| 1 | // Copyright 2012 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // main entry for the lossless encoder. |
| 11 | // |
| 12 | // Author: Vikas Arora (vikaas.arora@gmail.com) |
| 13 | // |
| 14 | |
| 15 | #include <assert.h> |
| 16 | #include <stdlib.h> |
| 17 | |
| 18 | #include "./backward_references_enc.h" |
| 19 | #include "./histogram_enc.h" |
| 20 | #include "./vp8i_enc.h" |
| 21 | #include "./vp8li_enc.h" |
| 22 | #include "../dsp/lossless.h" |
| 23 | #include "../dsp/lossless_common.h" |
| 24 | #include "../utils/bit_writer_utils.h" |
| 25 | #include "../utils/huffman_encode_utils.h" |
| 26 | #include "../utils/utils.h" |
| 27 | #include "../webp/format_constants.h" |
| 28 | |
| 29 | #include "./delta_palettization_enc.h" |
| 30 | |
| 31 | #define PALETTE_KEY_RIGHT_SHIFT 22 // Key for 1K buffer. |
| 32 | // Maximum number of histogram images (sub-blocks). |
| 33 | #define MAX_HUFF_IMAGE_SIZE 2600 |
| 34 | |
| 35 | // Palette reordering for smaller sum of deltas (and for smaller storage). |
| 36 | |
| 37 | static int PaletteCompareColorsForQsort(const void* p1, const void* p2) { |
| 38 | const uint32_t a = WebPMemToUint32((uint8_t*)p1); |
| 39 | const uint32_t b = WebPMemToUint32((uint8_t*)p2); |
| 40 | assert(a != b); |
| 41 | return (a < b) ? -1 : 1; |
| 42 | } |
| 43 | |
| 44 | static WEBP_INLINE uint32_t PaletteComponentDistance(uint32_t v) { |
| 45 | return (v <= 128) ? v : (256 - v); |
| 46 | } |
| 47 | |
| 48 | // Computes a value that is related to the entropy created by the |
| 49 | // palette entry diff. |
| 50 | // |
| 51 | // Note that the last & 0xff is a no-operation in the next statement, but |
| 52 | // removed by most compilers and is here only for regularity of the code. |
| 53 | static WEBP_INLINE uint32_t PaletteColorDistance(uint32_t col1, uint32_t col2) { |
| 54 | const uint32_t diff = VP8LSubPixels(col1, col2); |
| 55 | const int kMoreWeightForRGBThanForAlpha = 9; |
| 56 | uint32_t score; |
| 57 | score = PaletteComponentDistance((diff >> 0) & 0xff); |
| 58 | score += PaletteComponentDistance((diff >> 8) & 0xff); |
| 59 | score += PaletteComponentDistance((diff >> 16) & 0xff); |
| 60 | score *= kMoreWeightForRGBThanForAlpha; |
| 61 | score += PaletteComponentDistance((diff >> 24) & 0xff); |
| 62 | return score; |
| 63 | } |
| 64 | |
| 65 | static WEBP_INLINE void SwapColor(uint32_t* const col1, uint32_t* const col2) { |
| 66 | const uint32_t tmp = *col1; |
| 67 | *col1 = *col2; |
| 68 | *col2 = tmp; |
| 69 | } |
| 70 | |
| 71 | static void GreedyMinimizeDeltas(uint32_t palette[], int num_colors) { |
| 72 | // Find greedily always the closest color of the predicted color to minimize |
| 73 | // deltas in the palette. This reduces storage needs since the |
| 74 | // palette is stored with delta encoding. |
| 75 | uint32_t predict = 0x00000000; |
| 76 | int i, k; |
| 77 | for (i = 0; i < num_colors; ++i) { |
| 78 | int best_ix = i; |
| 79 | uint32_t best_score = ~0U; |
| 80 | for (k = i; k < num_colors; ++k) { |
| 81 | const uint32_t cur_score = PaletteColorDistance(palette[k], predict); |
| 82 | if (best_score > cur_score) { |
| 83 | best_score = cur_score; |
| 84 | best_ix = k; |
| 85 | } |
| 86 | } |
| 87 | SwapColor(&palette[best_ix], &palette[i]); |
| 88 | predict = palette[i]; |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | // The palette has been sorted by alpha. This function checks if the other |
| 93 | // components of the palette have a monotonic development with regards to |
| 94 | // position in the palette. If all have monotonic development, there is |
| 95 | // no benefit to re-organize them greedily. A monotonic development |
| 96 | // would be spotted in green-only situations (like lossy alpha) or gray-scale |
| 97 | // images. |
| 98 | static int PaletteHasNonMonotonousDeltas(uint32_t palette[], int num_colors) { |
| 99 | uint32_t predict = 0x000000; |
| 100 | int i; |
| 101 | uint8_t sign_found = 0x00; |
| 102 | for (i = 0; i < num_colors; ++i) { |
| 103 | const uint32_t diff = VP8LSubPixels(palette[i], predict); |
| 104 | const uint8_t rd = (diff >> 16) & 0xff; |
| 105 | const uint8_t gd = (diff >> 8) & 0xff; |
| 106 | const uint8_t bd = (diff >> 0) & 0xff; |
| 107 | if (rd != 0x00) { |
| 108 | sign_found |= (rd < 0x80) ? 1 : 2; |
| 109 | } |
| 110 | if (gd != 0x00) { |
| 111 | sign_found |= (gd < 0x80) ? 8 : 16; |
| 112 | } |
| 113 | if (bd != 0x00) { |
| 114 | sign_found |= (bd < 0x80) ? 64 : 128; |
| 115 | } |
| 116 | predict = palette[i]; |
| 117 | } |
| 118 | return (sign_found & (sign_found << 1)) != 0; // two consequent signs. |
| 119 | } |
| 120 | |
| 121 | // ----------------------------------------------------------------------------- |
| 122 | // Palette |
| 123 | |
| 124 | // If number of colors in the image is less than or equal to MAX_PALETTE_SIZE, |
| 125 | // creates a palette and returns true, else returns false. |
| 126 | static int AnalyzeAndCreatePalette(const WebPPicture* const pic, |
| 127 | int low_effort, |
| 128 | uint32_t palette[MAX_PALETTE_SIZE], |
| 129 | int* const palette_size) { |
| 130 | const int num_colors = WebPGetColorPalette(pic, palette); |
| 131 | if (num_colors > MAX_PALETTE_SIZE) return 0; |
| 132 | *palette_size = num_colors; |
| 133 | qsort(palette, num_colors, sizeof(*palette), PaletteCompareColorsForQsort); |
| 134 | if (!low_effort && PaletteHasNonMonotonousDeltas(palette, num_colors)) { |
| 135 | GreedyMinimizeDeltas(palette, num_colors); |
| 136 | } |
| 137 | return 1; |
| 138 | } |
| 139 | |
| 140 | // These five modes are evaluated and their respective entropy is computed. |
| 141 | typedef enum { |
| 142 | kDirect = 0, |
| 143 | kSpatial = 1, |
| 144 | kSubGreen = 2, |
| 145 | kSpatialSubGreen = 3, |
| 146 | kPalette = 4, |
| 147 | kNumEntropyIx = 5 |
| 148 | } EntropyIx; |
| 149 | |
| 150 | typedef enum { |
| 151 | kHistoAlpha = 0, |
| 152 | kHistoAlphaPred, |
| 153 | kHistoGreen, |
| 154 | kHistoGreenPred, |
| 155 | kHistoRed, |
| 156 | kHistoRedPred, |
| 157 | kHistoBlue, |
| 158 | kHistoBluePred, |
| 159 | kHistoRedSubGreen, |
| 160 | kHistoRedPredSubGreen, |
| 161 | kHistoBlueSubGreen, |
| 162 | kHistoBluePredSubGreen, |
| 163 | kHistoPalette, |
| 164 | kHistoTotal // Must be last. |
| 165 | } HistoIx; |
| 166 | |
| 167 | static void AddSingleSubGreen(int p, uint32_t* const r, uint32_t* const b) { |
| 168 | const int green = p >> 8; // The upper bits are masked away later. |
| 169 | ++r[((p >> 16) - green) & 0xff]; |
| 170 | ++b[((p >> 0) - green) & 0xff]; |
| 171 | } |
| 172 | |
| 173 | static void AddSingle(uint32_t p, |
| 174 | uint32_t* const a, uint32_t* const r, |
| 175 | uint32_t* const g, uint32_t* const b) { |
| 176 | ++a[(p >> 24) & 0xff]; |
| 177 | ++r[(p >> 16) & 0xff]; |
| 178 | ++g[(p >> 8) & 0xff]; |
| 179 | ++b[(p >> 0) & 0xff]; |
| 180 | } |
| 181 | |
| 182 | static WEBP_INLINE uint32_t HashPix(uint32_t pix) { |
| 183 | // Note that masking with 0xffffffffu is for preventing an |
| 184 | // 'unsigned int overflow' warning. Doesn't impact the compiled code. |
| 185 | return ((((uint64_t)pix + (pix >> 19)) * 0x39c5fba7ull) & 0xffffffffu) >> 24; |
| 186 | } |
| 187 | |
| 188 | static int AnalyzeEntropy(const uint32_t* argb, |
| 189 | int width, int height, int argb_stride, |
| 190 | int use_palette, |
| 191 | EntropyIx* const min_entropy_ix, |
| 192 | int* const red_and_blue_always_zero) { |
| 193 | // Allocate histogram set with cache_bits = 0. |
| 194 | uint32_t* const histo = |
| 195 | (uint32_t*)WebPSafeCalloc(kHistoTotal, sizeof(*histo) * 256); |
| 196 | if (histo != NULL) { |
| 197 | int i, x, y; |
| 198 | const uint32_t* prev_row = argb; |
| 199 | const uint32_t* curr_row = argb + argb_stride; |
| 200 | for (y = 1; y < height; ++y) { |
| 201 | uint32_t prev_pix = curr_row[0]; |
| 202 | for (x = 1; x < width; ++x) { |
| 203 | const uint32_t pix = curr_row[x]; |
| 204 | const uint32_t pix_diff = VP8LSubPixels(pix, prev_pix); |
| 205 | if ((pix_diff == 0) || (pix == prev_row[x])) continue; |
| 206 | prev_pix = pix; |
| 207 | AddSingle(pix, |
| 208 | &histo[kHistoAlpha * 256], |
| 209 | &histo[kHistoRed * 256], |
| 210 | &histo[kHistoGreen * 256], |
| 211 | &histo[kHistoBlue * 256]); |
| 212 | AddSingle(pix_diff, |
| 213 | &histo[kHistoAlphaPred * 256], |
| 214 | &histo[kHistoRedPred * 256], |
| 215 | &histo[kHistoGreenPred * 256], |
| 216 | &histo[kHistoBluePred * 256]); |
| 217 | AddSingleSubGreen(pix, |
| 218 | &histo[kHistoRedSubGreen * 256], |
| 219 | &histo[kHistoBlueSubGreen * 256]); |
| 220 | AddSingleSubGreen(pix_diff, |
