| 1 | // Copyright 2011 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // Quantization |
| 11 | // |
| 12 | // Author: Skal (pascal.massimino@gmail.com) |
| 13 | |
| 14 | #include <assert.h> |
| 15 | #include <math.h> |
| 16 | #include <stdlib.h> // for abs() |
| 17 | |
| 18 | #include "./vp8i_enc.h" |
| 19 | #include "./cost_enc.h" |
| 20 | |
| 21 | #define DO_TRELLIS_I4 1 |
| 22 | #define DO_TRELLIS_I16 1 // not a huge gain, but ok at low bitrate. |
| 23 | #define DO_TRELLIS_UV 0 // disable trellis for UV. Risky. Not worth. |
| 24 | #define USE_TDISTO 1 |
| 25 | |
| 26 | #define MID_ALPHA 64 // neutral value for susceptibility |
| 27 | #define MIN_ALPHA 30 // lowest usable value for susceptibility |
| 28 | #define MAX_ALPHA 100 // higher meaningful value for susceptibility |
| 29 | |
| 30 | #define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP |
| 31 | // power-law modulation. Must be strictly less than 1. |
| 32 | |
| 33 | // number of non-zero coeffs below which we consider the block very flat |
| 34 | // (and apply a penalty to complex predictions) |
| 35 | #define FLATNESS_LIMIT_I16 10 // I16 mode |
| 36 | #define FLATNESS_LIMIT_I4 3 // I4 mode |
| 37 | #define FLATNESS_LIMIT_UV 2 // UV mode |
| 38 | #define FLATNESS_PENALTY 140 // roughly ~1bit per block |
| 39 | |
| 40 | #define MULT_8B(a, b) (((a) * (b) + 128) >> 8) |
| 41 | |
| 42 | #define RD_DISTO_MULT 256 // distortion multiplier (equivalent of lambda) |
| 43 | |
| 44 | // #define DEBUG_BLOCK |
| 45 | |
| 46 | //------------------------------------------------------------------------------ |
| 47 | |
| 48 | #if defined(DEBUG_BLOCK) |
| 49 | |
| 50 | #include <stdio.h> |
| 51 | #include <stdlib.h> |
| 52 | |
| 53 | static void PrintBlockInfo(const VP8EncIterator* const it, |
| 54 | const VP8ModeScore* const rd) { |
| 55 | int i, j; |
| 56 | const int is_i16 = (it->mb_->type_ == 1); |
| 57 | const uint8_t* const y_in = it->yuv_in_ + Y_OFF_ENC; |
| 58 | const uint8_t* const y_out = it->yuv_out_ + Y_OFF_ENC; |
| 59 | const uint8_t* const uv_in = it->yuv_in_ + U_OFF_ENC; |
| 60 | const uint8_t* const uv_out = it->yuv_out_ + U_OFF_ENC; |
| 61 | printf("SOURCE / OUTPUT / ABS DELTA\n" ); |
| 62 | for (j = 0; j < 16; ++j) { |
| 63 | for (i = 0; i < 16; ++i) printf("%3d " , y_in[i + j * BPS]); |
| 64 | printf(" " ); |
| 65 | for (i = 0; i < 16; ++i) printf("%3d " , y_out[i + j * BPS]); |
| 66 | printf(" " ); |
| 67 | for (i = 0; i < 16; ++i) { |
| 68 | printf("%1d " , abs(y_in[i + j * BPS] - y_out[i + j * BPS])); |
| 69 | } |
| 70 | printf("\n" ); |
| 71 | } |
| 72 | printf("\n" ); // newline before the U/V block |
| 73 | for (j = 0; j < 8; ++j) { |
| 74 | for (i = 0; i < 8; ++i) printf("%3d " , uv_in[i + j * BPS]); |
| 75 | printf(" " ); |
| 76 | for (i = 8; i < 16; ++i) printf("%3d " , uv_in[i + j * BPS]); |
| 77 | printf(" " ); |
| 78 | for (i = 0; i < 8; ++i) printf("%3d " , uv_out[i + j * BPS]); |
| 79 | printf(" " ); |
| 80 | for (i = 8; i < 16; ++i) printf("%3d " , uv_out[i + j * BPS]); |
| 81 | printf(" " ); |
| 82 | for (i = 0; i < 8; ++i) { |
| 83 | printf("%1d " , abs(uv_out[i + j * BPS] - uv_in[i + j * BPS])); |
| 84 | } |
| 85 | printf(" " ); |
| 86 | for (i = 8; i < 16; ++i) { |
| 87 | printf("%1d " , abs(uv_out[i + j * BPS] - uv_in[i + j * BPS])); |
| 88 | } |
| 89 | printf("\n" ); |
| 90 | } |
| 91 | printf("\nD:%d SD:%d R:%d H:%d nz:0x%x score:%d\n" , |
| 92 | (int)rd->D, (int)rd->SD, (int)rd->R, (int)rd->H, (int)rd->nz, |
| 93 | (int)rd->score); |
| 94 | if (is_i16) { |
| 95 | printf("Mode: %d\n" , rd->mode_i16); |
| 96 | printf("y_dc_levels:" ); |
| 97 | for (i = 0; i < 16; ++i) printf("%3d " , rd->y_dc_levels[i]); |
| 98 | printf("\n" ); |
| 99 | } else { |
| 100 | printf("Modes[16]: " ); |
| 101 | for (i = 0; i < 16; ++i) printf("%d " , rd->modes_i4[i]); |
| 102 | printf("\n" ); |
| 103 | } |
| 104 | printf("y_ac_levels:\n" ); |
| 105 | for (j = 0; j < 16; ++j) { |
| 106 | for (i = is_i16 ? 1 : 0; i < 16; ++i) { |
| 107 | printf("%4d " , rd->y_ac_levels[j][i]); |
| 108 | } |
| 109 | printf("\n" ); |
| 110 | } |
| 111 | printf("\n" ); |
| 112 | printf("uv_levels (mode=%d):\n" , rd->mode_uv); |
| 113 | for (j = 0; j < 8; ++j) { |
| 114 | for (i = 0; i < 16; ++i) { |
| 115 | printf("%4d " , rd->uv_levels[j][i]); |
| 116 | } |
| 117 | printf("\n" ); |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | #endif // DEBUG_BLOCK |
| 122 | |
| 123 | //------------------------------------------------------------------------------ |
| 124 | |
| 125 | static WEBP_INLINE int clip(int v, int m, int M) { |
| 126 | return v < m ? m : v > M ? M : v; |
| 127 | } |
| 128 | |
| 129 | static const uint8_t kZigzag[16] = { |
| 130 | 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15 |
| 131 | }; |
| 132 | |
| 133 | static const uint8_t kDcTable[128] = { |
| 134 | 4, 5, 6, 7, 8, 9, 10, 10, |
| 135 | 11, 12, 13, 14, 15, 16, 17, 17, |
| 136 | 18, 19, 20, 20, 21, 21, 22, 22, |
| 137 | 23, 23, 24, 25, 25, 26, 27, 28, |
| 138 | 29, 30, 31, 32, 33, 34, 35, 36, |
| 139 | 37, 37, 38, 39, 40, 41, 42, 43, |
| 140 | 44, 45, 46, 46, 47, 48, 49, 50, |
| 141 | 51, 52, 53, 54, 55, 56, 57, 58, |
| 142 | 59, 60, 61, 62, 63, 64, 65, 66, |
| 143 | 67, 68, 69, 70, 71, 72, 73, 74, |
| 144 | 75, 76, 76, 77, 78, 79, 80, 81, |
| 145 | 82, 83, 84, 85, 86, 87, 88, 89, |
| 146 | 91, 93, 95, 96, 98, 100, 101, 102, |
| 147 | 104, 106, 108, 110, 112, 114, 116, 118, |
| 148 | 122, 124, 126, 128, 130, 132, 134, 136, |
| 149 | 138, 140, 143, 145, 148, 151, 154, 157 |
| 150 | }; |
| 151 | |
| 152 | static const uint16_t kAcTable[128] = { |
| 153 | 4, 5, 6, 7, 8, 9, 10, 11, |
| 154 | 12, 13, 14, 15, 16, 17, 18, 19, |
| 155 | 20, 21, 22, 23, 24, 25, 26, 27, |
| 156 | 28, 29, 30, 31, 32, 33, 34, 35, |
| 157 | 36, 37, 38, 39, 40, 41, 42, 43, |
| 158 | 44, 45, 46, 47, 48, 49, 50, 51, |
| 159 | 52, 53, 54, 55, 56, 57, 58, 60, |
| 160 | 62, 64, 66, 68, 70, 72, 74, 76, |
| 161 | 78, 80, 82, 84, 86, 88, 90, 92, |
| 162 | 94, 96, 98, 100, 102, 104, 106, 108, |
| 163 | 110, 112, 114, 116, 119, 122, 125, 128, |
| 164 | 131, 134, 137, 140, 143, 146, 149, 152, |
| 165 | 155, 158, 161, 164, 167, 170, 173, 177, |
| 166 | 181, 185, 189, 193, 197, 201, 205, 209, |
| 167 | 213, 217, 221, 225, 229, 234, 239, 245, |
| 168 | 249, 254, 259, 264, 269, 274, 279, 284 |
| 169 | }; |
| 170 | |
| 171 | static const uint16_t kAcTable2[128] = { |
| 172 | 8, 8, 9, 10, 12, 13, 15, 17, |
| 173 | 18, 20, 21, 23, 24, 26, 27, 29, |
| 174 | 31, 32, 34, 35, 37, 38, 40, 41, |
| 175 | 43, 44, 46, 48, 49, 51, 52, 54, |
| 176 | 55, 57, 58, 60, 62, 63, 65, 66, |
| 177 | 68, 69, 71, 72, 74, 75, 77, 79, |
