1 | // Copyright 2011 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // Quantization |
11 | // |
12 | // Author: Skal (pascal.massimino@gmail.com) |
13 | |
14 | #include <assert.h> |
15 | #include <math.h> |
16 | #include <stdlib.h> // for abs() |
17 | |
18 | #include "./vp8i_enc.h" |
19 | #include "./cost_enc.h" |
20 | |
21 | #define DO_TRELLIS_I4 1 |
22 | #define DO_TRELLIS_I16 1 // not a huge gain, but ok at low bitrate. |
23 | #define DO_TRELLIS_UV 0 // disable trellis for UV. Risky. Not worth. |
24 | #define USE_TDISTO 1 |
25 | |
26 | #define MID_ALPHA 64 // neutral value for susceptibility |
27 | #define MIN_ALPHA 30 // lowest usable value for susceptibility |
28 | #define MAX_ALPHA 100 // higher meaningful value for susceptibility |
29 | |
30 | #define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP |
31 | // power-law modulation. Must be strictly less than 1. |
32 | |
33 | // number of non-zero coeffs below which we consider the block very flat |
34 | // (and apply a penalty to complex predictions) |
35 | #define FLATNESS_LIMIT_I16 10 // I16 mode |
36 | #define FLATNESS_LIMIT_I4 3 // I4 mode |
37 | #define FLATNESS_LIMIT_UV 2 // UV mode |
38 | #define FLATNESS_PENALTY 140 // roughly ~1bit per block |
39 | |
40 | #define MULT_8B(a, b) (((a) * (b) + 128) >> 8) |
41 | |
42 | #define RD_DISTO_MULT 256 // distortion multiplier (equivalent of lambda) |
43 | |
44 | // #define DEBUG_BLOCK |
45 | |
46 | //------------------------------------------------------------------------------ |
47 | |
48 | #if defined(DEBUG_BLOCK) |
49 | |
50 | #include <stdio.h> |
51 | #include <stdlib.h> |
52 | |
53 | static void PrintBlockInfo(const VP8EncIterator* const it, |
54 | const VP8ModeScore* const rd) { |
55 | int i, j; |
56 | const int is_i16 = (it->mb_->type_ == 1); |
57 | const uint8_t* const y_in = it->yuv_in_ + Y_OFF_ENC; |
58 | const uint8_t* const y_out = it->yuv_out_ + Y_OFF_ENC; |
59 | const uint8_t* const uv_in = it->yuv_in_ + U_OFF_ENC; |
60 | const uint8_t* const uv_out = it->yuv_out_ + U_OFF_ENC; |
61 | printf("SOURCE / OUTPUT / ABS DELTA\n" ); |
62 | for (j = 0; j < 16; ++j) { |
63 | for (i = 0; i < 16; ++i) printf("%3d " , y_in[i + j * BPS]); |
64 | printf(" " ); |
65 | for (i = 0; i < 16; ++i) printf("%3d " , y_out[i + j * BPS]); |
66 | printf(" " ); |
67 | for (i = 0; i < 16; ++i) { |
68 | printf("%1d " , abs(y_in[i + j * BPS] - y_out[i + j * BPS])); |
69 | } |
70 | printf("\n" ); |
71 | } |
72 | printf("\n" ); // newline before the U/V block |
73 | for (j = 0; j < 8; ++j) { |
74 | for (i = 0; i < 8; ++i) printf("%3d " , uv_in[i + j * BPS]); |
75 | printf(" " ); |
76 | for (i = 8; i < 16; ++i) printf("%3d " , uv_in[i + j * BPS]); |
77 | printf(" " ); |
78 | for (i = 0; i < 8; ++i) printf("%3d " , uv_out[i + j * BPS]); |
79 | printf(" " ); |
80 | for (i = 8; i < 16; ++i) printf("%3d " , uv_out[i + j * BPS]); |
81 | printf(" " ); |
82 | for (i = 0; i < 8; ++i) { |
83 | printf("%1d " , abs(uv_out[i + j * BPS] - uv_in[i + j * BPS])); |
84 | } |
85 | printf(" " ); |
86 | for (i = 8; i < 16; ++i) { |
87 | printf("%1d " , abs(uv_out[i + j * BPS] - uv_in[i + j * BPS])); |
88 | } |
89 | printf("\n" ); |
90 | } |
91 | printf("\nD:%d SD:%d R:%d H:%d nz:0x%x score:%d\n" , |
92 | (int)rd->D, (int)rd->SD, (int)rd->R, (int)rd->H, (int)rd->nz, |
93 | (int)rd->score); |
94 | if (is_i16) { |
95 | printf("Mode: %d\n" , rd->mode_i16); |
96 | printf("y_dc_levels:" ); |
97 | for (i = 0; i < 16; ++i) printf("%3d " , rd->y_dc_levels[i]); |
98 | printf("\n" ); |
99 | } else { |
100 | printf("Modes[16]: " ); |
101 | for (i = 0; i < 16; ++i) printf("%d " , rd->modes_i4[i]); |
102 | printf("\n" ); |
103 | } |
104 | printf("y_ac_levels:\n" ); |
105 | for (j = 0; j < 16; ++j) { |
106 | for (i = is_i16 ? 1 : 0; i < 16; ++i) { |
107 | printf("%4d " , rd->y_ac_levels[j][i]); |
108 | } |
109 | printf("\n" ); |
110 | } |
111 | printf("\n" ); |
112 | printf("uv_levels (mode=%d):\n" , rd->mode_uv); |
113 | for (j = 0; j < 8; ++j) { |
114 | for (i = 0; i < 16; ++i) { |
115 | printf("%4d " , rd->uv_levels[j][i]); |
116 | } |
117 | printf("\n" ); |
118 | } |
119 | } |
120 | |
121 | #endif // DEBUG_BLOCK |
122 | |
123 | //------------------------------------------------------------------------------ |
124 | |
125 | static WEBP_INLINE int clip(int v, int m, int M) { |
126 | return v < m ? m : v > M ? M : v; |
127 | } |
128 | |
129 | static const uint8_t kZigzag[16] = { |
130 | 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15 |
131 | }; |
132 | |
133 | static const uint8_t kDcTable[128] = { |
134 | 4, 5, 6, 7, 8, 9, 10, 10, |
135 | 11, 12, 13, 14, 15, 16, 17, 17, |
136 | 18, 19, 20, 20, 21, 21, 22, 22, |
137 | 23, 23, 24, 25, 25, 26, 27, 28, |
138 | 29, 30, 31, 32, 33, 34, 35, 36, |
139 | 37, 37, 38, 39, 40, 41, 42, 43, |
140 | 44, 45, 46, 46, 47, 48, 49, 50, |
141 | 51, 52, 53, 54, 55, 56, 57, 58, |
142 | 59, 60, 61, 62, 63, 64, 65, 66, |
143 | 67, 68, 69, 70, 71, 72, 73, 74, |
144 | 75, 76, 76, 77, 78, 79, 80, 81, |
145 | 82, 83, 84, 85, 86, 87, 88, 89, |
146 | 91, 93, 95, 96, 98, 100, 101, 102, |
147 | 104, 106, 108, 110, 112, 114, 116, 118, |
148 | 122, 124, 126, 128, 130, 132, 134, 136, |
149 | 138, 140, 143, 145, 148, 151, 154, 157 |
150 | }; |
151 | |
152 | static const uint16_t kAcTable[128] = { |
153 | 4, 5, 6, 7, 8, 9, 10, 11, |
154 | 12, 13, 14, 15, 16, 17, 18, 19, |
155 | 20, 21, 22, 23, 24, 25, 26, 27, |
156 | 28, 29, 30, 31, 32, 33, 34, 35, |
157 | 36, 37, 38, 39, 40, 41, 42, 43, |
158 | 44, 45, 46, 47, 48, 49, 50, 51, |
159 | 52, 53, 54, 55, 56, 57, 58, 60, |
160 | 62, 64, 66, 68, 70, 72, 74, 76, |
161 | 78, 80, 82, 84, 86, 88, 90, 92, |
162 | 94, 96, 98, 100, 102, 104, 106, 108, |
163 | 110, 112, 114, 116, 119, 122, 125, 128, |
164 | 131, 134, 137, 140, 143, 146, 149, 152, |
165 | 155, 158, 161, 164, 167, 170, 173, 177, |
166 | 181, 185, 189, 193, 197, 201, 205, 209, |
167 | 213, 217, 221, 225, 229, 234, 239, 245, |
168 | 249, 254, 259, 264, 269, 274, 279, 284 |
169 | }; |
170 | |
171 | static const uint16_t kAcTable2[128] = { |
172 | 8, 8, 9, 10, 12, 13, 15, 17, |
173 | 18, 20, 21, 23, 24, 26, 27, 29, |
174 | 31, 32, 34, 35, 37, 38, 40, 41, |
175 | 43, 44, 46, 48, 49, 51, 52, 54, |
176 | 55, 57, 58, 60, 62, 63, 65, 66, |
177 | 68, 69, 71, 72, 74, 75, 77, 79, |
