1 | // Copyright 2012 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // main entry for the lossless encoder. |
11 | // |
12 | // Author: Vikas Arora (vikaas.arora@gmail.com) |
13 | // |
14 | |
15 | #include <assert.h> |
16 | #include <stdlib.h> |
17 | |
18 | #include "./backward_references_enc.h" |
19 | #include "./histogram_enc.h" |
20 | #include "./vp8i_enc.h" |
21 | #include "./vp8li_enc.h" |
22 | #include "../dsp/lossless.h" |
23 | #include "../dsp/lossless_common.h" |
24 | #include "../utils/bit_writer_utils.h" |
25 | #include "../utils/huffman_encode_utils.h" |
26 | #include "../utils/utils.h" |
27 | #include "../webp/format_constants.h" |
28 | |
29 | #include "./delta_palettization_enc.h" |
30 | |
31 | #define PALETTE_KEY_RIGHT_SHIFT 22 // Key for 1K buffer. |
32 | // Maximum number of histogram images (sub-blocks). |
33 | #define MAX_HUFF_IMAGE_SIZE 2600 |
34 | |
35 | // Palette reordering for smaller sum of deltas (and for smaller storage). |
36 | |
37 | static int PaletteCompareColorsForQsort(const void* p1, const void* p2) { |
38 | const uint32_t a = WebPMemToUint32((uint8_t*)p1); |
39 | const uint32_t b = WebPMemToUint32((uint8_t*)p2); |
40 | assert(a != b); |
41 | return (a < b) ? -1 : 1; |
42 | } |
43 | |
44 | static WEBP_INLINE uint32_t PaletteComponentDistance(uint32_t v) { |
45 | return (v <= 128) ? v : (256 - v); |
46 | } |
47 | |
48 | // Computes a value that is related to the entropy created by the |
49 | // palette entry diff. |
50 | // |
51 | // Note that the last & 0xff is a no-operation in the next statement, but |
52 | // removed by most compilers and is here only for regularity of the code. |
53 | static WEBP_INLINE uint32_t PaletteColorDistance(uint32_t col1, uint32_t col2) { |
54 | const uint32_t diff = VP8LSubPixels(col1, col2); |
55 | const int kMoreWeightForRGBThanForAlpha = 9; |
56 | uint32_t score; |
57 | score = PaletteComponentDistance((diff >> 0) & 0xff); |
58 | score += PaletteComponentDistance((diff >> 8) & 0xff); |
59 | score += PaletteComponentDistance((diff >> 16) & 0xff); |
60 | score *= kMoreWeightForRGBThanForAlpha; |
61 | score += PaletteComponentDistance((diff >> 24) & 0xff); |
62 | return score; |
63 | } |
64 | |
65 | static WEBP_INLINE void SwapColor(uint32_t* const col1, uint32_t* const col2) { |
66 | const uint32_t tmp = *col1; |
67 | *col1 = *col2; |
68 | *col2 = tmp; |
69 | } |
70 | |
71 | static void GreedyMinimizeDeltas(uint32_t palette[], int num_colors) { |
72 | // Find greedily always the closest color of the predicted color to minimize |
73 | // deltas in the palette. This reduces storage needs since the |
74 | // palette is stored with delta encoding. |
75 | uint32_t predict = 0x00000000; |
76 | int i, k; |
77 | for (i = 0; i < num_colors; ++i) { |
78 | int best_ix = i; |
79 | uint32_t best_score = ~0U; |
80 | for (k = i; k < num_colors; ++k) { |
81 | const uint32_t cur_score = PaletteColorDistance(palette[k], predict); |
82 | if (best_score > cur_score) { |
83 | best_score = cur_score; |
84 | best_ix = k; |
85 | } |
86 | } |
87 | SwapColor(&palette[best_ix], &palette[i]); |
88 | predict = palette[i]; |
89 | } |
90 | } |
91 | |
92 | // The palette has been sorted by alpha. This function checks if the other |
93 | // components of the palette have a monotonic development with regards to |
94 | // position in the palette. If all have monotonic development, there is |
95 | // no benefit to re-organize them greedily. A monotonic development |
96 | // would be spotted in green-only situations (like lossy alpha) or gray-scale |
97 | // images. |
98 | static int PaletteHasNonMonotonousDeltas(uint32_t palette[], int num_colors) { |
99 | uint32_t predict = 0x000000; |
100 | int i; |
101 | uint8_t sign_found = 0x00; |
102 | for (i = 0; i < num_colors; ++i) { |
103 | const uint32_t diff = VP8LSubPixels(palette[i], predict); |
104 | const uint8_t rd = (diff >> 16) & 0xff; |
105 | const uint8_t gd = (diff >> 8) & 0xff; |
106 | const uint8_t bd = (diff >> 0) & 0xff; |
107 | if (rd != 0x00) { |
108 | sign_found |= (rd < 0x80) ? 1 : 2; |
109 | } |
110 | if (gd != 0x00) { |
111 | sign_found |= (gd < 0x80) ? 8 : 16; |
112 | } |
113 | if (bd != 0x00) { |
114 | sign_found |= (bd < 0x80) ? 64 : 128; |
115 | } |
116 | predict = palette[i]; |
117 | } |
118 | return (sign_found & (sign_found << 1)) != 0; // two consequent signs. |
119 | } |
120 | |
121 | // ----------------------------------------------------------------------------- |
122 | // Palette |
123 | |
124 | // If number of colors in the image is less than or equal to MAX_PALETTE_SIZE, |
125 | // creates a palette and returns true, else returns false. |
126 | static int AnalyzeAndCreatePalette(const WebPPicture* const pic, |
127 | int low_effort, |
128 | uint32_t palette[MAX_PALETTE_SIZE], |
129 | int* const palette_size) { |
130 | const int num_colors = WebPGetColorPalette(pic, palette); |
131 | if (num_colors > MAX_PALETTE_SIZE) return 0; |
132 | *palette_size = num_colors; |
133 | qsort(palette, num_colors, sizeof(*palette), PaletteCompareColorsForQsort); |
134 | if (!low_effort && PaletteHasNonMonotonousDeltas(palette, num_colors)) { |
135 | GreedyMinimizeDeltas(palette, num_colors); |
136 | } |
137 | return 1; |
138 | } |
139 | |
140 | // These five modes are evaluated and their respective entropy is computed. |
141 | typedef enum { |
142 | kDirect = 0, |
143 | kSpatial = 1, |
144 | kSubGreen = 2, |
145 | kSpatialSubGreen = 3, |
146 | kPalette = 4, |
147 | kNumEntropyIx = 5 |
148 | } EntropyIx; |
149 | |
150 | typedef enum { |
151 | kHistoAlpha = 0, |
152 | kHistoAlphaPred, |
153 | kHistoGreen, |
154 | kHistoGreenPred, |
155 | kHistoRed, |
156 | kHistoRedPred, |
157 | kHistoBlue, |
158 | kHistoBluePred, |
159 | kHistoRedSubGreen, |
160 | kHistoRedPredSubGreen, |
161 | kHistoBlueSubGreen, |
162 | kHistoBluePredSubGreen, |
163 | kHistoPalette, |
164 | kHistoTotal // Must be last. |
165 | } HistoIx; |
166 | |
167 | static void AddSingleSubGreen(int p, uint32_t* const r, uint32_t* const b) { |
168 | const int green = p >> 8; // The upper bits are masked away later. |
169 | ++r[((p >> 16) - green) & 0xff]; |
170 | ++b[((p >> 0) - green) & 0xff]; |
171 | } |
172 | |
173 | static void AddSingle(uint32_t p, |
174 | uint32_t* const a, uint32_t* const r, |
175 | uint32_t* const g, uint32_t* const b) { |
176 | ++a[(p >> 24) & 0xff]; |
177 | ++r[(p >> 16) & 0xff]; |
178 | ++g[(p >> 8) & 0xff]; |
179 | ++b[(p >> 0) & 0xff]; |
180 | } |
181 | |
182 | static WEBP_INLINE uint32_t HashPix(uint32_t pix) { |
183 | // Note that masking with 0xffffffffu is for preventing an |
184 | // 'unsigned int overflow' warning. Doesn't impact the compiled code. |
185 | return ((((uint64_t)pix + (pix >> 19)) * 0x39c5fba7ull) & 0xffffffffu) >> 24; |
186 | } |
187 | |
188 | static int AnalyzeEntropy(const uint32_t* argb, |
189 | int width, int height, int argb_stride, |
190 | int use_palette, |
191 | EntropyIx* const min_entropy_ix, |
192 | int* const red_and_blue_always_zero) { |
193 | // Allocate histogram set with cache_bits = 0. |
194 | uint32_t* const histo = |
195 | (uint32_t*)WebPSafeCalloc(kHistoTotal, sizeof(*histo) * 256); |
196 | if (histo != NULL) { |
197 | int i, x, y; |
198 | const uint32_t* prev_row = argb; |
199 | const uint32_t* curr_row = argb + argb_stride; |
200 | for (y = 1; y < height; ++y) { |
201 | uint32_t prev_pix = curr_row[0]; |
202 | for (x = 1; x < width; ++x) { |
203 | const uint32_t pix = curr_row[x]; |
204 | const uint32_t pix_diff = VP8LSubPixels(pix, prev_pix); |
205 | if ((pix_diff == 0) || (pix == prev_row[x])) continue; |
206 | prev_pix = pix; |
207 | AddSingle(pix, |
208 | &histo[kHistoAlpha * 256], |
209 | &histo[kHistoRed * 256], |
210 | &histo[kHistoGreen * 256], |
211 | &histo[kHistoBlue * 256]); |
212 | AddSingle(pix_diff, |
213 | &histo[kHistoAlphaPred * 256], |
214 | &histo[kHistoRedPred * 256], |
215 | &histo[kHistoGreenPred * 256], |
216 | &histo[kHistoBluePred * 256]); |
217 | AddSingleSubGreen(pix, |
218 | &histo[kHistoRedSubGreen * 256], |
219 | &histo[kHistoBlueSubGreen * 256]); |
220 | AddSingleSubGreen(pix_diff, |