| 221 | &histo[kHistoRedPredSubGreen * 256], |
| 222 | &histo[kHistoBluePredSubGreen * 256]); |
| 223 | { |
| 224 | // Approximate the palette by the entropy of the multiplicative hash. |
| 225 | const uint32_t hash = HashPix(pix); |
| 226 | ++histo[kHistoPalette * 256 + hash]; |
| 227 | } |
| 228 | } |
| 229 | prev_row = curr_row; |
| 230 | curr_row += argb_stride; |
| 231 | } |
| 232 | { |
| 233 | double entropy_comp[kHistoTotal]; |
| 234 | double entropy[kNumEntropyIx]; |
| 235 | int k; |
| 236 | int last_mode_to_analyze = use_palette ? kPalette : kSpatialSubGreen; |
| 237 | int j; |
| 238 | // Let's add one zero to the predicted histograms. The zeros are removed |
| 239 | // too efficiently by the pix_diff == 0 comparison, at least one of the |
| 240 | // zeros is likely to exist. |
| 241 | ++histo[kHistoRedPredSubGreen * 256]; |
| 242 | ++histo[kHistoBluePredSubGreen * 256]; |
| 243 | ++histo[kHistoRedPred * 256]; |
| 244 | ++histo[kHistoGreenPred * 256]; |
| 245 | ++histo[kHistoBluePred * 256]; |
| 246 | ++histo[kHistoAlphaPred * 256]; |
| 247 | |
| 248 | for (j = 0; j < kHistoTotal; ++j) { |
| 249 | entropy_comp[j] = VP8LBitsEntropy(&histo[j * 256], 256, NULL); |
| 250 | } |
| 251 | entropy[kDirect] = entropy_comp[kHistoAlpha] + |
| 252 | entropy_comp[kHistoRed] + |
| 253 | entropy_comp[kHistoGreen] + |
| 254 | entropy_comp[kHistoBlue]; |
| 255 | entropy[kSpatial] = entropy_comp[kHistoAlphaPred] + |
| 256 | entropy_comp[kHistoRedPred] + |
| 257 | entropy_comp[kHistoGreenPred] + |
| 258 | entropy_comp[kHistoBluePred]; |
| 259 | entropy[kSubGreen] = entropy_comp[kHistoAlpha] + |
| 260 | entropy_comp[kHistoRedSubGreen] + |
| 261 | entropy_comp[kHistoGreen] + |
| 262 | entropy_comp[kHistoBlueSubGreen]; |
| 263 | entropy[kSpatialSubGreen] = entropy_comp[kHistoAlphaPred] + |
| 264 | entropy_comp[kHistoRedPredSubGreen] + |
| 265 | entropy_comp[kHistoGreenPred] + |
| 266 | entropy_comp[kHistoBluePredSubGreen]; |
| 267 | // Palette mode seems more efficient in a breakeven case. Bias with 1.0. |
| 268 | entropy[kPalette] = entropy_comp[kHistoPalette] - 1.0; |
| 269 | |
| 270 | *min_entropy_ix = kDirect; |
| 271 | for (k = kDirect + 1; k <= last_mode_to_analyze; ++k) { |
| 272 | if (entropy[*min_entropy_ix] > entropy[k]) { |
| 273 | *min_entropy_ix = (EntropyIx)k; |
| 274 | } |
| 275 | } |
| 276 | *red_and_blue_always_zero = 1; |
| 277 | // Let's check if the histogram of the chosen entropy mode has |
| 278 | // non-zero red and blue values. If all are zero, we can later skip |
| 279 | // the cross color optimization. |
| 280 | { |
| 281 | static const uint8_t kHistoPairs[5][2] = { |
| 282 | { kHistoRed, kHistoBlue }, |
| 283 | { kHistoRedPred, kHistoBluePred }, |
| 284 | { kHistoRedSubGreen, kHistoBlueSubGreen }, |
| 285 | { kHistoRedPredSubGreen, kHistoBluePredSubGreen }, |
| 286 | { kHistoRed, kHistoBlue } |
| 287 | }; |
| 288 | const uint32_t* const red_histo = |
| 289 | &histo[256 * kHistoPairs[*min_entropy_ix][0]]; |
| 290 | const uint32_t* const blue_histo = |
| 291 | &histo[256 * kHistoPairs[*min_entropy_ix][1]]; |
| 292 | for (i = 1; i < 256; ++i) { |
| 293 | if ((red_histo[i] | blue_histo[i]) != 0) { |
| 294 | *red_and_blue_always_zero = 0; |
| 295 | break; |
| 296 | } |
| 297 | } |
| 298 | } |
| 299 | } |
| 300 | WebPSafeFree(histo); |
| 301 | return 1; |
| 302 | } else { |
| 303 | return 0; |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | static int GetHistoBits(int method, int use_palette, int width, int height) { |
| 308 | // Make tile size a function of encoding method (Range: 0 to 6). |
| 309 | int histo_bits = (use_palette ? 9 : 7) - method; |
| 310 | while (1) { |
| 311 | const int huff_image_size = VP8LSubSampleSize(width, histo_bits) * |
| 312 | VP8LSubSampleSize(height, histo_bits); |
| 313 | if (huff_image_size <= MAX_HUFF_IMAGE_SIZE) break; |
| 314 | ++histo_bits; |
| 315 | } |
| 316 | return (histo_bits < MIN_HUFFMAN_BITS) ? MIN_HUFFMAN_BITS : |
| 317 | (histo_bits > MAX_HUFFMAN_BITS) ? MAX_HUFFMAN_BITS : histo_bits; |
| 318 | } |
| 319 | |
| 320 | static int GetTransformBits(int method, int histo_bits) { |
| 321 | const int max_transform_bits = (method < 4) ? 6 : (method > 4) ? 4 : 5; |
| 322 | const int res = |
| 323 | (histo_bits > max_transform_bits) ? max_transform_bits : histo_bits; |
| 324 | assert(res <= MAX_TRANSFORM_BITS); |
| 325 | return res; |
| 326 | } |
| 327 | |
| 328 | static int AnalyzeAndInit(VP8LEncoder* const enc) { |
| 329 | const WebPPicture* const pic = enc->pic_; |
| 330 | const int width = pic->width; |
| 331 | const int height = pic->height; |
| 332 | const int pix_cnt = width * height; |
| 333 | const WebPConfig* const config = enc->config_; |
| 334 | const int method = config->method; |
| 335 | const int low_effort = (config->method == 0); |
| 336 | // we round the block size up, so we're guaranteed to have |
| 337 | // at max MAX_REFS_BLOCK_PER_IMAGE blocks used: |
| 338 | int refs_block_size = (pix_cnt - 1) / MAX_REFS_BLOCK_PER_IMAGE + 1; |
| 339 | assert(pic != NULL && pic->argb != NULL); |
| 340 | |
| 341 | enc->use_cross_color_ = 0; |
| 342 | enc->use_predict_ = 0; |
| 343 | enc->use_subtract_green_ = 0; |
| 344 | enc->use_palette_ = |
| 345 | AnalyzeAndCreatePalette(pic, low_effort, |
| 346 | enc->palette_, &enc->palette_size_); |
| 347 | |
| 348 | // TODO(jyrki): replace the decision to be based on an actual estimate |
| 349 | // of entropy, or even spatial variance of entropy. |
| 350 | enc->histo_bits_ = GetHistoBits(method, enc->use_palette_, |
| 351 | pic->width, pic->height); |
| 352 | enc->transform_bits_ = GetTransformBits(method, enc->histo_bits_); |
| 353 | |
| 354 | if (low_effort) { |
| 355 | // AnalyzeEntropy is somewhat slow. |
| 356 | enc->use_predict_ = !enc->use_palette_; |
| 357 | enc->use_subtract_green_ = !enc->use_palette_; |
| 358 | enc->use_cross_color_ = 0; |
| 359 | } else { |
| 360 | int red_and_blue_always_zero; |
| 361 | EntropyIx min_entropy_ix; |
| 362 | if (!AnalyzeEntropy(pic->argb, width, height, pic->argb_stride, |
| 363 | enc->use_palette_, &min_entropy_ix, |
| 364 | &red_and_blue_always_zero)) { |
| 365 | return 0; |
| 366 | } |
| 367 | enc->use_palette_ = (min_entropy_ix == kPalette); |
| 368 | enc->use_subtract_green_ = |
| 369 | (min_entropy_ix == kSubGreen) || (min_entropy_ix == kSpatialSubGreen); |
| 370 | enc->use_predict_ = |
| 371 | (min_entropy_ix == kSpatial) || (min_entropy_ix == kSpatialSubGreen); |
| 372 | enc->use_cross_color_ = red_and_blue_always_zero ? 0 : enc->use_predict_; |
| 373 | } |
| 374 | |
| 375 | if (!VP8LHashChainInit(&enc->hash_chain_, pix_cnt)) return 0; |
| 376 | |
| 377 | // palette-friendly input typically uses less literals |
| 378 | // -> reduce block size a bit |
| 379 | if (enc->use_palette_) refs_block_size /= 2; |
| 380 | VP8LBackwardRefsInit(&enc->refs_[0], refs_block_size); |
| 381 | VP8LBackwardRefsInit(&enc->refs_[1], refs_block_size); |
| 382 | |
| 383 | return 1; |
| 384 | } |
| 385 | |
| 386 | // Returns false in case of memory error. |
| 387 | static int GetHuffBitLengthsAndCodes( |
| 388 | const VP8LHistogramSet* const histogram_image, |
| 389 | HuffmanTreeCode* const huffman_codes) { |
| 390 | int i, k; |
| 391 | int ok = 0; |
| 392 | uint64_t total_length_size = 0; |
| 393 | uint8_t* mem_buf = NULL; |
| 394 | const int histogram_image_size = histogram_image->size; |
| 395 | int max_num_symbols = 0; |
| 396 | uint8_t* buf_rle = NULL; |
| 397 | HuffmanTree* huff_tree = NULL; |
| 398 | |
| 399 | // Iterate over all histograms and get the aggregate number of codes used. |
| 400 | for (i = 0; i < histogram_image_size; ++i) { |
| 401 | const VP8LHistogram* const histo = histogram_image->histograms[i]; |
| 402 | HuffmanTreeCode* const codes = &huffman_codes[5 * i]; |
| 403 | for (k = 0; k < 5; ++k) { |
| 404 | const int num_symbols = |
| 405 | (k == 0) ? VP8LHistogramNumCodes(histo->palette_code_bits_) : |
| 406 | (k == 4) ? NUM_DISTANCE_CODES : 256; |
| 407 | codes[k].num_symbols = num_symbols; |
| 408 | total_length_size += num_symbols; |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | // Allocate and Set Huffman codes. |
| 413 | { |
| 414 | uint16_t* codes; |
| 415 | uint8_t* lengths; |
| 416 | mem_buf = (uint8_t*)WebPSafeCalloc(total_length_size, |
| 417 | sizeof(*lengths) + sizeof(*codes)); |
| 418 | if (mem_buf == NULL) goto End; |
| 419 | |
| 420 | codes = (uint16_t*)mem_buf; |
| 421 | lengths = (uint8_t*)&codes[total_length_size]; |
| 422 | for (i = 0; i < 5 * histogram_image_size; ++i) { |