178 | 80, 82, 83, 85, 86, 88, 89, 93, |
179 | 96, 99, 102, 105, 108, 111, 114, 117, |
180 | 120, 124, 127, 130, 133, 136, 139, 142, |
181 | 145, 148, 151, 155, 158, 161, 164, 167, |
182 | 170, 173, 176, 179, 184, 189, 193, 198, |
183 | 203, 207, 212, 217, 221, 226, 230, 235, |
184 | 240, 244, 249, 254, 258, 263, 268, 274, |
185 | 280, 286, 292, 299, 305, 311, 317, 323, |
186 | 330, 336, 342, 348, 354, 362, 370, 379, |
187 | 385, 393, 401, 409, 416, 424, 432, 440 |
188 | }; |
189 | |
190 | static const uint8_t kBiasMatrices[3][2] = { // [luma-ac,luma-dc,chroma][dc,ac] |
191 | { 96, 110 }, { 96, 108 }, { 110, 115 } |
192 | }; |
193 | |
194 | // Sharpening by (slightly) raising the hi-frequency coeffs. |
195 | // Hack-ish but helpful for mid-bitrate range. Use with care. |
196 | #define SHARPEN_BITS 11 // number of descaling bits for sharpening bias |
197 | static const uint8_t kFreqSharpening[16] = { |
198 | 0, 30, 60, 90, |
199 | 30, 60, 90, 90, |
200 | 60, 90, 90, 90, |
201 | 90, 90, 90, 90 |
202 | }; |
203 | |
204 | //------------------------------------------------------------------------------ |
205 | // Initialize quantization parameters in VP8Matrix |
206 | |
207 | // Returns the average quantizer |
208 | static int ExpandMatrix(VP8Matrix* const m, int type) { |
209 | int i, sum; |
210 | for (i = 0; i < 2; ++i) { |
211 | const int is_ac_coeff = (i > 0); |
212 | const int bias = kBiasMatrices[type][is_ac_coeff]; |
213 | m->iq_[i] = (1 << QFIX) / m->q_[i]; |
214 | m->bias_[i] = BIAS(bias); |
215 | // zthresh_ is the exact value such that QUANTDIV(coeff, iQ, B) is: |
216 | // * zero if coeff <= zthresh |
217 | // * non-zero if coeff > zthresh |
218 | m->zthresh_[i] = ((1 << QFIX) - 1 - m->bias_[i]) / m->iq_[i]; |
219 | } |
220 | for (i = 2; i < 16; ++i) { |
221 | m->q_[i] = m->q_[1]; |
222 | m->iq_[i] = m->iq_[1]; |
223 | m->bias_[i] = m->bias_[1]; |
224 | m->zthresh_[i] = m->zthresh_[1]; |
225 | } |
226 | for (sum = 0, i = 0; i < 16; ++i) { |
227 | if (type == 0) { // we only use sharpening for AC luma coeffs |
228 | m->sharpen_[i] = (kFreqSharpening[i] * m->q_[i]) >> SHARPEN_BITS; |
229 | } else { |
230 | m->sharpen_[i] = 0; |
231 | } |
232 | sum += m->q_[i]; |
233 | } |
234 | return (sum + 8) >> 4; |
235 | } |
236 | |
237 | static void CheckLambdaValue(int* const v) { if (*v < 1) *v = 1; } |
238 | |
239 | static void SetupMatrices(VP8Encoder* enc) { |
240 | int i; |
241 | const int tlambda_scale = |
242 | (enc->method_ >= 4) ? enc->config_->sns_strength |
243 | : 0; |
244 | const int num_segments = enc->segment_hdr_.num_segments_; |
245 | for (i = 0; i < num_segments; ++i) { |
246 | VP8SegmentInfo* const m = &enc->dqm_[i]; |
247 | const int q = m->quant_; |
248 | int q_i4, q_i16, q_uv; |
249 | m->y1_.q_[0] = kDcTable[clip(q + enc->dq_y1_dc_, 0, 127)]; |
250 | m->y1_.q_[1] = kAcTable[clip(q, 0, 127)]; |
251 | |
252 | m->y2_.q_[0] = kDcTable[ clip(q + enc->dq_y2_dc_, 0, 127)] * 2; |
253 | m->y2_.q_[1] = kAcTable2[clip(q + enc->dq_y2_ac_, 0, 127)]; |
254 | |
255 | m->uv_.q_[0] = kDcTable[clip(q + enc->dq_uv_dc_, 0, 117)]; |
256 | m->uv_.q_[1] = kAcTable[clip(q + enc->dq_uv_ac_, 0, 127)]; |
257 | |
258 | q_i4 = ExpandMatrix(&m->y1_, 0); |
259 | q_i16 = ExpandMatrix(&m->y2_, 1); |
260 | q_uv = ExpandMatrix(&m->uv_, 2); |
261 | |
262 | m->lambda_i4_ = (3 * q_i4 * q_i4) >> 7; |
263 | m->lambda_i16_ = (3 * q_i16 * q_i16); |
264 | m->lambda_uv_ = (3 * q_uv * q_uv) >> 6; |
265 | m->lambda_mode_ = (1 * q_i4 * q_i4) >> 7; |
266 | m->lambda_trellis_i4_ = (7 * q_i4 * q_i4) >> 3; |
267 | m->lambda_trellis_i16_ = (q_i16 * q_i16) >> 2; |
268 | m->lambda_trellis_uv_ = (q_uv * q_uv) << 1; |
269 | m->tlambda_ = (tlambda_scale * q_i4) >> 5; |
270 | |
271 | // none of these constants should be < 1 |
272 | CheckLambdaValue(&m->lambda_i4_); |
273 | CheckLambdaValue(&m->lambda_i16_); |
274 | CheckLambdaValue(&m->lambda_uv_); |
275 | CheckLambdaValue(&m->lambda_mode_); |
276 | CheckLambdaValue(&m->lambda_trellis_i4_); |
277 | CheckLambdaValue(&m->lambda_trellis_i16_); |
278 | CheckLambdaValue(&m->lambda_trellis_uv_); |
279 | CheckLambdaValue(&m->tlambda_); |
280 | |
281 | m->min_disto_ = 20 * m->y1_.q_[0]; // quantization-aware min disto |
282 | m->max_edge_ = 0; |
283 | |
284 | m->i4_penalty_ = 1000 * q_i4 * q_i4; |
285 | } |
286 | } |
287 | |
288 | //------------------------------------------------------------------------------ |
289 | // Initialize filtering parameters |
290 | |
291 | // Very small filter-strength values have close to no visual effect. So we can |
292 | // save a little decoding-CPU by turning filtering off for these. |
293 | #define FSTRENGTH_CUTOFF 2 |
294 | |
295 | static void SetupFilterStrength(VP8Encoder* const enc) { |
296 | int i; |
297 | // level0 is in [0..500]. Using '-f 50' as filter_strength is mid-filtering. |
298 | const int level0 = 5 * enc->config_->filter_strength; |
299 | for (i = 0; i < NUM_MB_SEGMENTS; ++i) { |
300 | VP8SegmentInfo* const m = &enc->dqm_[i]; |
301 | // We focus on the quantization of AC coeffs. |
302 | const int qstep = kAcTable[clip(m->quant_, 0, 127)] >> 2; |
303 | const int base_strength = |
304 | VP8FilterStrengthFromDelta(enc->filter_hdr_.sharpness_, qstep); |
305 | // Segments with lower complexity ('beta') will be less filtered. |
306 | const int f = base_strength * level0 / (256 + m->beta_); |
307 | m->fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f; |
308 | } |
309 | // We record the initial strength (mainly for the case of 1-segment only). |
310 | enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_; |
311 | enc->filter_hdr_.simple_ = (enc->config_->filter_type == 0); |
312 | enc->filter_hdr_.sharpness_ = enc->config_->filter_sharpness; |
313 | } |
314 | |
315 | //------------------------------------------------------------------------------ |
316 | |
317 | // Note: if you change the values below, remember that the max range |
318 | // allowed by the syntax for DQ_UV is [-16,16]. |
319 | #define MAX_DQ_UV (6) |
320 | #define MIN_DQ_UV (-4) |
321 | |
322 | // We want to emulate jpeg-like behaviour where the expected "good" quality |
323 | // is around q=75. Internally, our "good" middle is around c=50. So we |
324 | // map accordingly using linear piece-wise function |
325 | static double QualityToCompression(double c) { |
