| 1 | // Copyright 2012 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // Author: Jyrki Alakuijala (jyrki@google.com) |
| 11 | // |
| 12 | #ifdef HAVE_CONFIG_H |
| 13 | #include "../webp/config.h" |
| 14 | #endif |
| 15 | |
| 16 | #include <math.h> |
| 17 | |
| 18 | #include "./backward_references_enc.h" |
| 19 | #include "./histogram_enc.h" |
| 20 | #include "../dsp/lossless.h" |
| 21 | #include "../dsp/lossless_common.h" |
| 22 | #include "../utils/utils.h" |
| 23 | |
| 24 | #define MAX_COST 1.e38 |
| 25 | |
| 26 | // Number of partitions for the three dominant (literal, red and blue) symbol |
| 27 | // costs. |
| 28 | #define NUM_PARTITIONS 4 |
| 29 | // The size of the bin-hash corresponding to the three dominant costs. |
| 30 | #define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS) |
| 31 | // Maximum number of histograms allowed in greedy combining algorithm. |
| 32 | #define MAX_HISTO_GREEDY 100 |
| 33 | |
| 34 | static void HistogramClear(VP8LHistogram* const p) { |
| 35 | uint32_t* const literal = p->literal_; |
| 36 | const int cache_bits = p->palette_code_bits_; |
| 37 | const int histo_size = VP8LGetHistogramSize(cache_bits); |
| 38 | memset(p, 0, histo_size); |
| 39 | p->palette_code_bits_ = cache_bits; |
| 40 | p->literal_ = literal; |
| 41 | } |
| 42 | |
| 43 | // Swap two histogram pointers. |
| 44 | static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) { |
| 45 | VP8LHistogram* const tmp = *A; |
| 46 | *A = *B; |
| 47 | *B = tmp; |
| 48 | } |
| 49 | |
| 50 | static void HistogramCopy(const VP8LHistogram* const src, |
| 51 | VP8LHistogram* const dst) { |
| 52 | uint32_t* const dst_literal = dst->literal_; |
| 53 | const int dst_cache_bits = dst->palette_code_bits_; |
| 54 | const int histo_size = VP8LGetHistogramSize(dst_cache_bits); |
| 55 | assert(src->palette_code_bits_ == dst_cache_bits); |
| 56 | memcpy(dst, src, histo_size); |
| 57 | dst->literal_ = dst_literal; |
| 58 | } |
| 59 | |
| 60 | int VP8LGetHistogramSize(int cache_bits) { |
| 61 | const int literal_size = VP8LHistogramNumCodes(cache_bits); |
| 62 | const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size; |
| 63 | assert(total_size <= (size_t)0x7fffffff); |
| 64 | return (int)total_size; |
| 65 | } |
| 66 | |
| 67 | void VP8LFreeHistogram(VP8LHistogram* const histo) { |
| 68 | WebPSafeFree(histo); |
| 69 | } |
| 70 | |
| 71 | void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) { |
| 72 | WebPSafeFree(histo); |
| 73 | } |
| 74 | |
| 75 | void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs, |
| 76 | VP8LHistogram* const histo) { |
| 77 | VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
| 78 | while (VP8LRefsCursorOk(&c)) { |
| 79 | VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos); |
| 80 | VP8LRefsCursorNext(&c); |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | void VP8LHistogramCreate(VP8LHistogram* const p, |
| 85 | const VP8LBackwardRefs* const refs, |
| 86 | int palette_code_bits) { |
| 87 | if (palette_code_bits >= 0) { |
| 88 | p->palette_code_bits_ = palette_code_bits; |
| 89 | } |
| 90 | HistogramClear(p); |
| 91 | VP8LHistogramStoreRefs(refs, p); |
| 92 | } |
| 93 | |
| 94 | void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) { |
| 95 | p->palette_code_bits_ = palette_code_bits; |
| 96 | HistogramClear(p); |
| 97 | } |
| 98 | |
| 99 | VP8LHistogram* VP8LAllocateHistogram(int cache_bits) { |
| 100 | VP8LHistogram* histo = NULL; |
| 101 | const int total_size = VP8LGetHistogramSize(cache_bits); |
| 102 | uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); |
| 103 | if (memory == NULL) return NULL; |
| 104 | histo = (VP8LHistogram*)memory; |
| 105 | // literal_ won't necessary be aligned. |
| 106 | histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); |
| 107 | VP8LHistogramInit(histo, cache_bits); |
| 108 | return histo; |
| 109 | } |
| 110 | |
| 111 | VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) { |
| 112 | int i; |
| 113 | VP8LHistogramSet* set; |
| 114 | const int histo_size = VP8LGetHistogramSize(cache_bits); |
| 115 | const size_t total_size = |
| 116 | sizeof(*set) + size * (sizeof(*set->histograms) + |
| 117 | histo_size + WEBP_ALIGN_CST); |
| 118 | uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); |
| 119 | if (memory == NULL) return NULL; |
| 120 | |
| 121 | set = (VP8LHistogramSet*)memory; |
| 122 | memory += sizeof(*set); |
| 123 | set->histograms = (VP8LHistogram**)memory; |
| 124 | memory += size * sizeof(*set->histograms); |
| 125 | set->max_size = size; |
| 126 | set->size = size; |
| 127 | for (i = 0; i < size; ++i) { |
| 128 | memory = (uint8_t*)WEBP_ALIGN(memory); |
| 129 | set->histograms[i] = (VP8LHistogram*)memory; |
| 130 | // literal_ won't necessary be aligned. |
| 131 | set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); |
| 132 | VP8LHistogramInit(set->histograms[i], cache_bits); |
| 133 | memory += histo_size; |
| 134 | } |
| 135 | return set; |
| 136 | } |
| 137 | |
| 138 | // ----------------------------------------------------------------------------- |
| 139 | |
| 140 | void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo, |
| 141 | const PixOrCopy* const v) { |
| 142 | if (PixOrCopyIsLiteral(v)) { |