| 423 | const int bit_length = huffman_codes[i].num_symbols; |
| 424 | huffman_codes[i].codes = codes; |
| 425 | huffman_codes[i].code_lengths = lengths; |
| 426 | codes += bit_length; |
| 427 | lengths += bit_length; |
| 428 | if (max_num_symbols < bit_length) { |
| 429 | max_num_symbols = bit_length; |
| 430 | } |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | buf_rle = (uint8_t*)WebPSafeMalloc(1ULL, max_num_symbols); |
| 435 | huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * max_num_symbols, |
| 436 | sizeof(*huff_tree)); |
| 437 | if (buf_rle == NULL || huff_tree == NULL) goto End; |
| 438 | |
| 439 | // Create Huffman trees. |
| 440 | for (i = 0; i < histogram_image_size; ++i) { |
| 441 | HuffmanTreeCode* const codes = &huffman_codes[5 * i]; |
| 442 | VP8LHistogram* const histo = histogram_image->histograms[i]; |
| 443 | VP8LCreateHuffmanTree(histo->literal_, 15, buf_rle, huff_tree, codes + 0); |
| 444 | VP8LCreateHuffmanTree(histo->red_, 15, buf_rle, huff_tree, codes + 1); |
| 445 | VP8LCreateHuffmanTree(histo->blue_, 15, buf_rle, huff_tree, codes + 2); |
| 446 | VP8LCreateHuffmanTree(histo->alpha_, 15, buf_rle, huff_tree, codes + 3); |
| 447 | VP8LCreateHuffmanTree(histo->distance_, 15, buf_rle, huff_tree, codes + 4); |
| 448 | } |
| 449 | ok = 1; |
| 450 | End: |
| 451 | WebPSafeFree(huff_tree); |
| 452 | WebPSafeFree(buf_rle); |
| 453 | if (!ok) { |
| 454 | WebPSafeFree(mem_buf); |
| 455 | memset(huffman_codes, 0, 5 * histogram_image_size * sizeof(*huffman_codes)); |
| 456 | } |
| 457 | return ok; |
| 458 | } |
| 459 | |
| 460 | static void StoreHuffmanTreeOfHuffmanTreeToBitMask( |
| 461 | VP8LBitWriter* const bw, const uint8_t* code_length_bitdepth) { |
| 462 | // RFC 1951 will calm you down if you are worried about this funny sequence. |
| 463 | // This sequence is tuned from that, but more weighted for lower symbol count, |
| 464 | // and more spiking histograms. |
| 465 | static const uint8_t kStorageOrder[CODE_LENGTH_CODES] = { |
| 466 | 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
| 467 | }; |
| 468 | int i; |
| 469 | // Throw away trailing zeros: |
| 470 | int codes_to_store = CODE_LENGTH_CODES; |
| 471 | for (; codes_to_store > 4; --codes_to_store) { |
| 472 | if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) { |
| 473 | break; |
| 474 | } |
| 475 | } |
| 476 | VP8LPutBits(bw, codes_to_store - 4, 4); |
| 477 | for (i = 0; i < codes_to_store; ++i) { |
| 478 | VP8LPutBits(bw, code_length_bitdepth[kStorageOrder[i]], 3); |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | static void ClearHuffmanTreeIfOnlyOneSymbol( |
| 483 | HuffmanTreeCode* const huffman_code) { |
| 484 | int k; |
| 485 | int count = 0; |
| 486 | for (k = 0; k < huffman_code->num_symbols; ++k) { |
| 487 | if (huffman_code->code_lengths[k] != 0) { |
| 488 | ++count; |
| 489 | if (count > 1) return; |
| 490 | } |
| 491 | } |
| 492 | for (k = 0; k < huffman_code->num_symbols; ++k) { |
| 493 | huffman_code->code_lengths[k] = 0; |
| 494 | huffman_code->codes[k] = 0; |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | static void StoreHuffmanTreeToBitMask( |
| 499 | VP8LBitWriter* const bw, |
| 500 | const HuffmanTreeToken* const tokens, const int num_tokens, |
| 501 | const HuffmanTreeCode* const huffman_code) { |
| 502 | int i; |
| 503 | for (i = 0; i < num_tokens; ++i) { |
| 504 | const int ix = tokens[i].code; |
| 505 | const int = tokens[i].extra_bits; |
| 506 | VP8LPutBits(bw, huffman_code->codes[ix], huffman_code->code_lengths[ix]); |
| 507 | switch (ix) { |
| 508 | case 16: |
| 509 | VP8LPutBits(bw, extra_bits, 2); |
| 510 | break; |
| 511 | case 17: |
| 512 | VP8LPutBits(bw, extra_bits, 3); |
| 513 | break; |
| 514 | case 18: |
| 515 | VP8LPutBits(bw, extra_bits, 7); |
| 516 | break; |
| 517 | } |
| 518 | } |
| 519 | } |
| 520 | |
| 521 | // 'huff_tree' and 'tokens' are pre-alloacted buffers. |
| 522 | static void StoreFullHuffmanCode(VP8LBitWriter* const bw, |
| 523 | HuffmanTree* const huff_tree, |
| 524 | HuffmanTreeToken* const tokens, |
| 525 | const HuffmanTreeCode* const tree) { |
| 526 | uint8_t code_length_bitdepth[CODE_LENGTH_CODES] = { 0 }; |
| 527 | uint16_t code_length_bitdepth_symbols[CODE_LENGTH_CODES] = { 0 }; |
| 528 | const int max_tokens = tree->num_symbols; |
| 529 | int num_tokens; |
| 530 | HuffmanTreeCode huffman_code; |
| 531 | huffman_code.num_symbols = CODE_LENGTH_CODES; |
| 532 | huffman_code.code_lengths = code_length_bitdepth; |
| 533 | huffman_code.codes = code_length_bitdepth_symbols; |
| 534 | |
| 535 | VP8LPutBits(bw, 0, 1); |
| 536 | num_tokens = VP8LCreateCompressedHuffmanTree(tree, tokens, max_tokens); |
| 537 | { |
| 538 | uint32_t histogram[CODE_LENGTH_CODES] = { 0 }; |
| 539 | uint8_t buf_rle[CODE_LENGTH_CODES] = { 0 }; |
| 540 | int i; |
| 541 | for (i = 0; i < num_tokens; ++i) { |
| 542 | ++histogram[tokens[i].code]; |
| 543 | } |
| 544 | |
| 545 | VP8LCreateHuffmanTree(histogram, 7, buf_rle, huff_tree, &huffman_code); |
| 546 | } |
| 547 | |
| 548 | StoreHuffmanTreeOfHuffmanTreeToBitMask(bw, code_length_bitdepth); |
| 549 | ClearHuffmanTreeIfOnlyOneSymbol(&huffman_code); |
| 550 | { |
| 551 | int trailing_zero_bits = 0; |
| 552 | int trimmed_length = num_tokens; |
| 553 | int write_trimmed_length; |
| 554 | int length; |
| 555 | int i = num_tokens; |
| 556 | while (i-- > 0) { |
| 557 | const int ix = tokens[i].code; |
| 558 | if (ix == 0 || ix == 17 || ix == 18) { |
| 559 | --trimmed_length; // discount trailing zeros |
| 560 | trailing_zero_bits += code_length_bitdepth[ix]; |
| 561 | if (ix == 17) { |
| 562 | trailing_zero_bits += 3; |
| 563 | } else if (ix == 18) { |
| 564 | trailing_zero_bits += 7; |
| 565 | } |
| 566 | } else { |
| 567 | break; |
| 568 | } |
| 569 | } |
| 570 | write_trimmed_length = (trimmed_length > 1 && trailing_zero_bits > 12); |
| 571 | length = write_trimmed_length ? trimmed_length : num_tokens; |
| 572 | VP8LPutBits(bw, write_trimmed_length, 1); |
| 573 | if (write_trimmed_length) { |
| 574 | const int nbits = VP8LBitsLog2Ceiling(trimmed_length - 1); |
| 575 | const int nbitpairs = (nbits == 0) ? 1 : (nbits + 1) / 2; |
| 576 | VP8LPutBits(bw, nbitpairs - 1, 3); |
| 577 | assert(trimmed_length >= 2); |
| 578 | VP8LPutBits(bw, trimmed_length - 2, nbitpairs * 2); |
| 579 | } |
| 580 | StoreHuffmanTreeToBitMask(bw, tokens, length, &huffman_code); |
| 581 | } |
| 582 | } |
| 583 | |
| 584 | // 'huff_tree' and 'tokens' are pre-alloacted buffers. |
| 585 | static void StoreHuffmanCode(VP8LBitWriter* const bw, |
| 586 | HuffmanTree* const huff_tree, |
| 587 | HuffmanTreeToken* const tokens, |
| 588 | const HuffmanTreeCode* const huffman_code) { |
| 589 | int i; |
| 590 | int count = 0; |
| 591 | int symbols[2] = { 0, 0 }; |
| 592 | const int kMaxBits = 8; |
| 593 | const int kMaxSymbol = 1 << kMaxBits; |
| 594 | |
| 595 | // Check whether it's a small tree. |
| 596 | for (i = 0; i < huffman_code->num_symbols && count < 3; ++i) { |
| 597 | if (huffman_code->code_lengths[i] != 0) { |
| 598 | if (count < 2) symbols[count] = i; |
| 599 | ++count; |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | if (count == 0) { // emit minimal tree for empty cases |
| 604 | // bits: small tree marker: 1, count-1: 0, large 8-bit code: 0, code: 0 |
| 605 | VP8LPutBits(bw, 0x01, 4); |
| 606 | } else if (count <= 2 && symbols[0] < kMaxSymbol && symbols[1] < kMaxSymbol) { |
| 607 | VP8LPutBits(bw, 1, 1); // Small tree marker to encode 1 or 2 symbols. |
| 608 | VP8LPutBits(bw, count - 1, 1); |
| 609 | if (symbols[0] <= 1) { |
| 610 | VP8LPutBits(bw, 0, 1); // Code bit for small (1 bit) symbol value. |
| 611 | VP8LPutBits(bw, symbols[0], 1); |
| 612 | } else { |
| 613 | VP8LPutBits(bw, 1, 1); |
| 614 | VP8LPutBits(bw, symbols[0], 8); |
| 615 | } |
| 616 | if (count == 2) { |
| 617 | VP8LPutBits(bw, symbols[1], 8); |
| 618 | } |
| 619 | } else { |
| 620 | StoreFullHuffmanCode(bw, huff_tree, tokens, huffman_code); |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | static WEBP_INLINE void WriteHuffmanCode(VP8LBitWriter* const bw, |
| 625 | const HuffmanTreeCode* const code, |
| 626 | int code_index) { |
| 627 | const int depth = code->code_lengths[code_index]; |
| 628 | const int symbol = code->codes[code_index]; |
| 629 | VP8LPutBits(bw, symbol, depth); |
| 630 | } |
| 631 | |
| 632 | static WEBP_INLINE void ( |
| 633 | VP8LBitWriter* const bw, |
| 634 | const HuffmanTreeCode* const code, |
| 635 | int code_index, |
| 636 | int bits, |
| 637 | int n_bits) { |
| 638 | const int depth = code->code_lengths[code_index]; |
