable = |
| 870 | IsCostCacheIntervalWritable(cur->start_, cur->end_); |
| 871 | // Merge with the previous interval if both are writable. |
| 872 | if (is_writable && cur != manager->cache_intervals_ && |
| 873 | prev->do_write_) { |
| 874 | // Update the previous interval. |
| 875 | prev->end_ = cur->end_; |
| 876 | if (cur->lower_ < prev->lower_) { |
| 877 | prev->lower_ = cur->lower_; |
| 878 | } else if (cur->upper_ > prev->upper_) { |
| 879 | prev->upper_ = cur->upper_; |
| 880 | } |
| 881 | } else { |
| 882 | cur->do_write_ = is_writable; |
| 883 | prev = cur; |
| 884 | ++cur; |
| 885 | } |
| 886 | } |
| 887 | // Initialize an interval. |
| 888 | cur->start_ = i; |
| 889 | cur->do_write_ = 0; |
| 890 | cur->lower_ = cost_val; |
| 891 | cur->upper_ = cost_val; |
| 892 | } else { |
| 893 | // Update the current interval bounds. |
| 894 | if (cost_val < cur->lower_) { |
| 895 | cur->lower_ = cost_val; |
| 896 | } else if (cost_val > cur->upper_) { |
| 897 | cur->upper_ = cost_val; |
| 898 | } |
| 899 | } |
| 900 | cur->end_ = i + 1; |
| 901 | cost_prev = cost_val; |
| 902 | } |
| 903 | manager->cache_intervals_size_ = cur + 1 - manager->cache_intervals_; |
| 904 | } |
| 905 | |
| 906 | manager->costs_ = (float*)WebPSafeMalloc(pix_count, sizeof(*manager->costs_)); |
| 907 | if (manager->costs_ == NULL) { |
| 908 | CostManagerClear(manager); |
| 909 | return 0; |
| 910 | } |
| 911 | // Set the initial costs_ high for every pixel as we will keep the minimum. |
| 912 | for (i = 0; i < pix_count; ++i) manager->costs_[i] = 1e38f; |
| 913 | |
| 914 | // The cost at pixel is influenced by the cost intervals from previous pixels. |
| 915 | // Let us take the specific case where the offset is the same (which actually |
| 916 | // happens a lot in case of uniform regions). |
| 917 | // pixel i contributes to j>i a cost of: offset cost + cost_cache_[j-i] |
| 918 | // pixel i+1 contributes to j>i a cost of: 2*offset cost + cost_cache_[j-i-1] |
| 919 | // pixel i+2 contributes to j>i a cost of: 3*offset cost + cost_cache_[j-i-2] |
| 920 | // and so on. |
| 921 | // A pixel i influences the following length(j) < MAX_LENGTH pixels. What is |
| 922 | // the value of j such that pixel i + j cannot influence any of those pixels? |
| 923 | // This value is such that: |
| 924 | // max of cost_cache_ < j*offset cost + min of cost_cache_ |
| 925 | // (pixel i + j 's cost cannot beat the worst cost given by pixel i). |
| 926 | // This value will be used to optimize the cost computation in |
| 927 | // BackwardReferencesHashChainDistanceOnly. |
| 928 | { |
| 929 | // The offset cost is computed in GetDistanceCost and has a minimum value of |
| 930 | // the minimum in cost_model->distance_. The case where the offset cost is 0 |
| 931 | // will be dealt with differently later so we are only interested in the |
| 932 | // minimum non-zero offset cost. |
| 933 | double offset_cost_min = 0.; |
| 934 | int size; |
| 935 | for (i = 0; i < NUM_DISTANCE_CODES; ++i) { |
| 936 | if (cost_model->distance_[i] != 0) { |
| 937 | if (offset_cost_min == 0.) { |
| 938 | offset_cost_min = cost_model->distance_[i]; |
| 939 | } else if (cost_model->distance_[i] < offset_cost_min) { |
| 940 | offset_cost_min = cost_model->distance_[i]; |
| 941 | } |
| 942 | } |
| 943 | } |
| 944 | // In case all the cost_model->distance_ is 0, the next non-zero cost we |
| 945 | // can have is from the extra bit in GetDistanceCost, hence 1. |
| 946 | if (offset_cost_min < 1.) offset_cost_min = 1.; |
| 947 | |
| 948 | size = 1 + (int)ceil((manager->max_cost_cache_ - manager->min_cost_cache_) / |
| 949 | offset_cost_min); |
| 950 | // Empirically, we usually end up with a value below 100. |
| 951 | if (size > MAX_LENGTH) size = MAX_LENGTH; |
| 952 | |
| 953 | manager->interval_ends_ = |
| 954 | (int*)WebPSafeMalloc(size, sizeof(*manager->interval_ends_)); |
| 955 | if (manager->interval_ends_ == NULL) { |
| 956 | CostManagerClear(manager); |
| 957 | return 0; |
| 958 | } |
| 959 | manager->interval_ends_size_ = size; |
| 960 | } |
| 961 | |
| 962 | return 1; |
| 963 | } |
| 964 | |
| 965 | // Given the distance_cost for pixel 'index', update the cost at pixel 'i' if it |
| 966 | // is smaller than the previously computed value. |
| 967 | static WEBP_INLINE void UpdateCost(CostManager* const manager, int i, int index, |
| 968 | double distance_cost) { |
| 969 | int k = i - index; |
| 970 | double cost_tmp; |
| 971 | assert(k >= 0 && k < MAX_LENGTH); |
| 972 | cost_tmp = distance_cost + manager->cost_cache_[k]; |
| 973 | |
| 974 | if (manager->costs_[i] > cost_tmp) { |
| 975 | manager->costs_[i] = (float)cost_tmp; |
| 976 | manager->dist_array_[i] = k + 1; |
| 977 | } |
| 978 | } |
| 979 | |
| 980 | // Given the distance_cost for pixel 'index', update the cost for all the pixels |
| 981 | // between 'start' and 'end' excluded. |
| 982 | static WEBP_INLINE void UpdateCostPerInterval(CostManager* const manager, |