| 143 | ++histo->alpha_[PixOrCopyLiteral(v, 3)]; |
| 144 | ++histo->red_[PixOrCopyLiteral(v, 2)]; |
| 145 | ++histo->literal_[PixOrCopyLiteral(v, 1)]; |
| 146 | ++histo->blue_[PixOrCopyLiteral(v, 0)]; |
| 147 | } else if (PixOrCopyIsCacheIdx(v)) { |
| 148 | const int literal_ix = |
| 149 | NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v); |
| 150 | ++histo->literal_[literal_ix]; |
| 151 | } else { |
| 152 | int code, ; |
| 153 | VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits); |
| 154 | ++histo->literal_[NUM_LITERAL_CODES + code]; |
| 155 | VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits); |
| 156 | ++histo->distance_[code]; |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | // ----------------------------------------------------------------------------- |
| 161 | // Entropy-related functions. |
| 162 | |
| 163 | static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) { |
| 164 | double mix; |
| 165 | if (entropy->nonzeros < 5) { |
| 166 | if (entropy->nonzeros <= 1) { |
| 167 | return 0; |
| 168 | } |
| 169 | // Two symbols, they will be 0 and 1 in a Huffman code. |
| 170 | // Let's mix in a bit of entropy to favor good clustering when |
| 171 | // distributions of these are combined. |
| 172 | if (entropy->nonzeros == 2) { |
| 173 | return 0.99 * entropy->sum + 0.01 * entropy->entropy; |
| 174 | } |
| 175 | // No matter what the entropy says, we cannot be better than min_limit |
| 176 | // with Huffman coding. I am mixing a bit of entropy into the |
| 177 | // min_limit since it produces much better (~0.5 %) compression results |
| 178 | // perhaps because of better entropy clustering. |
| 179 | if (entropy->nonzeros == 3) { |
| 180 | mix = 0.95; |
| 181 | } else { |
| 182 | mix = 0.7; // nonzeros == 4. |
| 183 | } |
| 184 | } else { |
| 185 | mix = 0.627; |
| 186 | } |
| 187 | |
| 188 | { |
| 189 | double min_limit = 2 * entropy->sum - entropy->max_val; |
| 190 | min_limit = mix * min_limit + (1.0 - mix) * entropy->entropy; |
| 191 | return (entropy->entropy < min_limit) ? min_limit : entropy->entropy; |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | double VP8LBitsEntropy(const uint32_t* const array, int n, |
| 196 | uint32_t* const trivial_symbol) { |
| 197 | VP8LBitEntropy entropy; |
| 198 | VP8LBitsEntropyUnrefined(array, n, &entropy); |
| 199 | if (trivial_symbol != NULL) { |
| 200 | *trivial_symbol = |
| 201 | (entropy.nonzeros == 1) ? entropy.nonzero_code : VP8L_NON_TRIVIAL_SYM; |
| 202 | } |
| 203 | |
| 204 | return BitsEntropyRefine(&entropy); |
| 205 | } |
| 206 | |
| 207 | static double InitialHuffmanCost(void) { |
| 208 | // Small bias because Huffman code length is typically not stored in |
| 209 | // full length. |
| 210 | static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3; |
| 211 | static const double kSmallBias = 9.1; |
| 212 | return kHuffmanCodeOfHuffmanCodeSize - kSmallBias; |
| 213 | } |
| 214 | |
| 215 | // Finalize the Huffman cost based on streak numbers and length type (<3 or >=3) |
| 216 | static double FinalHuffmanCost(const VP8LStreaks* const stats) { |
| 217 | // The constants in this function are experimental and got rounded from |
| 218 | // their original values in 1/8 when switched to 1/1024. |
| 219 | double retval = InitialHuffmanCost(); |
| 220 | // Second coefficient: Many zeros in the histogram are covered efficiently |
| 221 | // by a run-length encode. Originally 2/8. |
| 222 | retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1]; |
| 223 | // Second coefficient: Constant values are encoded less efficiently, but still |
| 224 | // RLE'ed. Originally 6/8. |
| 225 | retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1]; |
| 226 | // 0s are usually encoded more efficiently than non-0s. |
| 227 | // Originally 15/8. |
| 228 | retval += 1.796875 * stats->streaks[0][0]; |
| 229 | // Originally 26/8. |
| 230 | retval += 3.28125 * stats->streaks[1][0]; |
| 231 | return retval; |
| 232 | } |
| 233 | |
| 234 | // Get the symbol entropy for the distribution 'population'. |
| 235 | // Set 'trivial_sym', if there's only one symbol present in the distribution. |
| 236 | static double PopulationCost(const uint32_t* const population, int length, |
| 237 | uint32_t* const trivial_sym) { |
| 238 | VP8LBitEntropy bit_entropy; |
| 239 | VP8LStreaks stats; |
| 240 | VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats); |
| 241 | if (trivial_sym != NULL) { |
| 242 | *trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code |
| 243 | : VP8L_NON_TRIVIAL_SYM; |
| 244 | } |
| 245 | |
| 246 | return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats); |
| 247 | } |
| 248 | |
| 249 | // trivial_at_end is 1 if the two histograms only have one element that is |
| 250 | // non-zero: both the zero-th one, or both the last one. |
| 251 | static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X, |
| 252 | const uint32_t* const Y, |
| 253 | int length, int trivial_at_end) { |
| 254 | VP8LStreaks stats; |
| 255 | if (trivial_at_end) { |
| 256 | // This configuration is due to palettization that transforms an indexed |
| 257 | // pixel into 0xff000000 | (pixel << 8) in VP8LBundleColorMap. |