| 639 | const int symbol = code->codes[code_index]; |
| 640 | VP8LPutBits(bw, (bits << depth) | symbol, depth + n_bits); |
| 641 | } |
| 642 | |
| 643 | static WebPEncodingError StoreImageToBitMask( |
| 644 | VP8LBitWriter* const bw, int width, int histo_bits, |
| 645 | VP8LBackwardRefs* const refs, |
| 646 | const uint16_t* histogram_symbols, |
| 647 | const HuffmanTreeCode* const huffman_codes) { |
| 648 | const int histo_xsize = histo_bits ? VP8LSubSampleSize(width, histo_bits) : 1; |
| 649 | const int tile_mask = (histo_bits == 0) ? 0 : -(1 << histo_bits); |
| 650 | // x and y trace the position in the image. |
| 651 | int x = 0; |
| 652 | int y = 0; |
| 653 | int tile_x = x & tile_mask; |
| 654 | int tile_y = y & tile_mask; |
| 655 | int histogram_ix = histogram_symbols[0]; |
| 656 | const HuffmanTreeCode* codes = huffman_codes + 5 * histogram_ix; |
| 657 | VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
| 658 | while (VP8LRefsCursorOk(&c)) { |
| 659 | const PixOrCopy* const v = c.cur_pos; |
| 660 | if ((tile_x != (x & tile_mask)) || (tile_y != (y & tile_mask))) { |
| 661 | tile_x = x & tile_mask; |
| 662 | tile_y = y & tile_mask; |
| 663 | histogram_ix = histogram_symbols[(y >> histo_bits) * histo_xsize + |
| 664 | (x >> histo_bits)]; |
| 665 | codes = huffman_codes + 5 * histogram_ix; |
| 666 | } |
| 667 | if (PixOrCopyIsLiteral(v)) { |
| 668 | static const int order[] = { 1, 2, 0, 3 }; |
| 669 | int k; |
| 670 | for (k = 0; k < 4; ++k) { |
| 671 | const int code = PixOrCopyLiteral(v, order[k]); |
| 672 | WriteHuffmanCode(bw, codes + k, code); |
| 673 | } |
| 674 | } else if (PixOrCopyIsCacheIdx(v)) { |
| 675 | const int code = PixOrCopyCacheIdx(v); |
| 676 | const int literal_ix = 256 + NUM_LENGTH_CODES + code; |
| 677 | WriteHuffmanCode(bw, codes, literal_ix); |
| 678 | } else { |
| 679 | int bits, n_bits; |
| 680 | int code; |
| 681 | |
| 682 | const int distance = PixOrCopyDistance(v); |
| 683 | VP8LPrefixEncode(v->len, &code, &n_bits, &bits); |
| 684 | WriteHuffmanCodeWithExtraBits(bw, codes, 256 + code, bits, n_bits); |
| 685 | |
| 686 | // Don't write the distance with the extra bits code since |
| 687 | // the distance can be up to 18 bits of extra bits, and the prefix |
| 688 | // 15 bits, totaling to 33, and our PutBits only supports up to 32 bits. |
| 689 | // TODO(jyrki): optimize this further. |
| 690 | VP8LPrefixEncode(distance, &code, &n_bits, &bits); |
| 691 | WriteHuffmanCode(bw, codes + 4, code); |
| 692 | VP8LPutBits(bw, bits, n_bits); |
| 693 | } |
| 694 | x += PixOrCopyLength(v); |
| 695 | while (x >= width) { |
| 696 | x -= width; |
| 697 | ++y; |
| 698 | } |
| 699 | VP8LRefsCursorNext(&c); |
| 700 | } |
| 701 | return bw->error_ ? VP8_ENC_ERROR_OUT_OF_MEMORY : VP8_ENC_OK; |
| 702 | } |
| 703 | |
| 704 | // Special case of EncodeImageInternal() for cache-bits=0, histo_bits=31 |
| 705 | static WebPEncodingError EncodeImageNoHuffman(VP8LBitWriter* const bw, |
| 706 | const uint32_t* const argb, |
| 707 | VP8LHashChain* const hash_chain, |
| 708 | VP8LBackwardRefs refs_array[2], |
| 709 | int width, int height, |
| 710 | int quality, int low_effort) { |
| 711 | int i; |
| 712 | int max_tokens = 0; |
| 713 | WebPEncodingError err = VP8_ENC_OK; |
| 714 | VP8LBackwardRefs* refs; |
| 715 | HuffmanTreeToken* tokens = NULL; |
| 716 | HuffmanTreeCode huffman_codes[5] = { { 0, NULL, NULL } }; |
| 717 | const uint16_t histogram_symbols[1] = { 0 }; // only one tree, one symbol |
| 718 | int cache_bits = 0; |
| 719 | VP8LHistogramSet* histogram_image = NULL; |
| 720 | HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc( |
| 721 | 3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree)); |
| 722 | if (huff_tree == NULL) { |
| 723 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 724 | goto Error; |
| 725 | } |
| 726 | |
| 727 | // Calculate backward references from ARGB image. |
| 728 | if (!VP8LHashChainFill(hash_chain, quality, argb, width, height, |
| 729 | low_effort)) { |
| 730 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 731 | goto Error; |
| 732 | } |
| 733 | refs = VP8LGetBackwardReferences(width, height, argb, quality, 0, &cache_bits, |
| 734 | hash_chain, refs_array); |
| 735 | if (refs == NULL) { |
| 736 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 737 | goto Error; |
| 738 | } |
| 739 | histogram_image = VP8LAllocateHistogramSet(1, cache_bits); |
| 740 | if (histogram_image == NULL) { |
| 741 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 742 | goto Error; |
| 743 | } |
| 744 | |
| 745 | // Build histogram image and symbols from backward references. |
| 746 | VP8LHistogramStoreRefs(refs, histogram_image->histograms[0]); |
| 747 | |
| 748 | // Create Huffman bit lengths and codes for each histogram image. |
| 749 | assert(histogram_image->size == 1); |
| 750 | if (!GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) { |
| 751 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 752 | goto Error; |
| 753 | } |
| 754 | |
| 755 | // No color cache, no Huffman image. |
| 756 | VP8LPutBits(bw, 0, 1); |
| 757 | |
| 758 | // Find maximum number of symbols for the huffman tree-set. |
| 759 | for (i = 0; i < 5; ++i) { |
| 760 | HuffmanTreeCode* const codes = &huffman_codes[i]; |
| 761 | if (max_tokens < codes->num_symbols) { |
| 762 | max_tokens = codes->num_symbols; |
| 763 | } |
| 764 | } |
| 765 | |
| 766 | tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens)); |
| 767 | if (tokens == NULL) { |
| 768 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 769 | goto Error; |
| 770 | } |
| 771 | |
| 772 | // Store Huffman codes. |
| 773 | for (i = 0; i < 5; ++i) { |
| 774 | HuffmanTreeCode* const codes = &huffman_codes[i]; |
| 775 | StoreHuffmanCode(bw, huff_tree, tokens, codes); |
| 776 | ClearHuffmanTreeIfOnlyOneSymbol(codes); |
| 777 | } |
| 778 | |
| 779 | // Store actual literals. |
| 780 | err = StoreImageToBitMask(bw, width, 0, refs, histogram_symbols, |
| 781 | huffman_codes); |
| 782 | |
| 783 | Error: |
| 784 | WebPSafeFree(tokens); |
| 785 | WebPSafeFree(huff_tree); |
| 786 | VP8LFreeHistogramSet(histogram_image); |
| 787 | WebPSafeFree(huffman_codes[0].codes); |
| 788 | return err; |
| 789 | } |
| 790 | |
| 791 | static WebPEncodingError EncodeImageInternal(VP8LBitWriter* const bw, |
| 792 | const uint32_t* const argb, |
| 793 | VP8LHashChain* const hash_chain, |
| 794 | VP8LBackwardRefs refs_array[2], |
| 795 | int width, int height, int quality, |
| 796 | int low_effort, |
| 797 | int use_cache, int* cache_bits, |
| 798 | int histogram_bits, |
| 799 | size_t init_byte_position, |
| 800 | int* const hdr_size, |
| 801 | int* const data_size) { |
| 802 | WebPEncodingError err = VP8_ENC_OK; |
| 803 | const uint32_t histogram_image_xysize = |
| 804 | VP8LSubSampleSize(width, histogram_bits) * |
| 805 | VP8LSubSampleSize(height, histogram_bits); |
| 806 | VP8LHistogramSet* histogram_image = NULL; |
| 807 | VP8LHistogramSet* tmp_histos = NULL; |
| 808 | int histogram_image_size = 0; |
| 809 | size_t bit_array_size = 0; |
| 810 | HuffmanTree* huff_tree = NULL; |
| 811 | HuffmanTreeToken* tokens = NULL; |
| 812 | HuffmanTreeCode* huffman_codes = NULL; |
| 813 | VP8LBackwardRefs refs; |
| 814 | VP8LBackwardRefs* best_refs; |
| 815 | uint16_t* const histogram_symbols = |
| 816 | (uint16_t*)WebPSafeMalloc(histogram_image_xysize, |
| 817 | sizeof(*histogram_symbols)); |
| 818 | assert(histogram_bits >= MIN_HUFFMAN_BITS); |
| 819 | assert(histogram_bits <= MAX_HUFFMAN_BITS); |
| 820 | assert(hdr_size != NULL); |
| 821 | assert(data_size != NULL); |
| 822 | |
| 823 | VP8LBackwardRefsInit(&refs, refs_array[0].block_size_); |
| 824 | if (histogram_symbols == NULL) { |
| 825 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 826 | goto Error; |
| 827 | } |
| 828 | |
| 829 | if (use_cache) { |
| 830 | // If the value is different from zero, it has been set during the |
| 831 | // palette analysis. |
| 832 | if (*cache_bits == 0) *cache_bits = MAX_COLOR_CACHE_BITS; |
| 833 | } else { |
| 834 | *cache_bits = 0; |
| 835 | } |
| 836 | // 'best_refs' is the reference to the best backward refs and points to one |
| 837 | // of refs_array[0] or refs_array[1]. |
| 838 | // Calculate backward references from ARGB image. |
| 839 | if (!VP8LHashChainFill(hash_chain, quality, argb, width, height, |
| 840 | low_effort)) { |
| 841 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 842 | goto Error; |
| 843 | } |
| 844 | best_refs = VP8LGetBackwardReferences(width, height, argb, quality, |