326 | const double linear_c = (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.; |
327 | // The file size roughly scales as pow(quantizer, 3.). Actually, the |
328 | // exponent is somewhere between 2.8 and 3.2, but we're mostly interested |
329 | // in the mid-quant range. So we scale the compressibility inversely to |
330 | // this power-law: quant ~= compression ^ 1/3. This law holds well for |
331 | // low quant. Finer modeling for high-quant would make use of kAcTable[] |
332 | // more explicitly. |
333 | const double v = pow(linear_c, 1 / 3.); |
334 | return v; |
335 | } |
336 | |
337 | static double QualityToJPEGCompression(double c, double alpha) { |
338 | // We map the complexity 'alpha' and quality setting 'c' to a compression |
339 | // exponent empirically matched to the compression curve of libjpeg6b. |
340 | // On average, the WebP output size will be roughly similar to that of a |
341 | // JPEG file compressed with same quality factor. |
342 | const double amin = 0.30; |
343 | const double amax = 0.85; |
344 | const double exp_min = 0.4; |
345 | const double exp_max = 0.9; |
346 | const double slope = (exp_min - exp_max) / (amax - amin); |
347 | // Linearly interpolate 'expn' from exp_min to exp_max |
348 | // in the [amin, amax] range. |
349 | const double expn = (alpha > amax) ? exp_min |
350 | : (alpha < amin) ? exp_max |
351 | : exp_max + slope * (alpha - amin); |
352 | const double v = pow(c, expn); |
353 | return v; |
354 | } |
355 | |
356 | static int SegmentsAreEquivalent(const VP8SegmentInfo* const S1, |
357 | const VP8SegmentInfo* const S2) { |
358 | return (S1->quant_ == S2->quant_) && (S1->fstrength_ == S2->fstrength_); |
359 | } |
360 | |
361 | static void SimplifySegments(VP8Encoder* const enc) { |
362 | int map[NUM_MB_SEGMENTS] = { 0, 1, 2, 3 }; |
363 | // 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an |
364 | // explicit check is needed to avoid a spurious warning about 'i' exceeding |
365 | // array bounds of 'dqm_' with some compilers (noticed with gcc-4.9). |
366 | const int num_segments = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS) |
367 | ? enc->segment_hdr_.num_segments_ |
368 | : NUM_MB_SEGMENTS; |
369 | int num_final_segments = 1; |
370 | int s1, s2; |
371 | for (s1 = 1; s1 < num_segments; ++s1) { // find similar segments |
372 | const VP8SegmentInfo* const S1 = &enc->dqm_[s1]; |
373 | int found = 0; |
374 | // check if we already have similar segment |
375 | for (s2 = 0; s2 < num_final_segments; ++s2) { |
376 | const VP8SegmentInfo* const S2 = &enc->dqm_[s2]; |
377 | if (SegmentsAreEquivalent(S1, S2)) { |
378 | found = 1; |
379 | break; |
380 | } |
381 | } |
382 | map[s1] = s2; |
383 | if (!found) { |
384 | if (num_final_segments != s1) { |
385 | enc->dqm_[num_final_segments] = enc->dqm_[s1]; |
386 | } |
387 | ++num_final_segments; |
388 | } |
389 | } |
390 | if (num_final_segments < num_segments) { // Remap |
391 | int i = enc->mb_w_ * enc->mb_h_; |
392 | while (i-- > 0) enc->mb_info_[i].segment_ = map[enc->mb_info_[i].segment_]; |
393 | enc->segment_hdr_.num_segments_ = num_final_segments; |
394 | // Replicate the trailing segment infos (it's mostly cosmetics) |
395 | for (i = num_final_segments; i < num_segments; ++i) { |
396 | enc->dqm_[i] = enc->dqm_[num_final_segments - 1]; |
397 | } |
398 | } |
399 | } |
400 | |
401 | void VP8SetSegmentParams(VP8Encoder* const enc, float quality) { |
402 | int i; |
403 | int dq_uv_ac, dq_uv_dc; |
404 | const int num_segments = enc->segment_hdr_.num_segments_; |
405 | const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.; |
406 | const double Q = quality / 100.; |
407 | const double c_base = enc->config_->emulate_jpeg_size ? |
408 | QualityToJPEGCompression(Q, enc->alpha_ / 255.) : |
409 | QualityToCompression(Q); |
410 | for (i = 0; i < num_segments; ++i) { |
411 | // We modulate the base coefficient to accommodate for the quantization |
412 | // susceptibility and allow denser segments to be quantized more. |
413 | const double expn = 1. - amp * enc->dqm_[i].alpha_; |
414 | const double c = pow(c_base, expn); |
415 | const int q = (int)(127. * (1. - c)); |
416 | assert(expn > 0.); |
417 | enc->dqm_[i].quant_ = clip(q, 0, 127); |
418 | } |
419 | |
420 | // purely indicative in the bitstream (except for the 1-segment case) |
421 | enc->base_quant_ = enc->dqm_[0].quant_; |
422 | |
423 | // fill-in values for the unused segments (required by the syntax) |
424 | for (i = num_segments; i < NUM_MB_SEGMENTS; ++i) { |
425 | enc->dqm_[i].quant_ = enc->base_quant_; |
426 | } |
427 | |
428 | // uv_alpha_ is normally spread around ~60. The useful range is |
429 | // typically ~30 (quite bad) to ~100 (ok to decimate UV more). |
430 | // We map it to the safe maximal range of MAX/MIN_DQ_UV for dq_uv. |
431 | dq_uv_ac = (enc->uv_alpha_ - MID_ALPHA) * (MAX_DQ_UV - MIN_DQ_UV) |
432 | / (MAX_ALPHA - MIN_ALPHA); |
433 | // we rescale by the user-defined strength of adaptation |
434 | dq_uv_ac = dq_uv_ac * enc->config_->sns_strength / 100; |
435 | // and make it safe. |
436 | dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV); |
437 | // We also boost the dc-uv-quant a little, based on sns-strength, since |
438 | // U/V channels are quite more reactive to high quants (flat DC-blocks |
439 | // tend to appear, and are unpleasant). |
440 | dq_uv_dc = -4 * enc->config_->sns_strength / 100; |
441 | dq_uv_dc = clip(dq_uv_dc, -15, 15); // 4bit-signed max allowed |
442 | |
443 | enc->dq_y1_dc_ = 0; // TODO(skal): dq-lum |
444 | enc->dq_y2_dc_ = 0; |
445 | enc->dq_y2_ac_ = 0; |
446 | enc->dq_uv_dc_ = dq_uv_dc; |
447 | enc->dq_uv_ac_ = dq_uv_ac; |
448 | |
449 | SetupFilterStrength(enc); // initialize segments' filtering, eventually |
450 | |
451 | if (num_segments > 1) SimplifySegments(enc); |
452 | |
453 | SetupMatrices(enc); // finalize quantization matrices |
454 | } |
455 | |
456 | //------------------------------------------------------------------------------ |
457 | // Form the predictions in cache |
458 | |
459 | // Must be ordered using {DC_PRED, TM_PRED, V_PRED, H_PRED} as index |
460 | const int VP8I16ModeOffsets[4] = { I16DC16, I16TM16, I16VE16, I16HE16 }; |
461 | const int VP8UVModeOffsets[4] = { C8DC8, C8TM8, C8VE8, C8HE8 }; |
462 | |
463 | // Must be indexed using {B_DC_PRED -> B_HU_PRED} as index |