| 258 | // BitsEntropyRefine is 0 for histograms with only one non-zero value. |
| 259 | // Only FinalHuffmanCost needs to be evaluated. |
| 260 | memset(&stats, 0, sizeof(stats)); |
| 261 | // Deal with the non-zero value at index 0 or length-1. |
| 262 | stats.streaks[1][0] += 1; |
| 263 | // Deal with the following/previous zero streak. |
| 264 | stats.counts[0] += 1; |
| 265 | stats.streaks[0][1] += length - 1; |
| 266 | return FinalHuffmanCost(&stats); |
| 267 | } else { |
| 268 | VP8LBitEntropy bit_entropy; |
| 269 | VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats); |
| 270 | |
| 271 | return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats); |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | // Estimates the Entropy + Huffman + other block overhead size cost. |
| 276 | double VP8LHistogramEstimateBits(const VP8LHistogram* const p) { |
| 277 | return |
| 278 | PopulationCost( |
| 279 | p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), NULL) |
| 280 | + PopulationCost(p->red_, NUM_LITERAL_CODES, NULL) |
| 281 | + PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL) |
| 282 | + PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL) |
| 283 | + PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL) |
| 284 | + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES) |
| 285 | + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES); |
| 286 | } |
| 287 | |
| 288 | // ----------------------------------------------------------------------------- |
| 289 | // Various histogram combine/cost-eval functions |
| 290 | |
| 291 | static int GetCombinedHistogramEntropy(const VP8LHistogram* const a, |
| 292 | const VP8LHistogram* const b, |
| 293 | double cost_threshold, |
| 294 | double* cost) { |
| 295 | const int palette_code_bits = a->palette_code_bits_; |
| 296 | int trivial_at_end = 0; |
| 297 | assert(a->palette_code_bits_ == b->palette_code_bits_); |
| 298 | *cost += GetCombinedEntropy(a->literal_, b->literal_, |
| 299 | VP8LHistogramNumCodes(palette_code_bits), 0); |
| 300 | *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES, |
| 301 | b->literal_ + NUM_LITERAL_CODES, |
| 302 | NUM_LENGTH_CODES); |
| 303 | if (*cost > cost_threshold) return 0; |
| 304 | |
| 305 | if (a->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM && |
| 306 | a->trivial_symbol_ == b->trivial_symbol_) { |
| 307 | // A, R and B are all 0 or 0xff. |
| 308 | const uint32_t color_a = (a->trivial_symbol_ >> 24) & 0xff; |
| 309 | const uint32_t color_r = (a->trivial_symbol_ >> 16) & 0xff; |
| 310 | const uint32_t color_b = (a->trivial_symbol_ >> 0) & 0xff; |
| 311 | if ((color_a == 0 || color_a == 0xff) && |
| 312 | (color_r == 0 || color_r == 0xff) && |
| 313 | (color_b == 0 || color_b == 0xff)) { |
| 314 | trivial_at_end = 1; |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | *cost += |
| 319 | GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES, trivial_at_end); |
| 320 | if (*cost > cost_threshold) return 0; |
| 321 | |
| 322 | *cost += |
| 323 | GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES, trivial_at_end); |
| 324 | if (*cost > cost_threshold) return 0; |
| 325 | |
| 326 | *cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES, |
| 327 | trivial_at_end); |
| 328 | if (*cost > cost_threshold) return 0; |
| 329 | |
| 330 | *cost += |
| 331 | GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES, 0); |
| 332 | *cost += |
| 333 | VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES); |
| 334 | if (*cost > cost_threshold) return 0; |
| 335 | |
| 336 | return 1; |
| 337 | } |
| 338 | |
| 339 | static WEBP_INLINE void HistogramAdd(const VP8LHistogram* const a, |
| 340 | const VP8LHistogram* const b, |
| 341 | VP8LHistogram* const out) { |
| 342 | VP8LHistogramAdd(a, b, out); |
| 343 | out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_) |
| 344 | ? a->trivial_symbol_ |
| 345 | : VP8L_NON_TRIVIAL_SYM; |
| 346 | } |
| 347 | |
| 348 | // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing |
| 349 | // to the threshold value 'cost_threshold'. The score returned is |
| 350 | // Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed. |
| 351 | // Since the previous score passed is 'cost_threshold', we only need to compare |
| 352 | // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out |
| 353 | // early. |
| 354 | static double HistogramAddEval(const VP8LHistogram* const a, |
| 355 | const VP8LHistogram* const b, |
| 356 | VP8LHistogram* const out, |
| 357 | double cost_threshold) { |
| 358 | double cost = 0; |
| 359 | const double sum_cost = a->bit_cost_ + b->bit_cost_; |
| 360 | cost_threshold += sum_cost; |
| 361 | |
| 362 | if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) { |
| 363 | HistogramAdd(a, b, out); |
| 364 | out->bit_cost_ = cost; |
| 365 | out->palette_code_bits_ = a->palette_code_bits_; |
| 366 | } |
| 367 | |
| 368 | return cost - sum_cost; |
| 369 | } |
| 370 | |
| 371 | // Same as HistogramAddEval(), except that the resulting histogram |
| 372 | // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit |
| 373 | // the term C(b) which is constant over all the evaluations. |
| 374 | static double HistogramAddThresh(const VP8LHistogram* const a, |