| 845 | low_effort, cache_bits, hash_chain, |
| 846 | refs_array); |
| 847 | if (best_refs == NULL || !VP8LBackwardRefsCopy(best_refs, &refs)) { |
| 848 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 849 | goto Error; |
| 850 | } |
| 851 | histogram_image = |
| 852 | VP8LAllocateHistogramSet(histogram_image_xysize, *cache_bits); |
| 853 | tmp_histos = VP8LAllocateHistogramSet(2, *cache_bits); |
| 854 | if (histogram_image == NULL || tmp_histos == NULL) { |
| 855 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 856 | goto Error; |
| 857 | } |
| 858 | |
| 859 | // Build histogram image and symbols from backward references. |
| 860 | if (!VP8LGetHistoImageSymbols(width, height, &refs, quality, low_effort, |
| 861 | histogram_bits, *cache_bits, histogram_image, |
| 862 | tmp_histos, histogram_symbols)) { |
| 863 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 864 | goto Error; |
| 865 | } |
| 866 | // Create Huffman bit lengths and codes for each histogram image. |
| 867 | histogram_image_size = histogram_image->size; |
| 868 | bit_array_size = 5 * histogram_image_size; |
| 869 | huffman_codes = (HuffmanTreeCode*)WebPSafeCalloc(bit_array_size, |
| 870 | sizeof(*huffman_codes)); |
| 871 | // Note: some histogram_image entries may point to tmp_histos[], so the latter |
| 872 | // need to outlive the following call to GetHuffBitLengthsAndCodes(). |
| 873 | if (huffman_codes == NULL || |
| 874 | !GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) { |
| 875 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 876 | goto Error; |
| 877 | } |
| 878 | // Free combined histograms. |
| 879 | VP8LFreeHistogramSet(histogram_image); |
| 880 | histogram_image = NULL; |
| 881 | |
| 882 | // Free scratch histograms. |
| 883 | VP8LFreeHistogramSet(tmp_histos); |
| 884 | tmp_histos = NULL; |
| 885 | |
| 886 | // Color Cache parameters. |
| 887 | if (*cache_bits > 0) { |
| 888 | VP8LPutBits(bw, 1, 1); |
| 889 | VP8LPutBits(bw, *cache_bits, 4); |
| 890 | } else { |
| 891 | VP8LPutBits(bw, 0, 1); |
| 892 | } |
| 893 | |
| 894 | // Huffman image + meta huffman. |
| 895 | { |
| 896 | const int write_histogram_image = (histogram_image_size > 1); |
| 897 | VP8LPutBits(bw, write_histogram_image, 1); |
| 898 | if (write_histogram_image) { |
| 899 | uint32_t* const histogram_argb = |
| 900 | (uint32_t*)WebPSafeMalloc(histogram_image_xysize, |
| 901 | sizeof(*histogram_argb)); |
| 902 | int max_index = 0; |
| 903 | uint32_t i; |
| 904 | if (histogram_argb == NULL) { |
| 905 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 906 | goto Error; |
| 907 | } |
| 908 | for (i = 0; i < histogram_image_xysize; ++i) { |
| 909 | const int symbol_index = histogram_symbols[i] & 0xffff; |
| 910 | histogram_argb[i] = (symbol_index << 8); |
| 911 | if (symbol_index >= max_index) { |
| 912 | max_index = symbol_index + 1; |
| 913 | } |
| 914 | } |
| 915 | histogram_image_size = max_index; |
| 916 | |
| 917 | VP8LPutBits(bw, histogram_bits - 2, 3); |
| 918 | err = EncodeImageNoHuffman(bw, histogram_argb, hash_chain, refs_array, |
| 919 | VP8LSubSampleSize(width, histogram_bits), |
| 920 | VP8LSubSampleSize(height, histogram_bits), |
| 921 | quality, low_effort); |
| 922 | WebPSafeFree(histogram_argb); |
| 923 | if (err != VP8_ENC_OK) goto Error; |
| 924 | } |
| 925 | } |
| 926 | |
| 927 | // Store Huffman codes. |
| 928 | { |
| 929 | int i; |
| 930 | int max_tokens = 0; |
| 931 | huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * CODE_LENGTH_CODES, |
| 932 | sizeof(*huff_tree)); |
| 933 | if (huff_tree == NULL) { |
| 934 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 935 | goto Error; |
| 936 | } |
| 937 | // Find maximum number of symbols for the huffman tree-set. |
| 938 | for (i = 0; i < 5 * histogram_image_size; ++i) { |
| 939 | HuffmanTreeCode* const codes = &huffman_codes[i]; |
| 940 | if (max_tokens < codes->num_symbols) { |
| 941 | max_tokens = codes->num_symbols; |
| 942 | } |
| 943 | } |
| 944 | tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, |
| 945 | sizeof(*tokens)); |
| 946 | if (tokens == NULL) { |
| 947 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 948 | goto Error; |
| 949 | } |
| 950 | for (i = 0; i < 5 * histogram_image_size; ++i) { |
| 951 | HuffmanTreeCode* const codes = &huffman_codes[i]; |
| 952 | StoreHuffmanCode(bw, huff_tree, tokens, codes); |
| 953 | ClearHuffmanTreeIfOnlyOneSymbol(codes); |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | *hdr_size = (int)(VP8LBitWriterNumBytes(bw) - init_byte_position); |
| 958 | // Store actual literals. |
| 959 | err = StoreImageToBitMask(bw, width, histogram_bits, &refs, |
| 960 | histogram_symbols, huffman_codes); |
| 961 | *data_size = |
| 962 | (int)(VP8LBitWriterNumBytes(bw) - init_byte_position - *hdr_size); |
| 963 | |
| 964 | Error: |
| 965 | WebPSafeFree(tokens); |
| 966 | WebPSafeFree(huff_tree); |
| 967 | VP8LFreeHistogramSet(histogram_image); |
| 968 | VP8LFreeHistogramSet(tmp_histos); |
| 969 | VP8LBackwardRefsClear(&refs); |
| 970 | if (huffman_codes != NULL) { |
| 971 | WebPSafeFree(huffman_codes->codes); |
| 972 | WebPSafeFree(huffman_codes); |
| 973 | } |
| 974 | WebPSafeFree(histogram_symbols); |
| 975 | return err; |
| 976 | } |
| 977 | |
| 978 | // ----------------------------------------------------------------------------- |
| 979 | // Transforms |
| 980 | |
| 981 | static void ApplySubtractGreen(VP8LEncoder* const enc, int width, int height, |
| 982 | VP8LBitWriter* const bw) { |
| 983 | VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
| 984 | VP8LPutBits(bw, SUBTRACT_GREEN, 2); |
| 985 | VP8LSubtractGreenFromBlueAndRed(enc->argb_, width * height); |
| 986 | } |
| 987 | |
| 988 | static WebPEncodingError ApplyPredictFilter(const VP8LEncoder* const enc, |
| 989 | int width, int height, |
| 990 | int quality, int low_effort, |
| 991 | int used_subtract_green, |
| 992 | VP8LBitWriter* const bw) { |
| 993 | const int pred_bits = enc->transform_bits_; |
| 994 | const int transform_width = VP8LSubSampleSize(width, pred_bits); |
| 995 | const int transform_height = VP8LSubSampleSize(height, pred_bits); |
| 996 | // we disable near-lossless quantization if palette is used. |
| 997 | const int near_lossless_strength = enc->use_palette_ ? 100 |
| 998 | : enc->config_->near_lossless; |
| 999 | |
| 1000 | VP8LResidualImage(width, height, pred_bits, low_effort, enc->argb_, |
| 1001 | enc->argb_scratch_, enc->transform_data_, |
| 1002 | near_lossless_strength, enc->config_->exact, |
| 1003 | used_subtract_green); |
| 1004 | VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
| 1005 | VP8LPutBits(bw, PREDICTOR_TRANSFORM, 2); |
| 1006 | assert(pred_bits >= 2); |
| 1007 | VP8LPutBits(bw, pred_bits - 2, 3); |
| 1008 | return EncodeImageNoHuffman(bw, enc->transform_data_, |
| 1009 | (VP8LHashChain*)&enc->hash_chain_, |
| 1010 | (VP8LBackwardRefs*)enc->refs_, // cast const away |
| 1011 | transform_width, transform_height, |
| 1012 | quality, low_effort); |
| 1013 | } |
| 1014 | |
| 1015 | static WebPEncodingError ApplyCrossColorFilter(const VP8LEncoder* const enc, |
| 1016 | int width, int height, |
| 1017 | int quality, int low_effort, |
| 1018 | VP8LBitWriter* const bw) { |
| 1019 | const int ccolor_transform_bits = enc->transform_bits_; |
| 1020 | const int transform_width = VP8LSubSampleSize(width, ccolor_transform_bits); |
| 1021 | const int transform_height = VP8LSubSampleSize(height, ccolor_transform_bits); |
| 1022 | |
| 1023 | VP8LColorSpaceTransform(width, height, ccolor_transform_bits, quality, |
| 1024 | enc->argb_, enc->transform_data_); |
| 1025 | VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
| 1026 | VP8LPutBits(bw, CROSS_COLOR_TRANSFORM, 2); |
| 1027 | assert(ccolor_transform_bits >= 2); |
| 1028 | VP8LPutBits(bw, ccolor_transform_bits - 2, 3); |
| 1029 | return EncodeImageNoHuffman(bw, enc->transform_data_, |
| 1030 | (VP8LHashChain*)&enc->hash_chain_, |
| 1031 | (VP8LBackwardRefs*)enc->refs_, // cast const away |
| 1032 | transform_width, transform_height, |
| 1033 | quality, low_effort); |
| 1034 | } |
| 1035 | |
| 1036 | // ----------------------------------------------------------------------------- |
| 1037 | |
| 1038 | static WebPEncodingError (const WebPPicture* const pic, |
| 1039 | size_t riff_size, size_t vp8l_size) { |
| 1040 | uint8_t riff[RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE + VP8L_SIGNATURE_SIZE] = { |
| 1041 | 'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'E', 'B', 'P', |
| 1042 | 'V', 'P', '8', 'L', 0, 0, 0, 0, VP8L_MAGIC_BYTE, |