| 178 | 80, 82, 83, 85, 86, 88, 89, 93, |
| 179 | 96, 99, 102, 105, 108, 111, 114, 117, |
| 180 | 120, 124, 127, 130, 133, 136, 139, 142, |
| 181 | 145, 148, 151, 155, 158, 161, 164, 167, |
| 182 | 170, 173, 176, 179, 184, 189, 193, 198, |
| 183 | 203, 207, 212, 217, 221, 226, 230, 235, |
| 184 | 240, 244, 249, 254, 258, 263, 268, 274, |
| 185 | 280, 286, 292, 299, 305, 311, 317, 323, |
| 186 | 330, 336, 342, 348, 354, 362, 370, 379, |
| 187 | 385, 393, 401, 409, 416, 424, 432, 440 |
| 188 | }; |
| 189 | |
| 190 | static const uint8_t kBiasMatrices[3][2] = { // [luma-ac,luma-dc,chroma][dc,ac] |
| 191 | { 96, 110 }, { 96, 108 }, { 110, 115 } |
| 192 | }; |
| 193 | |
| 194 | // Sharpening by (slightly) raising the hi-frequency coeffs. |
| 195 | // Hack-ish but helpful for mid-bitrate range. Use with care. |
| 196 | #define SHARPEN_BITS 11 // number of descaling bits for sharpening bias |
| 197 | static const uint8_t kFreqSharpening[16] = { |
| 198 | 0, 30, 60, 90, |
| 199 | 30, 60, 90, 90, |
| 200 | 60, 90, 90, 90, |
| 201 | 90, 90, 90, 90 |
| 202 | }; |
| 203 | |
| 204 | //------------------------------------------------------------------------------ |
| 205 | // Initialize quantization parameters in VP8Matrix |
| 206 | |
| 207 | // Returns the average quantizer |
| 208 | static int ExpandMatrix(VP8Matrix* const m, int type) { |
| 209 | int i, sum; |
| 210 | for (i = 0; i < 2; ++i) { |
| 211 | const int is_ac_coeff = (i > 0); |
| 212 | const int bias = kBiasMatrices[type][is_ac_coeff]; |
| 213 | m->iq_[i] = (1 << QFIX) / m->q_[i]; |
| 214 | m->bias_[i] = BIAS(bias); |
| 215 | // zthresh_ is the exact value such that QUANTDIV(coeff, iQ, B) is: |
| 216 | // * zero if coeff <= zthresh |
| 217 | // * non-zero if coeff > zthresh |
| 218 | m->zthresh_[i] = ((1 << QFIX) - 1 - m->bias_[i]) / m->iq_[i]; |
| 219 | } |
| 220 | for (i = 2; i < 16; ++i) { |
| 221 | m->q_[i] = m->q_[1]; |
| 222 | m->iq_[i] = m->iq_[1]; |
| 223 | m->bias_[i] = m->bias_[1]; |
| 224 | m->zthresh_[i] = m->zthresh_[1]; |
| 225 | } |
| 226 | for (sum = 0, i = 0; i < 16; ++i) { |
| 227 | if (type == 0) { // we only use sharpening for AC luma coeffs |
| 228 | m->sharpen_[i] = (kFreqSharpening[i] * m->q_[i]) >> SHARPEN_BITS; |
| 229 | } else { |
| 230 | m->sharpen_[i] = 0; |
| 231 | } |
| 232 | sum += m->q_[i]; |
| 233 | } |
| 234 | return (sum + 8) >> 4; |
| 235 | } |
| 236 | |
| 237 | static void CheckLambdaValue(int* const v) { if (*v < 1) *v = 1; } |
| 238 | |
| 239 | static void SetupMatrices(VP8Encoder* enc) { |
| 240 | int i; |
| 241 | const int tlambda_scale = |
| 242 | (enc->method_ >= 4) ? enc->config_->sns_strength |
| 243 | : 0; |
| 244 | const int num_segments = enc->segment_hdr_.num_segments_; |
| 245 | for (i = 0; i < num_segments; ++i) { |
| 246 | VP8SegmentInfo* const m = &enc->dqm_[i]; |
| 247 | const int q = m->quant_; |
| 248 | int q_i4, q_i16, q_uv; |
| 249 | m->y1_.q_[0] = kDcTable[clip(q + enc->dq_y1_dc_, 0, 127)]; |
| 250 | m->y1_.q_[1] = kAcTable[clip(q, 0, 127)]; |
| 251 | |
| 252 | m->y2_.q_[0] = kDcTable[ clip(q + enc->dq_y2_dc_, 0, 127)] * 2; |
| 253 | m->y2_.q_[1] = kAcTable2[clip(q + enc->dq_y2_ac_, 0, 127)]; |
| 254 | |
| 255 | m->uv_.q_[0] = kDcTable[clip(q + enc->dq_uv_dc_, 0, 117)]; |
| 256 | m->uv_.q_[1] = kAcTable[clip(q + enc->dq_uv_ac_, 0, 127)]; |
| 257 | |
| 258 | q_i4 = ExpandMatrix(&m->y1_, 0); |
| 259 | q_i16 = ExpandMatrix(&m->y2_, 1); |
| 260 | q_uv = ExpandMatrix(&m->uv_, 2); |
| 261 | |
| 262 | m->lambda_i4_ = (3 * q_i4 * q_i4) >> 7; |
| 263 | m->lambda_i16_ = (3 * q_i16 * q_i16); |
| 264 | m->lambda_uv_ = (3 * q_uv * q_uv) >> 6; |
| 265 | m->lambda_mode_ = (1 * q_i4 * q_i4) >> 7; |
| 266 | m->lambda_trellis_i4_ = (7 * q_i4 * q_i4) >> 3; |
| 267 | m->lambda_trellis_i16_ = (q_i16 * q_i16) >> 2; |
| 268 | m->lambda_trellis_uv_ = (q_uv * q_uv) << 1; |
| 269 | m->tlambda_ = (tlambda_scale * q_i4) >> 5; |
| 270 | |
| 271 | // none of these constants should be < 1 |
| 272 | CheckLambdaValue(&m->lambda_i4_); |
| 273 | CheckLambdaValue(&m->lambda_i16_); |
| 274 | CheckLambdaValue(&m->lambda_uv_); |
| 275 | CheckLambdaValue(&m->lambda_mode_); |
| 276 | CheckLambdaValue(&m->lambda_trellis_i4_); |
| 277 | CheckLambdaValue(&m->lambda_trellis_i16_); |
| 278 | CheckLambdaValue(&m->lambda_trellis_uv_); |
| 279 | CheckLambdaValue(&m->tlambda_); |
| 280 | |
| 281 | m->min_disto_ = 20 * m->y1_.q_[0]; // quantization-aware min disto |
| 282 | m->max_edge_ = 0; |
| 283 | |
| 284 | m->i4_penalty_ = 1000 * q_i4 * q_i4; |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | //------------------------------------------------------------------------------ |
| 289 | // Initialize filtering parameters |
| 290 | |
| 291 | // Very small filter-strength values have close to no visual effect. So we can |
| 292 | // save a little decoding-CPU by turning filtering off for these. |
| 293 | #define FSTRENGTH_CUTOFF 2 |
| 294 | |
| 295 | static void SetupFilterStrength(VP8Encoder* const enc) { |
| 296 | int i; |
| 297 | // level0 is in [0..500]. Using '-f 50' as filter_strength is mid-filtering. |
| 298 | const int level0 = 5 * enc->config_->filter_strength; |
| 299 | for (i = 0; i < NUM_MB_SEGMENTS; ++i) { |
| 300 | VP8SegmentInfo* const m = &enc->dqm_[i]; |
| 301 | // We focus on the quantization of AC coeffs. |
| 302 | const int qstep = kAcTable[clip(m->quant_, 0, 127)] >> 2; |
| 303 | const int base_strength = |
| 304 | VP8FilterStrengthFromDelta(enc->filter_hdr_.sharpness_, qstep); |
| 305 | // Segments with lower complexity ('beta') will be less filtered. |
| 306 | const int f = base_strength * level0 / (256 + m->beta_); |
| 307 | m->fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f; |
| 308 | } |
| 309 | // We record the initial strength (mainly for the case of 1-segment only). |
| 310 | enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_; |
| 311 | enc->filter_hdr_.simple_ = (enc->config_->filter_type == 0); |
| 312 | enc->filter_hdr_.sharpness_ = enc->config_->filter_sharpness; |
| 313 | } |
| 314 | |
| 315 | //------------------------------------------------------------------------------ |
| 316 | |
| 317 | // Note: if you change the values below, remember that the max range |
| 318 | // allowed by the syntax for DQ_UV is [-16,16]. |
| 319 | #define MAX_DQ_UV (6) |
| 320 | #define MIN_DQ_UV (-4) |
| 321 | |
| 322 | // We want to emulate jpeg-like behaviour where the expected "good" quality |
| 323 | // is around q=75. Internally, our "good" middle is around c=50. So we |
| 324 | // map accordingly using linear piece-wise function |
| 325 | static double QualityToCompression(double c) { |