464 | const int VP8I4ModeOffsets[NUM_BMODES] = { |
465 | I4DC4, I4TM4, I4VE4, I4HE4, I4RD4, I4VR4, I4LD4, I4VL4, I4HD4, I4HU4 |
466 | }; |
467 | |
468 | void VP8MakeLuma16Preds(const VP8EncIterator* const it) { |
469 | const uint8_t* const left = it->x_ ? it->y_left_ : NULL; |
470 | const uint8_t* const top = it->y_ ? it->y_top_ : NULL; |
471 | VP8EncPredLuma16(it->yuv_p_, left, top); |
472 | } |
473 | |
474 | void VP8MakeChroma8Preds(const VP8EncIterator* const it) { |
475 | const uint8_t* const left = it->x_ ? it->u_left_ : NULL; |
476 | const uint8_t* const top = it->y_ ? it->uv_top_ : NULL; |
477 | VP8EncPredChroma8(it->yuv_p_, left, top); |
478 | } |
479 | |
480 | void VP8MakeIntra4Preds(const VP8EncIterator* const it) { |
481 | VP8EncPredLuma4(it->yuv_p_, it->i4_top_); |
482 | } |
483 | |
484 | //------------------------------------------------------------------------------ |
485 | // Quantize |
486 | |
487 | // Layout: |
488 | // +----+----+ |
489 | // |YYYY|UUVV| 0 |
490 | // |YYYY|UUVV| 4 |
491 | // |YYYY|....| 8 |
492 | // |YYYY|....| 12 |
493 | // +----+----+ |
494 | |
495 | const int VP8Scan[16] = { // Luma |
496 | 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, |
497 | 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, |
498 | 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, |
499 | 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS, |
500 | }; |
501 | |
502 | static const int VP8ScanUV[4 + 4] = { |
503 | 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U |
504 | 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V |
505 | }; |
506 | |
507 | //------------------------------------------------------------------------------ |
508 | // Distortion measurement |
509 | |
510 | static const uint16_t kWeightY[16] = { |
511 | 38, 32, 20, 9, 32, 28, 17, 7, 20, 17, 10, 4, 9, 7, 4, 2 |
512 | }; |
513 | |
514 | static const uint16_t kWeightTrellis[16] = { |
515 | #if USE_TDISTO == 0 |
516 | 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16 |
517 | #else |
518 | 30, 27, 19, 11, |
519 | 27, 24, 17, 10, |
520 | 19, 17, 12, 8, |
521 | 11, 10, 8, 6 |
522 | #endif |
523 | }; |
524 | |
525 | // Init/Copy the common fields in score. |
526 | static void InitScore(VP8ModeScore* const rd) { |
527 | rd->D = 0; |
528 | rd->SD = 0; |
529 | rd->R = 0; |
530 | rd->H = 0; |
531 | rd->nz = 0; |
532 | rd->score = MAX_COST; |
533 | } |
534 | |
535 | static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { |
536 | dst->D = src->D; |
537 | dst->SD = src->SD; |
538 | dst->R = src->R; |
539 | dst->H = src->H; |
540 | dst->nz = src->nz; // note that nz is not accumulated, but just copied. |
541 | dst->score = src->score; |
542 | } |
543 | |
544 | static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { |
545 | dst->D += src->D; |
546 | dst->SD += src->SD; |
547 | dst->R += src->R; |
548 | dst->H += src->H; |
549 | dst->nz |= src->nz; // here, new nz bits are accumulated. |
550 | dst->score += src->score; |
551 | } |
552 | |
553 | //------------------------------------------------------------------------------ |
554 | // Performs trellis-optimized quantization. |
555 | |
556 | // Trellis node |
557 | typedef struct { |
558 | int8_t prev; // best previous node |
559 | int8_t sign; // sign of coeff_i |
560 | int16_t level; // level |
561 | } Node; |
562 | |
563 | // Score state |
564 | typedef struct { |
565 | score_t score; // partial RD score |
566 | const uint16_t* costs; // shortcut to cost tables |
567 | } ScoreState; |
568 | |
569 | // If a coefficient was quantized to a value Q (using a neutral bias), |
570 | // we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA] |
571 | // We don't test negative values though. |
572 | #define MIN_DELTA 0 // how much lower level to try |
573 | #define MAX_DELTA 1 // how much higher |
574 | #define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA) |
575 | #define NODE(n, l) (nodes[(n)][(l) + MIN_DELTA]) |
576 | #define SCORE_STATE(n, l) (score_states[n][(l) + MIN_DELTA]) |
577 | |
578 | static WEBP_INLINE void SetRDScore(int lambda, VP8ModeScore* const rd) { |
579 | rd->score = (rd->R + rd->H) * lambda + RD_DISTO_MULT * (rd->D + rd->SD); |
580 | } |
581 | |
582 | static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate, |
583 | score_t distortion) { |
584 | return rate * lambda + RD_DISTO_MULT * distortion; |
585 | } |
586 | |
587 | static int TrellisQuantizeBlock(const VP8Encoder* const enc, |
588 | int16_t in[16], int16_t out[16], |
589 | int ctx0, int coeff_type, |
590 | const VP8Matrix* const mtx, |
591 | int lambda) { |
592 | const ProbaArray* const probas = enc->proba_.coeffs_[coeff_type]; |
593 | CostArrayPtr const costs = |
594 | (CostArrayPtr)enc->proba_.remapped_costs_[coeff_type]; |
595 | const int first = (coeff_type == 0) ? 1 : 0; |
596 | Node nodes[16][NUM_NODES]; |
597 | ScoreState score_states[2][NUM_NODES]; |
598 | ScoreState* ss_cur = &SCORE_STATE(0, MIN_DELTA); |
599 | ScoreState* ss_prev = &SCORE_STATE(1, MIN_DELTA); |
600 | int best_path[3] = {-1, -1, -1}; // store best-last/best-level/best-previous |
601 | score_t best_score; |
602 | int n, m, p, last; |
603 | |
604 | { |
605 | score_t cost; |
606 | const int thresh = mtx->q_[1] * mtx->q_[1] / 4; |
607 | const int last_proba = probas[VP8EncBands[first]][ctx0][0]; |
608 | |
609 | // compute the position of the last interesting coefficient |
610 | last = first - 1; |
611 | for (n = 15; n >= first; --n) { |
612 | const int j = kZigzag[n]; |
613 | const int err = in[j] * in[j]; |
614 | if (err > thresh) { |
615 | last = n; |
616 | break; |
617 | } |
618 | } |
619 | // we don't need to go inspect up to n = 16 coeffs. We can just go up |
620 | // to last + 1 (inclusive) without losing much. |
621 | if (last < 15) ++last; |
622 | |
623 | // compute 'skip' score. This is the max score one can do. |
624 | cost = VP8BitCost(0, last_proba); |
625 | best_score = RDScoreTrellis(lambda, cost, 0); |
626 | |
627 | // initialize source node. |
628 | for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { |
629 | const score_t rate = (ctx0 == 0) ? VP8BitCost(1, last_proba) : 0; |
630 | ss_cur[m].score = RDScoreTrellis(lambda, rate, 0); |
631 | ss_cur[m].costs = costs[first][ctx0]; |
632 | } |
633 | } |
634 | |
635 | // traverse trellis. |