221 | &histo[kHistoRedPredSubGreen * 256], |
222 | &histo[kHistoBluePredSubGreen * 256]); |
223 | { |
224 | // Approximate the palette by the entropy of the multiplicative hash. |
225 | const uint32_t hash = HashPix(pix); |
226 | ++histo[kHistoPalette * 256 + hash]; |
227 | } |
228 | } |
229 | prev_row = curr_row; |
230 | curr_row += argb_stride; |
231 | } |
232 | { |
233 | double entropy_comp[kHistoTotal]; |
234 | double entropy[kNumEntropyIx]; |
235 | int k; |
236 | int last_mode_to_analyze = use_palette ? kPalette : kSpatialSubGreen; |
237 | int j; |
238 | // Let's add one zero to the predicted histograms. The zeros are removed |
239 | // too efficiently by the pix_diff == 0 comparison, at least one of the |
240 | // zeros is likely to exist. |
241 | ++histo[kHistoRedPredSubGreen * 256]; |
242 | ++histo[kHistoBluePredSubGreen * 256]; |
243 | ++histo[kHistoRedPred * 256]; |
244 | ++histo[kHistoGreenPred * 256]; |
245 | ++histo[kHistoBluePred * 256]; |
246 | ++histo[kHistoAlphaPred * 256]; |
247 | |
248 | for (j = 0; j < kHistoTotal; ++j) { |
249 | entropy_comp[j] = VP8LBitsEntropy(&histo[j * 256], 256, NULL); |
250 | } |
251 | entropy[kDirect] = entropy_comp[kHistoAlpha] + |
252 | entropy_comp[kHistoRed] + |
253 | entropy_comp[kHistoGreen] + |
254 | entropy_comp[kHistoBlue]; |
255 | entropy[kSpatial] = entropy_comp[kHistoAlphaPred] + |
256 | entropy_comp[kHistoRedPred] + |
257 | entropy_comp[kHistoGreenPred] + |
258 | entropy_comp[kHistoBluePred]; |
259 | entropy[kSubGreen] = entropy_comp[kHistoAlpha] + |
260 | entropy_comp[kHistoRedSubGreen] + |
261 | entropy_comp[kHistoGreen] + |
262 | entropy_comp[kHistoBlueSubGreen]; |
263 | entropy[kSpatialSubGreen] = entropy_comp[kHistoAlphaPred] + |
264 | entropy_comp[kHistoRedPredSubGreen] + |
265 | entropy_comp[kHistoGreenPred] + |
266 | entropy_comp[kHistoBluePredSubGreen]; |
267 | // Palette mode seems more efficient in a breakeven case. Bias with 1.0. |
268 | entropy[kPalette] = entropy_comp[kHistoPalette] - 1.0; |
269 | |
270 | *min_entropy_ix = kDirect; |
271 | for (k = kDirect + 1; k <= last_mode_to_analyze; ++k) { |
272 | if (entropy[*min_entropy_ix] > entropy[k]) { |
273 | *min_entropy_ix = (EntropyIx)k; |
274 | } |
275 | } |
276 | *red_and_blue_always_zero = 1; |
277 | // Let's check if the histogram of the chosen entropy mode has |
278 | // non-zero red and blue values. If all are zero, we can later skip |
279 | // the cross color optimization. |
280 | { |
281 | static const uint8_t kHistoPairs[5][2] = { |
282 | { kHistoRed, kHistoBlue }, |
283 | { kHistoRedPred, kHistoBluePred }, |
284 | { kHistoRedSubGreen, kHistoBlueSubGreen }, |
285 | { kHistoRedPredSubGreen, kHistoBluePredSubGreen }, |
286 | { kHistoRed, kHistoBlue } |
287 | }; |
288 | const uint32_t* const red_histo = |
289 | &histo[256 * kHistoPairs[*min_entropy_ix][0]]; |
290 | const uint32_t* const blue_histo = |
291 | &histo[256 * kHistoPairs[*min_entropy_ix][1]]; |
292 | for (i = 1; i < 256; ++i) { |
293 | if ((red_histo[i] | blue_histo[i]) != 0) { |
294 | *red_and_blue_always_zero = 0; |
295 | break; |
296 | } |
297 | } |
298 | } |
299 | } |
300 | WebPSafeFree(histo); |
301 | return 1; |
302 | } else { |
303 | return 0; |
304 | } |
305 | } |
306 | |
307 | static int GetHistoBits(int method, int use_palette, int width, int height) { |
308 | // Make tile size a function of encoding method (Range: 0 to 6). |
309 | int histo_bits = (use_palette ? 9 : 7) - method; |
310 | while (1) { |
311 | const int huff_image_size = VP8LSubSampleSize(width, histo_bits) * |
312 | VP8LSubSampleSize(height, histo_bits); |
313 | if (huff_image_size <= MAX_HUFF_IMAGE_SIZE) break; |
314 | ++histo_bits; |
315 | } |
316 | return (histo_bits < MIN_HUFFMAN_BITS) ? MIN_HUFFMAN_BITS : |
317 | (histo_bits > MAX_HUFFMAN_BITS) ? MAX_HUFFMAN_BITS : histo_bits; |
318 | } |
319 | |
320 | static int GetTransformBits(int method, int histo_bits) { |
321 | const int max_transform_bits = (method < 4) ? 6 : (method > 4) ? 4 : 5; |
322 | const int res = |
323 | (histo_bits > max_transform_bits) ? max_transform_bits : histo_bits; |
324 | assert(res <= MAX_TRANSFORM_BITS); |
325 | return res; |
326 | } |
327 | |
328 | static int AnalyzeAndInit(VP8LEncoder* const enc) { |
329 | const WebPPicture* const pic = enc->pic_; |
330 | const int width = pic->width; |
331 | const int height = pic->height; |
332 | const int pix_cnt = width * height; |
333 | const WebPConfig* const config = enc->config_; |
334 | const int method = config->method; |
335 | const int low_effort = (config->method == 0); |
336 | // we round the block size up, so we're guaranteed to have |
337 | // at max MAX_REFS_BLOCK_PER_IMAGE blocks used: |
338 | int refs_block_size = (pix_cnt - 1) / MAX_REFS_BLOCK_PER_IMAGE + 1; |
339 | assert(pic != NULL && pic->argb != NULL); |
340 | |
341 | enc->use_cross_color_ = 0; |
342 | enc->use_predict_ = 0; |
343 | enc->use_subtract_green_ = 0; |
344 | enc->use_palette_ = |
345 | AnalyzeAndCreatePalette(pic, low_effort, |
346 | enc->palette_, &enc->palette_size_); |
347 | |
348 | // TODO(jyrki): replace the decision to be based on an actual estimate |
349 | // of entropy, or even spatial variance of entropy. |
350 | enc->histo_bits_ = GetHistoBits(method, enc->use_palette_, |
351 | pic->width, pic->height); |
352 | enc->transform_bits_ = GetTransformBits(method, enc->histo_bits_); |
353 | |
354 | if (low_effort) { |
355 | // AnalyzeEntropy is somewhat slow. |
356 | enc->use_predict_ = !enc->use_palette_; |
357 | enc->use_subtract_green_ = !enc->use_palette_; |
358 | enc->use_cross_color_ = 0; |
359 | } else { |
360 | int red_and_blue_always_zero; |
361 | EntropyIx min_entropy_ix; |
362 | if (!AnalyzeEntropy(pic->argb, width, height, pic->argb_stride, |
363 | enc->use_palette_, &min_entropy_ix, |
364 | &red_and_blue_always_zero)) { |
365 | return 0; |
366 | } |
367 | enc->use_palette_ = (min_entropy_ix == kPalette); |
368 | enc->use_subtract_green_ = |
369 | (min_entropy_ix == kSubGreen) || (min_entropy_ix == kSpatialSubGreen); |
370 | enc->use_predict_ = |
371 | (min_entropy_ix == kSpatial) || (min_entropy_ix == kSpatialSubGreen); |
372 | enc->use_cross_color_ = red_and_blue_always_zero ? 0 : enc->use_predict_; |
373 | } |
374 | |
375 | if (!VP8LHashChainInit(&enc->hash_chain_, pix_cnt)) return 0; |
376 | |
377 | // palette-friendly input typically uses less literals |
378 | // -> reduce block size a bit |
379 | if (enc->use_palette_) refs_block_size /= 2; |
380 | VP8LBackwardRefsInit(&enc->refs_[0], refs_block_size); |
381 | VP8LBackwardRefsInit(&enc->refs_[1], refs_block_size); |
382 | |
383 | return 1; |
384 | } |
385 | |
386 | // Returns false in case of memory error. |
387 | static int GetHuffBitLengthsAndCodes( |
388 | const VP8LHistogramSet* const histogram_image, |
389 | HuffmanTreeCode* const huffman_codes) { |
390 | int i, k; |
391 | int ok = 0; |
392 | uint64_t total_length_size = 0; |
393 | uint8_t* mem_buf = NULL; |
394 | const int histogram_image_size = histogram_image->size; |
395 | int max_num_symbols = 0; |
396 | uint8_t* buf_rle = NULL; |
397 | HuffmanTree* huff_tree = NULL; |
398 | |
399 | // Iterate over all histograms and get the aggregate number of codes used. |
400 | for (i = 0; i < histogram_image_size; ++i) { |
401 | const VP8LHistogram* const histo = histogram_image->histograms[i]; |
402 | HuffmanTreeCode* const codes = &huffman_codes[5 * i]; |
403 | for (k = 0; k < 5; ++k) { |
404 | const int num_symbols = |
405 | (k == 0) ? VP8LHistogramNumCodes(histo->palette_code_bits_) : |
406 | (k == 4) ? NUM_DISTANCE_CODES : 256; |
407 | codes[k].num_symbols = num_symbols; |
408 | total_length_size += num_symbols; |
409 | } |
410 | } |
411 | |
412 | // Allocate and Set Huffman codes. |
413 | { |
414 | uint16_t* codes; |
415 | uint8_t* lengths; |
416 | mem_buf = (uint8_t*)WebPSafeCalloc(total_length_size, |
417 | sizeof(*lengths) + sizeof(*codes)); |
418 | if (mem_buf == NULL) goto End; |
419 | |
420 | codes = (uint16_t*)mem_buf; |
421 | lengths = (uint8_t*)&codes[total_length_size]; |
422 | for (i = 0; i < 5 * histogram_image_size; ++i) { |
423 | const int bit_length = huffman_codes[i].num_symbols; |