| 375 | const VP8LHistogram* const b, |
| 376 | double cost_threshold) { |
| 377 | double cost = -a->bit_cost_; |
| 378 | GetCombinedHistogramEntropy(a, b, cost_threshold, &cost); |
| 379 | return cost; |
| 380 | } |
| 381 | |
| 382 | // ----------------------------------------------------------------------------- |
| 383 | |
| 384 | // The structure to keep track of cost range for the three dominant entropy |
| 385 | // symbols. |
| 386 | // TODO(skal): Evaluate if float can be used here instead of double for |
| 387 | // representing the entropy costs. |
| 388 | typedef struct { |
| 389 | double literal_max_; |
| 390 | double literal_min_; |
| 391 | double red_max_; |
| 392 | double red_min_; |
| 393 | double blue_max_; |
| 394 | double blue_min_; |
| 395 | } DominantCostRange; |
| 396 | |
| 397 | static void DominantCostRangeInit(DominantCostRange* const c) { |
| 398 | c->literal_max_ = 0.; |
| 399 | c->literal_min_ = MAX_COST; |
| 400 | c->red_max_ = 0.; |
| 401 | c->red_min_ = MAX_COST; |
| 402 | c->blue_max_ = 0.; |
| 403 | c->blue_min_ = MAX_COST; |
| 404 | } |
| 405 | |
| 406 | static void UpdateDominantCostRange( |
| 407 | const VP8LHistogram* const h, DominantCostRange* const c) { |
| 408 | if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_; |
| 409 | if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_; |
| 410 | if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_; |
| 411 | if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_; |
| 412 | if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_; |
| 413 | if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_; |
| 414 | } |
| 415 | |
| 416 | static void UpdateHistogramCost(VP8LHistogram* const h) { |
| 417 | uint32_t alpha_sym, red_sym, blue_sym; |
| 418 | const double alpha_cost = |
| 419 | PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym); |
| 420 | const double distance_cost = |
| 421 | PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL) + |
| 422 | VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES); |
| 423 | const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_); |
| 424 | h->literal_cost_ = PopulationCost(h->literal_, num_codes, NULL) + |
| 425 | VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES, |
| 426 | NUM_LENGTH_CODES); |
| 427 | h->red_cost_ = PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym); |
| 428 | h->blue_cost_ = PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym); |
| 429 | h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ + |
| 430 | alpha_cost + distance_cost; |
| 431 | if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) { |
| 432 | h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM; |
| 433 | } else { |
| 434 | h->trivial_symbol_ = |
| 435 | ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0); |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | static int GetBinIdForEntropy(double min, double max, double val) { |
| 440 | const double range = max - min; |
| 441 | if (range > 0.) { |
| 442 | const double delta = val - min; |
| 443 | return (int)((NUM_PARTITIONS - 1e-6) * delta / range); |
| 444 | } else { |
| 445 | return 0; |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | static int GetHistoBinIndex(const VP8LHistogram* const h, |
| 450 | const DominantCostRange* const c, int low_effort) { |
| 451 | int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_, |
| 452 | h->literal_cost_); |
| 453 | assert(bin_id < NUM_PARTITIONS); |
| 454 | if (!low_effort) { |
| 455 | bin_id = bin_id * NUM_PARTITIONS |
| 456 | + GetBinIdForEntropy(c->red_min_, c->red_max_, h->red_cost_); |
| 457 | bin_id = bin_id * NUM_PARTITIONS |
| 458 | + GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_); |
| 459 | assert(bin_id < BIN_SIZE); |
| 460 | } |
| 461 | return bin_id; |
| 462 | } |
| 463 | |
| 464 | // Construct the histograms from backward references. |
| 465 | static void HistogramBuild( |
| 466 | int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs, |
| 467 | VP8LHistogramSet* const image_histo) { |
| 468 | int x = 0, y = 0; |
| 469 | const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits); |
| 470 | VP8LHistogram** const histograms = image_histo->histograms; |
| 471 | VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs); |
| 472 | assert(histo_bits > 0); |
| 473 | while (VP8LRefsCursorOk(&c)) { |
| 474 | const PixOrCopy* const v = c.cur_pos; |
| 475 | const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits); |
| 476 | VP8LHistogramAddSinglePixOrCopy(histograms[ix], v); |
| 477 | x += PixOrCopyLength(v); |
| 478 | while (x >= xsize) { |
| 479 | x -= xsize; |
| 480 | ++y; |
| 481 | } |
| 482 | VP8LRefsCursorNext(&c); |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | // Copies the histograms and computes its bit_cost. |
| 487 | static void HistogramCopyAndAnalyze( |
| 488 | VP8LHistogramSet* const orig_histo, VP8LHistogramSet* const image_histo) { |
| 489 | int i; |
| 490 | const int histo_size = orig_histo->size; |
| 491 | VP8LHistogram** const orig_histograms = orig_histo->histograms; |
| 492 | VP8LHistogram** const histograms = image_histo->histograms; |
| 493 | for (i = 0; i < histo_size; ++i) { |