| 983 | int start, int end, int index, |
| 984 | double distance_cost) { |
| 985 | int i; |
| 986 | for (i = start; i < end; ++i) UpdateCost(manager, i, index, distance_cost); |
| 987 | } |
| 988 | |
| 989 | // Given two intervals, make 'prev' be the previous one of 'next' in 'manager'. |
| 990 | static WEBP_INLINE void ConnectIntervals(CostManager* const manager, |
| 991 | CostInterval* const prev, |
| 992 | CostInterval* const next) { |
| 993 | if (prev != NULL) { |
| 994 | prev->next_ = next; |
| 995 | } else { |
| 996 | manager->head_ = next; |
| 997 | } |
| 998 | |
| 999 | if (next != NULL) next->previous_ = prev; |
| 1000 | } |
| 1001 | |
| 1002 | // Pop an interval in the manager. |
| 1003 | static WEBP_INLINE void PopInterval(CostManager* const manager, |
| 1004 | CostInterval* const interval) { |
| 1005 | CostInterval* const next = interval->next_; |
| 1006 | |
| 1007 | if (interval == NULL) return; |
| 1008 | |
| 1009 | ConnectIntervals(manager, interval->previous_, next); |
| 1010 | if (CostIntervalIsInFreeList(manager, interval)) { |
| 1011 | CostIntervalAddToFreeList(manager, interval); |
| 1012 | } else { // recycle regularly malloc'd intervals too |
| 1013 | interval->next_ = manager->recycled_intervals_; |
| 1014 | manager->recycled_intervals_ = interval; |
| 1015 | } |
| 1016 | --manager->count_; |
| 1017 | assert(manager->count_ >= 0); |
| 1018 | } |
| 1019 | |
| 1020 | // Update the cost at index i by going over all the stored intervals that |
| 1021 | // overlap with i. |
| 1022 | static WEBP_INLINE void UpdateCostPerIndex(CostManager* const manager, int i) { |
| 1023 | CostInterval* current = manager->head_; |
| 1024 | |
| 1025 | while (current != NULL && current->start_ <= i) { |
| 1026 | if (current->end_ <= i) { |
| 1027 | // We have an outdated interval, remove it. |
| 1028 | CostInterval* next = current->next_; |
| 1029 | PopInterval(manager, current); |
| 1030 | current = next; |
| 1031 | } else { |
| 1032 | UpdateCost(manager, i, current->index_, current->distance_cost_); |
| 1033 | current = current->next_; |
| 1034 | } |
| 1035 | } |
| 1036 | } |
| 1037 | |
| 1038 | // Given a current orphan interval and its previous interval, before |
| 1039 | // it was orphaned (which can be NULL), set it at the right place in the list |
| 1040 | // of intervals using the start_ ordering and the previous interval as a hint. |
| 1041 | static WEBP_INLINE void PositionOrphanInterval(CostManager* const manager, |
| 1042 | CostInterval* const current, |
| 1043 | CostInterval* previous) { |
| 1044 | assert(current != NULL); |
| 1045 | |
| 1046 | if (previous == NULL) previous = manager->head_; |
| 1047 | while (previous != NULL && current->start_ < previous->start_) { |
| 1048 | previous = previous->previous_; |
| 1049 | } |
| 1050 | while (previous != NULL && previous->next_ != NULL && |
| 1051 | previous->next_->start_ < current->start_) { |
| 1052 | previous = previous->next_; |
| 1053 | } |
| 1054 | |
| 1055 | if (previous != NULL) { |
| 1056 | ConnectIntervals(manager, current, previous->next_); |
| 1057 | } else { |
| 1058 | ConnectIntervals(manager, current, manager->head_); |
| 1059 | } |
| 1060 | ConnectIntervals(manager, previous, current); |
| 1061 | } |
| 1062 | |
| 1063 | // Insert an interval in the list contained in the manager by starting at |
| 1064 | // interval_in as a hint. The intervals are sorted by start_ value. |
| 1065 | static WEBP_INLINE void InsertInterval(CostManager* const manager, |
| 1066 | CostInterval* const interval_in, |
| 1067 | double distance_cost, double lower, |
| 1068 | double upper, int index, int start, |
| 1069 | int end) { |
| 1070 | CostInterval* interval_new; |
| 1071 | |
| 1072 | if (IsCostCacheIntervalWritable(start, end) || |
| 1073 | manager->count_ >= COST_CACHE_INTERVAL_SIZE_MAX) { |
| 1074 | // Write down the interval if it is too small. |
| 1075 | UpdateCostPerInterval(manager, start, end, index, distance_cost); |
| 1076 | return; |
| 1077 | } |
| 1078 | if (manager->free_intervals_ != NULL) { |
| 1079 | interval_new = manager->free_intervals_; |
| 1080 | manager->free_intervals_ = interval_new->next_; |
| 1081 | } else if (manager->recycled_intervals_ != NULL) { |
| 1082 | interval_new = manager->recycled_intervals_; |
| 1083 | manager->recycled_intervals_ = interval_new->next_; |
| 1084 | } else { // malloc for good |
| 1085 | interval_new = (CostInterval*)WebPSafeMalloc(1, sizeof(*interval_new)); |
| 1086 | if (interval_new == NULL) { |
| 1087 | // Write down the interval if we cannot create it. |
| 1088 | UpdateCostPerInterval(manager, start, end, index, distance_cost); |
| 1089 | return; |
| 1090 | } |
| 1091 | } |
| 1092 | |
| 1093 | interval_new->distance_cost_ = distance_cost; |
| 1094 | interval_new->lower_ = lower; |
| 1095 | interval_new->upper_ = upper; |
| 1096 | interval_new->index_ = index; |
| 1097 | interval_new->start_ = start; |