424 | huffman_codes[i].codes = codes; |
425 | huffman_codes[i].code_lengths = lengths; |
426 | codes += bit_length; |
427 | lengths += bit_length; |
428 | if (max_num_symbols < bit_length) { |
429 | max_num_symbols = bit_length; |
430 | } |
431 | } |
432 | } |
433 | |
434 | buf_rle = (uint8_t*)WebPSafeMalloc(1ULL, max_num_symbols); |
435 | huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * max_num_symbols, |
436 | sizeof(*huff_tree)); |
437 | if (buf_rle == NULL || huff_tree == NULL) goto End; |
438 | |
439 | // Create Huffman trees. |
440 | for (i = 0; i < histogram_image_size; ++i) { |
441 | HuffmanTreeCode* const codes = &huffman_codes[5 * i]; |
442 | VP8LHistogram* const histo = histogram_image->histograms[i]; |
443 | VP8LCreateHuffmanTree(histo->literal_, 15, buf_rle, huff_tree, codes + 0); |
444 | VP8LCreateHuffmanTree(histo->red_, 15, buf_rle, huff_tree, codes + 1); |
445 | VP8LCreateHuffmanTree(histo->blue_, 15, buf_rle, huff_tree, codes + 2); |
446 | VP8LCreateHuffmanTree(histo->alpha_, 15, buf_rle, huff_tree, codes + 3); |
447 | VP8LCreateHuffmanTree(histo->distance_, 15, buf_rle, huff_tree, codes + 4); |
448 | } |
449 | ok = 1; |
450 | End: |
451 | WebPSafeFree(huff_tree); |
452 | WebPSafeFree(buf_rle); |
453 | if (!ok) { |
454 | WebPSafeFree(mem_buf); |
455 | memset(huffman_codes, 0, 5 * histogram_image_size * sizeof(*huffman_codes)); |
456 | } |
457 | return ok; |
458 | } |
459 | |
460 | static void StoreHuffmanTreeOfHuffmanTreeToBitMask( |
461 | VP8LBitWriter* const bw, const uint8_t* code_length_bitdepth) { |
462 | // RFC 1951 will calm you down if you are worried about this funny sequence. |
463 | // This sequence is tuned from that, but more weighted for lower symbol count, |
464 | // and more spiking histograms. |
465 | static const uint8_t kStorageOrder[CODE_LENGTH_CODES] = { |
466 | 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
467 | }; |
468 | int i; |
469 | // Throw away trailing zeros: |
470 | int codes_to_store = CODE_LENGTH_CODES; |
471 | for (; codes_to_store > 4; --codes_to_store) { |
472 | if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) { |
473 | break; |
474 | } |
475 | } |
476 | VP8LPutBits(bw, codes_to_store - 4, 4); |
477 | for (i = 0; i < codes_to_store; ++i) { |
478 | VP8LPutBits(bw, code_length_bitdepth[kStorageOrder[i]], 3); |
479 | } |
480 | } |
481 | |
482 | static void ClearHuffmanTreeIfOnlyOneSymbol( |
483 | HuffmanTreeCode* const huffman_code) { |
484 | int k; |
485 | int count = 0; |
486 | for (k = 0; k < huffman_code->num_symbols; ++k) { |
487 | if (huffman_code->code_lengths[k] != 0) { |
488 | ++count; |
489 | if (count > 1) return; |
490 | } |
491 | } |
492 | for (k = 0; k < huffman_code->num_symbols; ++k) { |
493 | huffman_code->code_lengths[k] = 0; |
494 | huffman_code->codes[k] = 0; |
495 | } |
496 | } |
497 | |
498 | static void StoreHuffmanTreeToBitMask( |
499 | VP8LBitWriter* const bw, |
500 | const HuffmanTreeToken* const tokens, const int num_tokens, |
501 | const HuffmanTreeCode* const huffman_code) { |
502 | int i; |
503 | for (i = 0; i < num_tokens; ++i) { |
504 | const int ix = tokens[i].code; |
505 | const int = tokens[i].extra_bits; |
506 | VP8LPutBits(bw, huffman_code->codes[ix], huffman_code->code_lengths[ix]); |
507 | switch (ix) { |
508 | case 16: |
509 | VP8LPutBits(bw, extra_bits, 2); |
510 | break; |
511 | case 17: |
512 | VP8LPutBits(bw, extra_bits, 3); |
513 | break; |
514 | case 18: |
515 | VP8LPutBits(bw, extra_bits, 7); |
516 | break; |
517 | } |
518 | } |
519 | } |
520 | |
521 | // 'huff_tree' and 'tokens' are pre-alloacted buffers. |
522 | static void StoreFullHuffmanCode(VP8LBitWriter* const bw, |
523 | HuffmanTree* const huff_tree, |
524 | HuffmanTreeToken* const tokens, |
525 | const HuffmanTreeCode* const tree) { |
526 | uint8_t code_length_bitdepth[CODE_LENGTH_CODES] = { 0 }; |
527 | uint16_t code_length_bitdepth_symbols[CODE_LENGTH_CODES] = { 0 }; |
528 | const int max_tokens = tree->num_symbols; |
529 | int num_tokens; |
530 | HuffmanTreeCode huffman_code; |
531 | huffman_code.num_symbols = CODE_LENGTH_CODES; |
532 | huffman_code.code_lengths = code_length_bitdepth; |
533 | huffman_code.codes = code_length_bitdepth_symbols; |
534 | |
535 | VP8LPutBits(bw, 0, 1); |
536 | num_tokens = VP8LCreateCompressedHuffmanTree(tree, tokens, max_tokens); |
537 | { |
538 | uint32_t histogram[CODE_LENGTH_CODES] = { 0 }; |
539 | uint8_t buf_rle[CODE_LENGTH_CODES] = { 0 }; |
540 | int i; |
541 | for (i = 0; i < num_tokens; ++i) { |
542 | ++histogram[tokens[i].code]; |
543 | } |
544 | |
545 | VP8LCreateHuffmanTree(histogram, 7, buf_rle, huff_tree, &huffman_code); |
546 | } |
547 | |
548 | StoreHuffmanTreeOfHuffmanTreeToBitMask(bw, code_length_bitdepth); |
549 | ClearHuffmanTreeIfOnlyOneSymbol(&huffman_code); |
550 | { |
551 | int trailing_zero_bits = 0; |
552 | int trimmed_length = num_tokens; |
553 | int write_trimmed_length; |
554 | int length; |
555 | int i = num_tokens; |
556 | while (i-- > 0) { |
557 | const int ix = tokens[i].code; |
558 | if (ix == 0 || ix == 17 || ix == 18) { |
559 | --trimmed_length; // discount trailing zeros |
560 | trailing_zero_bits += code_length_bitdepth[ix]; |
561 | if (ix == 17) { |
562 | trailing_zero_bits += 3; |
563 | } else if (ix == 18) { |
564 | trailing_zero_bits += 7; |
565 | } |
566 | } else { |
567 | break; |
568 | } |
569 | } |
570 | write_trimmed_length = (trimmed_length > 1 && trailing_zero_bits > 12); |
571 | length = write_trimmed_length ? trimmed_length : num_tokens; |
572 | VP8LPutBits(bw, write_trimmed_length, 1); |
573 | if (write_trimmed_length) { |
574 | const int nbits = VP8LBitsLog2Ceiling(trimmed_length - 1); |
575 | const int nbitpairs = (nbits == 0) ? 1 : (nbits + 1) / 2; |
576 | VP8LPutBits(bw, nbitpairs - 1, 3); |
577 | assert(trimmed_length >= 2); |
578 | VP8LPutBits(bw, trimmed_length - 2, nbitpairs * 2); |
579 | } |
580 | StoreHuffmanTreeToBitMask(bw, tokens, length, &huffman_code); |
581 | } |
582 | } |
583 | |
584 | // 'huff_tree' and 'tokens' are pre-alloacted buffers. |
585 | static void StoreHuffmanCode(VP8LBitWriter* const bw, |
586 | HuffmanTree* const huff_tree, |
587 | HuffmanTreeToken* const tokens, |
588 | const HuffmanTreeCode* const huffman_code) { |
589 | int i; |
590 | int count = 0; |
591 | int symbols[2] = { 0, 0 }; |
592 | const int kMaxBits = 8; |
593 | const int kMaxSymbol = 1 << kMaxBits; |
594 | |
595 | // Check whether it's a small tree. |
596 | for (i = 0; i < huffman_code->num_symbols && count < 3; ++i) { |
597 | if (huffman_code->code_lengths[i] != 0) { |
598 | if (count < 2) symbols[count] = i; |
599 | ++count; |
600 | } |
601 | } |
602 | |
603 | if (count == 0) { // emit minimal tree for empty cases |
604 | // bits: small tree marker: 1, count-1: 0, large 8-bit code: 0, code: 0 |
605 | VP8LPutBits(bw, 0x01, 4); |
606 | } else if (count <= 2 && symbols[0] < kMaxSymbol && symbols[1] < kMaxSymbol) { |
607 | VP8LPutBits(bw, 1, 1); // Small tree marker to encode 1 or 2 symbols. |
608 | VP8LPutBits(bw, count - 1, 1); |
609 | if (symbols[0] <= 1) { |
610 | VP8LPutBits(bw, 0, 1); // Code bit for small (1 bit) symbol value. |
611 | VP8LPutBits(bw, symbols[0], 1); |
612 | } else { |
613 | VP8LPutBits(bw, 1, 1); |
614 | VP8LPutBits(bw, symbols[0], 8); |
615 | } |
616 | if (count == 2) { |
617 | VP8LPutBits(bw, symbols[1], 8); |
618 | } |
619 | } else { |
620 | StoreFullHuffmanCode(bw, huff_tree, tokens, huffman_code); |
621 | } |
622 | } |
623 | |
624 | static WEBP_INLINE void WriteHuffmanCode(VP8LBitWriter* const bw, |
625 | const HuffmanTreeCode* const code, |
626 | int code_index) { |
627 | const int depth = code->code_lengths[code_index]; |
628 | const int symbol = code->codes[code_index]; |
629 | VP8LPutBits(bw, symbol, depth); |
630 | } |
631 | |
632 | static WEBP_INLINE void ( |
633 | VP8LBitWriter* const bw, |
634 | const HuffmanTreeCode* const code, |
635 | int code_index, |
636 | int bits, |
637 | int n_bits) { |
638 | const int depth = code->code_lengths[code_index]; |
639 | const int symbol = code->codes[code_index]; |
640 | VP8LPutBits(bw, (bits << depth) | symbol, depth + n_bits); |