| 494 | VP8LHistogram* const histo = orig_histograms[i]; |
| 495 | UpdateHistogramCost(histo); |
| 496 | // Copy histograms from orig_histo[] to image_histo[]. |
| 497 | HistogramCopy(histo, histograms[i]); |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | // Partition histograms to different entropy bins for three dominant (literal, |
| 502 | // red and blue) symbol costs and compute the histogram aggregate bit_cost. |
| 503 | static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo, |
| 504 | uint16_t* const bin_map, |
| 505 | int low_effort) { |
| 506 | int i; |
| 507 | VP8LHistogram** const histograms = image_histo->histograms; |
| 508 | const int histo_size = image_histo->size; |
| 509 | DominantCostRange cost_range; |
| 510 | DominantCostRangeInit(&cost_range); |
| 511 | |
| 512 | // Analyze the dominant (literal, red and blue) entropy costs. |
| 513 | for (i = 0; i < histo_size; ++i) { |
| 514 | UpdateDominantCostRange(histograms[i], &cost_range); |
| 515 | } |
| 516 | |
| 517 | // bin-hash histograms on three of the dominant (literal, red and blue) |
| 518 | // symbol costs and store the resulting bin_id for each histogram. |
| 519 | for (i = 0; i < histo_size; ++i) { |
| 520 | bin_map[i] = GetHistoBinIndex(histograms[i], &cost_range, low_effort); |
| 521 | } |
| 522 | } |
| 523 | |
| 524 | // Compact image_histo[] by merging some histograms with same bin_id together if |
| 525 | // it's advantageous. |
| 526 | static VP8LHistogram* HistogramCombineEntropyBin( |
| 527 | VP8LHistogramSet* const image_histo, |
| 528 | VP8LHistogram* cur_combo, |
| 529 | const uint16_t* const bin_map, int bin_map_size, int num_bins, |
| 530 | double combine_cost_factor, int low_effort) { |
| 531 | VP8LHistogram** const histograms = image_histo->histograms; |
| 532 | int idx; |
| 533 | // Work in-place: processed histograms are put at the beginning of |
| 534 | // image_histo[]. At the end, we just have to truncate the array. |
| 535 | int size = 0; |
| 536 | struct { |
| 537 | int16_t first; // position of the histogram that accumulates all |
| 538 | // histograms with the same bin_id |
| 539 | uint16_t num_combine_failures; // number of combine failures per bin_id |
| 540 | } bin_info[BIN_SIZE]; |
| 541 | |
| 542 | assert(num_bins <= BIN_SIZE); |
| 543 | for (idx = 0; idx < num_bins; ++idx) { |
| 544 | bin_info[idx].first = -1; |
| 545 | bin_info[idx].num_combine_failures = 0; |
| 546 | } |
| 547 | |
| 548 | for (idx = 0; idx < bin_map_size; ++idx) { |
| 549 | const int bin_id = bin_map[idx]; |
| 550 | const int first = bin_info[bin_id].first; |
| 551 | assert(size <= idx); |
| 552 | if (first == -1) { |
| 553 | // just move histogram #idx to its final position |
| 554 | histograms[size] = histograms[idx]; |
| 555 | bin_info[bin_id].first = size++; |
| 556 | } else if (low_effort) { |
| 557 | HistogramAdd(histograms[idx], histograms[first], histograms[first]); |
| 558 | } else { |
| 559 | // try to merge #idx into #first (both share the same bin_id) |
| 560 | const double bit_cost = histograms[idx]->bit_cost_; |
| 561 | const double bit_cost_thresh = -bit_cost * combine_cost_factor; |
| 562 | const double curr_cost_diff = |
| 563 | HistogramAddEval(histograms[first], histograms[idx], |
| 564 | cur_combo, bit_cost_thresh); |
| 565 | if (curr_cost_diff < bit_cost_thresh) { |
| 566 | // Try to merge two histograms only if the combo is a trivial one or |
| 567 | // the two candidate histograms are already non-trivial. |
| 568 | // For some images, 'try_combine' turns out to be false for a lot of |
| 569 | // histogram pairs. In that case, we fallback to combining |
| 570 | // histograms as usual to avoid increasing the header size. |
| 571 | const int try_combine = |
| 572 | (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) || |
| 573 | ((histograms[idx]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) && |
| 574 | (histograms[first]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM)); |
| 575 | const int max_combine_failures = 32; |
| 576 | if (try_combine || |
| 577 | bin_info[bin_id].num_combine_failures >= max_combine_failures) { |
| 578 | // move the (better) merged histogram to its final slot |
| 579 | HistogramSwap(&cur_combo, &histograms[first]); |
| 580 | } else { |
| 581 | histograms[size++] = histograms[idx]; |
| 582 | ++bin_info[bin_id].num_combine_failures; |
| 583 | } |
| 584 | } else { |
| 585 | histograms[size++] = histograms[idx]; |
| 586 | } |
| 587 | } |
| 588 | } |
| 589 | image_histo->size = size; |
| 590 | if (low_effort) { |
| 591 | // for low_effort case, update the final cost when everything is merged |
| 592 | for (idx = 0; idx < size; ++idx) { |
| 593 | UpdateHistogramCost(histograms[idx]); |
| 594 | } |
| 595 | } |
| 596 | return cur_combo; |
| 597 | } |
| 598 | |
| 599 | static uint32_t MyRand(uint32_t* const seed) { |
| 600 | *seed = (*seed * 16807ull) & 0xffffffffu; |
| 601 | if (*seed == 0) { |
| 602 | *seed = 1; |
| 603 | } |
| 604 | return *seed; |
| 605 | } |
| 606 | |
| 607 | // ----------------------------------------------------------------------------- |
| 608 | // Histogram pairs priority queue |
| 609 | |
| 610 | // Pair of histograms. Negative idx1 value means that pair is out-of-date. |