| 1098 | interval_new->end_ = end; |
| 1099 | PositionOrphanInterval(manager, interval_new, interval_in); |
| 1100 | |
| 1101 | ++manager->count_; |
| 1102 | } |
| 1103 | |
| 1104 | // When an interval has its start_ or end_ modified, it needs to be |
| 1105 | // repositioned in the linked list. |
| 1106 | static WEBP_INLINE void RepositionInterval(CostManager* const manager, |
| 1107 | CostInterval* const interval) { |
| 1108 | if (IsCostCacheIntervalWritable(interval->start_, interval->end_)) { |
| 1109 | // Maybe interval has been resized and is small enough to be removed. |
| 1110 | UpdateCostPerInterval(manager, interval->start_, interval->end_, |
| 1111 | interval->index_, interval->distance_cost_); |
| 1112 | PopInterval(manager, interval); |
| 1113 | return; |
| 1114 | } |
| 1115 | |
| 1116 | // Early exit if interval is at the right spot. |
| 1117 | if ((interval->previous_ == NULL || |
| 1118 | interval->previous_->start_ <= interval->start_) && |
| 1119 | (interval->next_ == NULL || |
| 1120 | interval->start_ <= interval->next_->start_)) { |
| 1121 | return; |
| 1122 | } |
| 1123 | |
| 1124 | ConnectIntervals(manager, interval->previous_, interval->next_); |
| 1125 | PositionOrphanInterval(manager, interval, interval->previous_); |
| 1126 | } |
| 1127 | |
| 1128 | // Given a new cost interval defined by its start at index, its last value and |
| 1129 | // distance_cost, add its contributions to the previous intervals and costs. |
| 1130 | // If handling the interval or one of its subintervals becomes to heavy, its |
| 1131 | // contribution is added to the costs right away. |
| 1132 | static WEBP_INLINE void PushInterval(CostManager* const manager, |
| 1133 | double distance_cost, int index, |
| 1134 | int last) { |
| 1135 | size_t i; |
| 1136 | CostInterval* interval = manager->head_; |
| 1137 | CostInterval* interval_next; |
| 1138 | const CostCacheInterval* const cost_cache_intervals = |
| 1139 | manager->cache_intervals_; |
| 1140 | |
| 1141 | for (i = 0; i < manager->cache_intervals_size_ && |
| 1142 | cost_cache_intervals[i].start_ < last; |
| 1143 | ++i) { |
| 1144 | // Define the intersection of the ith interval with the new one. |
| 1145 | int start = index + cost_cache_intervals[i].start_; |
| 1146 | const int end = index + (cost_cache_intervals[i].end_ > last |
| 1147 | ? last |
| 1148 | : cost_cache_intervals[i].end_); |
| 1149 | const double lower_in = cost_cache_intervals[i].lower_; |
| 1150 | const double upper_in = cost_cache_intervals[i].upper_; |
| 1151 | const double lower_full_in = distance_cost + lower_in; |
| 1152 | const double upper_full_in = distance_cost + upper_in; |
| 1153 | |
| 1154 | if (cost_cache_intervals[i].do_write_) { |
| 1155 | UpdateCostPerInterval(manager, start, end, index, distance_cost); |
| 1156 | continue; |
| 1157 | } |
| 1158 | |
| 1159 | for (; interval != NULL && interval->start_ < end && start < end; |
| 1160 | interval = interval_next) { |
| 1161 | const double lower_full_interval = |
| 1162 | interval->distance_cost_ + interval->lower_; |
| 1163 | const double upper_full_interval = |
| 1164 | interval->distance_cost_ + interval->upper_; |
| 1165 | |
| 1166 | interval_next = interval->next_; |
| 1167 | |
| 1168 | // Make sure we have some overlap |
| 1169 | if (start >= interval->end_) continue; |
| 1170 | |
| 1171 | if (lower_full_in >= upper_full_interval) { |
| 1172 | // When intervals are represented, the lower, the better. |
| 1173 | // [**********************************************************] |
| 1174 | // start end |
| 1175 | // [----------------------------------] |
| 1176 | // interval->start_ interval->end_ |
| 1177 | // If we are worse than what we already have, add whatever we have so |
| 1178 | // far up to interval. |
| 1179 | const int start_new = interval->end_; |
| 1180 | InsertInterval(manager, interval, distance_cost, lower_in, upper_in, |
| 1181 | index, start, interval->start_); |
| 1182 | start = start_new; |
| 1183 | continue; |
| 1184 | } |
| 1185 | |
| 1186 | // We know the two intervals intersect. |
| 1187 | if (upper_full_in >= lower_full_interval) { |
| 1188 | // There is no clear cut on which is best, so let's keep both. |
| 1189 | // [*********[*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*]***********] |
| 1190 | // start interval->start_ interval->end_ end |
| 1191 | // OR |
| 1192 | // [*********[*-*-*-*-*-*-*-*-*-*-*-]----------------------] |
| 1193 | // start interval->start_ end interval->end_ |
| 1194 | const int end_new = (interval->end_ <= end) ? interval->end_ : end; |
| 1195 | InsertInterval(manager, interval, distance_cost, lower_in, upper_in, |
| 1196 | index, start, end_new); |
| 1197 | start = end_new; |
| 1198 | } else if (start <= interval->start_ && interval->end_ <= end) { |
| 1199 | // [----------------------------------] |
| 1200 | // interval->start_ interval->end_ |
| 1201 | // [**************************************************************] |
