1 | // Copyright 2012 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // Author: Jyrki Alakuijala (jyrki@google.com) |
11 | // |
12 | #ifdef HAVE_CONFIG_H |
13 | #include "../webp/config.h" |
14 | #endif |
15 | |
16 | #include <math.h> |
17 | |
18 | #include "./backward_references_enc.h" |
19 | #include "./histogram_enc.h" |
20 | #include "../dsp/lossless.h" |
21 | #include "../dsp/lossless_common.h" |
22 | #include "../utils/utils.h" |
23 | |
24 | #define MAX_COST 1.e38 |
25 | |
26 | // Number of partitions for the three dominant (literal, red and blue) symbol |
27 | // costs. |
28 | #define NUM_PARTITIONS 4 |
29 | // The size of the bin-hash corresponding to the three dominant costs. |
30 | #define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS) |
31 | // Maximum number of histograms allowed in greedy combining algorithm. |
32 | #define MAX_HISTO_GREEDY 100 |
33 | |
34 | static void HistogramClear(VP8LHistogram* const p) { |
35 | uint32_t* const literal = p->literal_; |
36 | const int cache_bits = p->palette_code_bits_; |
37 | const int histo_size = VP8LGetHistogramSize(cache_bits); |
38 | memset(p, 0, histo_size); |
39 | p->palette_code_bits_ = cache_bits; |
40 | p->literal_ = literal; |
41 | } |
42 | |
43 | // Swap two histogram pointers. |
44 | static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) { |
45 | VP8LHistogram* const tmp = *A; |
46 | *A = *B; |
47 | *B = tmp; |
48 | } |
49 | |
50 | static void HistogramCopy(const VP8LHistogram* const src, |
51 | VP8LHistogram* const dst) { |
52 | uint32_t* const dst_literal = dst->literal_; |
53 | const int dst_cache_bits = dst->palette_code_bits_; |
54 | const int histo_size = VP8LGetHistogramSize(dst_cache_bits); |
55 | assert(src->palette_code_bits_ == dst_cache_bits); |
56 | memcpy(dst, src, histo_size); |
57 | dst->literal_ = dst_literal; |
58 | } |
59 | |
60 | int VP8LGetHistogramSize(int cache_bits) { |
61 | const int literal_size = VP8LHistogramNumCodes(cache_bits); |
62 | const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size; |
63 | assert(total_size <= (size_t)0x7fffffff); |
64 | return (int)total_size; |
65 | } |
66 | |
67 | void VP8LFreeHistogram(VP8LHistogram* const histo) { |
68 | WebPSafeFree(histo); |
69 | } |
70 | |
71 | void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) { |
72 | WebPSafeFree(histo); |
73 | } |
74 | |
75 | void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs, |
76 | VP8LHistogram* const histo) { |
77 | VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
78 | while (VP8LRefsCursorOk(&c)) { |
79 | VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos); |
80 | VP8LRefsCursorNext(&c); |
81 | } |
82 | } |
83 | |
84 | void VP8LHistogramCreate(VP8LHistogram* const p, |
85 | const VP8LBackwardRefs* const refs, |
86 | int palette_code_bits) { |
87 | if (palette_code_bits >= 0) { |
88 | p->palette_code_bits_ = palette_code_bits; |
89 | } |
90 | HistogramClear(p); |
91 | VP8LHistogramStoreRefs(refs, p); |
92 | } |
93 | |
94 | void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) { |
95 | p->palette_code_bits_ = palette_code_bits; |
96 | HistogramClear(p); |
97 | } |
98 | |
99 | VP8LHistogram* VP8LAllocateHistogram(int cache_bits) { |
100 | VP8LHistogram* histo = NULL; |
101 | const int total_size = VP8LGetHistogramSize(cache_bits); |
102 | uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); |
103 | if (memory == NULL) return NULL; |
104 | histo = (VP8LHistogram*)memory; |
105 | // literal_ won't necessary be aligned. |
106 | histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); |
107 | VP8LHistogramInit(histo, cache_bits); |
108 | return histo; |
109 | } |
110 | |
111 | VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) { |
112 | int i; |
113 | VP8LHistogramSet* set; |
114 | const int histo_size = VP8LGetHistogramSize(cache_bits); |
115 | const size_t total_size = |
116 | sizeof(*set) + size * (sizeof(*set->histograms) + |
117 | histo_size + WEBP_ALIGN_CST); |
118 | uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); |
119 | if (memory == NULL) return NULL; |
120 | |
121 | set = (VP8LHistogramSet*)memory; |
122 | memory += sizeof(*set); |
123 | set->histograms = (VP8LHistogram**)memory; |
124 | memory += size * sizeof(*set->histograms); |
125 | set->max_size = size; |
126 | set->size = size; |
127 | for (i = 0; i < size; ++i) { |
128 | memory = (uint8_t*)WEBP_ALIGN(memory); |
129 | set->histograms[i] = (VP8LHistogram*)memory; |
130 | // literal_ won't necessary be aligned. |
131 | set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); |
132 | VP8LHistogramInit(set->histograms[i], cache_bits); |
133 | memory += histo_size; |
134 | } |
135 | return set; |
136 | } |
137 | |
138 | // ----------------------------------------------------------------------------- |
139 | |
140 | void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo, |
141 | const PixOrCopy* const v) { |
142 | if (PixOrCopyIsLiteral(v)) { |