641 | } |
642 | |
643 | static WebPEncodingError StoreImageToBitMask( |
644 | VP8LBitWriter* const bw, int width, int histo_bits, |
645 | VP8LBackwardRefs* const refs, |
646 | const uint16_t* histogram_symbols, |
647 | const HuffmanTreeCode* const huffman_codes) { |
648 | const int histo_xsize = histo_bits ? VP8LSubSampleSize(width, histo_bits) : 1; |
649 | const int tile_mask = (histo_bits == 0) ? 0 : -(1 << histo_bits); |
650 | // x and y trace the position in the image. |
651 | int x = 0; |
652 | int y = 0; |
653 | int tile_x = x & tile_mask; |
654 | int tile_y = y & tile_mask; |
655 | int histogram_ix = histogram_symbols[0]; |
656 | const HuffmanTreeCode* codes = huffman_codes + 5 * histogram_ix; |
657 | VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
658 | while (VP8LRefsCursorOk(&c)) { |
659 | const PixOrCopy* const v = c.cur_pos; |
660 | if ((tile_x != (x & tile_mask)) || (tile_y != (y & tile_mask))) { |
661 | tile_x = x & tile_mask; |
662 | tile_y = y & tile_mask; |
663 | histogram_ix = histogram_symbols[(y >> histo_bits) * histo_xsize + |
664 | (x >> histo_bits)]; |
665 | codes = huffman_codes + 5 * histogram_ix; |
666 | } |
667 | if (PixOrCopyIsLiteral(v)) { |
668 | static const int order[] = { 1, 2, 0, 3 }; |
669 | int k; |
670 | for (k = 0; k < 4; ++k) { |
671 | const int code = PixOrCopyLiteral(v, order[k]); |
672 | WriteHuffmanCode(bw, codes + k, code); |
673 | } |
674 | } else if (PixOrCopyIsCacheIdx(v)) { |
675 | const int code = PixOrCopyCacheIdx(v); |
676 | const int literal_ix = 256 + NUM_LENGTH_CODES + code; |
677 | WriteHuffmanCode(bw, codes, literal_ix); |
678 | } else { |
679 | int bits, n_bits; |
680 | int code; |
681 | |
682 | const int distance = PixOrCopyDistance(v); |
683 | VP8LPrefixEncode(v->len, &code, &n_bits, &bits); |
684 | WriteHuffmanCodeWithExtraBits(bw, codes, 256 + code, bits, n_bits); |
685 | |
686 | // Don't write the distance with the extra bits code since |
687 | // the distance can be up to 18 bits of extra bits, and the prefix |
688 | // 15 bits, totaling to 33, and our PutBits only supports up to 32 bits. |
689 | // TODO(jyrki): optimize this further. |
690 | VP8LPrefixEncode(distance, &code, &n_bits, &bits); |
691 | WriteHuffmanCode(bw, codes + 4, code); |
692 | VP8LPutBits(bw, bits, n_bits); |
693 | } |
694 | x += PixOrCopyLength(v); |
695 | while (x >= width) { |
696 | x -= width; |
697 | ++y; |
698 | } |
699 | VP8LRefsCursorNext(&c); |
700 | } |
701 | return bw->error_ ? VP8_ENC_ERROR_OUT_OF_MEMORY : VP8_ENC_OK; |
702 | } |
703 | |
704 | // Special case of EncodeImageInternal() for cache-bits=0, histo_bits=31 |
705 | static WebPEncodingError EncodeImageNoHuffman(VP8LBitWriter* const bw, |
706 | const uint32_t* const argb, |
707 | VP8LHashChain* const hash_chain, |
708 | VP8LBackwardRefs refs_array[2], |
709 | int width, int height, |
710 | int quality, int low_effort) { |
711 | int i; |
712 | int max_tokens = 0; |
713 | WebPEncodingError err = VP8_ENC_OK; |
714 | VP8LBackwardRefs* refs; |
715 | HuffmanTreeToken* tokens = NULL; |
716 | HuffmanTreeCode huffman_codes[5] = { { 0, NULL, NULL } }; |
717 | const uint16_t histogram_symbols[1] = { 0 }; // only one tree, one symbol |
718 | int cache_bits = 0; |
719 | VP8LHistogramSet* histogram_image = NULL; |
720 | HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc( |
721 | 3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree)); |
722 | if (huff_tree == NULL) { |
723 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
724 | goto Error; |
725 | } |
726 | |
727 | // Calculate backward references from ARGB image. |
728 | if (!VP8LHashChainFill(hash_chain, quality, argb, width, height, |
729 | low_effort)) { |
730 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
731 | goto Error; |
732 | } |
733 | refs = VP8LGetBackwardReferences(width, height, argb, quality, 0, &cache_bits, |
734 | hash_chain, refs_array); |
735 | if (refs == NULL) { |
736 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
737 | goto Error; |
738 | } |
739 | histogram_image = VP8LAllocateHistogramSet(1, cache_bits); |
740 | if (histogram_image == NULL) { |
741 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
742 | goto Error; |
743 | } |
744 | |
745 | // Build histogram image and symbols from backward references. |
746 | VP8LHistogramStoreRefs(refs, histogram_image->histograms[0]); |
747 | |
748 | // Create Huffman bit lengths and codes for each histogram image. |
749 | assert(histogram_image->size == 1); |
750 | if (!GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) { |
751 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
752 | goto Error; |
753 | } |
754 | |
755 | // No color cache, no Huffman image. |
756 | VP8LPutBits(bw, 0, 1); |
757 | |
758 | // Find maximum number of symbols for the huffman tree-set. |
759 | for (i = 0; i < 5; ++i) { |
760 | HuffmanTreeCode* const codes = &huffman_codes[i]; |
761 | if (max_tokens < codes->num_symbols) { |
762 | max_tokens = codes->num_symbols; |
763 | } |
764 | } |
765 | |
766 | tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens)); |
767 | if (tokens == NULL) { |
768 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
769 | goto Error; |
770 | } |
771 | |
772 | // Store Huffman codes. |
773 | for (i = 0; i < 5; ++i) { |
774 | HuffmanTreeCode* const codes = &huffman_codes[i]; |
775 | StoreHuffmanCode(bw, huff_tree, tokens, codes); |
776 | ClearHuffmanTreeIfOnlyOneSymbol(codes); |
777 | } |
778 | |
779 | // Store actual literals. |
780 | err = StoreImageToBitMask(bw, width, 0, refs, histogram_symbols, |
781 | huffman_codes); |
782 | |
783 | Error: |
784 | WebPSafeFree(tokens); |
785 | WebPSafeFree(huff_tree); |
786 | VP8LFreeHistogramSet(histogram_image); |
787 | WebPSafeFree(huffman_codes[0].codes); |
788 | return err; |
789 | } |
790 | |
791 | static WebPEncodingError EncodeImageInternal(VP8LBitWriter* const bw, |
792 | const uint32_t* const argb, |
793 | VP8LHashChain* const hash_chain, |
794 | VP8LBackwardRefs refs_array[2], |
795 | int width, int height, int quality, |
796 | int low_effort, |
797 | int use_cache, int* cache_bits, |
798 | int histogram_bits, |
799 | size_t init_byte_position, |
800 | int* const hdr_size, |
801 | int* const data_size) { |
802 | WebPEncodingError err = VP8_ENC_OK; |
803 | const uint32_t histogram_image_xysize = |
804 | VP8LSubSampleSize(width, histogram_bits) * |
805 | VP8LSubSampleSize(height, histogram_bits); |
806 | VP8LHistogramSet* histogram_image = NULL; |
807 | VP8LHistogramSet* tmp_histos = NULL; |
808 | int histogram_image_size = 0; |
809 | size_t bit_array_size = 0; |
810 | HuffmanTree* huff_tree = NULL; |
811 | HuffmanTreeToken* tokens = NULL; |
812 | HuffmanTreeCode* huffman_codes = NULL; |
813 | VP8LBackwardRefs refs; |
814 | VP8LBackwardRefs* best_refs; |
815 | uint16_t* const histogram_symbols = |
816 | (uint16_t*)WebPSafeMalloc(histogram_image_xysize, |
817 | sizeof(*histogram_symbols)); |
818 | assert(histogram_bits >= MIN_HUFFMAN_BITS); |
819 | assert(histogram_bits <= MAX_HUFFMAN_BITS); |
820 | assert(hdr_size != NULL); |
821 | assert(data_size != NULL); |
822 | |
823 | VP8LBackwardRefsInit(&refs, refs_array[0].block_size_); |
824 | if (histogram_symbols == NULL) { |
825 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
826 | goto Error; |
827 | } |
828 | |
829 | if (use_cache) { |
830 | // If the value is different from zero, it has been set during the |
831 | // palette analysis. |
832 | if (*cache_bits == 0) *cache_bits = MAX_COLOR_CACHE_BITS; |
833 | } else { |
834 | *cache_bits = 0; |
835 | } |
836 | // 'best_refs' is the reference to the best backward refs and points to one |
837 | // of refs_array[0] or refs_array[1]. |
838 | // Calculate backward references from ARGB image. |
839 | if (!VP8LHashChainFill(hash_chain, quality, argb, width, height, |
840 | low_effort)) { |
841 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
842 | goto Error; |
843 | } |
844 | best_refs = VP8LGetBackwardReferences(width, height, argb, quality, |
845 | low_effort, cache_bits, hash_chain, |
846 | refs_array); |