| 1202 | // start end |
| 1203 | // We can safely remove the old interval as it is fully included. |
| 1204 | PopInterval(manager, interval); |
| 1205 | } else { |
| 1206 | if (interval->start_ <= start && end <= interval->end_) { |
| 1207 | // [--------------------------------------------------------------] |
| 1208 | // interval->start_ interval->end_ |
| 1209 | // [*****************************] |
| 1210 | // start end |
| 1211 | // We have to split the old interval as it fully contains the new one. |
| 1212 | const int end_original = interval->end_; |
| 1213 | interval->end_ = start; |
| 1214 | InsertInterval(manager, interval, interval->distance_cost_, |
| 1215 | interval->lower_, interval->upper_, interval->index_, |
| 1216 | end, end_original); |
| 1217 | } else if (interval->start_ < start) { |
| 1218 | // [------------------------------------] |
| 1219 | // interval->start_ interval->end_ |
| 1220 | // [*****************************] |
| 1221 | // start end |
| 1222 | interval->end_ = start; |
| 1223 | } else { |
| 1224 | // [------------------------------------] |
| 1225 | // interval->start_ interval->end_ |
| 1226 | // [*****************************] |
| 1227 | // start end |
| 1228 | interval->start_ = end; |
| 1229 | } |
| 1230 | |
| 1231 | // The interval has been modified, we need to reposition it or write it. |
| 1232 | RepositionInterval(manager, interval); |
| 1233 | } |
| 1234 | } |
| 1235 | // Insert the remaining interval from start to end. |
| 1236 | InsertInterval(manager, interval, distance_cost, lower_in, upper_in, index, |
| 1237 | start, end); |
| 1238 | } |
| 1239 | } |
| 1240 | |
| 1241 | static int BackwardReferencesHashChainDistanceOnly( |
| 1242 | int xsize, int ysize, const uint32_t* const argb, int quality, |
| 1243 | int cache_bits, const VP8LHashChain* const hash_chain, |
| 1244 | VP8LBackwardRefs* const refs, uint16_t* const dist_array) { |
| 1245 | int i; |
| 1246 | int ok = 0; |
| 1247 | int cc_init = 0; |
| 1248 | const int pix_count = xsize * ysize; |
| 1249 | const int use_color_cache = (cache_bits > 0); |
| 1250 | const size_t literal_array_size = sizeof(double) * |
| 1251 | (NUM_LITERAL_CODES + NUM_LENGTH_CODES + |
| 1252 | ((cache_bits > 0) ? (1 << cache_bits) : 0)); |
| 1253 | const size_t cost_model_size = sizeof(CostModel) + literal_array_size; |
| 1254 | CostModel* const cost_model = |
| 1255 | (CostModel*)WebPSafeCalloc(1ULL, cost_model_size); |
| 1256 | VP8LColorCache hashers; |
| 1257 | const int skip_length = 32 + quality; |
| 1258 | const int skip_min_distance_code = 2; |
| 1259 | CostManager* cost_manager = |
| 1260 | (CostManager*)WebPSafeMalloc(1ULL, sizeof(*cost_manager)); |
| 1261 | |
| 1262 | if (cost_model == NULL || cost_manager == NULL) goto Error; |
| 1263 | |
| 1264 | cost_model->literal_ = (double*)(cost_model + 1); |
| 1265 | if (use_color_cache) { |
| 1266 | cc_init = VP8LColorCacheInit(&hashers, cache_bits); |
| 1267 | if (!cc_init) goto Error; |
| 1268 | } |
| 1269 | |
| 1270 | if (!CostModelBuild(cost_model, cache_bits, refs)) { |
| 1271 | goto Error; |
| 1272 | } |
| 1273 | |
| 1274 | if (!CostManagerInit(cost_manager, dist_array, pix_count, cost_model)) { |
| 1275 | goto Error; |
| 1276 | } |
| 1277 | |
| 1278 | // We loop one pixel at a time, but store all currently best points to |
| 1279 | // non-processed locations from this point. |
| 1280 | dist_array[0] = 0; |
| 1281 | // Add first pixel as literal. |
| 1282 | AddSingleLiteralWithCostModel(argb + 0, &hashers, cost_model, 0, |
| 1283 | use_color_cache, 0.0, cost_manager->costs_, |
| 1284 | dist_array); |
| 1285 | |
| 1286 | for (i = 1; i < pix_count - 1; ++i) { |
| 1287 | int offset = 0, len = 0; |
| 1288 | double prev_cost = cost_manager->costs_[i - 1]; |
| 1289 | HashChainFindCopy(hash_chain, i, &offset, &len); |
| 1290 | if (len >= 2) { |
| 1291 | // If we are dealing with a non-literal. |
| 1292 | const int code = DistanceToPlaneCode(xsize, offset); |
| 1293 | const double offset_cost = GetDistanceCost(cost_model, code); |
| 1294 | const int first_i = i; |
| 1295 | int j_max = 0, interval_ends_index = 0; |
| 1296 | const int is_offset_zero = (offset_cost == 0.); |
| 1297 | |
| 1298 | if (!is_offset_zero) { |
| 1299 | j_max = (int)ceil( |
| 1300 | (cost_manager->max_cost_cache_ - cost_manager->min_cost_cache_) / |
| 1301 | offset_cost); |
| 1302 | if (j_max < 1) { |
| 1303 | j_max = 1; |
| 1304 | } else if (j_max > cost_manager->interval_ends_size_ - 1) { |
| 1305 | // This could only happen in the case of MAX_LENGTH. |
| 1306 | j_max = cost_manager->interval_ends_size_ - 1; |
| 1307 | } |
| 1308 | } // else j_max is unused anyway. |
| 1309 | |
| 1310 | // Instead of considering all contributions from a pixel i by calling: |
| 1311 | // PushInterval(cost_manager, prev_cost + offset_cost, i, len); |
| 1312 | // we optimize these contributions in case offset_cost stays the same for |