| 1043 | }; |
| 1044 | PutLE32(riff + TAG_SIZE, (uint32_t)riff_size); |
| 1045 | PutLE32(riff + RIFF_HEADER_SIZE + TAG_SIZE, (uint32_t)vp8l_size); |
| 1046 | if (!pic->writer(riff, sizeof(riff), pic)) { |
| 1047 | return VP8_ENC_ERROR_BAD_WRITE; |
| 1048 | } |
| 1049 | return VP8_ENC_OK; |
| 1050 | } |
| 1051 | |
| 1052 | static int WriteImageSize(const WebPPicture* const pic, |
| 1053 | VP8LBitWriter* const bw) { |
| 1054 | const int width = pic->width - 1; |
| 1055 | const int height = pic->height - 1; |
| 1056 | assert(width < WEBP_MAX_DIMENSION && height < WEBP_MAX_DIMENSION); |
| 1057 | |
| 1058 | VP8LPutBits(bw, width, VP8L_IMAGE_SIZE_BITS); |
| 1059 | VP8LPutBits(bw, height, VP8L_IMAGE_SIZE_BITS); |
| 1060 | return !bw->error_; |
| 1061 | } |
| 1062 | |
| 1063 | static int WriteRealAlphaAndVersion(VP8LBitWriter* const bw, int has_alpha) { |
| 1064 | VP8LPutBits(bw, has_alpha, 1); |
| 1065 | VP8LPutBits(bw, VP8L_VERSION, VP8L_VERSION_BITS); |
| 1066 | return !bw->error_; |
| 1067 | } |
| 1068 | |
| 1069 | static WebPEncodingError WriteImage(const WebPPicture* const pic, |
| 1070 | VP8LBitWriter* const bw, |
| 1071 | size_t* const coded_size) { |
| 1072 | WebPEncodingError err = VP8_ENC_OK; |
| 1073 | const uint8_t* const webpll_data = VP8LBitWriterFinish(bw); |
| 1074 | const size_t webpll_size = VP8LBitWriterNumBytes(bw); |
| 1075 | const size_t vp8l_size = VP8L_SIGNATURE_SIZE + webpll_size; |
| 1076 | const size_t pad = vp8l_size & 1; |
| 1077 | const size_t riff_size = TAG_SIZE + CHUNK_HEADER_SIZE + vp8l_size + pad; |
| 1078 | |
| 1079 | err = WriteRiffHeader(pic, riff_size, vp8l_size); |
| 1080 | if (err != VP8_ENC_OK) goto Error; |
| 1081 | |
| 1082 | if (!pic->writer(webpll_data, webpll_size, pic)) { |
| 1083 | err = VP8_ENC_ERROR_BAD_WRITE; |
| 1084 | goto Error; |
| 1085 | } |
| 1086 | |
| 1087 | if (pad) { |
| 1088 | const uint8_t pad_byte[1] = { 0 }; |
| 1089 | if (!pic->writer(pad_byte, 1, pic)) { |
| 1090 | err = VP8_ENC_ERROR_BAD_WRITE; |
| 1091 | goto Error; |
| 1092 | } |
| 1093 | } |
| 1094 | *coded_size = CHUNK_HEADER_SIZE + riff_size; |
| 1095 | return VP8_ENC_OK; |
| 1096 | |
| 1097 | Error: |
| 1098 | return err; |
| 1099 | } |
| 1100 | |
| 1101 | // ----------------------------------------------------------------------------- |
| 1102 | |
| 1103 | static void ClearTransformBuffer(VP8LEncoder* const enc) { |
| 1104 | WebPSafeFree(enc->transform_mem_); |
| 1105 | enc->transform_mem_ = NULL; |
| 1106 | enc->transform_mem_size_ = 0; |
| 1107 | } |
| 1108 | |
| 1109 | // Allocates the memory for argb (W x H) buffer, 2 rows of context for |
| 1110 | // prediction and transform data. |
| 1111 | // Flags influencing the memory allocated: |
| 1112 | // enc->transform_bits_ |
| 1113 | // enc->use_predict_, enc->use_cross_color_ |
| 1114 | static WebPEncodingError AllocateTransformBuffer(VP8LEncoder* const enc, |
| 1115 | int width, int height) { |
| 1116 | WebPEncodingError err = VP8_ENC_OK; |
| 1117 | const uint64_t image_size = width * height; |
| 1118 | // VP8LResidualImage needs room for 2 scanlines of uint32 pixels with an extra |
| 1119 | // pixel in each, plus 2 regular scanlines of bytes. |
| 1120 | // TODO(skal): Clean up by using arithmetic in bytes instead of words. |
| 1121 | const uint64_t argb_scratch_size = |
| 1122 | enc->use_predict_ |
| 1123 | ? (width + 1) * 2 + |
| 1124 | (width * 2 + sizeof(uint32_t) - 1) / sizeof(uint32_t) |
| 1125 | : 0; |
| 1126 | const uint64_t transform_data_size = |
| 1127 | (enc->use_predict_ || enc->use_cross_color_) |
| 1128 | ? VP8LSubSampleSize(width, enc->transform_bits_) * |
| 1129 | VP8LSubSampleSize(height, enc->transform_bits_) |
| 1130 | : 0; |
| 1131 | const uint64_t max_alignment_in_words = |
| 1132 | (WEBP_ALIGN_CST + sizeof(uint32_t) - 1) / sizeof(uint32_t); |
| 1133 | const uint64_t mem_size = |
| 1134 | image_size + max_alignment_in_words + |
| 1135 | argb_scratch_size + max_alignment_in_words + |
| 1136 | transform_data_size; |
| 1137 | uint32_t* mem = enc->transform_mem_; |
| 1138 | if (mem == NULL || mem_size > enc->transform_mem_size_) { |
| 1139 | ClearTransformBuffer(enc); |
| 1140 | mem = (uint32_t*)WebPSafeMalloc(mem_size, sizeof(*mem)); |
| 1141 | if (mem == NULL) { |
| 1142 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 1143 | goto Error; |
| 1144 | } |
| 1145 | enc->transform_mem_ = mem; |
| 1146 | enc->transform_mem_size_ = (size_t)mem_size; |
| 1147 | } |
| 1148 | enc->argb_ = mem; |
| 1149 | mem = (uint32_t*)WEBP_ALIGN(mem + image_size); |
| 1150 | enc->argb_scratch_ = mem; |
| 1151 | mem = (uint32_t*)WEBP_ALIGN(mem + argb_scratch_size); |
| 1152 | enc->transform_data_ = mem; |
| 1153 | |
| 1154 | enc->current_width_ = width; |
| 1155 | Error: |
| 1156 | return err; |
| 1157 | } |
| 1158 | |
| 1159 | static WebPEncodingError MakeInputImageCopy(VP8LEncoder* const enc) { |
| 1160 | WebPEncodingError err = VP8_ENC_OK; |
| 1161 | const WebPPicture* const picture = enc->pic_; |
| 1162 | const int width = picture->width; |
| 1163 | const int height = picture->height; |
| 1164 | int y; |
| 1165 | err = AllocateTransformBuffer(enc, width, height); |
| 1166 | if (err != VP8_ENC_OK) return err; |
| 1167 | for (y = 0; y < height; ++y) { |
| 1168 | memcpy(enc->argb_ + y * width, |
| 1169 | picture->argb + y * picture->argb_stride, |
| 1170 | width * sizeof(*enc->argb_)); |
| 1171 | } |
| 1172 | assert(enc->current_width_ == width); |
| 1173 | return VP8_ENC_OK; |
| 1174 | } |
| 1175 | |
| 1176 | // ----------------------------------------------------------------------------- |
| 1177 | |
| 1178 | static WEBP_INLINE int SearchColorNoIdx(const uint32_t sorted[], uint32_t color, |
| 1179 | int hi) { |
| 1180 | int low = 0; |
| 1181 | if (sorted[low] == color) return low; // loop invariant: sorted[low] != color |
| 1182 | while (1) { |
| 1183 | const int mid = (low + hi) >> 1; |
| 1184 | if (sorted[mid] == color) { |
| 1185 | return mid; |
| 1186 | } else if (sorted[mid] < color) { |
| 1187 | low = mid; |
| 1188 | } else { |
| 1189 | hi = mid; |
| 1190 | } |
| 1191 | } |
| 1192 | } |
| 1193 | |
| 1194 | #define APPLY_PALETTE_GREEDY_MAX 4 |
| 1195 | |
| 1196 | static WEBP_INLINE uint32_t SearchColorGreedy(const uint32_t palette[], |
| 1197 | int palette_size, |
| 1198 | uint32_t color) { |
| 1199 | (void)palette_size; |
| 1200 | assert(palette_size < APPLY_PALETTE_GREEDY_MAX); |
| 1201 | assert(3 == APPLY_PALETTE_GREEDY_MAX - 1); |
| 1202 | if (color == palette[0]) return 0; |
| 1203 | if (color == palette[1]) return 1; |
| 1204 | if (color == palette[2]) return 2; |
| 1205 | return 3; |
| 1206 | } |
| 1207 | |
| 1208 | static WEBP_INLINE uint32_t ApplyPaletteHash0(uint32_t color) { |
| 1209 | // Focus on the green color. |
| 1210 | return (color >> 8) & 0xff; |
| 1211 | } |
| 1212 | |
| 1213 | #define PALETTE_INV_SIZE_BITS 11 |
| 1214 | #define PALETTE_INV_SIZE (1 << PALETTE_INV_SIZE_BITS) |
| 1215 | |
| 1216 | static WEBP_INLINE uint32_t ApplyPaletteHash1(uint32_t color) { |
| 1217 | // Forget about alpha. |
| 1218 | return ((color & 0x00ffffffu) * 4222244071u) >> (32 - PALETTE_INV_SIZE_BITS); |
| 1219 | } |
| 1220 | |
| 1221 | static WEBP_INLINE uint32_t ApplyPaletteHash2(uint32_t color) { |
| 1222 | // Forget about alpha. |
| 1223 | return (color & 0x00ffffffu) * ((1u << 31) - 1) >> |
| 1224 | (32 - PALETTE_INV_SIZE_BITS); |
| 1225 | } |
| 1226 | |
| 1227 | // Sort palette in increasing order and prepare an inverse mapping array. |
| 1228 | static void PrepareMapToPalette(const uint32_t palette[], int num_colors, |
| 1229 | uint32_t sorted[], uint32_t idx_map[]) { |
| 1230 | int i; |
| 1231 | memcpy(sorted, palette, num_colors * sizeof(*sorted)); |
| 1232 | qsort(sorted, num_colors, sizeof(*sorted), PaletteCompareColorsForQsort); |
| 1233 | for (i = 0; i < num_colors; ++i) { |
| 1234 | idx_map[SearchColorNoIdx(sorted, palette[i], num_colors)] = i; |
| 1235 | } |
| 1236 | } |
| 1237 | |
| 1238 | // Use 1 pixel cache for ARGB pixels. |
| 1239 | #define APPLY_PALETTE_FOR(COLOR_INDEX) do { \ |
| 1240 | uint32_t prev_pix = palette[0]; \ |
| 1241 | uint32_t prev_idx = 0; \ |
| 1242 | for (y = 0; y < height; ++y) { \ |
| 1243 | for (x = 0; x < width; ++x) { \ |
| 1244 | const uint32_t pix = src[x]; \ |
| 1245 | if (pix != prev_pix) { \ |
| 1246 | prev_idx = COLOR_INDEX; \ |
| 1247 | prev_pix = pix; \ |
| 1248 | } \ |
| 1249 | tmp_row[x] = prev_idx; \ |
| 1250 | } \ |
| 1251 | VP8LBundleColorMap(tmp_row, width, xbits, dst); \ |
| 1252 | src += src_stride; \ |
| 1253 | dst += dst_stride; \ |