| 611 | typedef struct { |
| 612 | int idx1; |
| 613 | int idx2; |
| 614 | double cost_diff; |
| 615 | double cost_combo; |
| 616 | } HistogramPair; |
| 617 | |
| 618 | typedef struct { |
| 619 | HistogramPair* queue; |
| 620 | int size; |
| 621 | int max_size; |
| 622 | } HistoQueue; |
| 623 | |
| 624 | static int HistoQueueInit(HistoQueue* const histo_queue, const int max_index) { |
| 625 | histo_queue->size = 0; |
| 626 | // max_index^2 for the queue size is safe. If you look at |
| 627 | // HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes |
| 628 | // data to the queue, you insert at most: |
| 629 | // - max_index*(max_index-1)/2 (the first two for loops) |
| 630 | // - max_index - 1 in the last for loop at the first iteration of the while |
| 631 | // loop, max_index - 2 at the second iteration ... therefore |
| 632 | // max_index*(max_index-1)/2 overall too |
| 633 | histo_queue->max_size = max_index * max_index; |
| 634 | // We allocate max_size + 1 because the last element at index "size" is |
| 635 | // used as temporary data (and it could be up to max_size). |
| 636 | histo_queue->queue = (HistogramPair*)WebPSafeMalloc( |
| 637 | histo_queue->max_size + 1, sizeof(*histo_queue->queue)); |
| 638 | return histo_queue->queue != NULL; |
| 639 | } |
| 640 | |
| 641 | static void HistoQueueClear(HistoQueue* const histo_queue) { |
| 642 | assert(histo_queue != NULL); |
| 643 | WebPSafeFree(histo_queue->queue); |
| 644 | } |
| 645 | |
| 646 | static void SwapHistogramPairs(HistogramPair *p1, |
| 647 | HistogramPair *p2) { |
| 648 | const HistogramPair tmp = *p1; |
| 649 | *p1 = *p2; |
| 650 | *p2 = tmp; |
| 651 | } |
| 652 | |
| 653 | // Given a valid priority queue in range [0, queue_size) this function checks |
| 654 | // whether histo_queue[queue_size] should be accepted and swaps it with the |
| 655 | // front if it is smaller. Otherwise, it leaves it as is. |
| 656 | static void UpdateQueueFront(HistoQueue* const histo_queue) { |
| 657 | if (histo_queue->queue[histo_queue->size].cost_diff >= 0) return; |
| 658 | |
| 659 | if (histo_queue->queue[histo_queue->size].cost_diff < |
| 660 | histo_queue->queue[0].cost_diff) { |
| 661 | SwapHistogramPairs(histo_queue->queue, |
| 662 | histo_queue->queue + histo_queue->size); |
| 663 | } |
| 664 | ++histo_queue->size; |
| 665 | |
| 666 | // We cannot add more elements than the capacity. |
| 667 | // The allocation adds an extra element to the official capacity so that |
| 668 | // histo_queue->queue[histo_queue->max_size] is read/written within bound. |
| 669 | assert(histo_queue->size <= histo_queue->max_size); |
| 670 | } |
| 671 | |
| 672 | // ----------------------------------------------------------------------------- |
| 673 | |
| 674 | static void PreparePair(VP8LHistogram** histograms, int idx1, int idx2, |
| 675 | HistogramPair* const pair) { |
| 676 | VP8LHistogram* h1; |
| 677 | VP8LHistogram* h2; |
| 678 | double sum_cost; |
| 679 | |
| 680 | if (idx1 > idx2) { |
| 681 | const int tmp = idx2; |
| 682 | idx2 = idx1; |
| 683 | idx1 = tmp; |
| 684 | } |
| 685 | pair->idx1 = idx1; |
| 686 | pair->idx2 = idx2; |
| 687 | h1 = histograms[idx1]; |
| 688 | h2 = histograms[idx2]; |
| 689 | sum_cost = h1->bit_cost_ + h2->bit_cost_; |
| 690 | pair->cost_combo = 0.; |
| 691 | GetCombinedHistogramEntropy(h1, h2, sum_cost, &pair->cost_combo); |
| 692 | pair->cost_diff = pair->cost_combo - sum_cost; |
| 693 | } |
| 694 | |
| 695 | // Combines histograms by continuously choosing the one with the highest cost |
| 696 | // reduction. |
| 697 | static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo) { |
| 698 | int ok = 0; |
| 699 | int image_histo_size = image_histo->size; |
| 700 | int i, j; |
| 701 | VP8LHistogram** const histograms = image_histo->histograms; |
| 702 | // Indexes of remaining histograms. |
| 703 | int* const clusters = |
| 704 | (int*)WebPSafeMalloc(image_histo_size, sizeof(*clusters)); |
| 705 | // Priority queue of histogram pairs. |
| 706 | HistoQueue histo_queue; |
| 707 | |
| 708 | if (!HistoQueueInit(&histo_queue, image_histo_size) || clusters == NULL) { |
| 709 | goto End; |
| 710 | } |
| 711 | |
| 712 | for (i = 0; i < image_histo_size; ++i) { |
| 713 | // Initialize clusters indexes. |
| 714 | clusters[i] = i; |
| 715 | for (j = i + 1; j < image_histo_size; ++j) { |
| 716 | // Initialize positions array. |
| 717 | PreparePair(histograms, i, j, &histo_queue.queue[histo_queue.size]); |
| 718 | UpdateQueueFront(&histo_queue); |
| 719 | } |
| 720 | } |
| 721 | |
| 722 | while (image_histo_size > 1 && histo_queue.size > 0) { |
| 723 | HistogramPair* copy_to; |
| 724 | const int idx1 = histo_queue.queue[0].idx1; |
| 725 | const int idx2 = histo_queue.queue[0].idx2; |
| 726 | HistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]); |
| 727 | histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo; |
| 728 | // Remove merged histogram. |
| 729 | for (i = 0; i + 1 < image_histo_size; ++i) { |
| 730 | if (clusters[i] >= idx2) { |
| 731 | clusters[i] = clusters[i + 1]; |
| 732 | } |
| 733 | } |
| 734 | --image_histo_size; |
| 735 | |
| 736 | // Remove pairs intersecting the just combined best pair. This will |