636 | for (n = first; n <= last; ++n) { |
637 | const int j = kZigzag[n]; |
638 | const uint32_t Q = mtx->q_[j]; |
639 | const uint32_t iQ = mtx->iq_[j]; |
640 | const uint32_t B = BIAS(0x00); // neutral bias |
641 | // note: it's important to take sign of the _original_ coeff, |
642 | // so we don't have to consider level < 0 afterward. |
643 | const int sign = (in[j] < 0); |
644 | const uint32_t coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j]; |
645 | int level0 = QUANTDIV(coeff0, iQ, B); |
646 | int thresh_level = QUANTDIV(coeff0, iQ, BIAS(0x80)); |
647 | if (thresh_level > MAX_LEVEL) thresh_level = MAX_LEVEL; |
648 | if (level0 > MAX_LEVEL) level0 = MAX_LEVEL; |
649 | |
650 | { // Swap current and previous score states |
651 | ScoreState* const tmp = ss_cur; |
652 | ss_cur = ss_prev; |
653 | ss_prev = tmp; |
654 | } |
655 | |
656 | // test all alternate level values around level0. |
657 | for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { |
658 | Node* const cur = &NODE(n, m); |
659 | int level = level0 + m; |
660 | const int ctx = (level > 2) ? 2 : level; |
661 | const int band = VP8EncBands[n + 1]; |
662 | score_t base_score; |
663 | score_t best_cur_score = MAX_COST; |
664 | int best_prev = 0; // default, in case |
665 | |
666 | ss_cur[m].score = MAX_COST; |
667 | ss_cur[m].costs = costs[n + 1][ctx]; |
668 | if (level < 0 || level > thresh_level) { |
669 | // Node is dead. |
670 | continue; |
671 | } |
672 | |
673 | { |
674 | // Compute delta_error = how much coding this level will |
675 | // subtract to max_error as distortion. |
676 | // Here, distortion = sum of (|coeff_i| - level_i * Q_i)^2 |
677 | const int new_error = coeff0 - level * Q; |
678 | const int delta_error = |
679 | kWeightTrellis[j] * (new_error * new_error - coeff0 * coeff0); |
680 | base_score = RDScoreTrellis(lambda, 0, delta_error); |
681 | } |
682 | |
683 | // Inspect all possible non-dead predecessors. Retain only the best one. |
684 | for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) { |
685 | // Dead nodes (with ss_prev[p].score >= MAX_COST) are automatically |
686 | // eliminated since their score can't be better than the current best. |
687 | const score_t cost = VP8LevelCost(ss_prev[p].costs, level); |
688 | // Examine node assuming it's a non-terminal one. |
689 | const score_t score = |
690 | base_score + ss_prev[p].score + RDScoreTrellis(lambda, cost, 0); |
691 | if (score < best_cur_score) { |
692 | best_cur_score = score; |
693 | best_prev = p; |
694 | } |
695 | } |
696 | // Store best finding in current node. |
697 | cur->sign = sign; |
698 | cur->level = level; |
699 | cur->prev = best_prev; |
700 | ss_cur[m].score = best_cur_score; |
701 | |
702 | // Now, record best terminal node (and thus best entry in the graph). |
703 | if (level != 0) { |
704 | const score_t last_pos_cost = |
705 | (n < 15) ? VP8BitCost(0, probas[band][ctx][0]) : 0; |
706 | const score_t last_pos_score = RDScoreTrellis(lambda, last_pos_cost, 0); |
707 | const score_t score = best_cur_score + last_pos_score; |
708 | if (score < best_score) { |
709 | best_score = score; |
710 | best_path[0] = n; // best eob position |
711 | best_path[1] = m; // best node index |
712 | best_path[2] = best_prev; // best predecessor |
713 | } |
714 | } |
715 | } |
716 | } |
717 | |
718 | // Fresh start |
719 | memset(in + first, 0, (16 - first) * sizeof(*in)); |
720 | memset(out + first, 0, (16 - first) * sizeof(*out)); |
721 | if (best_path[0] == -1) { |
722 | return 0; // skip! |
723 | } |
724 | |
725 | { |
726 | // Unwind the best path. |
727 | // Note: best-prev on terminal node is not necessarily equal to the |
728 | // best_prev for non-terminal. So we patch best_path[2] in. |
729 | int nz = 0; |
730 | int best_node = best_path[1]; |
731 | n = best_path[0]; |
732 | NODE(n, best_node).prev = best_path[2]; // force best-prev for terminal |
733 | |
734 | for (; n >= first; --n) { |
735 | const Node* const node = &NODE(n, best_node); |
736 | const int j = kZigzag[n]; |
737 | out[n] = node->sign ? -node->level : node->level; |
738 | nz |= node->level; |
739 | in[j] = out[n] * mtx->q_[j]; |
740 | best_node = node->prev; |
741 | } |
742 | return (nz != 0); |
743 | } |
744 | } |
745 | |
746 | #undef NODE |
747 | |
748 | //------------------------------------------------------------------------------ |
749 | // Performs: difference, transform, quantize, back-transform, add |
750 | // all at once. Output is the reconstructed block in *yuv_out, and the |
751 | // quantized levels in *levels. |
752 | |
753 | static int ReconstructIntra16(VP8EncIterator* const it, |
754 | VP8ModeScore* const rd, |
755 | uint8_t* const yuv_out, |
756 | int mode) { |
757 | const VP8Encoder* const enc = it->enc_; |
758 | const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; |
759 | const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC; |
760 | const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
761 | int nz = 0; |
762 | int n; |
763 | int16_t tmp[16][16], dc_tmp[16]; |
764 | |
765 | for (n = 0; n < 16; n += 2) { |
766 | VP8FTransform2(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]); |
767 | } |
768 | VP8FTransformWHT(tmp[0], dc_tmp); |
769 | nz |= VP8EncQuantizeBlockWHT(dc_tmp, rd->y_dc_levels, &dqm->y2_) << 24; |
770 | |
771 | if (DO_TRELLIS_I16 && it->do_trellis_) { |
772 | int x, y; |
773 | VP8IteratorNzToBytes(it); |
774 | for (y = 0, n = 0; y < 4; ++y) { |
775 | for (x = 0; x < 4; ++x, ++n) { |
776 | const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
777 | const int non_zero = |
778 | TrellisQuantizeBlock(enc, tmp[n], rd->y_ac_levels[n], ctx, 0, |
779 | &dqm->y1_, dqm->lambda_trellis_i16_); |
780 | it->top_nz_[x] = it->left_nz_[y] = non_zero; |
781 | rd->y_ac_levels[n][0] = 0; |
782 | nz |= non_zero << n; |
783 | } |
784 | } |
785 | } else { |
786 | for (n = 0; n < 16; n += 2) { |
787 | // Zero-out the first coeff, so that: a) nz is correct below, and |
788 | // b) finding 'last' non-zero coeffs in SetResidualCoeffs() is simplified. |
789 | tmp[n][0] = tmp[n + 1][0] = 0; |
790 | nz |= VP8EncQuantize2Blocks(tmp[n], rd->y_ac_levels[n], &dqm->y1_) << n; |
791 | assert(rd->y_ac_levels[n + 0][0] == 0); |
792 | assert(rd->y_ac_levels[n + 1][0] == 0); |
793 | } |
794 | } |
795 | |
796 | // Transform back |