| 1254 | } \ |
| 1255 | } while (0) |
| 1256 | |
| 1257 | // Remap argb values in src[] to packed palettes entries in dst[] |
| 1258 | // using 'row' as a temporary buffer of size 'width'. |
| 1259 | // We assume that all src[] values have a corresponding entry in the palette. |
| 1260 | // Note: src[] can be the same as dst[] |
| 1261 | static WebPEncodingError ApplyPalette(const uint32_t* src, uint32_t src_stride, |
| 1262 | uint32_t* dst, uint32_t dst_stride, |
| 1263 | const uint32_t* palette, int palette_size, |
| 1264 | int width, int height, int xbits) { |
| 1265 | // TODO(skal): this tmp buffer is not needed if VP8LBundleColorMap() can be |
| 1266 | // made to work in-place. |
| 1267 | uint8_t* const tmp_row = (uint8_t*)WebPSafeMalloc(width, sizeof(*tmp_row)); |
| 1268 | int x, y; |
| 1269 | |
| 1270 | if (tmp_row == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 1271 | |
| 1272 | if (palette_size < APPLY_PALETTE_GREEDY_MAX) { |
| 1273 | APPLY_PALETTE_FOR(SearchColorGreedy(palette, palette_size, pix)); |
| 1274 | } else { |
| 1275 | int i, j; |
| 1276 | uint16_t buffer[PALETTE_INV_SIZE]; |
| 1277 | uint32_t (*const hash_functions[])(uint32_t) = { |
| 1278 | ApplyPaletteHash0, ApplyPaletteHash1, ApplyPaletteHash2 |
| 1279 | }; |
| 1280 | |
| 1281 | // Try to find a perfect hash function able to go from a color to an index |
| 1282 | // within 1 << PALETTE_INV_SIZE_BITS in order to build a hash map to go |
| 1283 | // from color to index in palette. |
| 1284 | for (i = 0; i < 3; ++i) { |
| 1285 | int use_LUT = 1; |
| 1286 | // Set each element in buffer to max uint16_t. |
| 1287 | memset(buffer, 0xff, sizeof(buffer)); |
| 1288 | for (j = 0; j < palette_size; ++j) { |
| 1289 | const uint32_t ind = hash_functions[i](palette[j]); |
| 1290 | if (buffer[ind] != 0xffffu) { |
| 1291 | use_LUT = 0; |
| 1292 | break; |
| 1293 | } else { |
| 1294 | buffer[ind] = j; |
| 1295 | } |
| 1296 | } |
| 1297 | if (use_LUT) break; |
| 1298 | } |
| 1299 | |
| 1300 | if (i == 0) { |
| 1301 | APPLY_PALETTE_FOR(buffer[ApplyPaletteHash0(pix)]); |
| 1302 | } else if (i == 1) { |
| 1303 | APPLY_PALETTE_FOR(buffer[ApplyPaletteHash1(pix)]); |
| 1304 | } else if (i == 2) { |
| 1305 | APPLY_PALETTE_FOR(buffer[ApplyPaletteHash2(pix)]); |
| 1306 | } else { |
| 1307 | uint32_t idx_map[MAX_PALETTE_SIZE]; |
| 1308 | uint32_t palette_sorted[MAX_PALETTE_SIZE]; |
| 1309 | PrepareMapToPalette(palette, palette_size, palette_sorted, idx_map); |
| 1310 | APPLY_PALETTE_FOR( |
| 1311 | idx_map[SearchColorNoIdx(palette_sorted, pix, palette_size)]); |
| 1312 | } |
| 1313 | } |
| 1314 | WebPSafeFree(tmp_row); |
| 1315 | return VP8_ENC_OK; |
| 1316 | } |
| 1317 | #undef APPLY_PALETTE_FOR |
| 1318 | #undef PALETTE_INV_SIZE_BITS |
| 1319 | #undef PALETTE_INV_SIZE |
| 1320 | #undef APPLY_PALETTE_GREEDY_MAX |
| 1321 | |
| 1322 | // Note: Expects "enc->palette_" to be set properly. |
| 1323 | static WebPEncodingError MapImageFromPalette(VP8LEncoder* const enc, |
| 1324 | int in_place) { |
| 1325 | WebPEncodingError err = VP8_ENC_OK; |
| 1326 | const WebPPicture* const pic = enc->pic_; |
| 1327 | const int width = pic->width; |
| 1328 | const int height = pic->height; |
| 1329 | const uint32_t* const palette = enc->palette_; |
| 1330 | const uint32_t* src = in_place ? enc->argb_ : pic->argb; |
| 1331 | const int src_stride = in_place ? enc->current_width_ : pic->argb_stride; |
| 1332 | const int palette_size = enc->palette_size_; |
| 1333 | int xbits; |
| 1334 | |
| 1335 | // Replace each input pixel by corresponding palette index. |
| 1336 | // This is done line by line. |
| 1337 | if (palette_size <= 4) { |
| 1338 | xbits = (palette_size <= 2) ? 3 : 2; |
| 1339 | } else { |
| 1340 | xbits = (palette_size <= 16) ? 1 : 0; |
| 1341 | } |
| 1342 | |
| 1343 | err = AllocateTransformBuffer(enc, VP8LSubSampleSize(width, xbits), height); |
| 1344 | if (err != VP8_ENC_OK) return err; |
| 1345 | |
| 1346 | err = ApplyPalette(src, src_stride, |
| 1347 | enc->argb_, enc->current_width_, |
| 1348 | palette, palette_size, width, height, xbits); |
| 1349 | return err; |
| 1350 | } |
| 1351 | |
| 1352 | // Save palette_[] to bitstream. |
| 1353 | static WebPEncodingError EncodePalette(VP8LBitWriter* const bw, int low_effort, |
| 1354 | VP8LEncoder* const enc) { |
| 1355 | int i; |
| 1356 | uint32_t tmp_palette[MAX_PALETTE_SIZE]; |
| 1357 | const int palette_size = enc->palette_size_; |
| 1358 | const uint32_t* const palette = enc->palette_; |
| 1359 | VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
| 1360 | VP8LPutBits(bw, COLOR_INDEXING_TRANSFORM, 2); |
| 1361 | assert(palette_size >= 1 && palette_size <= MAX_PALETTE_SIZE); |
| 1362 | VP8LPutBits(bw, palette_size - 1, 8); |
| 1363 | for (i = palette_size - 1; i >= 1; --i) { |
| 1364 | tmp_palette[i] = VP8LSubPixels(palette[i], palette[i - 1]); |
| 1365 | } |
| 1366 | tmp_palette[0] = palette[0]; |
| 1367 | return EncodeImageNoHuffman(bw, tmp_palette, &enc->hash_chain_, enc->refs_, |
| 1368 | palette_size, 1, 20 /* quality */, low_effort); |
| 1369 | } |
| 1370 | |
| 1371 | #ifdef WEBP_EXPERIMENTAL_FEATURES |
| 1372 | |
| 1373 | static WebPEncodingError EncodeDeltaPalettePredictorImage( |
| 1374 | VP8LBitWriter* const bw, VP8LEncoder* const enc, int quality, |
| 1375 | int low_effort) { |
| 1376 | const WebPPicture* const pic = enc->pic_; |
| 1377 | const int width = pic->width; |
| 1378 | const int height = pic->height; |
| 1379 | |
| 1380 | const int pred_bits = 5; |
| 1381 | const int transform_width = VP8LSubSampleSize(width, pred_bits); |
| 1382 | const int transform_height = VP8LSubSampleSize(height, pred_bits); |
| 1383 | const int pred = 7; // default is Predictor7 (Top/Left Average) |
| 1384 | const int tiles_per_row = VP8LSubSampleSize(width, pred_bits); |
| 1385 | const int tiles_per_col = VP8LSubSampleSize(height, pred_bits); |
| 1386 | uint32_t* predictors; |
| 1387 | int tile_x, tile_y; |
| 1388 | WebPEncodingError err = VP8_ENC_OK; |
| 1389 | |
| 1390 | predictors = (uint32_t*)WebPSafeMalloc(tiles_per_col * tiles_per_row, |
| 1391 | sizeof(*predictors)); |
| 1392 | if (predictors == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 1393 | |
| 1394 | for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) { |
| 1395 | for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) { |
| 1396 | predictors[tile_y * tiles_per_row + tile_x] = 0xff000000u | (pred << 8); |
| 1397 | } |
| 1398 | } |
| 1399 | |
| 1400 | VP8LPutBits(bw, TRANSFORM_PRESENT, 1); |
| 1401 | VP8LPutBits(bw, PREDICTOR_TRANSFORM, 2); |
| 1402 | VP8LPutBits(bw, pred_bits - 2, 3); |
| 1403 | err = EncodeImageNoHuffman(bw, predictors, &enc->hash_chain_, |
| 1404 | (VP8LBackwardRefs*)enc->refs_, // cast const away |
| 1405 | transform_width, transform_height, |
| 1406 | quality, low_effort); |
| 1407 | WebPSafeFree(predictors); |
| 1408 | return err; |
| 1409 | } |
| 1410 | |
| 1411 | #endif // WEBP_EXPERIMENTAL_FEATURES |
| 1412 | |
| 1413 | // ----------------------------------------------------------------------------- |
| 1414 | // VP8LEncoder |
| 1415 | |
| 1416 | static VP8LEncoder* VP8LEncoderNew(const WebPConfig* const config, |
| 1417 | const WebPPicture* const picture) { |
| 1418 | VP8LEncoder* const enc = (VP8LEncoder*)WebPSafeCalloc(1ULL, sizeof(*enc)); |
| 1419 | if (enc == NULL) { |
| 1420 | WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| 1421 | return NULL; |
| 1422 | } |
| 1423 | enc->config_ = config; |
| 1424 | enc->pic_ = picture; |
| 1425 | |
| 1426 | VP8LEncDspInit(); |
| 1427 | |
| 1428 | return enc; |
| 1429 | } |
| 1430 | |
| 1431 | static void VP8LEncoderDelete(VP8LEncoder* enc) { |
| 1432 | if (enc != NULL) { |
| 1433 | VP8LHashChainClear(&enc->hash_chain_); |
| 1434 | VP8LBackwardRefsClear(&enc->refs_[0]); |
| 1435 | VP8LBackwardRefsClear(&enc->refs_[1]); |
| 1436 | ClearTransformBuffer(enc); |
| 1437 | WebPSafeFree(enc); |
| 1438 | } |
| 1439 | } |
| 1440 | |
| 1441 | // ----------------------------------------------------------------------------- |
| 1442 | // Main call |
| 1443 | |
| 1444 | WebPEncodingError VP8LEncodeStream(const WebPConfig* const config, |
| 1445 | const WebPPicture* const picture, |
| 1446 | VP8LBitWriter* const bw, int use_cache) { |
| 1447 | WebPEncodingError err = VP8_ENC_OK; |
| 1448 | const int quality = (int)config->quality; |
| 1449 | const int low_effort = (config->method == 0); |
| 1450 | const int width = picture->width; |
| 1451 | const int height = picture->height; |
| 1452 | VP8LEncoder* const enc = VP8LEncoderNew(config, picture); |