143 | ++histo->alpha_[PixOrCopyLiteral(v, 3)]; |
144 | ++histo->red_[PixOrCopyLiteral(v, 2)]; |
145 | ++histo->literal_[PixOrCopyLiteral(v, 1)]; |
146 | ++histo->blue_[PixOrCopyLiteral(v, 0)]; |
147 | } else if (PixOrCopyIsCacheIdx(v)) { |
148 | const int literal_ix = |
149 | NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v); |
150 | ++histo->literal_[literal_ix]; |
151 | } else { |
152 | int code, ; |
153 | VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits); |
154 | ++histo->literal_[NUM_LITERAL_CODES + code]; |
155 | VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits); |
156 | ++histo->distance_[code]; |
157 | } |
158 | } |
159 | |
160 | // ----------------------------------------------------------------------------- |
161 | // Entropy-related functions. |
162 | |
163 | static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) { |
164 | double mix; |
165 | if (entropy->nonzeros < 5) { |
166 | if (entropy->nonzeros <= 1) { |
167 | return 0; |
168 | } |
169 | // Two symbols, they will be 0 and 1 in a Huffman code. |
170 | // Let's mix in a bit of entropy to favor good clustering when |
171 | // distributions of these are combined. |
172 | if (entropy->nonzeros == 2) { |
173 | return 0.99 * entropy->sum + 0.01 * entropy->entropy; |
174 | } |
175 | // No matter what the entropy says, we cannot be better than min_limit |
176 | // with Huffman coding. I am mixing a bit of entropy into the |
177 | // min_limit since it produces much better (~0.5 %) compression results |
178 | // perhaps because of better entropy clustering. |
179 | if (entropy->nonzeros == 3) { |
180 | mix = 0.95; |
181 | } else { |
182 | mix = 0.7; // nonzeros == 4. |
183 | } |
184 | } else { |
185 | mix = 0.627; |
186 | } |
187 | |
188 | { |
189 | double min_limit = 2 * entropy->sum - entropy->max_val; |
190 | min_limit = mix * min_limit + (1.0 - mix) * entropy->entropy; |
191 | return (entropy->entropy < min_limit) ? min_limit : entropy->entropy; |
192 | } |
193 | } |
194 | |
195 | double VP8LBitsEntropy(const uint32_t* const array, int n, |
196 | uint32_t* const trivial_symbol) { |
197 | VP8LBitEntropy entropy; |
198 | VP8LBitsEntropyUnrefined(array, n, &entropy); |
199 | if (trivial_symbol != NULL) { |
200 | *trivial_symbol = |
201 | (entropy.nonzeros == 1) ? entropy.nonzero_code : VP8L_NON_TRIVIAL_SYM; |
202 | } |
203 | |
204 | return BitsEntropyRefine(&entropy); |
205 | } |
206 | |
207 | static double InitialHuffmanCost(void) { |
208 | // Small bias because Huffman code length is typically not stored in |
209 | // full length. |
210 | static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3; |
211 | static const double kSmallBias = 9.1; |
212 | return kHuffmanCodeOfHuffmanCodeSize - kSmallBias; |
213 | } |
214 | |
215 | // Finalize the Huffman cost based on streak numbers and length type (<3 or >=3) |
216 | static double FinalHuffmanCost(const VP8LStreaks* const stats) { |
217 | // The constants in this function are experimental and got rounded from |
218 | // their original values in 1/8 when switched to 1/1024. |
219 | double retval = InitialHuffmanCost(); |
220 | // Second coefficient: Many zeros in the histogram are covered efficiently |
221 | // by a run-length encode. Originally 2/8. |
222 | retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1]; |
223 | // Second coefficient: Constant values are encoded less efficiently, but still |
224 | // RLE'ed. Originally 6/8. |
225 | retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1]; |
226 | // 0s are usually encoded more efficiently than non-0s. |
227 | // Originally 15/8. |
228 | retval += 1.796875 * stats->streaks[0][0]; |
229 | // Originally 26/8. |
230 | retval += 3.28125 * stats->streaks[1][0]; |
231 | return retval; |
232 | } |
233 | |
234 | // Get the symbol entropy for the distribution 'population'. |
235 | // Set 'trivial_sym', if there's only one symbol present in the distribution. |
236 | static double PopulationCost(const uint32_t* const population, int length, |
237 | uint32_t* const trivial_sym) { |
238 | VP8LBitEntropy bit_entropy; |
239 | VP8LStreaks stats; |
240 | VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats); |
241 | if (trivial_sym != NULL) { |
242 | *trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code |
243 | : VP8L_NON_TRIVIAL_SYM; |
244 | } |
245 | |
246 | return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats); |
247 | } |
248 | |
249 | // trivial_at_end is 1 if the two histograms only have one element that is |
250 | // non-zero: both the zero-th one, or both the last one. |
251 | static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X, |
252 | const uint32_t* const Y, |
253 | int length, int trivial_at_end) { |
254 | VP8LStreaks stats; |
255 | if (trivial_at_end) { |
256 | // This configuration is due to palettization that transforms an indexed |
257 | // pixel into 0xff000000 | (pixel << 8) in VP8LBundleColorMap. |