797 | VP8TransformWHT(dc_tmp, tmp[0]); |
798 | for (n = 0; n < 16; n += 2) { |
799 | VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n], 1); |
800 | } |
801 | |
802 | return nz; |
803 | } |
804 | |
805 | static int ReconstructIntra4(VP8EncIterator* const it, |
806 | int16_t levels[16], |
807 | const uint8_t* const src, |
808 | uint8_t* const yuv_out, |
809 | int mode) { |
810 | const VP8Encoder* const enc = it->enc_; |
811 | const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode]; |
812 | const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
813 | int nz = 0; |
814 | int16_t tmp[16]; |
815 | |
816 | VP8FTransform(src, ref, tmp); |
817 | if (DO_TRELLIS_I4 && it->do_trellis_) { |
818 | const int x = it->i4_ & 3, y = it->i4_ >> 2; |
819 | const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
820 | nz = TrellisQuantizeBlock(enc, tmp, levels, ctx, 3, &dqm->y1_, |
821 | dqm->lambda_trellis_i4_); |
822 | } else { |
823 | nz = VP8EncQuantizeBlock(tmp, levels, &dqm->y1_); |
824 | } |
825 | VP8ITransform(ref, tmp, yuv_out, 0); |
826 | return nz; |
827 | } |
828 | |
829 | static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd, |
830 | uint8_t* const yuv_out, int mode) { |
831 | const VP8Encoder* const enc = it->enc_; |
832 | const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode]; |
833 | const uint8_t* const src = it->yuv_in_ + U_OFF_ENC; |
834 | const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
835 | int nz = 0; |
836 | int n; |
837 | int16_t tmp[8][16]; |
838 | |
839 | for (n = 0; n < 8; n += 2) { |
840 | VP8FTransform2(src + VP8ScanUV[n], ref + VP8ScanUV[n], tmp[n]); |
841 | } |
842 | if (DO_TRELLIS_UV && it->do_trellis_) { |
843 | int ch, x, y; |
844 | for (ch = 0, n = 0; ch <= 2; ch += 2) { |
845 | for (y = 0; y < 2; ++y) { |
846 | for (x = 0; x < 2; ++x, ++n) { |
847 | const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; |
848 | const int non_zero = |
849 | TrellisQuantizeBlock(enc, tmp[n], rd->uv_levels[n], ctx, 2, |
850 | &dqm->uv_, dqm->lambda_trellis_uv_); |
851 | it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero; |
852 | nz |= non_zero << n; |
853 | } |
854 | } |
855 | } |
856 | } else { |
857 | for (n = 0; n < 8; n += 2) { |
858 | nz |= VP8EncQuantize2Blocks(tmp[n], rd->uv_levels[n], &dqm->uv_) << n; |
859 | } |
860 | } |
861 | |
862 | for (n = 0; n < 8; n += 2) { |
863 | VP8ITransform(ref + VP8ScanUV[n], tmp[n], yuv_out + VP8ScanUV[n], 1); |
864 | } |
865 | return (nz << 16); |
866 | } |
867 | |
868 | //------------------------------------------------------------------------------ |
869 | // RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost. |
870 | // Pick the mode is lower RD-cost = Rate + lambda * Distortion. |
871 | |
872 | static void StoreMaxDelta(VP8SegmentInfo* const dqm, const int16_t DCs[16]) { |
873 | // We look at the first three AC coefficients to determine what is the average |
874 | // delta between each sub-4x4 block. |
875 | const int v0 = abs(DCs[1]); |
876 | const int v1 = abs(DCs[2]); |
877 | const int v2 = abs(DCs[4]); |
878 | int max_v = (v1 > v0) ? v1 : v0; |
879 | max_v = (v2 > max_v) ? v2 : max_v; |
880 | if (max_v > dqm->max_edge_) dqm->max_edge_ = max_v; |
881 | } |
882 | |
883 | static void SwapModeScore(VP8ModeScore** a, VP8ModeScore** b) { |
884 | VP8ModeScore* const tmp = *a; |
885 | *a = *b; |
886 | *b = tmp; |
887 | } |
888 | |
889 | static void SwapPtr(uint8_t** a, uint8_t** b) { |
890 | uint8_t* const tmp = *a; |
891 | *a = *b; |
892 | *b = tmp; |
893 | } |
894 | |
895 | static void SwapOut(VP8EncIterator* const it) { |
896 | SwapPtr(&it->yuv_out_, &it->yuv_out2_); |
897 | } |
898 | |
899 | static score_t IsFlat(const int16_t* levels, int num_blocks, score_t thresh) { |
900 | score_t score = 0; |
901 | while (num_blocks-- > 0) { // TODO(skal): refine positional scoring? |
902 | int i; |
903 | for (i = 1; i < 16; ++i) { // omit DC, we're only interested in AC |
904 | score += (levels[i] != 0); |
905 | if (score > thresh) return 0; |
906 | } |
907 | levels += 16; |
908 | } |
909 | return 1; |
910 | } |
911 | |
912 | static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* rd) { |
913 | const int kNumBlocks = 16; |
914 | VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; |
915 | const int lambda = dqm->lambda_i16_; |
916 | const int tlambda = dqm->tlambda_; |
917 | const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC; |
918 | VP8ModeScore rd_tmp; |
919 | VP8ModeScore* rd_cur = &rd_tmp; |
920 | VP8ModeScore* rd_best = rd; |
921 | int mode; |
922 | |
923 | rd->mode_i16 = -1; |
924 | for (mode = 0; mode < NUM_PRED_MODES; ++mode) { |
925 | uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF_ENC; // scratch buffer |
926 | rd_cur->mode_i16 = mode; |
927 | |
928 | // Reconstruct |
929 | rd_cur->nz = ReconstructIntra16(it, rd_cur, tmp_dst, mode); |
930 | |
931 | // Measure RD-score |
932 | rd_cur->D = VP8SSE16x16(src, tmp_dst); |
933 | rd_cur->SD = |
934 | tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY)) : 0; |
935 | rd_cur->H = VP8FixedCostsI16[mode]; |
936 | rd_cur->R = VP8GetCostLuma16(it, rd_cur); |
937 | if (mode > 0 && |
938 | IsFlat(rd_cur->y_ac_levels[0], kNumBlocks, FLATNESS_LIMIT_I16)) { |
939 | // penalty to avoid flat area to be mispredicted by complex mode |
940 | rd_cur->R += FLATNESS_PENALTY * kNumBlocks; |
941 | } |
942 | |
943 | // Since we always examine Intra16 first, we can overwrite *rd directly. |
944 | SetRDScore(lambda, rd_cur); |
945 | if (mode == 0 || rd_cur->score < rd_best->score) { |
946 | SwapModeScore(&rd_cur, &rd_best); |
947 | SwapOut(it); |
948 | } |
949 | } |
950 | if (rd_best != rd) { |
951 | memcpy(rd, rd_best, sizeof(*rd)); |
952 | } |
953 | SetRDScore(dqm->lambda_mode_, rd); // finalize score for mode decision. |
954 | VP8SetIntra16Mode(it, rd->mode_i16); |
955 | |
956 | // we have a blocky macroblock (only DCs are non-zero) with fairly high |
957 | // distortion, record max delta so we can later adjust the minimal filtering |
958 | // strength needed to smooth these blocks out. |
959 | if ((rd->nz & 0x100ffff) == 0x1000000 && rd->D > dqm->min_disto_) { |
960 | StoreMaxDelta(dqm, rd->y_dc_levels); |
961 | } |
962 | } |
963 | |
964 | //------------------------------------------------------------------------------ |