| 1453 | const size_t byte_position = VP8LBitWriterNumBytes(bw); |
| 1454 | int use_near_lossless = 0; |
| 1455 | int hdr_size = 0; |
| 1456 | int data_size = 0; |
| 1457 | int use_delta_palette = 0; |
| 1458 | |
| 1459 | if (enc == NULL) { |
| 1460 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 1461 | goto Error; |
| 1462 | } |
| 1463 | |
| 1464 | // --------------------------------------------------------------------------- |
| 1465 | // Analyze image (entropy, num_palettes etc) |
| 1466 | |
| 1467 | if (!AnalyzeAndInit(enc)) { |
| 1468 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 1469 | goto Error; |
| 1470 | } |
| 1471 | |
| 1472 | // Apply near-lossless preprocessing. |
| 1473 | use_near_lossless = |
| 1474 | (config->near_lossless < 100) && !enc->use_palette_ && !enc->use_predict_; |
| 1475 | if (use_near_lossless) { |
| 1476 | if (!VP8ApplyNearLossless(width, height, picture->argb, |
| 1477 | config->near_lossless)) { |
| 1478 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 1479 | goto Error; |
| 1480 | } |
| 1481 | } |
| 1482 | |
| 1483 | #ifdef WEBP_EXPERIMENTAL_FEATURES |
| 1484 | if (config->use_delta_palette) { |
| 1485 | enc->use_predict_ = 1; |
| 1486 | enc->use_cross_color_ = 0; |
| 1487 | enc->use_subtract_green_ = 0; |
| 1488 | enc->use_palette_ = 1; |
| 1489 | err = MakeInputImageCopy(enc); |
| 1490 | if (err != VP8_ENC_OK) goto Error; |
| 1491 | err = WebPSearchOptimalDeltaPalette(enc); |
| 1492 | if (err != VP8_ENC_OK) goto Error; |
| 1493 | if (enc->use_palette_) { |
| 1494 | err = AllocateTransformBuffer(enc, width, height); |
| 1495 | if (err != VP8_ENC_OK) goto Error; |
| 1496 | err = EncodeDeltaPalettePredictorImage(bw, enc, quality, low_effort); |
| 1497 | if (err != VP8_ENC_OK) goto Error; |
| 1498 | use_delta_palette = 1; |
| 1499 | } |
| 1500 | } |
| 1501 | #endif // WEBP_EXPERIMENTAL_FEATURES |
| 1502 | |
| 1503 | // Encode palette |
| 1504 | if (enc->use_palette_) { |
| 1505 | err = EncodePalette(bw, low_effort, enc); |
| 1506 | if (err != VP8_ENC_OK) goto Error; |
| 1507 | err = MapImageFromPalette(enc, use_delta_palette); |
| 1508 | if (err != VP8_ENC_OK) goto Error; |
| 1509 | // If using a color cache, do not have it bigger than the number of colors. |
| 1510 | if (use_cache && enc->palette_size_ < (1 << MAX_COLOR_CACHE_BITS)) { |
| 1511 | enc->cache_bits_ = BitsLog2Floor(enc->palette_size_) + 1; |
| 1512 | } |
| 1513 | } |
| 1514 | if (!use_delta_palette) { |
| 1515 | // In case image is not packed. |
| 1516 | if (enc->argb_ == NULL) { |
| 1517 | err = MakeInputImageCopy(enc); |
| 1518 | if (err != VP8_ENC_OK) goto Error; |
| 1519 | } |
| 1520 | |
| 1521 | // ------------------------------------------------------------------------- |
| 1522 | // Apply transforms and write transform data. |
| 1523 | |
| 1524 | if (enc->use_subtract_green_) { |
| 1525 | ApplySubtractGreen(enc, enc->current_width_, height, bw); |
| 1526 | } |
| 1527 | |
| 1528 | if (enc->use_predict_) { |
| 1529 | err = ApplyPredictFilter(enc, enc->current_width_, height, quality, |
| 1530 | low_effort, enc->use_subtract_green_, bw); |
| 1531 | if (err != VP8_ENC_OK) goto Error; |
| 1532 | } |
| 1533 | |
| 1534 | if (enc->use_cross_color_) { |
| 1535 | err = ApplyCrossColorFilter(enc, enc->current_width_, |
| 1536 | height, quality, low_effort, bw); |
| 1537 | if (err != VP8_ENC_OK) goto Error; |
| 1538 | } |
| 1539 | } |
| 1540 | |
| 1541 | VP8LPutBits(bw, !TRANSFORM_PRESENT, 1); // No more transforms. |
| 1542 | |
| 1543 | // --------------------------------------------------------------------------- |
| 1544 | // Encode and write the transformed image. |
| 1545 | err = EncodeImageInternal(bw, enc->argb_, &enc->hash_chain_, enc->refs_, |
| 1546 | enc->current_width_, height, quality, low_effort, |
| 1547 | use_cache, &enc->cache_bits_, enc->histo_bits_, |
| 1548 | byte_position, &hdr_size, &data_size); |
| 1549 | if (err != VP8_ENC_OK) goto Error; |
| 1550 | |
| 1551 | if (picture->stats != NULL) { |
| 1552 | WebPAuxStats* const stats = picture->stats; |
| 1553 | stats->lossless_features = 0; |
| 1554 | if (enc->use_predict_) stats->lossless_features |= 1; |
| 1555 | if (enc->use_cross_color_) stats->lossless_features |= 2; |
| 1556 | if (enc->use_subtract_green_) stats->lossless_features |= 4; |
| 1557 | if (enc->use_palette_) stats->lossless_features |= 8; |
| 1558 | stats->histogram_bits = enc->histo_bits_; |
| 1559 | stats->transform_bits = enc->transform_bits_; |
| 1560 | stats->cache_bits = enc->cache_bits_; |
| 1561 | stats->palette_size = enc->palette_size_; |
| 1562 | stats->lossless_size = (int)(VP8LBitWriterNumBytes(bw) - byte_position); |
| 1563 | stats->lossless_hdr_size = hdr_size; |
| 1564 | stats->lossless_data_size = data_size; |
| 1565 | } |
| 1566 | |
| 1567 | Error: |
| 1568 | VP8LEncoderDelete(enc); |
| 1569 | return err; |
| 1570 | } |
| 1571 | |
| 1572 | int VP8LEncodeImage(const WebPConfig* const config, |
| 1573 | const WebPPicture* const picture) { |
| 1574 | int width, height; |
| 1575 | int has_alpha; |
| 1576 | size_t coded_size; |
| 1577 | int percent = 0; |
| 1578 | int initial_size; |
| 1579 | WebPEncodingError err = VP8_ENC_OK; |
| 1580 | VP8LBitWriter bw; |
| 1581 | |
| 1582 | if (picture == NULL) return 0; |
| 1583 | |
| 1584 | if (config == NULL || picture->argb == NULL) { |
| 1585 | err = VP8_ENC_ERROR_NULL_PARAMETER; |
| 1586 | WebPEncodingSetError(picture, err); |
| 1587 | return 0; |
| 1588 | } |
| 1589 | |
| 1590 | width = picture->width; |
| 1591 | height = picture->height; |
| 1592 | // Initialize BitWriter with size corresponding to 16 bpp to photo images and |
| 1593 | // 8 bpp for graphical images. |
| 1594 | initial_size = (config->image_hint == WEBP_HINT_GRAPH) ? |
| 1595 | width * height : width * height * 2; |
| 1596 | if (!VP8LBitWriterInit(&bw, initial_size)) { |
| 1597 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 1598 | goto Error; |
| 1599 | } |
| 1600 | |
| 1601 | if (!WebPReportProgress(picture, 1, &percent)) { |
| 1602 | UserAbort: |
| 1603 | err = VP8_ENC_ERROR_USER_ABORT; |
| 1604 | goto Error; |
| 1605 | } |
| 1606 | // Reset stats (for pure lossless coding) |
| 1607 | if (picture->stats != NULL) { |
| 1608 | WebPAuxStats* const stats = picture->stats; |
| 1609 | memset(stats, 0, sizeof(*stats)); |
| 1610 | stats->PSNR[0] = 99.f; |
| 1611 | stats->PSNR[1] = 99.f; |
| 1612 | stats->PSNR[2] = 99.f; |
| 1613 | stats->PSNR[3] = 99.f; |
| 1614 | stats->PSNR[4] = 99.f; |
| 1615 | } |
| 1616 | |
| 1617 | // Write image size. |
| 1618 | if (!WriteImageSize(picture, &bw)) { |
| 1619 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 1620 | goto Error; |
| 1621 | } |
| 1622 | |
| 1623 | has_alpha = WebPPictureHasTransparency(picture); |
| 1624 | // Write the non-trivial Alpha flag and lossless version. |
| 1625 | if (!WriteRealAlphaAndVersion(&bw, has_alpha)) { |
| 1626 | err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 1627 | goto Error; |
| 1628 | } |
| 1629 | |
| 1630 | if (!WebPReportProgress(picture, 5, &percent)) goto UserAbort; |
| 1631 | |
| 1632 | // Encode main image stream. |
| 1633 | err = VP8LEncodeStream(config, picture, &bw, 1 /*use_cache*/); |
| 1634 | if (err != VP8_ENC_OK) goto Error; |
| 1635 | |
| 1636 | // TODO(skal): have a fine-grained progress report in VP8LEncodeStream(). |
| 1637 | if (!WebPReportProgress(picture, 90, &percent)) goto UserAbort; |
| 1638 | |
| 1639 | // Finish the RIFF chunk. |
| 1640 | err = WriteImage(picture, &bw, &coded_size); |
| 1641 | if (err != VP8_ENC_OK) goto Error; |
| 1642 | |
| 1643 | if (!WebPReportProgress(picture, 100, &percent)) goto UserAbort; |
| 1644 | |
| 1645 | // Save size. |
| 1646 | if (picture->stats != NULL) { |
| 1647 | picture->stats->coded_size += (int)coded_size; |
| 1648 | picture->stats->lossless_size = (int)coded_size; |
| 1649 | } |
| 1650 | |
| 1651 | if (picture->extra_info != NULL) { |
| 1652 | const int mb_w = (width + 15) >> 4; |
| 1653 | const int mb_h = (height + 15) >> 4; |
| 1654 | memset(picture->extra_info, 0, mb_w * mb_h * sizeof(*picture->extra_info)); |
| 1655 | } |
| 1656 | |
| 1657 | Error: |
| 1658 | if (bw.error_) err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 1659 | VP8LBitWriterWipeOut(&bw); |
| 1660 | if (err != VP8_ENC_OK) { |
| 1661 | WebPEncodingSetError(picture, err); |
| 1662 | return 0; |
| 1663 | } |
| 1664 | return 1; |
| 1665 | } |
| 1666 | |
| 1667 | //------------------------------------------------------------------------------ |
| 1668 | |