847 | if (best_refs == NULL || !VP8LBackwardRefsCopy(best_refs, &refs)) { |
848 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
849 | goto Error; |
850 | } |
851 | histogram_image = |
852 | VP8LAllocateHistogramSet(histogram_image_xysize, *cache_bits); |
853 | tmp_histos = VP8LAllocateHistogramSet(2, *cache_bits); |
854 | if (histogram_image == NULL || tmp_histos == NULL) { |
855 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
856 | goto Error; |
857 | } |
858 | |
859 | // Build histogram image and symbols from backward references. |
860 | if (!VP8LGetHistoImageSymbols(width, height, &refs, quality, low_effort, |
861 | histogram_bits, *cache_bits, histogram_image, |
862 | tmp_histos, histogram_symbols)) { |
863 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
864 | goto Error; |
865 | } |
866 | // Create Huffman bit lengths and codes for each histogram image. |
867 | histogram_image_size = histogram_image->size; |
868 | bit_array_size = 5 * histogram_image_size; |
869 | huffman_codes = (HuffmanTreeCode*)WebPSafeCalloc(bit_array_size, |
870 | sizeof(*huffman_codes)); |
871 | // Note: some histogram_image entries may point to tmp_histos[], so the latter |
872 | // need to outlive the following call to GetHuffBitLengthsAndCodes(). |
873 | if (huffman_codes == NULL || |
874 | !GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) { |
875 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
876 | goto Error; |
877 | } |
878 | // Free combined histograms. |
879 | VP8LFreeHistogramSet(histogram_image); |
880 | histogram_image = NULL; |
881 | |
882 | // Free scratch histograms. |
883 | VP8LFreeHistogramSet(tmp_histos); |
884 | tmp_histos = NULL; |
885 | |
886 | // Color Cache parameters. |
887 | if (*cache_bits > 0) { |
888 | VP8LPutBits(bw, 1, 1); |
889 | VP8LPutBits(bw, *cache_bits, 4); |
890 | } else { |
891 | VP8LPutBits(bw, 0, 1); |
892 | } |
893 | |
894 | // Huffman image + meta huffman. |
895 | { |
896 | const int write_histogram_image = (histogram_image_size > 1); |
897 | VP8LPutBits(bw, write_histogram_image, 1); |
898 | if (write_histogram_image) { |
899 | uint32_t* const histogram_argb = |
900 | (uint32_t*)WebPSafeMalloc(histogram_image_xysize, |
901 | sizeof(*histogram_argb)); |
902 | int max_index = 0; |
903 | uint32_t i; |
904 | if (histogram_argb == NULL) { |
905 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
906 | goto Error; |
907 | } |
908 | for (i = 0; i < histogram_image_xysize; ++i) { |
909 | const int symbol_index = histogram_symbols[i] & 0xffff; |
910 | histogram_argb[i] = (symbol_index << 8); |
911 | if (symbol_index >= max_index) { |
912 | max_index = symbol_index + 1; |
913 | } |
914 | } |
915 | histogram_image_size = max_index; |
916 | |
917 | VP8LPutBits(bw, histogram_bits - 2, 3); |
918 | err = EncodeImageNoHuffman(bw, histogram_argb, hash_chain, refs_array, |
919 | VP8LSubSampleSize(width, histogram_bits), |
920 | VP8LSubSampleSize(height, histogram_bits), |
921 | quality, low_effort); |
922 | WebPSafeFree(histogram_argb); |
923 | if (err != VP8_ENC_OK) goto Error; |
924 | } |
925 | } |
926 | |
927 | // Store Huffman codes. |
928 | { |
929 | int i; |
930 | int max_tokens = 0; |
931 | huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * CODE_LENGTH_CODES, |
932 | sizeof(*huff_tree)); |
933 | if (huff_tree == NULL) { |
934 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
935 | goto Error; |
936 | } |
937 | // Find maximum number of symbols for the huffman tree-set. |
938 | for (i = 0; i < 5 * histogram_image_size; ++i) { |
939 | HuffmanTreeCode* const codes = &huffman_codes[i]; |
940 | if (max_tokens < codes->num_symbols) { |
941 | max_tokens = codes->num_symbols; |
942 | } |
943 | } |
944 | tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, |
945 | sizeof(*tokens)); |
946 | if (tokens == NULL) { |
947 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
948 | goto Error; |
949 | } |
950 | for (i = 0; i < 5 * histogram_image_size; ++i) { |
951 | HuffmanTreeCode* const codes = &huffman_codes[i]; |
952 | StoreHuffmanCode(bw, huff_tree, tokens, codes); |
953 | ClearHuffmanTreeIfOnlyOneSymbol(codes); |
954 | } |
955 | } |
956 | |
957 | *hdr_size = (int)(VP8LBitWriterNumBytes(bw) - init_byte_position); |
958 | // Store actual literals. |
959 | err = StoreImageToBitMask(bw, width, histogram_bits, &refs, |
960 | histogram_symbols, huffman_codes); |
961 | *data_size = |
962 | (int)(VP8LBitWriterNumBytes(bw) - init_byte_position - *hdr_size); |
963 | |
964 | Error: |
965 | WebPSafeFree(tokens); |
966 | WebPSafeFree(huff_tree); |
967 | VP8LFreeHistogramSet(histogram_image); |
968 | VP8LFreeHistogramSet(tmp_histos); |
969 | VP8LBackwardRefsClear(&refs); |
970 | if (huffman_codes != NULL) { |
971 | WebPSafeFree(huffman_codes->codes); |
972 | WebPSafeFree(huffman_codes); |
973 | } |
974 | WebPSafeFree(histogram_symbols); |
975 | return err; |
976 | } |
977 | |
978 | // ----------------------------------------------------------------------------- |
979 | // Transforms |
980 | |
981 | static void ApplySubtractGreen(VP8LEncoder* const enc, int width, int height, |
982 | VP8LBitWriter* const bw) { |
983 | VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
984 | VP8LPutBits(bw, SUBTRACT_GREEN, 2); |
985 | VP8LSubtractGreenFromBlueAndRed(enc->argb_, width * height); |
986 | } |
987 | |
988 | static WebPEncodingError ApplyPredictFilter(const VP8LEncoder* const enc, |
989 | int width, int height, |
990 | int quality, int low_effort, |
991 | int used_subtract_green, |
992 | VP8LBitWriter* const bw) { |
993 | const int pred_bits = enc->transform_bits_; |
994 | const int transform_width = VP8LSubSampleSize(width, pred_bits); |
995 | const int transform_height = VP8LSubSampleSize(height, pred_bits); |
996 | // we disable near-lossless quantization if palette is used. |
997 | const int near_lossless_strength = enc->use_palette_ ? 100 |
998 | : enc->config_->near_lossless; |
999 | |
1000 | VP8LResidualImage(width, height, pred_bits, low_effort, enc->argb_, |
1001 | enc->argb_scratch_, enc->transform_data_, |
1002 | near_lossless_strength, enc->config_->exact, |
1003 | used_subtract_green); |
1004 | VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
1005 | VP8LPutBits(bw, PREDICTOR_TRANSFORM, 2); |
1006 | assert(pred_bits >= 2); |
1007 | VP8LPutBits(bw, pred_bits - 2, 3); |
1008 | return EncodeImageNoHuffman(bw, enc->transform_data_, |
1009 | (VP8LHashChain*)&enc->hash_chain_, |
1010 | (VP8LBackwardRefs*)enc->refs_, // cast const away |
1011 | transform_width, transform_height, |
1012 | quality, low_effort); |
1013 | } |
1014 | |
1015 | static WebPEncodingError ApplyCrossColorFilter(const VP8LEncoder* const enc, |
1016 | int width, int height, |
1017 | int quality, int low_effort, |
1018 | VP8LBitWriter* const bw) { |
1019 | const int ccolor_transform_bits = enc->transform_bits_; |
1020 | const int transform_width = VP8LSubSampleSize(width, ccolor_transform_bits); |
1021 | const int transform_height = VP8LSubSampleSize(height, ccolor_transform_bits); |
1022 | |
1023 | VP8LColorSpaceTransform(width, height, ccolor_transform_bits, quality, |
1024 | enc->argb_, enc->transform_data_); |
1025 | VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
1026 | VP8LPutBits(bw, CROSS_COLOR_TRANSFORM, 2); |
1027 | assert(ccolor_transform_bits >= 2); |
1028 | VP8LPutBits(bw, ccolor_transform_bits - 2, 3); |
1029 | return EncodeImageNoHuffman(bw, enc->transform_data_, |
1030 | (VP8LHashChain*)&enc->hash_chain_, |
1031 | (VP8LBackwardRefs*)enc->refs_, // cast const away |
1032 | transform_width, transform_height, |
1033 | quality, low_effort); |
1034 | } |
1035 | |
1036 | // ----------------------------------------------------------------------------- |
1037 | |
1038 | static WebPEncodingError (const WebPPicture* const pic, |
1039 | size_t riff_size, size_t vp8l_size) { |
1040 | uint8_t riff[RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE + VP8L_SIGNATURE_SIZE] = { |
1041 | 'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'E', 'B', 'P', |
1042 | 'V', 'P', '8', 'L', 0, 0, 0, 0, VP8L_MAGIC_BYTE, |
1043 | }; |
1044 | PutLE32(riff + TAG_SIZE, (uint32_t)riff_size); |