965 | |
966 | // return the cost array corresponding to the surrounding prediction modes. |
967 | static const uint16_t* GetCostModeI4(VP8EncIterator* const it, |
968 | const uint8_t modes[16]) { |
969 | const int preds_w = it->enc_->preds_w_; |
970 | const int x = (it->i4_ & 3), y = it->i4_ >> 2; |
971 | const int left = (x == 0) ? it->preds_[y * preds_w - 1] : modes[it->i4_ - 1]; |
972 | const int top = (y == 0) ? it->preds_[-preds_w + x] : modes[it->i4_ - 4]; |
973 | return VP8FixedCostsI4[top][left]; |
974 | } |
975 | |
976 | static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) { |
977 | const VP8Encoder* const enc = it->enc_; |
978 | const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
979 | const int lambda = dqm->lambda_i4_; |
980 | const int tlambda = dqm->tlambda_; |
981 | const uint8_t* const src0 = it->yuv_in_ + Y_OFF_ENC; |
982 | uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF_ENC; |
983 | int = 0; |
984 | VP8ModeScore rd_best; |
985 | |
986 | if (enc->max_i4_header_bits_ == 0) { |
987 | return 0; |
988 | } |
989 | |
990 | InitScore(&rd_best); |
991 | rd_best.H = 211; // '211' is the value of VP8BitCost(0, 145) |
992 | SetRDScore(dqm->lambda_mode_, &rd_best); |
993 | VP8IteratorStartI4(it); |
994 | do { |
995 | const int kNumBlocks = 1; |
996 | VP8ModeScore rd_i4; |
997 | int mode; |
998 | int best_mode = -1; |
999 | const uint8_t* const src = src0 + VP8Scan[it->i4_]; |
1000 | const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4); |
1001 | uint8_t* best_block = best_blocks + VP8Scan[it->i4_]; |
1002 | uint8_t* tmp_dst = it->yuv_p_ + I4TMP; // scratch buffer. |
1003 | |
1004 | InitScore(&rd_i4); |
1005 | VP8MakeIntra4Preds(it); |
1006 | for (mode = 0; mode < NUM_BMODES; ++mode) { |
1007 | VP8ModeScore rd_tmp; |
1008 | int16_t tmp_levels[16]; |
1009 | |
1010 | // Reconstruct |
1011 | rd_tmp.nz = |
1012 | ReconstructIntra4(it, tmp_levels, src, tmp_dst, mode) << it->i4_; |
1013 | |
1014 | // Compute RD-score |
1015 | rd_tmp.D = VP8SSE4x4(src, tmp_dst); |
1016 | rd_tmp.SD = |
1017 | tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY)) |
1018 | : 0; |
1019 | rd_tmp.H = mode_costs[mode]; |
1020 | |
1021 | // Add flatness penalty |
1022 | if (mode > 0 && IsFlat(tmp_levels, kNumBlocks, FLATNESS_LIMIT_I4)) { |
1023 | rd_tmp.R = FLATNESS_PENALTY * kNumBlocks; |
1024 | } else { |
1025 | rd_tmp.R = 0; |
1026 | } |
1027 | |
1028 | // early-out check |
1029 | SetRDScore(lambda, &rd_tmp); |
1030 | if (best_mode >= 0 && rd_tmp.score >= rd_i4.score) continue; |
1031 | |
1032 | // finish computing score |
1033 | rd_tmp.R += VP8GetCostLuma4(it, tmp_levels); |
1034 | SetRDScore(lambda, &rd_tmp); |
1035 | |
1036 | if (best_mode < 0 || rd_tmp.score < rd_i4.score) { |
1037 | CopyScore(&rd_i4, &rd_tmp); |
1038 | best_mode = mode; |
1039 | SwapPtr(&tmp_dst, &best_block); |
1040 | memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, |
1041 | sizeof(rd_best.y_ac_levels[it->i4_])); |
1042 | } |
1043 | } |
1044 | SetRDScore(dqm->lambda_mode_, &rd_i4); |
1045 | AddScore(&rd_best, &rd_i4); |
1046 | if (rd_best.score >= rd->score) { |
1047 | return 0; |
1048 | } |
1049 | total_header_bits += (int)rd_i4.H; // <- equal to mode_costs[best_mode]; |
1050 | if (total_header_bits > enc->max_i4_header_bits_) { |
1051 | return 0; |
1052 | } |
1053 | // Copy selected samples if not in the right place already. |
1054 | if (best_block != best_blocks + VP8Scan[it->i4_]) { |
1055 | VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]); |
1056 | } |
1057 | rd->modes_i4[it->i4_] = best_mode; |
1058 | it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0); |
1059 | } while (VP8IteratorRotateI4(it, best_blocks)); |
1060 | |
1061 | // finalize state |
1062 | CopyScore(rd, &rd_best); |
1063 | VP8SetIntra4Mode(it, rd->modes_i4); |
1064 | SwapOut(it); |
1065 | memcpy(rd->y_ac_levels, rd_best.y_ac_levels, sizeof(rd->y_ac_levels)); |
1066 | return 1; // select intra4x4 over intra16x16 |
1067 | } |
1068 | |
1069 | //------------------------------------------------------------------------------ |
1070 | |
1071 | static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) { |
1072 | const int kNumBlocks = 8; |
1073 | const VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; |
1074 | const int lambda = dqm->lambda_uv_; |
1075 | const uint8_t* const src = it->yuv_in_ + U_OFF_ENC; |
1076 | uint8_t* tmp_dst = it->yuv_out2_ + U_OFF_ENC; // scratch buffer |
1077 | uint8_t* dst0 = it->yuv_out_ + U_OFF_ENC; |
1078 | uint8_t* dst = dst0; |
1079 | VP8ModeScore rd_best; |
1080 | int mode; |
1081 | |
1082 | rd->mode_uv = -1; |
1083 | InitScore(&rd_best); |
1084 | for (mode = 0; mode < NUM_PRED_MODES; ++mode) { |
1085 | VP8ModeScore rd_uv; |
1086 | |
1087 | // Reconstruct |
1088 | rd_uv.nz = ReconstructUV(it, &rd_uv, tmp_dst, mode); |
1089 | |
1090 | // Compute RD-score |
1091 | rd_uv.D = VP8SSE16x8(src, tmp_dst); |
1092 | rd_uv.SD = 0; // not calling TDisto here: it tends to flatten areas. |
1093 | rd_uv.H = VP8FixedCostsUV[mode]; |
1094 | rd_uv.R = VP8GetCostUV(it, &rd_uv); |
1095 | if (mode > 0 && IsFlat(rd_uv.uv_levels[0], kNumBlocks, FLATNESS_LIMIT_UV)) { |
1096 | rd_uv.R += FLATNESS_PENALTY * kNumBlocks; |
1097 | } |
1098 | |
1099 | SetRDScore(lambda, &rd_uv); |
1100 | if (mode == 0 || rd_uv.score < rd_best.score) { |
1101 | CopyScore(&rd_best, &rd_uv); |
1102 | rd->mode_uv = mode; |
1103 | memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels)); |
1104 | SwapPtr(&dst, &tmp_dst); |
1105 | } |
1106 | } |
1107 | VP8SetIntraUVMode(it, rd->mode_uv); |
1108 | AddScore(rd, &rd_best); |
1109 | if (dst != dst0) { // copy 16x8 block if needed |
1110 | VP8Copy16x8(dst, dst0); |
1111 | } |
1112 | } |
1113 | |
1114 | //------------------------------------------------------------------------------ |
1115 | // Final reconstruction and quantization. |
1116 | |
1117 | static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) { |
1118 | const VP8Encoder* const enc = it->enc_; |
1119 | const int is_i16 = (it->mb_->type_ == 1); |
1120 | int nz = 0; |
1121 | |
1122 | if (is_i16) { |
1123 | nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF_ENC, it->preds_[0]); |
1124 | } else { |
1125 | VP8IteratorStartI4(it); |
1126 | do { |
1127 | const int mode = |