258 | // BitsEntropyRefine is 0 for histograms with only one non-zero value. |
259 | // Only FinalHuffmanCost needs to be evaluated. |
260 | memset(&stats, 0, sizeof(stats)); |
261 | // Deal with the non-zero value at index 0 or length-1. |
262 | stats.streaks[1][0] += 1; |
263 | // Deal with the following/previous zero streak. |
264 | stats.counts[0] += 1; |
265 | stats.streaks[0][1] += length - 1; |
266 | return FinalHuffmanCost(&stats); |
267 | } else { |
268 | VP8LBitEntropy bit_entropy; |
269 | VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats); |
270 | |
271 | return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats); |
272 | } |
273 | } |
274 | |
275 | // Estimates the Entropy + Huffman + other block overhead size cost. |
276 | double VP8LHistogramEstimateBits(const VP8LHistogram* const p) { |
277 | return |
278 | PopulationCost( |
279 | p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), NULL) |
280 | + PopulationCost(p->red_, NUM_LITERAL_CODES, NULL) |
281 | + PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL) |
282 | + PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL) |
283 | + PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL) |
284 | + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES) |
285 | + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES); |
286 | } |
287 | |
288 | // ----------------------------------------------------------------------------- |
289 | // Various histogram combine/cost-eval functions |
290 | |
291 | static int GetCombinedHistogramEntropy(const VP8LHistogram* const a, |
292 | const VP8LHistogram* const b, |
293 | double cost_threshold, |
294 | double* cost) { |
295 | const int palette_code_bits = a->palette_code_bits_; |
296 | int trivial_at_end = 0; |
297 | assert(a->palette_code_bits_ == b->palette_code_bits_); |
298 | *cost += GetCombinedEntropy(a->literal_, b->literal_, |
299 | VP8LHistogramNumCodes(palette_code_bits), 0); |
300 | *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES, |
301 | b->literal_ + NUM_LITERAL_CODES, |
302 | NUM_LENGTH_CODES); |
303 | if (*cost > cost_threshold) return 0; |
304 | |
305 | if (a->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM && |
306 | a->trivial_symbol_ == b->trivial_symbol_) { |
307 | // A, R and B are all 0 or 0xff. |
308 | const uint32_t color_a = (a->trivial_symbol_ >> 24) & 0xff; |
309 | const uint32_t color_r = (a->trivial_symbol_ >> 16) & 0xff; |
310 | const uint32_t color_b = (a->trivial_symbol_ >> 0) & 0xff; |
311 | if ((color_a == 0 || color_a == 0xff) && |
312 | (color_r == 0 || color_r == 0xff) && |
313 | (color_b == 0 || color_b == 0xff)) { |
314 | trivial_at_end = 1; |
315 | } |
316 | } |
317 | |
318 | *cost += |
319 | GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES, trivial_at_end); |
320 | if (*cost > cost_threshold) return 0; |
321 | |
322 | *cost += |
323 | GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES, trivial_at_end); |
324 | if (*cost > cost_threshold) return 0; |
325 | |
326 | *cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES, |
327 | trivial_at_end); |
328 | if (*cost > cost_threshold) return 0; |
329 | |
330 | *cost += |
331 | GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES, 0); |
332 | *cost += |
333 | VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES); |
334 | if (*cost > cost_threshold) return 0; |
335 | |
336 | return 1; |
337 | } |
338 | |
339 | static WEBP_INLINE void HistogramAdd(const VP8LHistogram* const a, |
340 | const VP8LHistogram* const b, |
341 | VP8LHistogram* const out) { |
342 | VP8LHistogramAdd(a, b, out); |
343 | out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_) |
344 | ? a->trivial_symbol_ |
345 | : VP8L_NON_TRIVIAL_SYM; |
346 | } |
347 | |
348 | // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing |
349 | // to the threshold value 'cost_threshold'. The score returned is |
350 | // Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed. |
351 | // Since the previous score passed is 'cost_threshold', we only need to compare |
352 | // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out |
353 | // early. |
354 | static double HistogramAddEval(const VP8LHistogram* const a, |
355 | const VP8LHistogram* const b, |
356 | VP8LHistogram* const out, |
357 | double cost_threshold) { |
358 | double cost = 0; |
359 | const double sum_cost = a->bit_cost_ + b->bit_cost_; |
360 | cost_threshold += sum_cost; |
361 | |
362 | if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) { |
363 | HistogramAdd(a, b, out); |
364 | out->bit_cost_ = cost; |
365 | out->palette_code_bits_ = a->palette_code_bits_; |
366 | } |
367 | |
368 | return cost - sum_cost; |
369 | } |
370 | |
371 | // Same as HistogramAddEval(), except that the resulting histogram |
372 | // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit |
373 | // the term C(b) which is constant over all the evaluations. |
374 | static double HistogramAddThresh(const VP8LHistogram* const a, |