1045 | PutLE32(riff + RIFF_HEADER_SIZE + TAG_SIZE, (uint32_t)vp8l_size); |
1046 | if (!pic->writer(riff, sizeof(riff), pic)) { |
1047 | return VP8_ENC_ERROR_BAD_WRITE; |
1048 | } |
1049 | return VP8_ENC_OK; |
1050 | } |
1051 | |
1052 | static int WriteImageSize(const WebPPicture* const pic, |
1053 | VP8LBitWriter* const bw) { |
1054 | const int width = pic->width - 1; |
1055 | const int height = pic->height - 1; |
1056 | assert(width < WEBP_MAX_DIMENSION && height < WEBP_MAX_DIMENSION); |
1057 | |
1058 | VP8LPutBits(bw, width, VP8L_IMAGE_SIZE_BITS); |
1059 | VP8LPutBits(bw, height, VP8L_IMAGE_SIZE_BITS); |
1060 | return !bw->error_; |
1061 | } |
1062 | |
1063 | static int WriteRealAlphaAndVersion(VP8LBitWriter* const bw, int has_alpha) { |
1064 | VP8LPutBits(bw, has_alpha, 1); |
1065 | VP8LPutBits(bw, VP8L_VERSION, VP8L_VERSION_BITS); |
1066 | return !bw->error_; |
1067 | } |
1068 | |
1069 | static WebPEncodingError WriteImage(const WebPPicture* const pic, |
1070 | VP8LBitWriter* const bw, |
1071 | size_t* const coded_size) { |
1072 | WebPEncodingError err = VP8_ENC_OK; |
1073 | const uint8_t* const webpll_data = VP8LBitWriterFinish(bw); |
1074 | const size_t webpll_size = VP8LBitWriterNumBytes(bw); |
1075 | const size_t vp8l_size = VP8L_SIGNATURE_SIZE + webpll_size; |
1076 | const size_t pad = vp8l_size & 1; |
1077 | const size_t riff_size = TAG_SIZE + CHUNK_HEADER_SIZE + vp8l_size + pad; |
1078 | |
1079 | err = WriteRiffHeader(pic, riff_size, vp8l_size); |
1080 | if (err != VP8_ENC_OK) goto Error; |
1081 | |
1082 | if (!pic->writer(webpll_data, webpll_size, pic)) { |
1083 | err = VP8_ENC_ERROR_BAD_WRITE; |
1084 | goto Error; |
1085 | } |
1086 | |
1087 | if (pad) { |
1088 | const uint8_t pad_byte[1] = { 0 }; |
1089 | if (!pic->writer(pad_byte, 1, pic)) { |
1090 | err = VP8_ENC_ERROR_BAD_WRITE; |
1091 | goto Error; |
1092 | } |
1093 | } |
1094 | *coded_size = CHUNK_HEADER_SIZE + riff_size; |
1095 | return VP8_ENC_OK; |
1096 | |
1097 | Error: |
1098 | return err; |
1099 | } |
1100 | |
1101 | // ----------------------------------------------------------------------------- |
1102 | |
1103 | static void ClearTransformBuffer(VP8LEncoder* const enc) { |
1104 | WebPSafeFree(enc->transform_mem_); |
1105 | enc->transform_mem_ = NULL; |
1106 | enc->transform_mem_size_ = 0; |
1107 | } |
1108 | |
1109 | // Allocates the memory for argb (W x H) buffer, 2 rows of context for |
1110 | // prediction and transform data. |
1111 | // Flags influencing the memory allocated: |
1112 | // enc->transform_bits_ |
1113 | // enc->use_predict_, enc->use_cross_color_ |
1114 | static WebPEncodingError AllocateTransformBuffer(VP8LEncoder* const enc, |
1115 | int width, int height) { |
1116 | WebPEncodingError err = VP8_ENC_OK; |
1117 | const uint64_t image_size = width * height; |
1118 | // VP8LResidualImage needs room for 2 scanlines of uint32 pixels with an extra |
1119 | // pixel in each, plus 2 regular scanlines of bytes. |
1120 | // TODO(skal): Clean up by using arithmetic in bytes instead of words. |
1121 | const uint64_t argb_scratch_size = |
1122 | enc->use_predict_ |
1123 | ? (width + 1) * 2 + |
1124 | (width * 2 + sizeof(uint32_t) - 1) / sizeof(uint32_t) |
1125 | : 0; |
1126 | const uint64_t transform_data_size = |
1127 | (enc->use_predict_ || enc->use_cross_color_) |
1128 | ? VP8LSubSampleSize(width, enc->transform_bits_) * |
1129 | VP8LSubSampleSize(height, enc->transform_bits_) |
1130 | : 0; |
1131 | const uint64_t max_alignment_in_words = |
1132 | (WEBP_ALIGN_CST + sizeof(uint32_t) - 1) / sizeof(uint32_t); |
1133 | const uint64_t mem_size = |
1134 | image_size + max_alignment_in_words + |
1135 | argb_scratch_size + max_alignment_in_words + |
1136 | transform_data_size; |
1137 | uint32_t* mem = enc->transform_mem_; |
1138 | if (mem == NULL || mem_size > enc->transform_mem_size_) { |
1139 | ClearTransformBuffer(enc); |
1140 | mem = (uint32_t*)WebPSafeMalloc(mem_size, sizeof(*mem)); |
1141 | if (mem == NULL) { |
1142 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
1143 | goto Error; |
1144 | } |
1145 | enc->transform_mem_ = mem; |
1146 | enc->transform_mem_size_ = (size_t)mem_size; |
1147 | } |
1148 | enc->argb_ = mem; |
1149 | mem = (uint32_t*)WEBP_ALIGN(mem + image_size); |
1150 | enc->argb_scratch_ = mem; |
1151 | mem = (uint32_t*)WEBP_ALIGN(mem + argb_scratch_size); |
1152 | enc->transform_data_ = mem; |
1153 | |
1154 | enc->current_width_ = width; |
1155 | Error: |
1156 | return err; |
1157 | } |
1158 | |
1159 | static WebPEncodingError MakeInputImageCopy(VP8LEncoder* const enc) { |
1160 | WebPEncodingError err = VP8_ENC_OK; |
1161 | const WebPPicture* const picture = enc->pic_; |
1162 | const int width = picture->width; |
1163 | const int height = picture->height; |
1164 | int y; |
1165 | err = AllocateTransformBuffer(enc, width, height); |
1166 | if (err != VP8_ENC_OK) return err; |
1167 | for (y = 0; y < height; ++y) { |
1168 | memcpy(enc->argb_ + y * width, |
1169 | picture->argb + y * picture->argb_stride, |
1170 | width * sizeof(*enc->argb_)); |
1171 | } |
1172 | assert(enc->current_width_ == width); |
1173 | return VP8_ENC_OK; |
1174 | } |
1175 | |
1176 | // ----------------------------------------------------------------------------- |
1177 | |
1178 | static WEBP_INLINE int SearchColorNoIdx(const uint32_t sorted[], uint32_t color, |
1179 | int hi) { |
1180 | int low = 0; |
1181 | if (sorted[low] == color) return low; // loop invariant: sorted[low] != color |
1182 | while (1) { |
1183 | const int mid = (low + hi) >> 1; |
1184 | if (sorted[mid] == color) { |
1185 | return mid; |
1186 | } else if (sorted[mid] < color) { |
1187 | low = mid; |
1188 | } else { |
1189 | hi = mid; |
1190 | } |
1191 | } |
1192 | } |
1193 | |
1194 | #define APPLY_PALETTE_GREEDY_MAX 4 |
1195 | |
1196 | static WEBP_INLINE uint32_t SearchColorGreedy(const uint32_t palette[], |
1197 | int palette_size, |
1198 | uint32_t color) { |
1199 | (void)palette_size; |
1200 | assert(palette_size < APPLY_PALETTE_GREEDY_MAX); |
1201 | assert(3 == APPLY_PALETTE_GREEDY_MAX - 1); |
1202 | if (color == palette[0]) return 0; |
1203 | if (color == palette[1]) return 1; |
1204 | if (color == palette[2]) return 2; |
1205 | return 3; |
1206 | } |
1207 | |
1208 | static WEBP_INLINE uint32_t ApplyPaletteHash0(uint32_t color) { |
1209 | // Focus on the green color. |
1210 | return (color >> 8) & 0xff; |
1211 | } |
1212 | |
1213 | #define PALETTE_INV_SIZE_BITS 11 |
1214 | #define PALETTE_INV_SIZE (1 << PALETTE_INV_SIZE_BITS) |
1215 | |
1216 | static WEBP_INLINE uint32_t ApplyPaletteHash1(uint32_t color) { |
1217 | // Forget about alpha. |
1218 | return ((color & 0x00ffffffu) * 4222244071u) >> (32 - PALETTE_INV_SIZE_BITS); |
1219 | } |
1220 | |
1221 | static WEBP_INLINE uint32_t ApplyPaletteHash2(uint32_t color) { |
1222 | // Forget about alpha. |
1223 | return (color & 0x00ffffffu) * ((1u << 31) - 1) >> |
1224 | (32 - PALETTE_INV_SIZE_BITS); |
1225 | } |
1226 | |
1227 | // Sort palette in increasing order and prepare an inverse mapping array. |
1228 | static void PrepareMapToPalette(const uint32_t palette[], int num_colors, |
1229 | uint32_t sorted[], uint32_t idx_map[]) { |
1230 | int i; |
1231 | memcpy(sorted, palette, num_colors * sizeof(*sorted)); |
1232 | qsort(sorted, num_colors, sizeof(*sorted), PaletteCompareColorsForQsort); |
1233 | for (i = 0; i < num_colors; ++i) { |
1234 | idx_map[SearchColorNoIdx(sorted, palette[i], num_colors)] = i; |
1235 | } |
1236 | } |
1237 | |
1238 | // Use 1 pixel cache for ARGB pixels. |
1239 | #define APPLY_PALETTE_FOR(COLOR_INDEX) do { \ |
1240 | uint32_t prev_pix = palette[0]; \ |
1241 | uint32_t prev_idx = 0; \ |
1242 | for (y = 0; y < height; ++y) { \ |
1243 | for (x = 0; x < width; ++x) { \ |
1244 | const uint32_t pix = src[x]; \ |
1245 | if (pix != prev_pix) { \ |
1246 | prev_idx = COLOR_INDEX; \ |
1247 | prev_pix = pix; \ |
1248 | } \ |
1249 | tmp_row[x] = prev_idx; \ |
1250 | } \ |
1251 | VP8LBundleColorMap(tmp_row, width, xbits, dst); \ |
1252 | src += src_stride; \ |
1253 | dst += dst_stride; \ |
1254 | } \ |
1255 | } while (0) |
1256 | |