1128 | it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_]; |
1129 | const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_]; |
1130 | uint8_t* const dst = it->yuv_out_ + Y_OFF_ENC + VP8Scan[it->i4_]; |
1131 | VP8MakeIntra4Preds(it); |
1132 | nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_], |
1133 | src, dst, mode) << it->i4_; |
1134 | } while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF_ENC)); |
1135 | } |
1136 | |
1137 | nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF_ENC, it->mb_->uv_mode_); |
1138 | rd->nz = nz; |
1139 | } |
1140 | |
1141 | // Refine intra16/intra4 sub-modes based on distortion only (not rate). |
1142 | static void RefineUsingDistortion(VP8EncIterator* const it, |
1143 | int try_both_modes, int refine_uv_mode, |
1144 | VP8ModeScore* const rd) { |
1145 | score_t best_score = MAX_COST; |
1146 | int nz = 0; |
1147 | int mode; |
1148 | int is_i16 = try_both_modes || (it->mb_->type_ == 1); |
1149 | |
1150 | const VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; |
1151 | // Some empiric constants, of approximate order of magnitude. |
1152 | const int lambda_d_i16 = 106; |
1153 | const int lambda_d_i4 = 11; |
1154 | const int lambda_d_uv = 120; |
1155 | score_t score_i4 = dqm->i4_penalty_; |
1156 | score_t i4_bit_sum = 0; |
1157 | const score_t bit_limit = try_both_modes ? it->enc_->mb_header_limit_ |
1158 | : MAX_COST; // no early-out allowed |
1159 | |
1160 | if (is_i16) { // First, evaluate Intra16 distortion |
1161 | int best_mode = -1; |
1162 | const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC; |
1163 | for (mode = 0; mode < NUM_PRED_MODES; ++mode) { |
1164 | const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; |
1165 | const score_t score = VP8SSE16x16(src, ref) * RD_DISTO_MULT |
1166 | + VP8FixedCostsI16[mode] * lambda_d_i16; |
1167 | if (mode > 0 && VP8FixedCostsI16[mode] > bit_limit) { |
1168 | continue; |
1169 | } |
1170 | if (score < best_score) { |
1171 | best_mode = mode; |
1172 | best_score = score; |
1173 | } |
1174 | } |
1175 | VP8SetIntra16Mode(it, best_mode); |
1176 | // we'll reconstruct later, if i16 mode actually gets selected |
1177 | } |
1178 | |
1179 | // Next, evaluate Intra4 |
1180 | if (try_both_modes || !is_i16) { |
1181 | // We don't evaluate the rate here, but just account for it through a |
1182 | // constant penalty (i4 mode usually needs more bits compared to i16). |
1183 | is_i16 = 0; |
1184 | VP8IteratorStartI4(it); |
1185 | do { |
1186 | int best_i4_mode = -1; |
1187 | score_t best_i4_score = MAX_COST; |
1188 | const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_]; |
1189 | const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4); |
1190 | |
1191 | VP8MakeIntra4Preds(it); |
1192 | for (mode = 0; mode < NUM_BMODES; ++mode) { |
1193 | const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode]; |
1194 | const score_t score = VP8SSE4x4(src, ref) * RD_DISTO_MULT |
1195 | + mode_costs[mode] * lambda_d_i4; |
1196 | if (score < best_i4_score) { |
1197 | best_i4_mode = mode; |
1198 | best_i4_score = score; |
1199 | } |
1200 | } |
1201 | i4_bit_sum += mode_costs[best_i4_mode]; |
1202 | rd->modes_i4[it->i4_] = best_i4_mode; |
1203 | score_i4 += best_i4_score; |
1204 | if (score_i4 >= best_score || i4_bit_sum > bit_limit) { |
1205 | // Intra4 won't be better than Intra16. Bail out and pick Intra16. |
1206 | is_i16 = 1; |
1207 | break; |
1208 | } else { // reconstruct partial block inside yuv_out2_ buffer |
1209 | uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF_ENC + VP8Scan[it->i4_]; |
1210 | nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_], |
1211 | src, tmp_dst, best_i4_mode) << it->i4_; |
1212 | } |
1213 | } while (VP8IteratorRotateI4(it, it->yuv_out2_ + Y_OFF_ENC)); |
1214 | } |
1215 | |
1216 | // Final reconstruction, depending on which mode is selected. |
1217 | if (!is_i16) { |
1218 | VP8SetIntra4Mode(it, rd->modes_i4); |
1219 | SwapOut(it); |
1220 | best_score = score_i4; |
1221 | } else { |
1222 | nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF_ENC, it->preds_[0]); |
1223 | } |
1224 | |
1225 | // ... and UV! |
1226 | if (refine_uv_mode) { |
1227 | int best_mode = -1; |
1228 | score_t best_uv_score = MAX_COST; |
1229 | const uint8_t* const src = it->yuv_in_ + U_OFF_ENC; |
1230 | for (mode = 0; mode < NUM_PRED_MODES; ++mode) { |
1231 | const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode]; |
1232 | const score_t score = VP8SSE16x8(src, ref) * RD_DISTO_MULT |
1233 | + VP8FixedCostsUV[mode] * lambda_d_uv; |
1234 | if (score < best_uv_score) { |
1235 | best_mode = mode; |
1236 | best_uv_score = score; |
1237 | } |
1238 | } |
1239 | VP8SetIntraUVMode(it, best_mode); |
1240 | } |
1241 | nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF_ENC, it->mb_->uv_mode_); |
1242 | |
1243 | rd->nz = nz; |
1244 | rd->score = best_score; |
1245 | } |
1246 | |
1247 | //------------------------------------------------------------------------------ |
1248 | // Entry point |
1249 | |
1250 | int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, |
1251 | VP8RDLevel rd_opt) { |
1252 | int is_skipped; |
1253 | const int method = it->enc_->method_; |
1254 | |
1255 | InitScore(rd); |
1256 | |
1257 | // We can perform predictions for Luma16x16 and Chroma8x8 already. |
1258 | // Luma4x4 predictions needs to be done as-we-go. |
1259 | VP8MakeLuma16Preds(it); |
1260 | VP8MakeChroma8Preds(it); |
1261 | |
1262 | if (rd_opt > RD_OPT_NONE) { |
1263 | it->do_trellis_ = (rd_opt >= RD_OPT_TRELLIS_ALL); |
1264 | PickBestIntra16(it, rd); |
1265 | if (method >= 2) { |
1266 | PickBestIntra4(it, rd); |
1267 | } |
1268 | PickBestUV(it, rd); |
1269 | if (rd_opt == RD_OPT_TRELLIS) { // finish off with trellis-optim now |
1270 | it->do_trellis_ = 1; |
1271 | SimpleQuantize(it, rd); |
1272 | } |
1273 | } else { |
1274 | // At this point we have heuristically decided intra16 / intra4. |
1275 | // For method >= 2, pick the best intra4/intra16 based on SSE (~tad slower). |
1276 | // For method <= 1, we don't re-examine the decision but just go ahead with |
1277 | // quantization/reconstruction. |
1278 | RefineUsingDistortion(it, (method >= 2), (method >= 1), rd); |
1279 | } |
1280 | is_skipped = (rd->nz == 0); |
1281 | VP8SetSkip(it, is_skipped); |
1282 | return is_skipped; |
1283 | } |
1284 | |