375 | const VP8LHistogram* const b, |
376 | double cost_threshold) { |
377 | double cost = -a->bit_cost_; |
378 | GetCombinedHistogramEntropy(a, b, cost_threshold, &cost); |
379 | return cost; |
380 | } |
381 | |
382 | // ----------------------------------------------------------------------------- |
383 | |
384 | // The structure to keep track of cost range for the three dominant entropy |
385 | // symbols. |
386 | // TODO(skal): Evaluate if float can be used here instead of double for |
387 | // representing the entropy costs. |
388 | typedef struct { |
389 | double literal_max_; |
390 | double literal_min_; |
391 | double red_max_; |
392 | double red_min_; |
393 | double blue_max_; |
394 | double blue_min_; |
395 | } DominantCostRange; |
396 | |
397 | static void DominantCostRangeInit(DominantCostRange* const c) { |
398 | c->literal_max_ = 0.; |
399 | c->literal_min_ = MAX_COST; |
400 | c->red_max_ = 0.; |
401 | c->red_min_ = MAX_COST; |
402 | c->blue_max_ = 0.; |
403 | c->blue_min_ = MAX_COST; |
404 | } |
405 | |
406 | static void UpdateDominantCostRange( |
407 | const VP8LHistogram* const h, DominantCostRange* const c) { |
408 | if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_; |
409 | if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_; |
410 | if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_; |
411 | if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_; |
412 | if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_; |
413 | if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_; |
414 | } |
415 | |
416 | static void UpdateHistogramCost(VP8LHistogram* const h) { |
417 | uint32_t alpha_sym, red_sym, blue_sym; |
418 | const double alpha_cost = |
419 | PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym); |
420 | const double distance_cost = |
421 | PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL) + |
422 | VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES); |
423 | const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_); |
424 | h->literal_cost_ = PopulationCost(h->literal_, num_codes, NULL) + |
425 | VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES, |
426 | NUM_LENGTH_CODES); |
427 | h->red_cost_ = PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym); |
428 | h->blue_cost_ = PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym); |
429 | h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ + |
430 | alpha_cost + distance_cost; |
431 | if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) { |
432 | h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM; |
433 | } else { |
434 | h->trivial_symbol_ = |
435 | ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0); |
436 | } |
437 | } |
438 | |
439 | static int GetBinIdForEntropy(double min, double max, double val) { |
440 | const double range = max - min; |
441 | if (range > 0.) { |
442 | const double delta = val - min; |
443 | return (int)((NUM_PARTITIONS - 1e-6) * delta / range); |
444 | } else { |
445 | return 0; |
446 | } |
447 | } |
448 | |
449 | static int GetHistoBinIndex(const VP8LHistogram* const h, |
450 | const DominantCostRange* const c, int low_effort) { |
451 | int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_, |
452 | h->literal_cost_); |
453 | assert(bin_id < NUM_PARTITIONS); |
454 | if (!low_effort) { |
455 | bin_id = bin_id * NUM_PARTITIONS |
456 | + GetBinIdForEntropy(c->red_min_, c->red_max_, h->red_cost_); |
457 | bin_id = bin_id * NUM_PARTITIONS |
458 | + GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_); |
459 | assert(bin_id < BIN_SIZE); |
460 | } |
461 | return bin_id; |
462 | } |
463 | |
464 | // Construct the histograms from backward references. |
465 | static void HistogramBuild( |
466 | int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs, |
467 | VP8LHistogramSet* const image_histo) { |
468 | int x = 0, y = 0; |
469 | const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits); |
470 | VP8LHistogram** const histograms = image_histo->histograms; |
471 | VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs); |
472 | assert(histo_bits > 0); |
473 | while (VP8LRefsCursorOk(&c)) { |
474 | const PixOrCopy* const v = c.cur_pos; |
475 | const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits); |
476 | VP8LHistogramAddSinglePixOrCopy(histograms[ix], v); |
477 | x += PixOrCopyLength(v); |
478 | while (x >= xsize) { |
479 | x -= xsize; |
480 | ++y; |
481 | } |
482 | VP8LRefsCursorNext(&c); |
483 | } |
484 | } |
485 | |
486 | // Copies the histograms and computes its bit_cost. |
487 | static void HistogramCopyAndAnalyze( |
488 | VP8LHistogramSet* const orig_histo, VP8LHistogramSet* const image_histo) { |
489 | int i; |
490 | const int histo_size = orig_histo->size; |
491 | VP8LHistogram** const orig_histograms = orig_histo->histograms; |
492 | VP8LHistogram** const histograms = image_histo->histograms; |
493 | for (i = 0; i < histo_size; ++i) { |
494 | VP8LHistogram* const histo = orig_histograms[i]; |