1257 | // Remap argb values in src[] to packed palettes entries in dst[] |
1258 | // using 'row' as a temporary buffer of size 'width'. |
1259 | // We assume that all src[] values have a corresponding entry in the palette. |
1260 | // Note: src[] can be the same as dst[] |
1261 | static WebPEncodingError ApplyPalette(const uint32_t* src, uint32_t src_stride, |
1262 | uint32_t* dst, uint32_t dst_stride, |
1263 | const uint32_t* palette, int palette_size, |
1264 | int width, int height, int xbits) { |
1265 | // TODO(skal): this tmp buffer is not needed if VP8LBundleColorMap() can be |
1266 | // made to work in-place. |
1267 | uint8_t* const tmp_row = (uint8_t*)WebPSafeMalloc(width, sizeof(*tmp_row)); |
1268 | int x, y; |
1269 | |
1270 | if (tmp_row == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY; |
1271 | |
1272 | if (palette_size < APPLY_PALETTE_GREEDY_MAX) { |
1273 | APPLY_PALETTE_FOR(SearchColorGreedy(palette, palette_size, pix)); |
1274 | } else { |
1275 | int i, j; |
1276 | uint16_t buffer[PALETTE_INV_SIZE]; |
1277 | uint32_t (*const hash_functions[])(uint32_t) = { |
1278 | ApplyPaletteHash0, ApplyPaletteHash1, ApplyPaletteHash2 |
1279 | }; |
1280 | |
1281 | // Try to find a perfect hash function able to go from a color to an index |
1282 | // within 1 << PALETTE_INV_SIZE_BITS in order to build a hash map to go |
1283 | // from color to index in palette. |
1284 | for (i = 0; i < 3; ++i) { |
1285 | int use_LUT = 1; |
1286 | // Set each element in buffer to max uint16_t. |
1287 | memset(buffer, 0xff, sizeof(buffer)); |
1288 | for (j = 0; j < palette_size; ++j) { |
1289 | const uint32_t ind = hash_functions[i](palette[j]); |
1290 | if (buffer[ind] != 0xffffu) { |
1291 | use_LUT = 0; |
1292 | break; |
1293 | } else { |
1294 | buffer[ind] = j; |
1295 | } |
1296 | } |
1297 | if (use_LUT) break; |
1298 | } |
1299 | |
1300 | if (i == 0) { |
1301 | APPLY_PALETTE_FOR(buffer[ApplyPaletteHash0(pix)]); |
1302 | } else if (i == 1) { |
1303 | APPLY_PALETTE_FOR(buffer[ApplyPaletteHash1(pix)]); |
1304 | } else if (i == 2) { |
1305 | APPLY_PALETTE_FOR(buffer[ApplyPaletteHash2(pix)]); |
1306 | } else { |
1307 | uint32_t idx_map[MAX_PALETTE_SIZE]; |
1308 | uint32_t palette_sorted[MAX_PALETTE_SIZE]; |
1309 | PrepareMapToPalette(palette, palette_size, palette_sorted, idx_map); |
1310 | APPLY_PALETTE_FOR( |
1311 | idx_map[SearchColorNoIdx(palette_sorted, pix, palette_size)]); |
1312 | } |
1313 | } |
1314 | WebPSafeFree(tmp_row); |
1315 | return VP8_ENC_OK; |
1316 | } |
1317 | #undef APPLY_PALETTE_FOR |
1318 | #undef PALETTE_INV_SIZE_BITS |
1319 | #undef PALETTE_INV_SIZE |
1320 | #undef APPLY_PALETTE_GREEDY_MAX |
1321 | |
1322 | // Note: Expects "enc->palette_" to be set properly. |
1323 | static WebPEncodingError MapImageFromPalette(VP8LEncoder* const enc, |
1324 | int in_place) { |
1325 | WebPEncodingError err = VP8_ENC_OK; |
1326 | const WebPPicture* const pic = enc->pic_; |
1327 | const int width = pic->width; |
1328 | const int height = pic->height; |
1329 | const uint32_t* const palette = enc->palette_; |
1330 | const uint32_t* src = in_place ? enc->argb_ : pic->argb; |
1331 | const int src_stride = in_place ? enc->current_width_ : pic->argb_stride; |
1332 | const int palette_size = enc->palette_size_; |
1333 | int xbits; |
1334 | |
1335 | // Replace each input pixel by corresponding palette index. |
1336 | // This is done line by line. |
1337 | if (palette_size <= 4) { |
1338 | xbits = (palette_size <= 2) ? 3 : 2; |
1339 | } else { |
1340 | xbits = (palette_size <= 16) ? 1 : 0; |
1341 | } |
1342 | |
1343 | err = AllocateTransformBuffer(enc, VP8LSubSampleSize(width, xbits), height); |
1344 | if (err != VP8_ENC_OK) return err; |
1345 | |
1346 | err = ApplyPalette(src, src_stride, |
1347 | enc->argb_, enc->current_width_, |
1348 | palette, palette_size, width, height, xbits); |
1349 | return err; |
1350 | } |
1351 | |
1352 | // Save palette_[] to bitstream. |
1353 | static WebPEncodingError EncodePalette(VP8LBitWriter* const bw, int low_effort, |
1354 | VP8LEncoder* const enc) { |
1355 | int i; |
1356 | uint32_t tmp_palette[MAX_PALETTE_SIZE]; |
1357 | const int palette_size = enc->palette_size_; |
1358 | const uint32_t* const palette = enc->palette_; |
1359 | VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
1360 | VP8LPutBits(bw, COLOR_INDEXING_TRANSFORM, 2); |
1361 | assert(palette_size >= 1 && palette_size <= MAX_PALETTE_SIZE); |
1362 | VP8LPutBits(bw, palette_size - 1, 8); |
1363 | for (i = palette_size - 1; i >= 1; --i) { |
1364 | tmp_palette[i] = VP8LSubPixels(palette[i], palette[i - 1]); |
1365 | } |
1366 | tmp_palette[0] = palette[0]; |
1367 | return EncodeImageNoHuffman(bw, tmp_palette, &enc->hash_chain_, enc->refs_, |
1368 | palette_size, 1, 20 /* quality */, low_effort); |
1369 | } |
1370 | |
1371 | #ifdef WEBP_EXPERIMENTAL_FEATURES |
1372 | |
1373 | static WebPEncodingError EncodeDeltaPalettePredictorImage( |
1374 | VP8LBitWriter* const bw, VP8LEncoder* const enc, int quality, |
1375 | int low_effort) { |
1376 | const WebPPicture* const pic = enc->pic_; |
1377 | const int width = pic->width; |
1378 | const int height = pic->height; |
1379 | |
1380 | const int pred_bits = 5; |
1381 | const int transform_width = VP8LSubSampleSize(width, pred_bits); |
1382 | const int transform_height = VP8LSubSampleSize(height, pred_bits); |
1383 | const int pred = 7; // default is Predictor7 (Top/Left Average) |
1384 | const int tiles_per_row = VP8LSubSampleSize(width, pred_bits); |
1385 | const int tiles_per_col = VP8LSubSampleSize(height, pred_bits); |
1386 | uint32_t* predictors; |
1387 | int tile_x, tile_y; |
1388 | WebPEncodingError err = VP8_ENC_OK; |
1389 | |
1390 | predictors = (uint32_t*)WebPSafeMalloc(tiles_per_col * tiles_per_row, |
1391 | sizeof(*predictors)); |
1392 | if (predictors == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY; |
1393 | |
1394 | for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) { |
1395 | for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) { |
1396 | predictors[tile_y * tiles_per_row + tile_x] = 0xff000000u | (pred << 8); |
1397 | } |
1398 | } |
1399 | |
1400 | VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
1401 | VP8LPutBits(bw, PREDICTOR_TRANSFORM, 2); |
1402 | VP8LPutBits(bw, pred_bits - 2, 3); |
1403 | err = EncodeImageNoHuffman(bw, predictors, &enc->hash_chain_, |
1404 | (VP8LBackwardRefs*)enc->refs_, // cast const away |
1405 | transform_width, transform_height, |
1406 | quality, low_effort); |
1407 | WebPSafeFree(predictors); |
1408 | return err; |
1409 | } |
1410 | |
1411 | #endif // WEBP_EXPERIMENTAL_FEATURES |
1412 | |
1413 | // ----------------------------------------------------------------------------- |
1414 | // VP8LEncoder |
1415 | |
1416 | static VP8LEncoder* VP8LEncoderNew(const WebPConfig* const config, |
1417 | const WebPPicture* const picture) { |
1418 | VP8LEncoder* const enc = (VP8LEncoder*)WebPSafeCalloc(1ULL, sizeof(*enc)); |
1419 | if (enc == NULL) { |
1420 | WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
1421 | return NULL; |
1422 | } |
1423 | enc->config_ = config; |
1424 | enc->pic_ = picture; |
1425 | |
1426 | VP8LEncDspInit(); |
1427 | |
1428 | return enc; |
1429 | } |
1430 | |
1431 | static void VP8LEncoderDelete(VP8LEncoder* enc) { |
1432 | if (enc != NULL) { |
1433 | VP8LHashChainClear(&enc->hash_chain_); |
1434 | VP8LBackwardRefsClear(&enc->refs_[0]); |
1435 | VP8LBackwardRefsClear(&enc->refs_[1]); |
1436 | ClearTransformBuffer(enc); |
1437 | WebPSafeFree(enc); |
1438 | } |
1439 | } |
1440 | |
1441 | // ----------------------------------------------------------------------------- |
1442 | // Main call |
1443 | |
1444 | WebPEncodingError VP8LEncodeStream(const WebPConfig* const config, |
1445 | const WebPPicture* const picture, |
1446 | VP8LBitWriter* const bw, int use_cache) { |
1447 | WebPEncodingError err = VP8_ENC_OK; |
1448 | const int quality = (int)config->quality; |
1449 | const int low_effort = (config->method == 0); |
1450 | const int width = picture->width; |
1451 | const int height = picture->height; |
1452 | VP8LEncoder* const enc = VP8LEncoderNew(config, picture); |
