1 | // Copyright 2014 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // WebPPicture tools: alpha handling, etc. |
11 | // |
12 | // Author: Skal (pascal.massimino@gmail.com) |
13 | |
14 | #include <assert.h> |
15 | |
16 | #include "./vp8i_enc.h" |
17 | #include "../dsp/yuv.h" |
18 | |
19 | static WEBP_INLINE uint32_t MakeARGB32(int r, int g, int b) { |
20 | return (0xff000000u | (r << 16) | (g << 8) | b); |
21 | } |
22 | |
23 | //------------------------------------------------------------------------------ |
24 | // Helper: clean up fully transparent area to help compressibility. |
25 | |
26 | #define SIZE 8 |
27 | #define SIZE2 (SIZE / 2) |
28 | static int is_transparent_area(const uint8_t* ptr, int stride, int size) { |
29 | int y, x; |
30 | for (y = 0; y < size; ++y) { |
31 | for (x = 0; x < size; ++x) { |
32 | if (ptr[x]) { |
33 | return 0; |
34 | } |
35 | } |
36 | ptr += stride; |
37 | } |
38 | return 1; |
39 | } |
40 | |
41 | static int is_transparent_argb_area(const uint32_t* ptr, int stride, int size) { |
42 | int y, x; |
43 | for (y = 0; y < size; ++y) { |
44 | for (x = 0; x < size; ++x) { |
45 | if (ptr[x] & 0xff000000u) { |
46 | return 0; |
47 | } |
48 | } |
49 | ptr += stride; |
50 | } |
51 | return 1; |
52 | } |
53 | |
54 | static void flatten(uint8_t* ptr, int v, int stride, int size) { |
55 | int y; |
56 | for (y = 0; y < size; ++y) { |
57 | memset(ptr, v, size); |
58 | ptr += stride; |
59 | } |
60 | } |
61 | |
62 | static void flatten_argb(uint32_t* ptr, uint32_t v, int stride, int size) { |
63 | int x, y; |
64 | for (y = 0; y < size; ++y) { |
65 | for (x = 0; x < size; ++x) ptr[x] = v; |
66 | ptr += stride; |
67 | } |
68 | } |
69 | |
70 | void WebPCleanupTransparentArea(WebPPicture* pic) { |
71 | int x, y, w, h; |
72 | if (pic == NULL) return; |
73 | w = pic->width / SIZE; |
74 | h = pic->height / SIZE; |
75 | |
76 | // note: we ignore the left-overs on right/bottom |
77 | if (pic->use_argb) { |
78 | uint32_t argb_value = 0; |
79 | for (y = 0; y < h; ++y) { |
80 | int need_reset = 1; |
81 | for (x = 0; x < w; ++x) { |
82 | const int off = (y * pic->argb_stride + x) * SIZE; |
83 | if (is_transparent_argb_area(pic->argb + off, pic->argb_stride, SIZE)) { |
84 | if (need_reset) { |
85 | argb_value = pic->argb[off]; |
86 | need_reset = 0; |
87 | } |
88 | flatten_argb(pic->argb + off, argb_value, pic->argb_stride, SIZE); |
89 | } else { |
90 | need_reset = 1; |
91 | } |
92 | } |
93 | } |
94 | } else { |
95 | const uint8_t* const a_ptr = pic->a; |
96 | int values[3] = { 0 }; |
97 | if (a_ptr == NULL) return; // nothing to do |
98 | for (y = 0; y < h; ++y) { |
99 | int need_reset = 1; |
100 | for (x = 0; x < w; ++x) { |
101 | const int off_a = (y * pic->a_stride + x) * SIZE; |
102 | const int off_y = (y * pic->y_stride + x) * SIZE; |
103 | const int off_uv = (y * pic->uv_stride + x) * SIZE2; |
104 | if (is_transparent_area(a_ptr + off_a, pic->a_stride, SIZE)) { |
105 | if (need_reset) { |
106 | values[0] = pic->y[off_y]; |
107 | values[1] = pic->u[off_uv]; |
108 | values[2] = pic->v[off_uv]; |
109 | need_reset = 0; |
110 | } |
111 | flatten(pic->y + off_y, values[0], pic->y_stride, SIZE); |
112 | flatten(pic->u + off_uv, values[1], pic->uv_stride, SIZE2); |
113 | flatten(pic->v + off_uv, values[2], pic->uv_stride, SIZE2); |
114 | } else { |
115 | need_reset = 1; |
116 | } |
117 | } |
118 | } |
119 | } |
120 | } |
121 | |
122 | #undef SIZE |
123 | #undef SIZE2 |
124 | |
125 | void WebPCleanupTransparentAreaLossless(WebPPicture* const pic) { |
126 | int x, y, w, h; |
127 | uint32_t* argb; |
128 | assert(pic != NULL && pic->use_argb); |
129 | w = pic->width; |
130 | h = pic->height; |