495 | UpdateHistogramCost(histo); |
496 | // Copy histograms from orig_histo[] to image_histo[]. |
497 | HistogramCopy(histo, histograms[i]); |
498 | } |
499 | } |
500 | |
501 | // Partition histograms to different entropy bins for three dominant (literal, |
502 | // red and blue) symbol costs and compute the histogram aggregate bit_cost. |
503 | static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo, |
504 | uint16_t* const bin_map, |
505 | int low_effort) { |
506 | int i; |
507 | VP8LHistogram** const histograms = image_histo->histograms; |
508 | const int histo_size = image_histo->size; |
509 | DominantCostRange cost_range; |
510 | DominantCostRangeInit(&cost_range); |
511 | |
512 | // Analyze the dominant (literal, red and blue) entropy costs. |
513 | for (i = 0; i < histo_size; ++i) { |
514 | UpdateDominantCostRange(histograms[i], &cost_range); |
515 | } |
516 | |
517 | // bin-hash histograms on three of the dominant (literal, red and blue) |
518 | // symbol costs and store the resulting bin_id for each histogram. |
519 | for (i = 0; i < histo_size; ++i) { |
520 | bin_map[i] = GetHistoBinIndex(histograms[i], &cost_range, low_effort); |
521 | } |
522 | } |
523 | |
524 | // Compact image_histo[] by merging some histograms with same bin_id together if |
525 | // it's advantageous. |
526 | static VP8LHistogram* HistogramCombineEntropyBin( |
527 | VP8LHistogramSet* const image_histo, |
528 | VP8LHistogram* cur_combo, |
529 | const uint16_t* const bin_map, int bin_map_size, int num_bins, |
530 | double combine_cost_factor, int low_effort) { |
531 | VP8LHistogram** const histograms = image_histo->histograms; |
532 | int idx; |
533 | // Work in-place: processed histograms are put at the beginning of |
534 | // image_histo[]. At the end, we just have to truncate the array. |
535 | int size = 0; |
536 | struct { |
537 | int16_t first; // position of the histogram that accumulates all |
538 | // histograms with the same bin_id |
539 | uint16_t num_combine_failures; // number of combine failures per bin_id |
540 | } bin_info[BIN_SIZE]; |
541 | |
542 | assert(num_bins <= BIN_SIZE); |
543 | for (idx = 0; idx < num_bins; ++idx) { |
544 | bin_info[idx].first = -1; |
545 | bin_info[idx].num_combine_failures = 0; |
546 | } |
547 | |
548 | for (idx = 0; idx < bin_map_size; ++idx) { |
549 | const int bin_id = bin_map[idx]; |
550 | const int first = bin_info[bin_id].first; |
551 | assert(size <= idx); |
552 | if (first == -1) { |
553 | // just move histogram #idx to its final position |
554 | histograms[size] = histograms[idx]; |
555 | bin_info[bin_id].first = size++; |
556 | } else if (low_effort) { |
557 | HistogramAdd(histograms[idx], histograms[first], histograms[first]); |
558 | } else { |
559 | // try to merge #idx into #first (both share the same bin_id) |
560 | const double bit_cost = histograms[idx]->bit_cost_; |
561 | const double bit_cost_thresh = -bit_cost * combine_cost_factor; |
562 | const double curr_cost_diff = |
563 | HistogramAddEval(histograms[first], histograms[idx], |
564 | cur_combo, bit_cost_thresh); |
565 | if (curr_cost_diff < bit_cost_thresh) { |
566 | // Try to merge two histograms only if the combo is a trivial one or |
567 | // the two candidate histograms are already non-trivial. |
568 | // For some images, 'try_combine' turns out to be false for a lot of |
569 | // histogram pairs. In that case, we fallback to combining |
570 | // histograms as usual to avoid increasing the header size. |
571 | const int try_combine = |
572 | (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) || |
573 | ((histograms[idx]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) && |
574 | (histograms[first]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM)); |
575 | const int max_combine_failures = 32; |
576 | if (try_combine || |
577 | bin_info[bin_id].num_combine_failures >= max_combine_failures) { |
578 | // move the (better) merged histogram to its final slot |
579 | HistogramSwap(&cur_combo, &histograms[first]); |
580 | } else { |
581 | histograms[size++] = histograms[idx]; |
582 | ++bin_info[bin_id].num_combine_failures; |
583 | } |
584 | } else { |
585 | histograms[size++] = histograms[idx]; |
586 | } |
587 | } |
588 | } |
589 | image_histo->size = size; |
590 | if (low_effort) { |
591 | // for low_effort case, update the final cost when everything is merged |
592 | for (idx = 0; idx < size; ++idx) { |
593 | UpdateHistogramCost(histograms[idx]); |
594 | } |
595 | } |
596 | return cur_combo; |
597 | } |
598 | |
599 | static uint32_t MyRand(uint32_t* const seed) { |
600 | *seed = (*seed * 16807ull) & 0xffffffffu; |
601 | if (*seed == 0) { |
602 | *seed = 1; |
603 | } |
604 | return *seed; |
605 | } |
606 | |
607 | // ----------------------------------------------------------------------------- |
608 | // Histogram pairs priority queue |
609 | |
610 | // Pair of histograms. Negative idx1 value means that pair is out-of-date. |