1453 | const size_t byte_position = VP8LBitWriterNumBytes(bw); |
1454 | int use_near_lossless = 0; |
1455 | int hdr_size = 0; |
1456 | int data_size = 0; |
1457 | int use_delta_palette = 0; |
1458 | |
1459 | if (enc == NULL) { |
1460 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
1461 | goto Error; |
1462 | } |
1463 | |
1464 | // --------------------------------------------------------------------------- |
1465 | // Analyze image (entropy, num_palettes etc) |
1466 | |
1467 | if (!AnalyzeAndInit(enc)) { |
1468 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
1469 | goto Error; |
1470 | } |
1471 | |
1472 | // Apply near-lossless preprocessing. |
1473 | use_near_lossless = |
1474 | (config->near_lossless < 100) && !enc->use_palette_ && !enc->use_predict_; |
1475 | if (use_near_lossless) { |
1476 | if (!VP8ApplyNearLossless(width, height, picture->argb, |
1477 | config->near_lossless)) { |
1478 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
1479 | goto Error; |
1480 | } |
1481 | } |
1482 | |
1483 | #ifdef WEBP_EXPERIMENTAL_FEATURES |
1484 | if (config->use_delta_palette) { |
1485 | enc->use_predict_ = 1; |
1486 | enc->use_cross_color_ = 0; |
1487 | enc->use_subtract_green_ = 0; |
1488 | enc->use_palette_ = 1; |
1489 | err = MakeInputImageCopy(enc); |
1490 | if (err != VP8_ENC_OK) goto Error; |
1491 | err = WebPSearchOptimalDeltaPalette(enc); |
1492 | if (err != VP8_ENC_OK) goto Error; |
1493 | if (enc->use_palette_) { |
1494 | err = AllocateTransformBuffer(enc, width, height); |
1495 | if (err != VP8_ENC_OK) goto Error; |
1496 | err = EncodeDeltaPalettePredictorImage(bw, enc, quality, low_effort); |
1497 | if (err != VP8_ENC_OK) goto Error; |
1498 | use_delta_palette = 1; |
1499 | } |
1500 | } |
1501 | #endif // WEBP_EXPERIMENTAL_FEATURES |
1502 | |
1503 | // Encode palette |
1504 | if (enc->use_palette_) { |
1505 | err = EncodePalette(bw, low_effort, enc); |
1506 | if (err != VP8_ENC_OK) goto Error; |
1507 | err = MapImageFromPalette(enc, use_delta_palette); |
1508 | if (err != VP8_ENC_OK) goto Error; |
1509 | // If using a color cache, do not have it bigger than the number of colors. |
1510 | if (use_cache && enc->palette_size_ < (1 << MAX_COLOR_CACHE_BITS)) { |
1511 | enc->cache_bits_ = BitsLog2Floor(enc->palette_size_) + 1; |
1512 | } |
1513 | } |
1514 | if (!use_delta_palette) { |
1515 | // In case image is not packed. |
1516 | if (enc->argb_ == NULL) { |
1517 | err = MakeInputImageCopy(enc); |
1518 | if (err != VP8_ENC_OK) goto Error; |
1519 | } |
1520 | |
1521 | // ------------------------------------------------------------------------- |
1522 | // Apply transforms and write transform data. |
1523 | |
1524 | if (enc->use_subtract_green_) { |
1525 | ApplySubtractGreen(enc, enc->current_width_, height, bw); |
1526 | } |
1527 | |
1528 | if (enc->use_predict_) { |
1529 | err = ApplyPredictFilter(enc, enc->current_width_, height, quality, |
1530 | low_effort, enc->use_subtract_green_, bw); |
1531 | if (err != VP8_ENC_OK) goto Error; |
1532 | } |
1533 | |
1534 | if (enc->use_cross_color_) { |
1535 | err = ApplyCrossColorFilter(enc, enc->current_width_, |
1536 | height, quality, low_effort, bw); |
1537 | if (err != VP8_ENC_OK) goto Error; |
1538 | } |
1539 | } |
1540 | |
1541 | VP8LPutBits(bw, !TRANSFORM_PRESENT, 1); // No more transforms. |
1542 | |
1543 | // --------------------------------------------------------------------------- |
1544 | // Encode and write the transformed image. |
1545 | err = EncodeImageInternal(bw, enc->argb_, &enc->hash_chain_, enc->refs_, |
1546 | enc->current_width_, height, quality, low_effort, |
1547 | use_cache, &enc->cache_bits_, enc->histo_bits_, |
1548 | byte_position, &hdr_size, &data_size); |
1549 | if (err != VP8_ENC_OK) goto Error; |
1550 | |
1551 | if (picture->stats != NULL) { |
1552 | WebPAuxStats* const stats = picture->stats; |
1553 | stats->lossless_features = 0; |
1554 | if (enc->use_predict_) stats->lossless_features |= 1; |
1555 | if (enc->use_cross_color_) stats->lossless_features |= 2; |
1556 | if (enc->use_subtract_green_) stats->lossless_features |= 4; |
1557 | if (enc->use_palette_) stats->lossless_features |= 8; |
1558 | stats->histogram_bits = enc->histo_bits_; |
1559 | stats->transform_bits = enc->transform_bits_; |
1560 | stats->cache_bits = enc->cache_bits_; |
1561 | stats->palette_size = enc->palette_size_; |
1562 | stats->lossless_size = (int)(VP8LBitWriterNumBytes(bw) - byte_position); |
1563 | stats->lossless_hdr_size = hdr_size; |
1564 | stats->lossless_data_size = data_size; |
1565 | } |
1566 | |
1567 | Error: |
1568 | VP8LEncoderDelete(enc); |
1569 | return err; |
1570 | } |
1571 | |
1572 | int VP8LEncodeImage(const WebPConfig* const config, |
1573 | const WebPPicture* const picture) { |
1574 | int width, height; |
1575 | int has_alpha; |
1576 | size_t coded_size; |
1577 | int percent = 0; |
1578 | int initial_size; |
1579 | WebPEncodingError err = VP8_ENC_OK; |
1580 | VP8LBitWriter bw; |
1581 | |
1582 | if (picture == NULL) return 0; |
1583 | |
1584 | if (config == NULL || picture->argb == NULL) { |
1585 | err = VP8_ENC_ERROR_NULL_PARAMETER; |
1586 | WebPEncodingSetError(picture, err); |
1587 | return 0; |
1588 | } |
1589 | |
1590 | width = picture->width; |
1591 | height = picture->height; |
1592 | // Initialize BitWriter with size corresponding to 16 bpp to photo images and |
1593 | // 8 bpp for graphical images. |
1594 | initial_size = (config->image_hint == WEBP_HINT_GRAPH) ? |
1595 | width * height : width * height * 2; |
1596 | if (!VP8LBitWriterInit(&bw, initial_size)) { |
1597 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
1598 | goto Error; |
1599 | } |
1600 | |
1601 | if (!WebPReportProgress(picture, 1, &percent)) { |
1602 | UserAbort: |
1603 | err = VP8_ENC_ERROR_USER_ABORT; |
1604 | goto Error; |
1605 | } |
1606 | // Reset stats (for pure lossless coding) |
1607 | if (picture->stats != NULL) { |
1608 | WebPAuxStats* const stats = picture->stats; |
1609 | memset(stats, 0, sizeof(*stats)); |
1610 | stats->PSNR[0] = 99.f; |
1611 | stats->PSNR[1] = 99.f; |
1612 | stats->PSNR[2] = 99.f; |
1613 | stats->PSNR[3] = 99.f; |
1614 | stats->PSNR[4] = 99.f; |
1615 | } |
1616 | |
1617 | // Write image size. |
1618 | if (!WriteImageSize(picture, &bw)) { |
1619 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
1620 | goto Error; |
1621 | } |
1622 | |
1623 | has_alpha = WebPPictureHasTransparency(picture); |
1624 | // Write the non-trivial Alpha flag and lossless version. |
1625 | if (!WriteRealAlphaAndVersion(&bw, has_alpha)) { |
1626 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
1627 | goto Error; |
1628 | } |
1629 | |
1630 | if (!WebPReportProgress(picture, 5, &percent)) goto UserAbort; |
1631 | |
1632 | // Encode main image stream. |
1633 | err = VP8LEncodeStream(config, picture, &bw, 1 /*use_cache*/); |
1634 | if (err != VP8_ENC_OK) goto Error; |
1635 | |
1636 | // TODO(skal): have a fine-grained progress report in VP8LEncodeStream(). |
1637 | if (!WebPReportProgress(picture, 90, &percent)) goto UserAbort; |
1638 | |
1639 | // Finish the RIFF chunk. |
1640 | err = WriteImage(picture, &bw, &coded_size); |
1641 | if (err != VP8_ENC_OK) goto Error; |
1642 | |
1643 | if (!WebPReportProgress(picture, 100, &percent)) goto UserAbort; |
1644 | |
1645 | // Save size. |
1646 | if (picture->stats != NULL) { |
1647 | picture->stats->coded_size += (int)coded_size; |
1648 | picture->stats->lossless_size = (int)coded_size; |
1649 | } |
1650 | |
1651 | if (picture->extra_info != NULL) { |
1652 | const int mb_w = (width + 15) >> 4; |
1653 | const int mb_h = (height + 15) >> 4; |
1654 | memset(picture->extra_info, 0, mb_w * mb_h * sizeof(*picture->extra_info)); |
1655 | } |
1656 | |
1657 | Error: |
1658 | if (bw.error_) err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
1659 | VP8LBitWriterWipeOut(&bw); |
1660 | if (err != VP8_ENC_OK) { |
1661 | WebPEncodingSetError(picture, err); |
1662 | return 0; |
1663 | } |
1664 | return 1; |
1665 | } |
1666 | |
1667 | //------------------------------------------------------------------------------ |
1668 | |