| 326 | const double linear_c = (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.; |
| 327 | // The file size roughly scales as pow(quantizer, 3.). Actually, the |
| 328 | // exponent is somewhere between 2.8 and 3.2, but we're mostly interested |
| 329 | // in the mid-quant range. So we scale the compressibility inversely to |
| 330 | // this power-law: quant ~= compression ^ 1/3. This law holds well for |
| 331 | // low quant. Finer modeling for high-quant would make use of kAcTable[] |
| 332 | // more explicitly. |
| 333 | const double v = pow(linear_c, 1 / 3.); |
| 334 | return v; |
| 335 | } |
| 336 | |
| 337 | static double QualityToJPEGCompression(double c, double alpha) { |
| 338 | // We map the complexity 'alpha' and quality setting 'c' to a compression |
| 339 | // exponent empirically matched to the compression curve of libjpeg6b. |
| 340 | // On average, the WebP output size will be roughly similar to that of a |
| 341 | // JPEG file compressed with same quality factor. |
| 342 | const double amin = 0.30; |
| 343 | const double amax = 0.85; |
| 344 | const double exp_min = 0.4; |
| 345 | const double exp_max = 0.9; |
| 346 | const double slope = (exp_min - exp_max) / (amax - amin); |
| 347 | // Linearly interpolate 'expn' from exp_min to exp_max |
| 348 | // in the [amin, amax] range. |
| 349 | const double expn = (alpha > amax) ? exp_min |
| 350 | : (alpha < amin) ? exp_max |
| 351 | : exp_max + slope * (alpha - amin); |
| 352 | const double v = pow(c, expn); |
| 353 | return v; |
| 354 | } |
| 355 | |
| 356 | static int SegmentsAreEquivalent(const VP8SegmentInfo* const S1, |
| 357 | const VP8SegmentInfo* const S2) { |
| 358 | return (S1->quant_ == S2->quant_) && (S1->fstrength_ == S2->fstrength_); |
| 359 | } |
| 360 | |
| 361 | static void SimplifySegments(VP8Encoder* const enc) { |
| 362 | int map[NUM_MB_SEGMENTS] = { 0, 1, 2, 3 }; |
| 363 | // 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an |
| 364 | // explicit check is needed to avoid a spurious warning about 'i' exceeding |
| 365 | // array bounds of 'dqm_' with some compilers (noticed with gcc-4.9). |
| 366 | const int num_segments = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS) |
| 367 | ? enc->segment_hdr_.num_segments_ |
| 368 | : NUM_MB_SEGMENTS; |
| 369 | int num_final_segments = 1; |
| 370 | int s1, s2; |
| 371 | for (s1 = 1; s1 < num_segments; ++s1) { // find similar segments |
| 372 | const VP8SegmentInfo* const S1 = &enc->dqm_[s1]; |
| 373 | int found = 0; |
| 374 | // check if we already have similar segment |
| 375 | for (s2 = 0; s2 < num_final_segments; ++s2) { |
| 376 | const VP8SegmentInfo* const S2 = &enc->dqm_[s2]; |
| 377 | if (SegmentsAreEquivalent(S1, S2)) { |
| 378 | found = 1; |
| 379 | break; |
| 380 | } |
| 381 | } |
| 382 | map[s1] = s2; |
| 383 | if (!found) { |
| 384 | if (num_final_segments != s1) { |
| 385 | enc->dqm_[num_final_segments] = enc->dqm_[s1]; |
| 386 | } |
| 387 | ++num_final_segments; |
| 388 | } |
| 389 | } |
| 390 | if (num_final_segments < num_segments) { // Remap |
| 391 | int i = enc->mb_w_ * enc->mb_h_; |
| 392 | while (i-- > 0) enc->mb_info_[i].segment_ = map[enc->mb_info_[i].segment_]; |
| 393 | enc->segment_hdr_.num_segments_ = num_final_segments; |
| 394 | // Replicate the trailing segment infos (it's mostly cosmetics) |
| 395 | for (i = num_final_segments; i < num_segments; ++i) { |
| 396 | enc->dqm_[i] = enc->dqm_[num_final_segments - 1]; |
| 397 | } |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | void VP8SetSegmentParams(VP8Encoder* const enc, float quality) { |
| 402 | int i; |
| 403 | int dq_uv_ac, dq_uv_dc; |
| 404 | const int num_segments = enc->segment_hdr_.num_segments_; |
| 405 | const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.; |
| 406 | const double Q = quality / 100.; |
| 407 | const double c_base = enc->config_->emulate_jpeg_size ? |
| 408 | QualityToJPEGCompression(Q, enc->alpha_ / 255.) : |
| 409 | QualityToCompression(Q); |
| 410 | for (i = 0; i < num_segments; ++i) { |
| 411 | // We modulate the base coefficient to accommodate for the quantization |
| 412 | // susceptibility and allow denser segments to be quantized more. |
| 413 | const double expn = 1. - amp * enc->dqm_[i].alpha_; |
| 414 | const double c = pow(c_base, expn); |
| 415 | const int q = (int)(127. * (1. - c)); |
| 416 | assert(expn > 0.); |
| 417 | enc->dqm_[i].quant_ = clip(q, 0, 127); |
| 418 | } |
| 419 | |
| 420 | // purely indicative in the bitstream (except for the 1-segment case) |
| 421 | enc->base_quant_ = enc->dqm_[0].quant_; |
| 422 | |
| 423 | // fill-in values for the unused segments (required by the syntax) |
| 424 | for (i = num_segments; i < NUM_MB_SEGMENTS; ++i) { |
| 425 | enc->dqm_[i].quant_ = enc->base_quant_; |
| 426 | } |
| 427 | |
| 428 | // uv_alpha_ is normally spread around ~60. The useful range is |
| 429 | // typically ~30 (quite bad) to ~100 (ok to decimate UV more). |
| 430 | // We map it to the safe maximal range of MAX/MIN_DQ_UV for dq_uv. |
| 431 | dq_uv_ac = (enc->uv_alpha_ - MID_ALPHA) * (MAX_DQ_UV - MIN_DQ_UV) |
| 432 | / (MAX_ALPHA - MIN_ALPHA); |
| 433 | // we rescale by the user-defined strength of adaptation |
| 434 | dq_uv_ac = dq_uv_ac * enc->config_->sns_strength / 100; |
| 435 | // and make it safe. |
| 436 | dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV); |
| 437 | // We also boost the dc-uv-quant a little, based on sns-strength, since |
| 438 | // U/V channels are quite more reactive to high quants (flat DC-blocks |
| 439 | // tend to appear, and are unpleasant). |
| 440 | dq_uv_dc = -4 * enc->config_->sns_strength / 100; |
| 441 | dq_uv_dc = clip(dq_uv_dc, -15, 15); // 4bit-signed max allowed |
| 442 | |
| 443 | enc->dq_y1_dc_ = 0; // TODO(skal): dq-lum |
| 444 | enc->dq_y2_dc_ = 0; |
| 445 | enc->dq_y2_ac_ = 0; |
| 446 | enc->dq_uv_dc_ = dq_uv_dc; |
| 447 | enc->dq_uv_ac_ = dq_uv_ac; |
| 448 | |
| 449 | SetupFilterStrength(enc); // initialize segments' filtering, eventually |
| 450 | |
| 451 | if (num_segments > 1) SimplifySegments(enc); |
| 452 | |
| 453 | SetupMatrices(enc); // finalize quantization matrices |
| 454 | } |
| 455 | |
| 456 | //------------------------------------------------------------------------------ |
| 457 | // Form the predictions in cache |
| 458 | |
| 459 | // Must be ordered using {DC_PRED, TM_PRED, V_PRED, H_PRED} as index |
| 460 | const int VP8I16ModeOffsets[4] = { I16DC16, I16TM16, I16VE16, I16HE16 }; |
| 461 | const int VP8UVModeOffsets[4] = { C8DC8, C8TM8, C8VE8, C8HE8 }; |
| 462 | |
| 463 | // Must be indexed using {B_DC_PRED -> B_HU_PRED} as index |