| 1313 | // consecutive pixels. This describes a set of pixels similar to a |
| 1314 | // previous set (e.g. constant color regions). |
| 1315 | for (; i < pix_count - 1; ++i) { |
| 1316 | int offset_next, len_next; |
| 1317 | prev_cost = cost_manager->costs_[i - 1]; |
| 1318 | |
| 1319 | if (is_offset_zero) { |
| 1320 | // No optimization can be made so we just push all of the |
| 1321 | // contributions from i. |
| 1322 | PushInterval(cost_manager, prev_cost, i, len); |
| 1323 | } else { |
| 1324 | // j_max is chosen as the smallest j such that: |
| 1325 | // max of cost_cache_ < j*offset cost + min of cost_cache_ |
| 1326 | // Therefore, the pixel influenced by i-j_max, cannot be influenced |
| 1327 | // by i. Only the costs after the end of what i contributed need to be |
| 1328 | // updated. cost_manager->interval_ends_ is a circular buffer that |
| 1329 | // stores those ends. |
| 1330 | const double distance_cost = prev_cost + offset_cost; |
| 1331 | int j = cost_manager->interval_ends_[interval_ends_index]; |
| 1332 | if (i - first_i <= j_max || |
| 1333 | !IsCostCacheIntervalWritable(j, i + len)) { |
| 1334 | PushInterval(cost_manager, distance_cost, i, len); |
| 1335 | } else { |
| 1336 | for (; j < i + len; ++j) { |
| 1337 | UpdateCost(cost_manager, j, i, distance_cost); |
| 1338 | } |
| 1339 | } |
| 1340 | // Store the new end in the circular buffer. |
| 1341 | assert(interval_ends_index < cost_manager->interval_ends_size_); |
| 1342 | cost_manager->interval_ends_[interval_ends_index] = i + len; |
| 1343 | if (++interval_ends_index > j_max) interval_ends_index = 0; |
| 1344 | } |
| 1345 | |
| 1346 | // Check whether i is the last pixel to consider, as it is handled |
| 1347 | // differently. |
| 1348 | if (i + 1 >= pix_count - 1) break; |
| 1349 | HashChainFindCopy(hash_chain, i + 1, &offset_next, &len_next); |
| 1350 | if (offset_next != offset) break; |
| 1351 | len = len_next; |
| 1352 | UpdateCostPerIndex(cost_manager, i); |
| 1353 | AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i, |
| 1354 | use_color_cache, prev_cost, |
| 1355 | cost_manager->costs_, dist_array); |
| 1356 | } |
| 1357 | // Submit the last pixel. |
| 1358 | UpdateCostPerIndex(cost_manager, i + 1); |
| 1359 | |
| 1360 | // This if is for speedup only. It roughly doubles the speed, and |
| 1361 | // makes compression worse by .1 %. |
| 1362 | if (len >= skip_length && code <= skip_min_distance_code) { |
| 1363 | // Long copy for short distances, let's skip the middle |
| 1364 | // lookups for better copies. |
| 1365 | // 1) insert the hashes. |
| 1366 | if (use_color_cache) { |
| 1367 | int k; |
| 1368 | for (k = 0; k < len; ++k) { |
| 1369 | VP8LColorCacheInsert(&hashers, argb[i + k]); |
| 1370 | } |
| 1371 | } |
| 1372 | // 2) jump. |
| 1373 | { |
| 1374 | const int i_next = i + len - 1; // for loop does ++i, thus -1 here. |
| 1375 | for (; i <= i_next; ++i) UpdateCostPerIndex(cost_manager, i + 1); |
| 1376 | i = i_next; |
| 1377 | } |
| 1378 | goto next_symbol; |
| 1379 | } |
| 1380 | if (len > 2) { |
| 1381 | // Also try the smallest interval possible (size 2). |
| 1382 | double cost_total = |
| 1383 | prev_cost + offset_cost + GetLengthCost(cost_model, 1); |
| 1384 | if (cost_manager->costs_[i + 1] > cost_total) { |
| 1385 | cost_manager->costs_[i + 1] = (float)cost_total; |
| 1386 | dist_array[i + 1] = 2; |
| 1387 | } |
| 1388 | } |
| 1389 | } else { |
| 1390 | // The pixel is added as a single literal so just update the costs. |
| 1391 | UpdateCostPerIndex(cost_manager, i + 1); |
| 1392 | } |
| 1393 | |
| 1394 | AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i, |
| 1395 | use_color_cache, prev_cost, |
| 1396 | cost_manager->costs_, dist_array); |
| 1397 | |
| 1398 | next_symbol: ; |
| 1399 | } |
| 1400 | // Handle the last pixel. |
| 1401 | if (i == (pix_count - 1)) { |
| 1402 | AddSingleLiteralWithCostModel( |
| 1403 | argb + i, &hashers, cost_model, i, use_color_cache, |
| 1404 | cost_manager->costs_[pix_count - 2], cost_manager->costs_, dist_array); |
| 1405 | } |
| 1406 | |
| 1407 | ok = !refs->error_; |
| 1408 | Error: |
| 1409 | if (cc_init) VP8LColorCacheClear(&hashers); |
| 1410 | CostManagerClear(cost_manager); |
| 1411 | WebPSafeFree(cost_model); |
| 1412 | WebPSafeFree(cost_manager); |
| 1413 | return ok; |
| 1414 | } |
| 1415 | |
| 1416 | // We pack the path at the end of *dist_array and return |
| 1417 | // a pointer to this part of the array. Example: |
| 1418 | // dist_array = [1x2xx3x2] => packed [1x2x1232], chosen_path = [1232] |
| 1419 | static void TraceBackwards(uint16_t* const dist_array, |
| 1420 | int dist_array_size, |
| 1421 | uint16_t** const chosen_path, |
| 1422 | int* const chosen_path_size) { |
| 1423 | uint16_t* path = dist_array + dist_array_size; |
| 1424 | uint16_t* cur = dist_array + dist_array_size - 1; |
| 1425 | while (cur >= dist_array) { |
| 1426 | const int k = *cur; |
| 1427 | --path; |