| 737 | // therefore pop the head of the queue. |
| 738 | copy_to = histo_queue.queue; |
| 739 | for (i = 0; i < histo_queue.size; ++i) { |
| 740 | HistogramPair* const p = histo_queue.queue + i; |
| 741 | if (p->idx1 == idx1 || p->idx2 == idx1 || |
| 742 | p->idx1 == idx2 || p->idx2 == idx2) { |
| 743 | // Do not copy the invalid pair. |
| 744 | continue; |
| 745 | } |
| 746 | if (p->cost_diff < histo_queue.queue[0].cost_diff) { |
| 747 | // Replace the top of the queue if we found better. |
| 748 | SwapHistogramPairs(histo_queue.queue, p); |
| 749 | } |
| 750 | SwapHistogramPairs(copy_to, p); |
| 751 | ++copy_to; |
| 752 | } |
| 753 | histo_queue.size = (int)(copy_to - histo_queue.queue); |
| 754 | |
| 755 | // Push new pairs formed with combined histogram to the queue. |
| 756 | for (i = 0; i < image_histo_size; ++i) { |
| 757 | if (clusters[i] != idx1) { |
| 758 | PreparePair(histograms, idx1, clusters[i], |
| 759 | &histo_queue.queue[histo_queue.size]); |
| 760 | UpdateQueueFront(&histo_queue); |
| 761 | } |
| 762 | } |
| 763 | } |
| 764 | // Move remaining histograms to the beginning of the array. |
| 765 | for (i = 0; i < image_histo_size; ++i) { |
| 766 | if (i != clusters[i]) { // swap the two histograms |
| 767 | HistogramSwap(&histograms[i], &histograms[clusters[i]]); |
| 768 | } |
| 769 | } |
| 770 | |
| 771 | image_histo->size = image_histo_size; |
| 772 | ok = 1; |
| 773 | |
| 774 | End: |
| 775 | WebPSafeFree(clusters); |
| 776 | HistoQueueClear(&histo_queue); |
| 777 | return ok; |
| 778 | } |
| 779 | |
| 780 | static void HistogramCombineStochastic(VP8LHistogramSet* const image_histo, |
| 781 | VP8LHistogram* tmp_histo, |
| 782 | VP8LHistogram* best_combo, |
| 783 | int quality, int min_cluster_size) { |
| 784 | int iter; |
| 785 | uint32_t seed = 0; |
| 786 | int tries_with_no_success = 0; |
| 787 | int image_histo_size = image_histo->size; |
| 788 | const int iter_mult = (quality < 25) ? 2 : 2 + (quality - 25) / 8; |
| 789 | const int outer_iters = image_histo_size * iter_mult; |
| 790 | const int num_pairs = image_histo_size / 2; |
| 791 | const int num_tries_no_success = outer_iters / 2; |
| 792 | int idx2_max = image_histo_size - 1; |
| 793 | int do_brute_dorce = 0; |
| 794 | VP8LHistogram** const histograms = image_histo->histograms; |
| 795 | |
| 796 | // Collapse similar histograms in 'image_histo'. |
| 797 | ++min_cluster_size; |
| 798 | for (iter = 0; |
| 799 | iter < outer_iters && image_histo_size >= min_cluster_size; |
| 800 | ++iter) { |
| 801 | double best_cost_diff = 0.; |
| 802 | int best_idx1 = -1, best_idx2 = 1; |
| 803 | int j; |
| 804 | int num_tries = |
| 805 | (num_pairs < image_histo_size) ? num_pairs : image_histo_size; |
| 806 | // Use a brute force approach if: |
| 807 | // - stochastic has not worked for a while and |
| 808 | // - if the number of iterations for brute force is less than the number of |
| 809 | // iterations if we never find a match ever again stochastically (hence |
| 810 | // num_tries times the number of remaining outer iterations). |
| 811 | do_brute_dorce = |
| 812 | (tries_with_no_success > 10) && |
| 813 | (idx2_max * (idx2_max + 1) < 2 * num_tries * (outer_iters - iter)); |
| 814 | if (do_brute_dorce) num_tries = idx2_max; |
| 815 | |
| 816 | seed += iter; |
| 817 | for (j = 0; j < num_tries; ++j) { |
| 818 | double curr_cost_diff; |
| 819 | // Choose two histograms at random and try to combine them. |
| 820 | uint32_t idx1, idx2; |
| 821 | if (do_brute_dorce) { |
| 822 | // Use a brute force approach. |
| 823 | idx1 = (uint32_t)j; |
| 824 | idx2 = (uint32_t)idx2_max; |
| 825 | } else { |
| 826 | const uint32_t tmp = (j & 7) + 1; |
| 827 | const uint32_t diff = |
| 828 | (tmp < 3) ? tmp : MyRand(&seed) % (image_histo_size - 1); |
| 829 | idx1 = MyRand(&seed) % image_histo_size; |
| 830 | idx2 = (idx1 + diff + 1) % image_histo_size; |
| 831 | if (idx1 == idx2) { |
| 832 | continue; |
| 833 | } |
| 834 | } |
| 835 | |
| 836 | // Calculate cost reduction on combining. |
| 837 | curr_cost_diff = HistogramAddEval(histograms[idx1], histograms[idx2], |
| 838 | tmp_histo, best_cost_diff); |
| 839 | if (curr_cost_diff < best_cost_diff) { // found a better pair? |
| 840 | HistogramSwap(&best_combo, &tmp_histo); |
| 841 | best_cost_diff = curr_cost_diff; |
| 842 | best_idx1 = idx1; |
| 843 | best_idx2 = idx2; |
| 844 | } |
| 845 | } |
| 846 | if (do_brute_dorce) --idx2_max; |
| 847 | |
| 848 | if (best_idx1 >= 0) { |
| 849 | HistogramSwap(&best_combo, &histograms[best_idx1]); |
| 850 | // swap best_idx2 slot with last one (which is now unused) |
| 851 | --image_histo_size; |
| 852 | if (idx2_max >= image_histo_size) idx2_max = image_histo_size - 1; |
| 853 | if (best_idx2 != image_histo_size) { |
| 854 | HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]); |
| 855 | histograms[image_histo_size] = NULL; |
| 856 | } |
| 857 | tries_with_no_success = 0; |
| 858 | } |
| 859 | if (++tries_with_no_success >= num_tries_no_success || idx2_max == 0) { |
| 860 | break; |
| 861 | } |
| 862 | } |
| 863 | image_histo->size = image_histo_size; |
| 864 | } |
| 865 | |
| 866 | // ----------------------------------------------------------------------------- |
| 867 | // Histogram refinement |