| 464 | const int VP8I4ModeOffsets[NUM_BMODES] = { |
| 465 | I4DC4, I4TM4, I4VE4, I4HE4, I4RD4, I4VR4, I4LD4, I4VL4, I4HD4, I4HU4 |
| 466 | }; |
| 467 | |
| 468 | void VP8MakeLuma16Preds(const VP8EncIterator* const it) { |
| 469 | const uint8_t* const left = it->x_ ? it->y_left_ : NULL; |
| 470 | const uint8_t* const top = it->y_ ? it->y_top_ : NULL; |
| 471 | VP8EncPredLuma16(it->yuv_p_, left, top); |
| 472 | } |
| 473 | |
| 474 | void VP8MakeChroma8Preds(const VP8EncIterator* const it) { |
| 475 | const uint8_t* const left = it->x_ ? it->u_left_ : NULL; |
| 476 | const uint8_t* const top = it->y_ ? it->uv_top_ : NULL; |
| 477 | VP8EncPredChroma8(it->yuv_p_, left, top); |
| 478 | } |
| 479 | |
| 480 | void VP8MakeIntra4Preds(const VP8EncIterator* const it) { |
| 481 | VP8EncPredLuma4(it->yuv_p_, it->i4_top_); |
| 482 | } |
| 483 | |
| 484 | //------------------------------------------------------------------------------ |
| 485 | // Quantize |
| 486 | |
| 487 | // Layout: |
| 488 | // +----+----+ |
| 489 | // |YYYY|UUVV| 0 |
| 490 | // |YYYY|UUVV| 4 |
| 491 | // |YYYY|....| 8 |
| 492 | // |YYYY|....| 12 |
| 493 | // +----+----+ |
| 494 | |
| 495 | const int VP8Scan[16] = { // Luma |
| 496 | 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, |
| 497 | 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, |
| 498 | 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, |
| 499 | 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS, |
| 500 | }; |
| 501 | |
| 502 | static const int VP8ScanUV[4 + 4] = { |
| 503 | 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U |
| 504 | 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V |
| 505 | }; |
| 506 | |
| 507 | //------------------------------------------------------------------------------ |
| 508 | // Distortion measurement |
| 509 | |
| 510 | static const uint16_t kWeightY[16] = { |
| 511 | 38, 32, 20, 9, 32, 28, 17, 7, 20, 17, 10, 4, 9, 7, 4, 2 |
| 512 | }; |
| 513 | |
| 514 | static const uint16_t kWeightTrellis[16] = { |
| 515 | #if USE_TDISTO == 0 |
| 516 | 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16 |
| 517 | #else |
| 518 | 30, 27, 19, 11, |
| 519 | 27, 24, 17, 10, |
| 520 | 19, 17, 12, 8, |
| 521 | 11, 10, 8, 6 |
| 522 | #endif |
| 523 | }; |
| 524 | |
| 525 | // Init/Copy the common fields in score. |
| 526 | static void InitScore(VP8ModeScore* const rd) { |
| 527 | rd->D = 0; |
| 528 | rd->SD = 0; |
| 529 | rd->R = 0; |
| 530 | rd->H = 0; |
| 531 | rd->nz = 0; |
| 532 | rd->score = MAX_COST; |
| 533 | } |
| 534 | |
| 535 | static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { |
| 536 | dst->D = src->D; |
| 537 | dst->SD = src->SD; |
| 538 | dst->R = src->R; |
| 539 | dst->H = src->H; |
| 540 | dst->nz = src->nz; // note that nz is not accumulated, but just copied. |
| 541 | dst->score = src->score; |
| 542 | } |
| 543 | |
| 544 | static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { |
| 545 | dst->D += src->D; |
| 546 | dst->SD += src->SD; |
| 547 | dst->R += src->R; |
| 548 | dst->H += src->H; |
| 549 | dst->nz |= src->nz; // here, new nz bits are accumulated. |
| 550 | dst->score += src->score; |
| 551 | } |
| 552 | |
| 553 | //------------------------------------------------------------------------------ |
| 554 | // Performs trellis-optimized quantization. |
| 555 | |
| 556 | // Trellis node |
| 557 | typedef struct { |
| 558 | int8_t prev; // best previous node |
| 559 | int8_t sign; // sign of coeff_i |
| 560 | int16_t level; // level |
| 561 | } Node; |
| 562 | |
| 563 | // Score state |
| 564 | typedef struct { |
| 565 | score_t score; // partial RD score |
| 566 | const uint16_t* costs; // shortcut to cost tables |
| 567 | } ScoreState; |
| 568 | |
| 569 | // If a coefficient was quantized to a value Q (using a neutral bias), |
| 570 | // we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA] |
| 571 | // We don't test negative values though. |
| 572 | #define MIN_DELTA 0 // how much lower level to try |
| 573 | #define MAX_DELTA 1 // how much higher |
| 574 | #define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA) |
| 575 | #define NODE(n, l) (nodes[(n)][(l) + MIN_DELTA]) |
| 576 | #define SCORE_STATE(n, l) (score_states[n][(l) + MIN_DELTA]) |
| 577 | |
| 578 | static WEBP_INLINE void SetRDScore(int lambda, VP8ModeScore* const rd) { |
| 579 | rd->score = (rd->R + rd->H) * lambda + RD_DISTO_MULT * (rd->D + rd->SD); |
| 580 | } |
| 581 | |
| 582 | static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate, |
| 583 | score_t distortion) { |
| 584 | return rate * lambda + RD_DISTO_MULT * distortion; |
| 585 | } |
| 586 | |
| 587 | static int TrellisQuantizeBlock(const VP8Encoder* const enc, |
| 588 | int16_t in[16], int16_t out[16], |
| 589 | int ctx0, int coeff_type, |
| 590 | const VP8Matrix* const mtx, |
| 591 | int lambda) { |
| 592 | const ProbaArray* const probas = enc->proba_.coeffs_[coeff_type]; |
| 593 | CostArrayPtr const costs = |
| 594 | (CostArrayPtr)enc->proba_.remapped_costs_[coeff_type]; |
| 595 | const int first = (coeff_type == 0) ? 1 : 0; |
| 596 | Node nodes[16][NUM_NODES]; |
| 597 | ScoreState score_states[2][NUM_NODES]; |
| 598 | ScoreState* ss_cur = &SCORE_STATE(0, MIN_DELTA); |
| 599 | ScoreState* ss_prev = &SCORE_STATE(1, MIN_DELTA); |
| 600 | int best_path[3] = {-1, -1, -1}; // store best-last/best-level/best-previous |
| 601 | score_t best_score; |
| 602 | int n, m, p, last; |
| 603 | |
| 604 | { |
| 605 | score_t cost; |
| 606 | const int thresh = mtx->q_[1] * mtx->q_[1] / 4; |
| 607 | const int last_proba = probas[VP8EncBands[first]][ctx0][0]; |
| 608 | |
| 609 | // compute the position of the last interesting coefficient |
| 610 | last = first - 1; |
| 611 | for (n = 15; n >= first; --n) { |
| 612 | const int j = kZigzag[n]; |
| 613 | const int err = in[j] * in[j]; |
| 614 | if (err > thresh) { |
| 615 | last = n; |
| 616 | break; |
| 617 | } |
| 618 | } |
| 619 | // we don't need to go inspect up to n = 16 coeffs. We can just go up |
| 620 | // to last + 1 (inclusive) without losing much. |
| 621 | if (last < 15) ++last; |
| 622 | |
| 623 | // compute 'skip' score. This is the max score one can do. |
| 624 | cost = VP8BitCost(0, last_proba); |
| 625 | best_score = RDScoreTrellis(lambda, cost, 0); |
| 626 | |
| 627 | // initialize source node. |
| 628 | for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { |
| 629 | const score_t rate = (ctx0 == 0) ? VP8BitCost(1, last_proba) : 0; |
| 630 | ss_cur[m].score = RDScoreTrellis(lambda, rate, 0); |
| 631 | ss_cur[m].costs = costs[first][ctx0]; |
| 632 | } |
| 633 | } |
| 634 | |
| 635 | // traverse trellis. |