| 1428 | *path = k; |
| 1429 | cur -= k; |
| 1430 | } |
| 1431 | *chosen_path = path; |
| 1432 | *chosen_path_size = (int)(dist_array + dist_array_size - path); |
| 1433 | } |
| 1434 | |
| 1435 | static int BackwardReferencesHashChainFollowChosenPath( |
| 1436 | const uint32_t* const argb, int cache_bits, |
| 1437 | const uint16_t* const chosen_path, int chosen_path_size, |
| 1438 | const VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs) { |
| 1439 | const int use_color_cache = (cache_bits > 0); |
| 1440 | int ix; |
| 1441 | int i = 0; |
| 1442 | int ok = 0; |
| 1443 | int cc_init = 0; |
| 1444 | VP8LColorCache hashers; |
| 1445 | |
| 1446 | if (use_color_cache) { |
| 1447 | cc_init = VP8LColorCacheInit(&hashers, cache_bits); |
| 1448 | if (!cc_init) goto Error; |
| 1449 | } |
| 1450 | |
| 1451 | ClearBackwardRefs(refs); |
| 1452 | for (ix = 0; ix < chosen_path_size; ++ix) { |
| 1453 | const int len = chosen_path[ix]; |
| 1454 | if (len != 1) { |
| 1455 | int k; |
| 1456 | const int offset = HashChainFindOffset(hash_chain, i); |
| 1457 | BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len)); |
| 1458 | if (use_color_cache) { |
| 1459 | for (k = 0; k < len; ++k) { |
| 1460 | VP8LColorCacheInsert(&hashers, argb[i + k]); |
| 1461 | } |
| 1462 | } |
| 1463 | i += len; |
| 1464 | } else { |
| 1465 | PixOrCopy v; |
| 1466 | const int idx = |
| 1467 | use_color_cache ? VP8LColorCacheContains(&hashers, argb[i]) : -1; |
| 1468 | if (idx >= 0) { |
| 1469 | // use_color_cache is true and hashers contains argb[i] |
| 1470 | // push pixel as a color cache index |
| 1471 | v = PixOrCopyCreateCacheIdx(idx); |
| 1472 | } else { |
| 1473 | if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]); |
| 1474 | v = PixOrCopyCreateLiteral(argb[i]); |
| 1475 | } |
| 1476 | BackwardRefsCursorAdd(refs, v); |
| 1477 | ++i; |
| 1478 | } |
| 1479 | } |
| 1480 | ok = !refs->error_; |
| 1481 | Error: |
| 1482 | if (cc_init) VP8LColorCacheClear(&hashers); |
| 1483 | return ok; |
| 1484 | } |
| 1485 | |
| 1486 | // Returns 1 on success. |
| 1487 | static int BackwardReferencesTraceBackwards( |
| 1488 | int xsize, int ysize, const uint32_t* const argb, int quality, |
| 1489 | int cache_bits, const VP8LHashChain* const hash_chain, |
| 1490 | VP8LBackwardRefs* const refs) { |
| 1491 | int ok = 0; |
| 1492 | const int dist_array_size = xsize * ysize; |
| 1493 | uint16_t* chosen_path = NULL; |
| 1494 | int chosen_path_size = 0; |
| 1495 | uint16_t* dist_array = |
| 1496 | (uint16_t*)WebPSafeMalloc(dist_array_size, sizeof(*dist_array)); |
| 1497 | |
| 1498 | if (dist_array == NULL) goto Error; |
| 1499 | |
| 1500 | if (!BackwardReferencesHashChainDistanceOnly( |
| 1501 | xsize, ysize, argb, quality, cache_bits, hash_chain, |
| 1502 | refs, dist_array)) { |
| 1503 | goto Error; |
| 1504 | } |
| 1505 | TraceBackwards(dist_array, dist_array_size, &chosen_path, &chosen_path_size); |
| 1506 | if (!BackwardReferencesHashChainFollowChosenPath( |
| 1507 | argb, cache_bits, chosen_path, chosen_path_size, hash_chain, refs)) { |
| 1508 | goto Error; |
| 1509 | } |
| 1510 | ok = 1; |
| 1511 | Error: |
| 1512 | WebPSafeFree(dist_array); |
| 1513 | return ok; |
| 1514 | } |
| 1515 | |
| 1516 | static void BackwardReferences2DLocality(int xsize, |
| 1517 | const VP8LBackwardRefs* const refs) { |
| 1518 | VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
| 1519 | while (VP8LRefsCursorOk(&c)) { |
| 1520 | if (PixOrCopyIsCopy(c.cur_pos)) { |
| 1521 | const int dist = c.cur_pos->argb_or_distance; |
| 1522 | const int transformed_dist = DistanceToPlaneCode(xsize, dist); |
| 1523 | c.cur_pos->argb_or_distance = transformed_dist; |
| 1524 | } |
| 1525 | VP8LRefsCursorNext(&c); |
| 1526 | } |
| 1527 | } |
| 1528 | |
| 1529 | // Computes the entropies for a color cache size (in bits) between 0 (unused) |
| 1530 | // and cache_bits_max (inclusive). |
| 1531 | // Returns 1 on success, 0 in case of allocation error. |
| 1532 | static int ComputeCacheEntropies(const uint32_t* argb, |
| 1533 | const VP8LBackwardRefs* const refs, |
| 1534 | int cache_bits_max, double entropies[]) { |
| 1535 | int cc_init[MAX_COLOR_CACHE_BITS + 1] = { 0 }; |
| 1536 | VP8LColorCache hashers[MAX_COLOR_CACHE_BITS + 1]; |
| 1537 | VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
| 1538 | VP8LHistogram* histos[MAX_COLOR_CACHE_BITS + 1] = { NULL }; |
| 1539 | int ok = 0; |
| 1540 | int i; |
| 1541 | |
| 1542 | for (i = 0; i <= cache_bits_max; ++i) { |
| 1543 | histos[i] = VP8LAllocateHistogram(i); |
| 1544 | if (histos[i] == NULL) goto Error; |
| 1545 | if (i == 0) continue; |
| 1546 | cc_init[i] = VP8LColorCacheInit(&hashers[i], i); |
| 1547 | if (!cc_init[i]) goto Error; |
| 1548 | } |
| 1549 | |
| 1550 | assert(cache_bits_max >= 0); |
| 1551 | // Do not use the color cache for cache_bits=0. |
| 1552 | while (VP8LRefsCursorOk(&c)) { |
| 1553 | VP8LHistogramAddSinglePixOrCopy(histos[0], c.cur_pos); |