131 | argb = pic->argb; |
132 | |
133 | for (y = 0; y < h; ++y) { |
134 | for (x = 0; x < w; ++x) { |
135 | if ((argb[x] & 0xff000000) == 0) { |
136 | argb[x] = 0x00000000; |
137 | } |
138 | } |
139 | argb += pic->argb_stride; |
140 | } |
141 | } |
142 | |
143 | //------------------------------------------------------------------------------ |
144 | // Blend color and remove transparency info |
145 | |
146 | #define BLEND(V0, V1, ALPHA) \ |
147 | ((((V0) * (255 - (ALPHA)) + (V1) * (ALPHA)) * 0x101) >> 16) |
148 | #define BLEND_10BIT(V0, V1, ALPHA) \ |
149 | ((((V0) * (1020 - (ALPHA)) + (V1) * (ALPHA)) * 0x101) >> 18) |
150 | |
151 | void WebPBlendAlpha(WebPPicture* pic, uint32_t background_rgb) { |
152 | const int red = (background_rgb >> 16) & 0xff; |
153 | const int green = (background_rgb >> 8) & 0xff; |
154 | const int blue = (background_rgb >> 0) & 0xff; |
155 | int x, y; |
156 | if (pic == NULL) return; |
157 | if (!pic->use_argb) { |
158 | const int uv_width = (pic->width >> 1); // omit last pixel during u/v loop |
159 | const int Y0 = VP8RGBToY(red, green, blue, YUV_HALF); |
160 | // VP8RGBToU/V expects the u/v values summed over four pixels |
161 | const int U0 = VP8RGBToU(4 * red, 4 * green, 4 * blue, 4 * YUV_HALF); |
162 | const int V0 = VP8RGBToV(4 * red, 4 * green, 4 * blue, 4 * YUV_HALF); |
163 | const int has_alpha = pic->colorspace & WEBP_CSP_ALPHA_BIT; |
164 | if (!has_alpha || pic->a == NULL) return; // nothing to do |
165 | for (y = 0; y < pic->height; ++y) { |
166 | // Luma blending |
167 | uint8_t* const y_ptr = pic->y + y * pic->y_stride; |
168 | uint8_t* const a_ptr = pic->a + y * pic->a_stride; |
169 | for (x = 0; x < pic->width; ++x) { |
170 | const int alpha = a_ptr[x]; |
171 | if (alpha < 0xff) { |
172 | y_ptr[x] = BLEND(Y0, y_ptr[x], a_ptr[x]); |
173 | } |
174 | } |
175 | // Chroma blending every even line |
176 | if ((y & 1) == 0) { |
177 | uint8_t* const u = pic->u + (y >> 1) * pic->uv_stride; |
178 | uint8_t* const v = pic->v + (y >> 1) * pic->uv_stride; |
179 | uint8_t* const a_ptr2 = |
180 | (y + 1 == pic->height) ? a_ptr : a_ptr + pic->a_stride; |
181 | for (x = 0; x < uv_width; ++x) { |
182 | // Average four alpha values into a single blending weight. |
183 | // TODO(skal): might lead to visible contouring. Can we do better? |
184 | const int alpha = |
185 | a_ptr[2 * x + 0] + a_ptr[2 * x + 1] + |
186 | a_ptr2[2 * x + 0] + a_ptr2[2 * x + 1]; |
187 | u[x] = BLEND_10BIT(U0, u[x], alpha); |
188 | v[x] = BLEND_10BIT(V0, v[x], alpha); |
189 | } |
190 | if (pic->width & 1) { // rightmost pixel |
191 | const int alpha = 2 * (a_ptr[2 * x + 0] + a_ptr2[2 * x + 0]); |
192 | u[x] = BLEND_10BIT(U0, u[x], alpha); |
193 | v[x] = BLEND_10BIT(V0, v[x], alpha); |
194 | } |
195 | } |
196 | memset(a_ptr, 0xff, pic->width); |
197 | } |
198 | } else { |
199 | uint32_t* argb = pic->argb; |
200 | const uint32_t background = MakeARGB32(red, green, blue); |
201 | for (y = 0; y < pic->height; ++y) { |
202 | for (x = 0; x < pic->width; ++x) { |
203 | const int alpha = (argb[x] >> 24) & 0xff; |
204 | if (alpha != 0xff) { |
205 | if (alpha > 0) { |
206 | int r = (argb[x] >> 16) & 0xff; |
207 | int g = (argb[x] >> 8) & 0xff; |
208 | int b = (argb[x] >> 0) & 0xff; |
209 | r = BLEND(red, r, alpha); |
210 | g = BLEND(green, g, alpha); |
211 | b = BLEND(blue, b, alpha); |
212 | argb[x] = MakeARGB32(r, g, b); |
213 | } else { |
214 | argb[x] = background; |
215 | } |
216 | } |
217 | } |
218 | argb += pic->argb_stride; |
219 | } |
220 | } |
221 | } |
222 | |
223 | #undef BLEND |
224 | #undef BLEND_10BIT |
225 | |
226 | //------------------------------------------------------------------------------ |
227 | |