611 | typedef struct { |
612 | int idx1; |
613 | int idx2; |
614 | double cost_diff; |
615 | double cost_combo; |
616 | } HistogramPair; |
617 | |
618 | typedef struct { |
619 | HistogramPair* queue; |
620 | int size; |
621 | int max_size; |
622 | } HistoQueue; |
623 | |
624 | static int HistoQueueInit(HistoQueue* const histo_queue, const int max_index) { |
625 | histo_queue->size = 0; |
626 | // max_index^2 for the queue size is safe. If you look at |
627 | // HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes |
628 | // data to the queue, you insert at most: |
629 | // - max_index*(max_index-1)/2 (the first two for loops) |
630 | // - max_index - 1 in the last for loop at the first iteration of the while |
631 | // loop, max_index - 2 at the second iteration ... therefore |
632 | // max_index*(max_index-1)/2 overall too |
633 | histo_queue->max_size = max_index * max_index; |
634 | // We allocate max_size + 1 because the last element at index "size" is |
635 | // used as temporary data (and it could be up to max_size). |
636 | histo_queue->queue = (HistogramPair*)WebPSafeMalloc( |
637 | histo_queue->max_size + 1, sizeof(*histo_queue->queue)); |
638 | return histo_queue->queue != NULL; |
639 | } |
640 | |
641 | static void HistoQueueClear(HistoQueue* const histo_queue) { |
642 | assert(histo_queue != NULL); |
643 | WebPSafeFree(histo_queue->queue); |
644 | } |
645 | |
646 | static void SwapHistogramPairs(HistogramPair *p1, |
647 | HistogramPair *p2) { |
648 | const HistogramPair tmp = *p1; |
649 | *p1 = *p2; |
650 | *p2 = tmp; |
651 | } |
652 | |
653 | // Given a valid priority queue in range [0, queue_size) this function checks |
654 | // whether histo_queue[queue_size] should be accepted and swaps it with the |
655 | // front if it is smaller. Otherwise, it leaves it as is. |
656 | static void UpdateQueueFront(HistoQueue* const histo_queue) { |
657 | if (histo_queue->queue[histo_queue->size].cost_diff >= 0) return; |
658 | |
659 | if (histo_queue->queue[histo_queue->size].cost_diff < |
660 | histo_queue->queue[0].cost_diff) { |
661 | SwapHistogramPairs(histo_queue->queue, |
662 | histo_queue->queue + histo_queue->size); |
663 | } |
664 | ++histo_queue->size; |
665 | |
666 | // We cannot add more elements than the capacity. |
667 | // The allocation adds an extra element to the official capacity so that |
668 | // histo_queue->queue[histo_queue->max_size] is read/written within bound. |
669 | assert(histo_queue->size <= histo_queue->max_size); |
670 | } |
671 | |
672 | // ----------------------------------------------------------------------------- |
673 | |
674 | static void PreparePair(VP8LHistogram** histograms, int idx1, int idx2, |
675 | HistogramPair* const pair) { |
676 | VP8LHistogram* h1; |
677 | VP8LHistogram* h2; |
678 | double sum_cost; |
679 | |
680 | if (idx1 > idx2) { |
681 | const int tmp = idx2; |
682 | idx2 = idx1; |
683 | idx1 = tmp; |
684 | } |
685 | pair->idx1 = idx1; |
686 | pair->idx2 = idx2; |
687 | h1 = histograms[idx1]; |
688 | h2 = histograms[idx2]; |
689 | sum_cost = h1->bit_cost_ + h2->bit_cost_; |
690 | pair->cost_combo = 0.; |
691 | GetCombinedHistogramEntropy(h1, h2, sum_cost, &pair->cost_combo); |
692 | pair->cost_diff = pair->cost_combo - sum_cost; |
693 | } |
694 | |
695 | // Combines histograms by continuously choosing the one with the highest cost |
696 | // reduction. |
697 | static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo) { |
698 | int ok = 0; |
699 | int image_histo_size = image_histo->size; |
700 | int i, j; |
701 | VP8LHistogram** const histograms = image_histo->histograms; |
702 | // Indexes of remaining histograms. |
703 | int* const clusters = |
704 | (int*)WebPSafeMalloc(image_histo_size, sizeof(*clusters)); |
705 | // Priority queue of histogram pairs. |
706 | HistoQueue histo_queue; |
707 | |
708 | if (!HistoQueueInit(&histo_queue, image_histo_size) || clusters == NULL) { |
709 | goto End; |
710 | } |
711 | |
712 | for (i = 0; i < image_histo_size; ++i) { |
713 | // Initialize clusters indexes. |
714 | clusters[i] = i; |
715 | for (j = i + 1; j < image_histo_size; ++j) { |
716 | // Initialize positions array. |
717 | PreparePair(histograms, i, j, &histo_queue.queue[histo_queue.size]); |
718 | UpdateQueueFront(&histo_queue); |
719 | } |
720 | } |
721 | |
722 | while (image_histo_size > 1 && histo_queue.size > 0) { |
723 | HistogramPair* copy_to; |
724 | const int idx1 = histo_queue.queue[0].idx1; |
725 | const int idx2 = histo_queue.queue[0].idx2; |
726 | HistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]); |
727 | histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo; |
728 | // Remove merged histogram. |
729 | for (i = 0; i + 1 < image_histo_size; ++i) { |
730 | if (clusters[i] >= idx2) { |
731 | clusters[i] = clusters[i + 1]; |
732 | } |
733 | } |
734 | --image_histo_size; |
735 | |
736 | // Remove pairs intersecting the just combined best pair. This will |