| 636 | for (n = first; n <= last; ++n) { |
| 637 | const int j = kZigzag[n]; |
| 638 | const uint32_t Q = mtx->q_[j]; |
| 639 | const uint32_t iQ = mtx->iq_[j]; |
| 640 | const uint32_t B = BIAS(0x00); // neutral bias |
| 641 | // note: it's important to take sign of the _original_ coeff, |
| 642 | // so we don't have to consider level < 0 afterward. |
| 643 | const int sign = (in[j] < 0); |
| 644 | const uint32_t coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j]; |
| 645 | int level0 = QUANTDIV(coeff0, iQ, B); |
| 646 | int thresh_level = QUANTDIV(coeff0, iQ, BIAS(0x80)); |
| 647 | if (thresh_level > MAX_LEVEL) thresh_level = MAX_LEVEL; |
| 648 | if (level0 > MAX_LEVEL) level0 = MAX_LEVEL; |
| 649 | |
| 650 | { // Swap current and previous score states |
| 651 | ScoreState* const tmp = ss_cur; |
| 652 | ss_cur = ss_prev; |
| 653 | ss_prev = tmp; |
| 654 | } |
| 655 | |
| 656 | // test all alternate level values around level0. |
| 657 | for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { |
| 658 | Node* const cur = &NODE(n, m); |
| 659 | int level = level0 + m; |
| 660 | const int ctx = (level > 2) ? 2 : level; |
| 661 | const int band = VP8EncBands[n + 1]; |
| 662 | score_t base_score; |
| 663 | score_t best_cur_score = MAX_COST; |
| 664 | int best_prev = 0; // default, in case |
| 665 | |
| 666 | ss_cur[m].score = MAX_COST; |
| 667 | ss_cur[m].costs = costs[n + 1][ctx]; |
| 668 | if (level < 0 || level > thresh_level) { |
| 669 | // Node is dead. |
| 670 | continue; |
| 671 | } |
| 672 | |
| 673 | { |
| 674 | // Compute delta_error = how much coding this level will |
| 675 | // subtract to max_error as distortion. |
| 676 | // Here, distortion = sum of (|coeff_i| - level_i * Q_i)^2 |
| 677 | const int new_error = coeff0 - level * Q; |
| 678 | const int delta_error = |
| 679 | kWeightTrellis[j] * (new_error * new_error - coeff0 * coeff0); |
| 680 | base_score = RDScoreTrellis(lambda, 0, delta_error); |
| 681 | } |
| 682 | |
| 683 | // Inspect all possible non-dead predecessors. Retain only the best one. |
| 684 | for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) { |
| 685 | // Dead nodes (with ss_prev[p].score >= MAX_COST) are automatically |
| 686 | // eliminated since their score can't be better than the current best. |
| 687 | const score_t cost = VP8LevelCost(ss_prev[p].costs, level); |
| 688 | // Examine node assuming it's a non-terminal one. |
| 689 | const score_t score = |
| 690 | base_score + ss_prev[p].score + RDScoreTrellis(lambda, cost, 0); |
| 691 | if (score < best_cur_score) { |
| 692 | best_cur_score = score; |
| 693 | best_prev = p; |
| 694 | } |
| 695 | } |
| 696 | // Store best finding in current node. |
| 697 | cur->sign = sign; |
| 698 | cur->level = level; |
| 699 | cur->prev = best_prev; |
| 700 | ss_cur[m].score = best_cur_score; |
| 701 | |
| 702 | // Now, record best terminal node (and thus best entry in the graph). |
| 703 | if (level != 0) { |
| 704 | const score_t last_pos_cost = |
| 705 | (n < 15) ? VP8BitCost(0, probas[band][ctx][0]) : 0; |
| 706 | const score_t last_pos_score = RDScoreTrellis(lambda, last_pos_cost, 0); |
| 707 | const score_t score = best_cur_score + last_pos_score; |
| 708 | if (score < best_score) { |
| 709 | best_score = score; |
| 710 | best_path[0] = n; // best eob position |
| 711 | best_path[1] = m; // best node index |
| 712 | best_path[2] = best_prev; // best predecessor |
| 713 | } |
| 714 | } |
| 715 | } |
| 716 | } |
| 717 | |
| 718 | // Fresh start |
| 719 | memset(in + first, 0, (16 - first) * sizeof(*in)); |
| 720 | memset(out + first, 0, (16 - first) * sizeof(*out)); |
| 721 | if (best_path[0] == -1) { |
| 722 | return 0; // skip! |
| 723 | } |
| 724 | |
| 725 | { |
| 726 | // Unwind the best path. |
| 727 | // Note: best-prev on terminal node is not necessarily equal to the |
| 728 | // best_prev for non-terminal. So we patch best_path[2] in. |
| 729 | int nz = 0; |
| 730 | int best_node = best_path[1]; |
| 731 | n = best_path[0]; |
| 732 | NODE(n, best_node).prev = best_path[2]; // force best-prev for terminal |
| 733 | |
| 734 | for (; n >= first; --n) { |
| 735 | const Node* const node = &NODE(n, best_node); |
| 736 | const int j = kZigzag[n]; |
| 737 | out[n] = node->sign ? -node->level : node->level; |
| 738 | nz |= node->level; |
| 739 | in[j] = out[n] * mtx->q_[j]; |
| 740 | best_node = node->prev; |
| 741 | } |
| 742 | return (nz != 0); |
| 743 | } |
| 744 | } |
| 745 | |
| 746 | #undef NODE |
| 747 | |
| 748 | //------------------------------------------------------------------------------ |
| 749 | // Performs: difference, transform, quantize, back-transform, add |
| 750 | // all at once. Output is the reconstructed block in *yuv_out, and the |
| 751 | // quantized levels in *levels. |
| 752 | |
| 753 | static int ReconstructIntra16(VP8EncIterator* const it, |
| 754 | VP8ModeScore* const rd, |
| 755 | uint8_t* const yuv_out, |
| 756 | int mode) { |
| 757 | const VP8Encoder* const enc = it->enc_; |
| 758 | const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; |
| 759 | const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC; |
| 760 | const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
| 761 | int nz = 0; |
| 762 | int n; |
| 763 | int16_t tmp[16][16], dc_tmp[16]; |
| 764 | |
| 765 | for (n = 0; n < 16; n += 2) { |
| 766 | VP8FTransform2(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]); |
| 767 | } |
| 768 | VP8FTransformWHT(tmp[0], dc_tmp); |
| 769 | nz |= VP8EncQuantizeBlockWHT(dc_tmp, rd->y_dc_levels, &dqm->y2_) << 24; |
| 770 | |
| 771 | if (DO_TRELLIS_I16 && it->do_trellis_) { |
| 772 | int x, y; |
| 773 | VP8IteratorNzToBytes(it); |
| 774 | for (y = 0, n = 0; y < 4; ++y) { |
| 775 | for (x = 0; x < 4; ++x, ++n) { |
| 776 | const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
| 777 | const int non_zero = |
| 778 | TrellisQuantizeBlock(enc, tmp[n], rd->y_ac_levels[n], ctx, 0, |
| 779 | &dqm->y1_, dqm->lambda_trellis_i16_); |
| 780 | it->top_nz_[x] = it->left_nz_[y] = non_zero; |
| 781 | rd->y_ac_levels[n][0] = 0; |
| 782 | nz |= non_zero << n; |
| 783 | } |
| 784 | } |
| 785 | } else { |
| 786 | for (n = 0; n < 16; n += 2) { |
| 787 | // Zero-out the first coeff, so that: a) nz is correct below, and |
| 788 | // b) finding 'last' non-zero coeffs in SetResidualCoeffs() is simplified. |
| 789 | tmp[n][0] = tmp[n + 1][0] = 0; |
| 790 | nz |= VP8EncQuantize2Blocks(tmp[n], rd->y_ac_levels[n], &dqm->y1_) << n; |
| 791 | assert(rd->y_ac_levels[n + 0][0] == 0); |
| 792 | assert(rd->y_ac_levels[n + 1][0] == 0); |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | // Transform back |