| 1554 | VP8LRefsCursorNext(&c); |
| 1555 | } |
| 1556 | if (cache_bits_max > 0) { |
| 1557 | c = VP8LRefsCursorInit(refs); |
| 1558 | while (VP8LRefsCursorOk(&c)) { |
| 1559 | const PixOrCopy* const v = c.cur_pos; |
| 1560 | if (PixOrCopyIsLiteral(v)) { |
| 1561 | const uint32_t pix = *argb++; |
| 1562 | // The keys of the caches can be derived from the longest one. |
| 1563 | int key = HashPix(pix, 32 - cache_bits_max); |
| 1564 | for (i = cache_bits_max; i >= 1; --i, key >>= 1) { |
| 1565 | if (VP8LColorCacheLookup(&hashers[i], key) == pix) { |
| 1566 | ++histos[i]->literal_[NUM_LITERAL_CODES + NUM_LENGTH_CODES + key]; |
| 1567 | } else { |
| 1568 | VP8LColorCacheSet(&hashers[i], key, pix); |
| 1569 | ++histos[i]->blue_[pix & 0xff]; |
| 1570 | ++histos[i]->literal_[(pix >> 8) & 0xff]; |
| 1571 | ++histos[i]->red_[(pix >> 16) & 0xff]; |
| 1572 | ++histos[i]->alpha_[pix >> 24]; |
| 1573 | } |
| 1574 | } |
| 1575 | } else { |
| 1576 | // Update the histograms for distance/length. |
| 1577 | int len = PixOrCopyLength(v); |
| 1578 | int code_dist, code_len, ; |
| 1579 | uint32_t argb_prev = *argb ^ 0xffffffffu; |
| 1580 | VP8LPrefixEncodeBits(len, &code_len, &extra_bits); |
| 1581 | VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code_dist, &extra_bits); |
| 1582 | for (i = 1; i <= cache_bits_max; ++i) { |
| 1583 | ++histos[i]->literal_[NUM_LITERAL_CODES + code_len]; |
| 1584 | ++histos[i]->distance_[code_dist]; |
| 1585 | } |
| 1586 | // Update the colors caches. |
| 1587 | do { |
| 1588 | if (*argb != argb_prev) { |
| 1589 | // Efficiency: insert only if the color changes. |
| 1590 | int key = HashPix(*argb, 32 - cache_bits_max); |
| 1591 | for (i = cache_bits_max; i >= 1; --i, key >>= 1) { |
| 1592 | hashers[i].colors_[key] = *argb; |
| 1593 | } |
| 1594 | argb_prev = *argb; |
| 1595 | } |
| 1596 | argb++; |
| 1597 | } while (--len != 0); |
| 1598 | } |
| 1599 | VP8LRefsCursorNext(&c); |
| 1600 | } |
| 1601 | } |
| 1602 | for (i = 0; i <= cache_bits_max; ++i) { |
| 1603 | entropies[i] = VP8LHistogramEstimateBits(histos[i]); |
| 1604 | } |
| 1605 | ok = 1; |
| 1606 | Error: |
| 1607 | for (i = 0; i <= cache_bits_max; ++i) { |
| 1608 | if (cc_init[i]) VP8LColorCacheClear(&hashers[i]); |
| 1609 | VP8LFreeHistogram(histos[i]); |
| 1610 | } |
| 1611 | return ok; |
| 1612 | } |
| 1613 | |
| 1614 | // Evaluate optimal cache bits for the local color cache. |
| 1615 | // The input *best_cache_bits sets the maximum cache bits to use (passing 0 |
| 1616 | // implies disabling the local color cache). The local color cache is also |
| 1617 | // disabled for the lower (<= 25) quality. |
| 1618 | // Returns 0 in case of memory error. |
| 1619 | static int CalculateBestCacheSize(const uint32_t* const argb, |
| 1620 | int xsize, int ysize, int quality, |
| 1621 | const VP8LHashChain* const hash_chain, |
| 1622 | VP8LBackwardRefs* const refs, |
| 1623 | int* const lz77_computed, |
| 1624 | int* const best_cache_bits) { |
| 1625 | int i; |
| 1626 | int cache_bits_high = (quality <= 25) ? 0 : *best_cache_bits; |
| 1627 | double entropy_min = MAX_ENTROPY; |
| 1628 | double entropies[MAX_COLOR_CACHE_BITS + 1]; |
| 1629 | |
| 1630 | assert(cache_bits_high <= MAX_COLOR_CACHE_BITS); |
| 1631 | |
| 1632 | *lz77_computed = 0; |
| 1633 | if (cache_bits_high == 0) { |
| 1634 | *best_cache_bits = 0; |
| 1635 | // Local color cache is disabled. |
| 1636 | return 1; |
| 1637 | } |
| 1638 | // Compute LZ77 with no cache (0 bits), as the ideal LZ77 with a color cache |
| 1639 | // is not that different in practice. |
| 1640 | if (!BackwardReferencesLz77(xsize, ysize, argb, 0, hash_chain, refs)) { |
| 1641 | return 0; |
| 1642 | } |
| 1643 | // Find the cache_bits giving the lowest entropy. The search is done in a |
| 1644 | // brute-force way as the function (entropy w.r.t cache_bits) can be |
| 1645 | // anything in practice. |
| 1646 | if (!ComputeCacheEntropies(argb, refs, cache_bits_high, entropies)) { |
| 1647 | return 0; |
| 1648 | } |
| 1649 | for (i = 0; i <= cache_bits_high; ++i) { |
| 1650 | if (i == 0 || entropies[i] < entropy_min) { |
| 1651 | entropy_min = entropies[i]; |
| 1652 | *best_cache_bits = i; |
| 1653 | } |
| 1654 | } |
| 1655 | return 1; |
| 1656 | } |
| 1657 | |
| 1658 | // Update (in-place) backward references for specified cache_bits. |
| 1659 | static int BackwardRefsWithLocalCache(const uint32_t* const argb, |
| 1660 | int cache_bits, |
| 1661 | VP8LBackwardRefs* const refs) { |
| 1662 | int pixel_index = 0; |
| 1663 | VP8LColorCache hashers; |
| 1664 | VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
| 1665 | if (!VP8LColorCacheInit(&hashers, cache_bits)) return 0; |
| 1666 | |
| 1667 | while (VP8LRefsCursorOk(&c)) { |
| 1668 | PixOrCopy* const v = c.cur_pos; |
| 1669 | if (PixOrCopyIsLiteral(v)) { |
| 1670 | const uint32_t argb_literal = v->argb_or_distance; |
| 1671 | const int ix = VP8LColorCacheContains(&hashers, argb_literal); |