737 | // therefore pop the head of the queue. |
738 | copy_to = histo_queue.queue; |
739 | for (i = 0; i < histo_queue.size; ++i) { |
740 | HistogramPair* const p = histo_queue.queue + i; |
741 | if (p->idx1 == idx1 || p->idx2 == idx1 || |
742 | p->idx1 == idx2 || p->idx2 == idx2) { |
743 | // Do not copy the invalid pair. |
744 | continue; |
745 | } |
746 | if (p->cost_diff < histo_queue.queue[0].cost_diff) { |
747 | // Replace the top of the queue if we found better. |
748 | SwapHistogramPairs(histo_queue.queue, p); |
749 | } |
750 | SwapHistogramPairs(copy_to, p); |
751 | ++copy_to; |
752 | } |
753 | histo_queue.size = (int)(copy_to - histo_queue.queue); |
754 | |
755 | // Push new pairs formed with combined histogram to the queue. |
756 | for (i = 0; i < image_histo_size; ++i) { |
757 | if (clusters[i] != idx1) { |
758 | PreparePair(histograms, idx1, clusters[i], |
759 | &histo_queue.queue[histo_queue.size]); |
760 | UpdateQueueFront(&histo_queue); |
761 | } |
762 | } |
763 | } |
764 | // Move remaining histograms to the beginning of the array. |
765 | for (i = 0; i < image_histo_size; ++i) { |
766 | if (i != clusters[i]) { // swap the two histograms |
767 | HistogramSwap(&histograms[i], &histograms[clusters[i]]); |
768 | } |
769 | } |
770 | |
771 | image_histo->size = image_histo_size; |
772 | ok = 1; |
773 | |
774 | End: |
775 | WebPSafeFree(clusters); |
776 | HistoQueueClear(&histo_queue); |
777 | return ok; |
778 | } |
779 | |
780 | static void HistogramCombineStochastic(VP8LHistogramSet* const image_histo, |
781 | VP8LHistogram* tmp_histo, |
782 | VP8LHistogram* best_combo, |
783 | int quality, int min_cluster_size) { |
784 | int iter; |
785 | uint32_t seed = 0; |
786 | int tries_with_no_success = 0; |
787 | int image_histo_size = image_histo->size; |
788 | const int iter_mult = (quality < 25) ? 2 : 2 + (quality - 25) / 8; |
789 | const int outer_iters = image_histo_size * iter_mult; |
790 | const int num_pairs = image_histo_size / 2; |
791 | const int num_tries_no_success = outer_iters / 2; |
792 | int idx2_max = image_histo_size - 1; |
793 | int do_brute_dorce = 0; |
794 | VP8LHistogram** const histograms = image_histo->histograms; |
795 | |
796 | // Collapse similar histograms in 'image_histo'. |
797 | ++min_cluster_size; |
798 | for (iter = 0; |
799 | iter < outer_iters && image_histo_size >= min_cluster_size; |
800 | ++iter) { |
801 | double best_cost_diff = 0.; |
802 | int best_idx1 = -1, best_idx2 = 1; |
803 | int j; |
804 | int num_tries = |
805 | (num_pairs < image_histo_size) ? num_pairs : image_histo_size; |
806 | // Use a brute force approach if: |
807 | // - stochastic has not worked for a while and |
808 | // - if the number of iterations for brute force is less than the number of |
809 | // iterations if we never find a match ever again stochastically (hence |
810 | // num_tries times the number of remaining outer iterations). |
811 | do_brute_dorce = |
812 | (tries_with_no_success > 10) && |
813 | (idx2_max * (idx2_max + 1) < 2 * num_tries * (outer_iters - iter)); |
814 | if (do_brute_dorce) num_tries = idx2_max; |
815 | |
816 | seed += iter; |
817 | for (j = 0; j < num_tries; ++j) { |
818 | double curr_cost_diff; |
819 | // Choose two histograms at random and try to combine them. |
820 | uint32_t idx1, idx2; |
821 | if (do_brute_dorce) { |
822 | // Use a brute force approach. |
823 | idx1 = (uint32_t)j; |
824 | idx2 = (uint32_t)idx2_max; |
825 | } else { |
826 | const uint32_t tmp = (j & 7) + 1; |
827 | const uint32_t diff = |
828 | (tmp < 3) ? tmp : MyRand(&seed) % (image_histo_size - 1); |
829 | idx1 = MyRand(&seed) % image_histo_size; |
830 | idx2 = (idx1 + diff + 1) % image_histo_size; |
831 | if (idx1 == idx2) { |
832 | continue; |
833 | } |
834 | } |
835 | |
836 | // Calculate cost reduction on combining. |
837 | curr_cost_diff = HistogramAddEval(histograms[idx1], histograms[idx2], |
838 | tmp_histo, best_cost_diff); |
839 | if (curr_cost_diff < best_cost_diff) { // found a better pair? |
840 | HistogramSwap(&best_combo, &tmp_histo); |
841 | best_cost_diff = curr_cost_diff; |
842 | best_idx1 = idx1; |
843 | best_idx2 = idx2; |
844 | } |
845 | } |
846 | if (do_brute_dorce) --idx2_max; |
847 | |
848 | if (best_idx1 >= 0) { |
849 | HistogramSwap(&best_combo, &histograms[best_idx1]); |
850 | // swap best_idx2 slot with last one (which is now unused) |
851 | --image_histo_size; |
852 | if (idx2_max >= image_histo_size) idx2_max = image_histo_size - 1; |
853 | if (best_idx2 != image_histo_size) { |
854 | HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]); |
855 | histograms[image_histo_size] = NULL; |
856 | } |
857 | tries_with_no_success = 0; |
858 | } |
859 | if (++tries_with_no_success >= num_tries_no_success || idx2_max == 0) { |
860 | break; |
861 | } |
862 | } |
863 | image_histo->size = image_histo_size; |
864 | } |
865 | |
866 | // ----------------------------------------------------------------------------- |
867 | // Histogram refinement |