| 797 | VP8TransformWHT(dc_tmp, tmp[0]); |
| 798 | for (n = 0; n < 16; n += 2) { |
| 799 | VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n], 1); |
| 800 | } |
| 801 | |
| 802 | return nz; |
| 803 | } |
| 804 | |
| 805 | static int ReconstructIntra4(VP8EncIterator* const it, |
| 806 | int16_t levels[16], |
| 807 | const uint8_t* const src, |
| 808 | uint8_t* const yuv_out, |
| 809 | int mode) { |
| 810 | const VP8Encoder* const enc = it->enc_; |
| 811 | const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode]; |
| 812 | const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
| 813 | int nz = 0; |
| 814 | int16_t tmp[16]; |
| 815 | |
| 816 | VP8FTransform(src, ref, tmp); |
| 817 | if (DO_TRELLIS_I4 && it->do_trellis_) { |
| 818 | const int x = it->i4_ & 3, y = it->i4_ >> 2; |
| 819 | const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
| 820 | nz = TrellisQuantizeBlock(enc, tmp, levels, ctx, 3, &dqm->y1_, |
| 821 | dqm->lambda_trellis_i4_); |
| 822 | } else { |
| 823 | nz = VP8EncQuantizeBlock(tmp, levels, &dqm->y1_); |
| 824 | } |
| 825 | VP8ITransform(ref, tmp, yuv_out, 0); |
| 826 | return nz; |
| 827 | } |
| 828 | |
| 829 | static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd, |
| 830 | uint8_t* const yuv_out, int mode) { |
| 831 | const VP8Encoder* const enc = it->enc_; |
| 832 | const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode]; |
| 833 | const uint8_t* const src = it->yuv_in_ + U_OFF_ENC; |
| 834 | const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
| 835 | int nz = 0; |
| 836 | int n; |
| 837 | int16_t tmp[8][16]; |
| 838 | |
| 839 | for (n = 0; n < 8; n += 2) { |
| 840 | VP8FTransform2(src + VP8ScanUV[n], ref + VP8ScanUV[n], tmp[n]); |
| 841 | } |
| 842 | if (DO_TRELLIS_UV && it->do_trellis_) { |
| 843 | int ch, x, y; |
| 844 | for (ch = 0, n = 0; ch <= 2; ch += 2) { |
| 845 | for (y = 0; y < 2; ++y) { |
| 846 | for (x = 0; x < 2; ++x, ++n) { |
| 847 | const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; |
| 848 | const int non_zero = |
| 849 | TrellisQuantizeBlock(enc, tmp[n], rd->uv_levels[n], ctx, 2, |
| 850 | &dqm->uv_, dqm->lambda_trellis_uv_); |
| 851 | it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero; |
| 852 | nz |= non_zero << n; |
| 853 | } |
| 854 | } |
| 855 | } |
| 856 | } else { |
| 857 | for (n = 0; n < 8; n += 2) { |
| 858 | nz |= VP8EncQuantize2Blocks(tmp[n], rd->uv_levels[n], &dqm->uv_) << n; |
| 859 | } |
| 860 | } |
| 861 | |
| 862 | for (n = 0; n < 8; n += 2) { |
| 863 | VP8ITransform(ref + VP8ScanUV[n], tmp[n], yuv_out + VP8ScanUV[n], 1); |
| 864 | } |
| 865 | return (nz << 16); |
| 866 | } |
| 867 | |
| 868 | //------------------------------------------------------------------------------ |
| 869 | // RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost. |
| 870 | // Pick the mode is lower RD-cost = Rate + lambda * Distortion. |
| 871 | |
| 872 | static void StoreMaxDelta(VP8SegmentInfo* const dqm, const int16_t DCs[16]) { |
| 873 | // We look at the first three AC coefficients to determine what is the average |
| 874 | // delta between each sub-4x4 block. |
| 875 | const int v0 = abs(DCs[1]); |
| 876 | const int v1 = abs(DCs[2]); |
| 877 | const int v2 = abs(DCs[4]); |
| 878 | int max_v = (v1 > v0) ? v1 : v0; |
| 879 | max_v = (v2 > max_v) ? v2 : max_v; |
| 880 | if (max_v > dqm->max_edge_) dqm->max_edge_ = max_v; |
| 881 | } |
| 882 | |
| 883 | static void SwapModeScore(VP8ModeScore** a, VP8ModeScore** b) { |
| 884 | VP8ModeScore* const tmp = *a; |
| 885 | *a = *b; |
| 886 | *b = tmp; |
| 887 | } |
| 888 | |
| 889 | static void SwapPtr(uint8_t** a, uint8_t** b) { |
| 890 | uint8_t* const tmp = *a; |
| 891 | *a = *b; |
| 892 | *b = tmp; |
| 893 | } |
| 894 | |
| 895 | static void SwapOut(VP8EncIterator* const it) { |
| 896 | SwapPtr(&it->yuv_out_, &it->yuv_out2_); |
| 897 | } |
| 898 | |
| 899 | static score_t IsFlat(const int16_t* levels, int num_blocks, score_t thresh) { |
| 900 | score_t score = 0; |
| 901 | while (num_blocks-- > 0) { // TODO(skal): refine positional scoring? |
| 902 | int i; |
| 903 | for (i = 1; i < 16; ++i) { // omit DC, we're only interested in AC |
| 904 | score += (levels[i] != 0); |
| 905 | if (score > thresh) return 0; |
| 906 | } |
| 907 | levels += 16; |
| 908 | } |
| 909 | return 1; |
| 910 | } |
| 911 | |
| 912 | static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* rd) { |
| 913 | const int kNumBlocks = 16; |
| 914 | VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; |
| 915 | const int lambda = dqm->lambda_i16_; |
| 916 | const int tlambda = dqm->tlambda_; |
| 917 | const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC; |
| 918 | VP8ModeScore rd_tmp; |
| 919 | VP8ModeScore* rd_cur = &rd_tmp; |
| 920 | VP8ModeScore* rd_best = rd; |
| 921 | int mode; |
| 922 | |
| 923 | rd->mode_i16 = -1; |
| 924 | for (mode = 0; mode < NUM_PRED_MODES; ++mode) { |
| 925 | uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF_ENC; // scratch buffer |
| 926 | rd_cur->mode_i16 = mode; |
| 927 | |
| 928 | // Reconstruct |
| 929 | rd_cur->nz = ReconstructIntra16(it, rd_cur, tmp_dst, mode); |
| 930 | |
| 931 | // Measure RD-score |
| 932 | rd_cur->D = VP8SSE16x16(src, tmp_dst); |
| 933 | rd_cur->SD = |
| 934 | tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY)) : 0; |
| 935 | rd_cur->H = VP8FixedCostsI16[mode]; |
| 936 | rd_cur->R = VP8GetCostLuma16(it, rd_cur); |
| 937 | if (mode > 0 && |
| 938 | IsFlat(rd_cur->y_ac_levels[0], kNumBlocks, FLATNESS_LIMIT_I16)) { |
| 939 | // penalty to avoid flat area to be mispredicted by complex mode |
| 940 | rd_cur->R += FLATNESS_PENALTY * kNumBlocks; |
| 941 | } |
| 942 | |
| 943 | // Since we always examine Intra16 first, we can overwrite *rd directly. |
| 944 | SetRDScore(lambda, rd_cur); |
| 945 | if (mode == 0 || rd_cur->score < rd_best->score) { |
| 946 | SwapModeScore(&rd_cur, &rd_best); |
| 947 | SwapOut(it); |
| 948 | } |
| 949 | } |
| 950 | if (rd_best != rd) { |
| 951 | memcpy(rd, rd_best, sizeof(*rd)); |
| 952 | } |
| 953 | SetRDScore(dqm->lambda_mode_, rd); // finalize score for mode decision. |
| 954 | VP8SetIntra16Mode(it, rd->mode_i16); |
| 955 | |
| 956 | // we have a blocky macroblock (only DCs are non-zero) with fairly high |
| 957 | // distortion, record max delta so we can later adjust the minimal filtering |
| 958 | // strength needed to smooth these blocks out. |
| 959 | if ((rd->nz & 0x100ffff) == 0x1000000 && rd->D > dqm->min_disto_) { |
| 960 | StoreMaxDelta(dqm, rd->y_dc_levels); |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | //------------------------------------------------------------------------------ |