| 868 | |
| 869 | // Find the best 'out' histogram for each of the 'in' histograms. |
| 870 | // Note: we assume that out[]->bit_cost_ is already up-to-date. |
| 871 | static void HistogramRemap(const VP8LHistogramSet* const in, |
| 872 | const VP8LHistogramSet* const out, |
| 873 | uint16_t* const symbols) { |
| 874 | int i; |
| 875 | VP8LHistogram** const in_histo = in->histograms; |
| 876 | VP8LHistogram** const out_histo = out->histograms; |
| 877 | const int in_size = in->size; |
| 878 | const int out_size = out->size; |
| 879 | if (out_size > 1) { |
| 880 | for (i = 0; i < in_size; ++i) { |
| 881 | int best_out = 0; |
| 882 | double best_bits = MAX_COST; |
| 883 | int k; |
| 884 | for (k = 0; k < out_size; ++k) { |
| 885 | const double cur_bits = |
| 886 | HistogramAddThresh(out_histo[k], in_histo[i], best_bits); |
| 887 | if (k == 0 || cur_bits < best_bits) { |
| 888 | best_bits = cur_bits; |
| 889 | best_out = k; |
| 890 | } |
| 891 | } |
| 892 | symbols[i] = best_out; |
| 893 | } |
| 894 | } else { |
| 895 | assert(out_size == 1); |
| 896 | for (i = 0; i < in_size; ++i) { |
| 897 | symbols[i] = 0; |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | // Recompute each out based on raw and symbols. |
| 902 | for (i = 0; i < out_size; ++i) { |
| 903 | HistogramClear(out_histo[i]); |
| 904 | } |
| 905 | |
| 906 | for (i = 0; i < in_size; ++i) { |
| 907 | const int idx = symbols[i]; |
| 908 | HistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]); |
| 909 | } |
| 910 | } |
| 911 | |
| 912 | static double GetCombineCostFactor(int histo_size, int quality) { |
| 913 | double combine_cost_factor = 0.16; |
| 914 | if (quality < 90) { |
| 915 | if (histo_size > 256) combine_cost_factor /= 2.; |
| 916 | if (histo_size > 512) combine_cost_factor /= 2.; |
| 917 | if (histo_size > 1024) combine_cost_factor /= 2.; |
| 918 | if (quality <= 50) combine_cost_factor /= 2.; |
| 919 | } |
| 920 | return combine_cost_factor; |
| 921 | } |
| 922 | |
| 923 | int VP8LGetHistoImageSymbols(int xsize, int ysize, |
| 924 | const VP8LBackwardRefs* const refs, |
| 925 | int quality, int low_effort, |
| 926 | int histo_bits, int cache_bits, |
| 927 | VP8LHistogramSet* const image_histo, |
| 928 | VP8LHistogramSet* const tmp_histos, |
| 929 | uint16_t* const histogram_symbols) { |
| 930 | int ok = 0; |
| 931 | const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1; |
| 932 | const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1; |
| 933 | const int image_histo_raw_size = histo_xsize * histo_ysize; |
| 934 | VP8LHistogramSet* const orig_histo = |
| 935 | VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits); |
| 936 | VP8LHistogram* cur_combo; |
| 937 | // Don't attempt linear bin-partition heuristic for |
| 938 | // histograms of small sizes (as bin_map will be very sparse) and |
| 939 | // maximum quality q==100 (to preserve the compression gains at that level). |
| 940 | const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE; |
| 941 | const int entropy_combine = |
| 942 | (orig_histo->size > entropy_combine_num_bins * 2) && (quality < 100); |
| 943 | |
| 944 | if (orig_histo == NULL) goto Error; |
| 945 | |
| 946 | // Construct the histograms from backward references. |
| 947 | HistogramBuild(xsize, histo_bits, refs, orig_histo); |
| 948 | // Copies the histograms and computes its bit_cost. |
| 949 | HistogramCopyAndAnalyze(orig_histo, image_histo); |
| 950 | |
| 951 | cur_combo = tmp_histos->histograms[1]; // pick up working slot |
| 952 | if (entropy_combine) { |
| 953 | const int bin_map_size = orig_histo->size; |
| 954 | // Reuse histogram_symbols storage. By definition, it's guaranteed to be ok. |
| 955 | uint16_t* const bin_map = histogram_symbols; |
| 956 | const double combine_cost_factor = |
| 957 | GetCombineCostFactor(image_histo_raw_size, quality); |
| 958 | |
| 959 | HistogramAnalyzeEntropyBin(orig_histo, bin_map, low_effort); |
| 960 | // Collapse histograms with similar entropy. |
| 961 | cur_combo = HistogramCombineEntropyBin(image_histo, cur_combo, |
| 962 | bin_map, bin_map_size, |
| 963 | entropy_combine_num_bins, |
| 964 | combine_cost_factor, low_effort); |
| 965 | } |
| 966 | |
| 967 | // Don't combine the histograms using stochastic and greedy heuristics for |
| 968 | // low-effort compression mode. |
| 969 | if (!low_effort || !entropy_combine) { |
| 970 | const float x = quality / 100.f; |
| 971 | // cubic ramp between 1 and MAX_HISTO_GREEDY: |
| 972 | const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1)); |
| 973 | HistogramCombineStochastic(image_histo, tmp_histos->histograms[0], |
| 974 | cur_combo, quality, threshold_size); |
| 975 | if ((image_histo->size <= threshold_size) && |
| 976 | !HistogramCombineGreedy(image_histo)) { |
| 977 | goto Error; |
| 978 | } |
| 979 | } |
| 980 | |
| 981 | // TODO(vikasa): Optimize HistogramRemap for low-effort compression mode also. |
| 982 | // Find the optimal map from original histograms to the final ones. |
| 983 | HistogramRemap(orig_histo, image_histo, histogram_symbols); |
| 984 | |
| 985 | ok = 1; |
| 986 | |
| 987 | Error: |
| 988 | VP8LFreeHistogramSet(orig_histo); |
| 989 | return ok; |
| 990 | } |
| 991 | |