868 | |
869 | // Find the best 'out' histogram for each of the 'in' histograms. |
870 | // Note: we assume that out[]->bit_cost_ is already up-to-date. |
871 | static void HistogramRemap(const VP8LHistogramSet* const in, |
872 | const VP8LHistogramSet* const out, |
873 | uint16_t* const symbols) { |
874 | int i; |
875 | VP8LHistogram** const in_histo = in->histograms; |
876 | VP8LHistogram** const out_histo = out->histograms; |
877 | const int in_size = in->size; |
878 | const int out_size = out->size; |
879 | if (out_size > 1) { |
880 | for (i = 0; i < in_size; ++i) { |
881 | int best_out = 0; |
882 | double best_bits = MAX_COST; |
883 | int k; |
884 | for (k = 0; k < out_size; ++k) { |
885 | const double cur_bits = |
886 | HistogramAddThresh(out_histo[k], in_histo[i], best_bits); |
887 | if (k == 0 || cur_bits < best_bits) { |
888 | best_bits = cur_bits; |
889 | best_out = k; |
890 | } |
891 | } |
892 | symbols[i] = best_out; |
893 | } |
894 | } else { |
895 | assert(out_size == 1); |
896 | for (i = 0; i < in_size; ++i) { |
897 | symbols[i] = 0; |
898 | } |
899 | } |
900 | |
901 | // Recompute each out based on raw and symbols. |
902 | for (i = 0; i < out_size; ++i) { |
903 | HistogramClear(out_histo[i]); |
904 | } |
905 | |
906 | for (i = 0; i < in_size; ++i) { |
907 | const int idx = symbols[i]; |
908 | HistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]); |
909 | } |
910 | } |
911 | |
912 | static double GetCombineCostFactor(int histo_size, int quality) { |
913 | double combine_cost_factor = 0.16; |
914 | if (quality < 90) { |
915 | if (histo_size > 256) combine_cost_factor /= 2.; |
916 | if (histo_size > 512) combine_cost_factor /= 2.; |
917 | if (histo_size > 1024) combine_cost_factor /= 2.; |
918 | if (quality <= 50) combine_cost_factor /= 2.; |
919 | } |
920 | return combine_cost_factor; |
921 | } |
922 | |
923 | int VP8LGetHistoImageSymbols(int xsize, int ysize, |
924 | const VP8LBackwardRefs* const refs, |
925 | int quality, int low_effort, |
926 | int histo_bits, int cache_bits, |
927 | VP8LHistogramSet* const image_histo, |
928 | VP8LHistogramSet* const tmp_histos, |
929 | uint16_t* const histogram_symbols) { |
930 | int ok = 0; |
931 | const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1; |
932 | const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1; |
933 | const int image_histo_raw_size = histo_xsize * histo_ysize; |
934 | VP8LHistogramSet* const orig_histo = |
935 | VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits); |
936 | VP8LHistogram* cur_combo; |
937 | // Don't attempt linear bin-partition heuristic for |
938 | // histograms of small sizes (as bin_map will be very sparse) and |
939 | // maximum quality q==100 (to preserve the compression gains at that level). |
940 | const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE; |
941 | const int entropy_combine = |
942 | (orig_histo->size > entropy_combine_num_bins * 2) && (quality < 100); |
943 | |
944 | if (orig_histo == NULL) goto Error; |
945 | |
946 | // Construct the histograms from backward references. |
947 | HistogramBuild(xsize, histo_bits, refs, orig_histo); |
948 | // Copies the histograms and computes its bit_cost. |
949 | HistogramCopyAndAnalyze(orig_histo, image_histo); |
950 | |
951 | cur_combo = tmp_histos->histograms[1]; // pick up working slot |
952 | if (entropy_combine) { |
953 | const int bin_map_size = orig_histo->size; |
954 | // Reuse histogram_symbols storage. By definition, it's guaranteed to be ok. |
955 | uint16_t* const bin_map = histogram_symbols; |
956 | const double combine_cost_factor = |
957 | GetCombineCostFactor(image_histo_raw_size, quality); |
958 | |
959 | HistogramAnalyzeEntropyBin(orig_histo, bin_map, low_effort); |
960 | // Collapse histograms with similar entropy. |
961 | cur_combo = HistogramCombineEntropyBin(image_histo, cur_combo, |
962 | bin_map, bin_map_size, |
963 | entropy_combine_num_bins, |
964 | combine_cost_factor, low_effort); |
965 | } |
966 | |
967 | // Don't combine the histograms using stochastic and greedy heuristics for |
968 | // low-effort compression mode. |
969 | if (!low_effort || !entropy_combine) { |
970 | const float x = quality / 100.f; |
971 | // cubic ramp between 1 and MAX_HISTO_GREEDY: |
972 | const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1)); |
973 | HistogramCombineStochastic(image_histo, tmp_histos->histograms[0], |
974 | cur_combo, quality, threshold_size); |
975 | if ((image_histo->size <= threshold_size) && |
976 | !HistogramCombineGreedy(image_histo)) { |
977 | goto Error; |
978 | } |
979 | } |
980 | |
981 | // TODO(vikasa): Optimize HistogramRemap for low-effort compression mode also. |
982 | // Find the optimal map from original histograms to the final ones. |
983 | HistogramRemap(orig_histo, image_histo, histogram_symbols); |
984 | |
985 | ok = 1; |
986 | |
987 | Error: |
988 | VP8LFreeHistogramSet(orig_histo); |
989 | return ok; |
990 | } |
991 | |