| 965 | |
| 966 | // return the cost array corresponding to the surrounding prediction modes. |
| 967 | static const uint16_t* GetCostModeI4(VP8EncIterator* const it, |
| 968 | const uint8_t modes[16]) { |
| 969 | const int preds_w = it->enc_->preds_w_; |
| 970 | const int x = (it->i4_ & 3), y = it->i4_ >> 2; |
| 971 | const int left = (x == 0) ? it->preds_[y * preds_w - 1] : modes[it->i4_ - 1]; |
| 972 | const int top = (y == 0) ? it->preds_[-preds_w + x] : modes[it->i4_ - 4]; |
| 973 | return VP8FixedCostsI4[top][left]; |
| 974 | } |
| 975 | |
| 976 | static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) { |
| 977 | const VP8Encoder* const enc = it->enc_; |
| 978 | const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
| 979 | const int lambda = dqm->lambda_i4_; |
| 980 | const int tlambda = dqm->tlambda_; |
| 981 | const uint8_t* const src0 = it->yuv_in_ + Y_OFF_ENC; |
| 982 | uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF_ENC; |
| 983 | int = 0; |
| 984 | VP8ModeScore rd_best; |
| 985 | |
| 986 | if (enc->max_i4_header_bits_ == 0) { |
| 987 | return 0; |
| 988 | } |
| 989 | |
| 990 | InitScore(&rd_best); |
| 991 | rd_best.H = 211; // '211' is the value of VP8BitCost(0, 145) |
| 992 | SetRDScore(dqm->lambda_mode_, &rd_best); |
| 993 | VP8IteratorStartI4(it); |
| 994 | do { |
| 995 | const int kNumBlocks = 1; |
| 996 | VP8ModeScore rd_i4; |
| 997 | int mode; |
| 998 | int best_mode = -1; |
| 999 | const uint8_t* const src = src0 + VP8Scan[it->i4_]; |
| 1000 | const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4); |
| 1001 | uint8_t* best_block = best_blocks + VP8Scan[it->i4_]; |
| 1002 | uint8_t* tmp_dst = it->yuv_p_ + I4TMP; // scratch buffer. |
| 1003 | |
| 1004 | InitScore(&rd_i4); |
| 1005 | VP8MakeIntra4Preds(it); |
| 1006 | for (mode = 0; mode < NUM_BMODES; ++mode) { |
| 1007 | VP8ModeScore rd_tmp; |
| 1008 | int16_t tmp_levels[16]; |
| 1009 | |
| 1010 | // Reconstruct |
| 1011 | rd_tmp.nz = |
| 1012 | ReconstructIntra4(it, tmp_levels, src, tmp_dst, mode) << it->i4_; |
| 1013 | |
| 1014 | // Compute RD-score |
| 1015 | rd_tmp.D = VP8SSE4x4(src, tmp_dst); |
| 1016 | rd_tmp.SD = |
| 1017 | tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY)) |
| 1018 | : 0; |
| 1019 | rd_tmp.H = mode_costs[mode]; |
| 1020 | |
| 1021 | // Add flatness penalty |
| 1022 | if (mode > 0 && IsFlat(tmp_levels, kNumBlocks, FLATNESS_LIMIT_I4)) { |
| 1023 | rd_tmp.R = FLATNESS_PENALTY * kNumBlocks; |
| 1024 | } else { |
| 1025 | rd_tmp.R = 0; |
| 1026 | } |
| 1027 | |
| 1028 | // early-out check |
| 1029 | SetRDScore(lambda, &rd_tmp); |
| 1030 | if (best_mode >= 0 && rd_tmp.score >= rd_i4.score) continue; |
| 1031 | |
| 1032 | // finish computing score |
| 1033 | rd_tmp.R += VP8GetCostLuma4(it, tmp_levels); |
| 1034 | SetRDScore(lambda, &rd_tmp); |
| 1035 | |
| 1036 | if (best_mode < 0 || rd_tmp.score < rd_i4.score) { |
| 1037 | CopyScore(&rd_i4, &rd_tmp); |
| 1038 | best_mode = mode; |
| 1039 | SwapPtr(&tmp_dst, &best_block); |
| 1040 | memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, |
| 1041 | sizeof(rd_best.y_ac_levels[it->i4_])); |
| 1042 | } |
| 1043 | } |
| 1044 | SetRDScore(dqm->lambda_mode_, &rd_i4); |
| 1045 | AddScore(&rd_best, &rd_i4); |
| 1046 | if (rd_best.score >= rd->score) { |
| 1047 | return 0; |
| 1048 | } |
| 1049 | total_header_bits += (int)rd_i4.H; // <- equal to mode_costs[best_mode]; |
| 1050 | if (total_header_bits > enc->max_i4_header_bits_) { |
| 1051 | return 0; |
| 1052 | } |
| 1053 | // Copy selected samples if not in the right place already. |
| 1054 | if (best_block != best_blocks + VP8Scan[it->i4_]) { |
| 1055 | VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]); |
| 1056 | } |
| 1057 | rd->modes_i4[it->i4_] = best_mode; |
| 1058 | it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0); |
| 1059 | } while (VP8IteratorRotateI4(it, best_blocks)); |
| 1060 | |
| 1061 | // finalize state |
| 1062 | CopyScore(rd, &rd_best); |
| 1063 | VP8SetIntra4Mode(it, rd->modes_i4); |
| 1064 | SwapOut(it); |
| 1065 | memcpy(rd->y_ac_levels, rd_best.y_ac_levels, sizeof(rd->y_ac_levels)); |
| 1066 | return 1; // select intra4x4 over intra16x16 |
| 1067 | } |
| 1068 | |
| 1069 | //------------------------------------------------------------------------------ |
| 1070 | |
| 1071 | static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) { |
| 1072 | const int kNumBlocks = 8; |
| 1073 | const VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; |
| 1074 | const int lambda = dqm->lambda_uv_; |
| 1075 | const uint8_t* const src = it->yuv_in_ + U_OFF_ENC; |
| 1076 | uint8_t* tmp_dst = it->yuv_out2_ + U_OFF_ENC; // scratch buffer |
| 1077 | uint8_t* dst0 = it->yuv_out_ + U_OFF_ENC; |
| 1078 | uint8_t* dst = dst0; |
| 1079 | VP8ModeScore rd_best; |
| 1080 | int mode; |
| 1081 | |
| 1082 | rd->mode_uv = -1; |
| 1083 | InitScore(&rd_best); |
| 1084 | for (mode = 0; mode < NUM_PRED_MODES; ++mode) { |
| 1085 | VP8ModeScore rd_uv; |
| 1086 | |
| 1087 | // Reconstruct |
| 1088 | rd_uv.nz = ReconstructUV(it, &rd_uv, tmp_dst, mode); |
| 1089 | |
| 1090 | // Compute RD-score |
| 1091 | rd_uv.D = VP8SSE16x8(src, tmp_dst); |
| 1092 | rd_uv.SD = 0; // not calling TDisto here: it tends to flatten areas. |
| 1093 | rd_uv.H = VP8FixedCostsUV[mode]; |
| 1094 | rd_uv.R = VP8GetCostUV(it, &rd_uv); |
| 1095 | if (mode > 0 && IsFlat(rd_uv.uv_levels[0], kNumBlocks, FLATNESS_LIMIT_UV)) { |
| 1096 | rd_uv.R += FLATNESS_PENALTY * kNumBlocks; |
| 1097 | } |
| 1098 | |
| 1099 | SetRDScore(lambda, &rd_uv); |
| 1100 | if (mode == 0 || rd_uv.score < rd_best.score) { |
| 1101 | CopyScore(&rd_best, &rd_uv); |
| 1102 | rd->mode_uv = mode; |
| 1103 | memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels)); |
| 1104 | SwapPtr(&dst, &tmp_dst); |
| 1105 | } |
| 1106 | } |
| 1107 | VP8SetIntraUVMode(it, rd->mode_uv); |
| 1108 | AddScore(rd, &rd_best); |
| 1109 | if (dst != dst0) { // copy 16x8 block if needed |
| 1110 | VP8Copy16x8(dst, dst0); |
| 1111 | } |
| 1112 | } |
| 1113 | |
| 1114 | //------------------------------------------------------------------------------ |
| 1115 | // Final reconstruction and quantization. |
| 1116 | |
| 1117 | static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) { |
| 1118 | const VP8Encoder* const enc = it->enc_; |
| 1119 | const int is_i16 = (it->mb_->type_ == 1); |
| 1120 | int nz = 0; |
| 1121 | |
| 1122 | if (is_i16) { |
| 1123 | nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF_ENC, it->preds_[0]); |
| 1124 | } else { |
| 1125 | VP8IteratorStartI4(it); |
| 1126 | do { |
| 1127 | const int mode = |