| 1672 | if (ix >= 0) { |
| 1673 | // hashers contains argb_literal |
| 1674 | *v = PixOrCopyCreateCacheIdx(ix); |
| 1675 | } else { |
| 1676 | VP8LColorCacheInsert(&hashers, argb_literal); |
| 1677 | } |
| 1678 | ++pixel_index; |
| 1679 | } else { |
| 1680 | // refs was created without local cache, so it can not have cache indexes. |
| 1681 | int k; |
| 1682 | assert(PixOrCopyIsCopy(v)); |
| 1683 | for (k = 0; k < v->len; ++k) { |
| 1684 | VP8LColorCacheInsert(&hashers, argb[pixel_index++]); |
| 1685 | } |
| 1686 | } |
| 1687 | VP8LRefsCursorNext(&c); |
| 1688 | } |
| 1689 | VP8LColorCacheClear(&hashers); |
| 1690 | return 1; |
| 1691 | } |
| 1692 | |
| 1693 | static VP8LBackwardRefs* GetBackwardReferencesLowEffort( |
| 1694 | int width, int height, const uint32_t* const argb, |
| 1695 | int* const cache_bits, const VP8LHashChain* const hash_chain, |
| 1696 | VP8LBackwardRefs refs_array[2]) { |
| 1697 | VP8LBackwardRefs* refs_lz77 = &refs_array[0]; |
| 1698 | *cache_bits = 0; |
| 1699 | if (!BackwardReferencesLz77(width, height, argb, 0, hash_chain, refs_lz77)) { |
| 1700 | return NULL; |
| 1701 | } |
| 1702 | BackwardReferences2DLocality(width, refs_lz77); |
| 1703 | return refs_lz77; |
| 1704 | } |
| 1705 | |
| 1706 | static VP8LBackwardRefs* GetBackwardReferences( |
| 1707 | int width, int height, const uint32_t* const argb, int quality, |
| 1708 | int* const cache_bits, const VP8LHashChain* const hash_chain, |
| 1709 | VP8LBackwardRefs refs_array[2]) { |
| 1710 | int lz77_is_useful; |
| 1711 | int lz77_computed; |
| 1712 | double bit_cost_lz77, bit_cost_rle; |
| 1713 | VP8LBackwardRefs* best = NULL; |
| 1714 | VP8LBackwardRefs* refs_lz77 = &refs_array[0]; |
| 1715 | VP8LBackwardRefs* refs_rle = &refs_array[1]; |
| 1716 | VP8LHistogram* histo = NULL; |
| 1717 | |
| 1718 | if (!CalculateBestCacheSize(argb, width, height, quality, hash_chain, |
| 1719 | refs_lz77, &lz77_computed, cache_bits)) { |
| 1720 | goto Error; |
| 1721 | } |
| 1722 | |
| 1723 | if (lz77_computed) { |
| 1724 | // Transform refs_lz77 for the optimized cache_bits. |
| 1725 | if (*cache_bits > 0) { |
| 1726 | if (!BackwardRefsWithLocalCache(argb, *cache_bits, refs_lz77)) { |
| 1727 | goto Error; |
| 1728 | } |
| 1729 | } |
| 1730 | } else { |
| 1731 | if (!BackwardReferencesLz77(width, height, argb, *cache_bits, hash_chain, |
| 1732 | refs_lz77)) { |
| 1733 | goto Error; |
| 1734 | } |
| 1735 | } |
| 1736 | |
| 1737 | if (!BackwardReferencesRle(width, height, argb, *cache_bits, refs_rle)) { |
| 1738 | goto Error; |
| 1739 | } |
| 1740 | |
| 1741 | histo = VP8LAllocateHistogram(*cache_bits); |
| 1742 | if (histo == NULL) goto Error; |
| 1743 | |
| 1744 | { |
| 1745 | // Evaluate LZ77 coding. |
| 1746 | VP8LHistogramCreate(histo, refs_lz77, *cache_bits); |
| 1747 | bit_cost_lz77 = VP8LHistogramEstimateBits(histo); |
| 1748 | // Evaluate RLE coding. |
| 1749 | VP8LHistogramCreate(histo, refs_rle, *cache_bits); |
| 1750 | bit_cost_rle = VP8LHistogramEstimateBits(histo); |
| 1751 | // Decide if LZ77 is useful. |
| 1752 | lz77_is_useful = (bit_cost_lz77 < bit_cost_rle); |
| 1753 | } |
| 1754 | |
| 1755 | // Choose appropriate backward reference. |
| 1756 | if (lz77_is_useful) { |
| 1757 | // TraceBackwards is costly. Don't execute it at lower quality. |
| 1758 | const int try_lz77_trace_backwards = (quality >= 25); |
| 1759 | best = refs_lz77; // default guess: lz77 is better |
| 1760 | if (try_lz77_trace_backwards) { |
| 1761 | VP8LBackwardRefs* const refs_trace = refs_rle; |
| 1762 | if (!VP8LBackwardRefsCopy(refs_lz77, refs_trace)) { |
| 1763 | best = NULL; |
| 1764 | goto Error; |
| 1765 | } |
| 1766 | if (BackwardReferencesTraceBackwards(width, height, argb, quality, |
| 1767 | *cache_bits, hash_chain, |
| 1768 | refs_trace)) { |
| 1769 | double bit_cost_trace; |
| 1770 | // Evaluate LZ77 coding. |
| 1771 | VP8LHistogramCreate(histo, refs_trace, *cache_bits); |
| 1772 | bit_cost_trace = VP8LHistogramEstimateBits(histo); |
| 1773 | if (bit_cost_trace < bit_cost_lz77) { |
| 1774 | best = refs_trace; |
| 1775 | } |
| 1776 | } |
| 1777 | } |
| 1778 | } else { |
| 1779 | best = refs_rle; |
| 1780 | } |
| 1781 | |
| 1782 | BackwardReferences2DLocality(width, best); |
| 1783 | |
| 1784 | Error: |
| 1785 | VP8LFreeHistogram(histo); |
| 1786 | return best; |
| 1787 | } |
| 1788 | |
| 1789 | VP8LBackwardRefs* VP8LGetBackwardReferences( |
| 1790 | int width, int height, const uint32_t* const argb, int quality, |
| 1791 | int low_effort, int* const cache_bits, |
| 1792 | const VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[2]) { |
| 1793 | if (low_effort) { |
| 1794 | return GetBackwardReferencesLowEffort(width, height, argb, cache_bits, |
| 1795 | hash_chain, refs_array); |
| 1796 | } else { |
| 1797 | return GetBackwardReferences(width, height, argb, quality, cache_bits, |
| 1798 | hash_chain, refs_array); |
| 1799 | } |
| 1800 | } |
| 1801 | |