| 1128 | it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_]; |
| 1129 | const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_]; |
| 1130 | uint8_t* const dst = it->yuv_out_ + Y_OFF_ENC + VP8Scan[it->i4_]; |
| 1131 | VP8MakeIntra4Preds(it); |
| 1132 | nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_], |
| 1133 | src, dst, mode) << it->i4_; |
| 1134 | } while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF_ENC)); |
| 1135 | } |
| 1136 | |
| 1137 | nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF_ENC, it->mb_->uv_mode_); |
| 1138 | rd->nz = nz; |
| 1139 | } |
| 1140 | |
| 1141 | // Refine intra16/intra4 sub-modes based on distortion only (not rate). |
| 1142 | static void RefineUsingDistortion(VP8EncIterator* const it, |
| 1143 | int try_both_modes, int refine_uv_mode, |
| 1144 | VP8ModeScore* const rd) { |
| 1145 | score_t best_score = MAX_COST; |
| 1146 | int nz = 0; |
| 1147 | int mode; |
| 1148 | int is_i16 = try_both_modes || (it->mb_->type_ == 1); |
| 1149 | |
| 1150 | const VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; |
| 1151 | // Some empiric constants, of approximate order of magnitude. |
| 1152 | const int lambda_d_i16 = 106; |
| 1153 | const int lambda_d_i4 = 11; |
| 1154 | const int lambda_d_uv = 120; |
| 1155 | score_t score_i4 = dqm->i4_penalty_; |
| 1156 | score_t i4_bit_sum = 0; |
| 1157 | const score_t bit_limit = try_both_modes ? it->enc_->mb_header_limit_ |
| 1158 | : MAX_COST; // no early-out allowed |
| 1159 | |
| 1160 | if (is_i16) { // First, evaluate Intra16 distortion |
| 1161 | int best_mode = -1; |
| 1162 | const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC; |
| 1163 | for (mode = 0; mode < NUM_PRED_MODES; ++mode) { |
| 1164 | const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; |
| 1165 | const score_t score = VP8SSE16x16(src, ref) * RD_DISTO_MULT |
| 1166 | + VP8FixedCostsI16[mode] * lambda_d_i16; |
| 1167 | if (mode > 0 && VP8FixedCostsI16[mode] > bit_limit) { |
| 1168 | continue; |
| 1169 | } |
| 1170 | if (score < best_score) { |
| 1171 | best_mode = mode; |
| 1172 | best_score = score; |
| 1173 | } |
| 1174 | } |
| 1175 | VP8SetIntra16Mode(it, best_mode); |
| 1176 | // we'll reconstruct later, if i16 mode actually gets selected |
| 1177 | } |
| 1178 | |
| 1179 | // Next, evaluate Intra4 |
| 1180 | if (try_both_modes || !is_i16) { |
| 1181 | // We don't evaluate the rate here, but just account for it through a |
| 1182 | // constant penalty (i4 mode usually needs more bits compared to i16). |
| 1183 | is_i16 = 0; |
| 1184 | VP8IteratorStartI4(it); |
| 1185 | do { |
| 1186 | int best_i4_mode = -1; |
| 1187 | score_t best_i4_score = MAX_COST; |
| 1188 | const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_]; |
| 1189 | const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4); |
| 1190 | |
| 1191 | VP8MakeIntra4Preds(it); |
| 1192 | for (mode = 0; mode < NUM_BMODES; ++mode) { |
| 1193 | const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode]; |
| 1194 | const score_t score = VP8SSE4x4(src, ref) * RD_DISTO_MULT |
| 1195 | + mode_costs[mode] * lambda_d_i4; |
| 1196 | if (score < best_i4_score) { |
| 1197 | best_i4_mode = mode; |
| 1198 | best_i4_score = score; |
| 1199 | } |
| 1200 | } |
| 1201 | i4_bit_sum += mode_costs[best_i4_mode]; |
| 1202 | rd->modes_i4[it->i4_] = best_i4_mode; |
| 1203 | score_i4 += best_i4_score; |
| 1204 | if (score_i4 >= best_score || i4_bit_sum > bit_limit) { |
| 1205 | // Intra4 won't be better than Intra16. Bail out and pick Intra16. |
| 1206 | is_i16 = 1; |
| 1207 | break; |
| 1208 | } else { // reconstruct partial block inside yuv_out2_ buffer |
| 1209 | uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF_ENC + VP8Scan[it->i4_]; |
| 1210 | nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_], |
| 1211 | src, tmp_dst, best_i4_mode) << it->i4_; |
| 1212 | } |
| 1213 | } while (VP8IteratorRotateI4(it, it->yuv_out2_ + Y_OFF_ENC)); |
| 1214 | } |
| 1215 | |
| 1216 | // Final reconstruction, depending on which mode is selected. |
| 1217 | if (!is_i16) { |
| 1218 | VP8SetIntra4Mode(it, rd->modes_i4); |
| 1219 | SwapOut(it); |
| 1220 | best_score = score_i4; |
| 1221 | } else { |
| 1222 | nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF_ENC, it->preds_[0]); |
| 1223 | } |
| 1224 | |
| 1225 | // ... and UV! |
| 1226 | if (refine_uv_mode) { |
| 1227 | int best_mode = -1; |
| 1228 | score_t best_uv_score = MAX_COST; |
| 1229 | const uint8_t* const src = it->yuv_in_ + U_OFF_ENC; |
| 1230 | for (mode = 0; mode < NUM_PRED_MODES; ++mode) { |
| 1231 | const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode]; |
| 1232 | const score_t score = VP8SSE16x8(src, ref) * RD_DISTO_MULT |
| 1233 | + VP8FixedCostsUV[mode] * lambda_d_uv; |
| 1234 | if (score < best_uv_score) { |
| 1235 | best_mode = mode; |
| 1236 | best_uv_score = score; |
| 1237 | } |
| 1238 | } |
| 1239 | VP8SetIntraUVMode(it, best_mode); |
| 1240 | } |
| 1241 | nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF_ENC, it->mb_->uv_mode_); |
| 1242 | |
| 1243 | rd->nz = nz; |
| 1244 | rd->score = best_score; |
| 1245 | } |
| 1246 | |
| 1247 | //------------------------------------------------------------------------------ |
| 1248 | // Entry point |
| 1249 | |
| 1250 | int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, |
| 1251 | VP8RDLevel rd_opt) { |
| 1252 | int is_skipped; |
| 1253 | const int method = it->enc_->method_; |
| 1254 | |
| 1255 | InitScore(rd); |
| 1256 | |
| 1257 | // We can perform predictions for Luma16x16 and Chroma8x8 already. |
| 1258 | // Luma4x4 predictions needs to be done as-we-go. |
| 1259 | VP8MakeLuma16Preds(it); |
| 1260 | VP8MakeChroma8Preds(it); |
| 1261 | |
| 1262 | if (rd_opt > RD_OPT_NONE) { |
| 1263 | it->do_trellis_ = (rd_opt >= RD_OPT_TRELLIS_ALL); |
| 1264 | PickBestIntra16(it, rd); |
| 1265 | if (method >= 2) { |
| 1266 | PickBestIntra4(it, rd); |
| 1267 | } |
| 1268 | PickBestUV(it, rd); |
| 1269 | if (rd_opt == RD_OPT_TRELLIS) { // finish off with trellis-optim now |
| 1270 | it->do_trellis_ = 1; |
| 1271 | SimpleQuantize(it, rd); |
| 1272 | } |
| 1273 | } else { |
| 1274 | // At this point we have heuristically decided intra16 / intra4. |
| 1275 | // For method >= 2, pick the best intra4/intra16 based on SSE (~tad slower). |
| 1276 | // For method <= 1, we don't re-examine the decision but just go ahead with |
| 1277 | // quantization/reconstruction. |
| 1278 | RefineUsingDistortion(it, (method >= 2), (method >= 1), rd); |
| 1279 | } |
| 1280 | is_skipped = (rd->nz == 0); |
| 1281 | VP8SetSkip(it, is_skipped); |
| 1282 | return is_skipped; |
| 1283 | } |
| 1284 | |