1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkMatrix_DEFINED |
9 | #define SkMatrix_DEFINED |
10 | |
11 | #include "include/core/SkRect.h" |
12 | #include "include/private/SkMacros.h" |
13 | #include "include/private/SkTo.h" |
14 | |
15 | struct SkRSXform; |
16 | struct SkPoint3; |
17 | |
18 | /** |
19 | * When we transform points through a matrix containing perspective (the bottom row is something |
20 | * other than 0,0,1), the bruteforce math can produce confusing results (since we might divide |
21 | * by 0, or a negative w value). By default, methods that map rects and paths will apply |
22 | * perspective clipping, but this can be changed by specifying kYes to those methods. |
23 | */ |
24 | enum class SkApplyPerspectiveClip { |
25 | kNo, //!< Don't pre-clip the geometry before applying the (perspective) matrix |
26 | kYes, //!< Do pre-clip the geometry before applying the (perspective) matrix |
27 | }; |
28 | |
29 | /** \class SkMatrix |
30 | SkMatrix holds a 3x3 matrix for transforming coordinates. This allows mapping |
31 | SkPoint and vectors with translation, scaling, skewing, rotation, and |
32 | perspective. |
33 | |
34 | SkMatrix elements are in row major order. SkMatrix does not have a constructor, |
35 | so it must be explicitly initialized. setIdentity() initializes SkMatrix |
36 | so it has no effect. setTranslate(), setScale(), setSkew(), setRotate(), set9 and setAll() |
37 | initializes all SkMatrix elements with the corresponding mapping. |
38 | |
39 | SkMatrix includes a hidden variable that classifies the type of matrix to |
40 | improve performance. SkMatrix is not thread safe unless getType() is called first. |
41 | |
42 | example: https://fiddle.skia.org/c/@Matrix_063 |
43 | */ |
44 | SK_BEGIN_REQUIRE_DENSE |
45 | class SK_API SkMatrix { |
46 | public: |
47 | |
48 | /** Creates an identity SkMatrix: |
49 | |
50 | | 1 0 0 | |
51 | | 0 1 0 | |
52 | | 0 0 1 | |
53 | */ |
54 | constexpr SkMatrix() : SkMatrix(1,0,0, 0,1,0, 0,0,1, kIdentity_Mask | kRectStaysRect_Mask) {} |
55 | |
56 | /** Sets SkMatrix to scale by (sx, sy). Returned matrix is: |
57 | |
58 | | sx 0 0 | |
59 | | 0 sy 0 | |
60 | | 0 0 1 | |
61 | |
62 | @param sx horizontal scale factor |
63 | @param sy vertical scale factor |
64 | @return SkMatrix with scale |
65 | */ |
66 | static SkMatrix SK_WARN_UNUSED_RESULT Scale(SkScalar sx, SkScalar sy) { |
67 | SkMatrix m; |
68 | m.setScale(sx, sy); |
69 | return m; |
70 | } |
71 | |
72 | /** Sets SkMatrix to translate by (dx, dy). Returned matrix is: |
73 | |
74 | | 1 0 dx | |
75 | | 0 1 dy | |
76 | | 0 0 1 | |
77 | |
78 | @param dx horizontal translation |
79 | @param dy vertical translation |
80 | @return SkMatrix with translation |
81 | */ |
82 | static SkMatrix SK_WARN_UNUSED_RESULT Translate(SkScalar dx, SkScalar dy) { |
83 | SkMatrix m; |
84 | m.setTranslate(dx, dy); |
85 | return m; |
86 | } |
87 | static SkMatrix SK_WARN_UNUSED_RESULT Translate(SkVector t) { return Translate(t.x(), t.y()); } |
88 | static SkMatrix SK_WARN_UNUSED_RESULT Translate(SkIVector t) { return Translate(t.x(), t.y()); } |
89 | |
90 | /** Sets SkMatrix to rotate by |deg| about a pivot point at (0, 0). |
91 | |
92 | @param deg rotation angle in degrees (positive rotates clockwise) |
93 | @return SkMatrix with rotation |
94 | */ |
95 | static SkMatrix SK_WARN_UNUSED_RESULT RotateDeg(SkScalar deg) { |
96 | SkMatrix m; |
97 | m.setRotate(deg); |
98 | return m; |
99 | } |
100 | static SkMatrix SK_WARN_UNUSED_RESULT RotateRad(SkScalar rad) { |
101 | return RotateDeg(SkRadiansToDegrees(rad)); |
102 | } |
103 | |
104 | #ifdef SK_SUPPORT_LEGACY_MATRIX_FACTORIES |
105 | // DEPRECATED |
106 | static SkMatrix SK_WARN_UNUSED_RESULT MakeTrans(SkScalar dx, SkScalar dy) { |
107 | return Translate(dx, dy); |
108 | } |
109 | static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar sx, SkScalar sy) { |
110 | return Scale(sx, sy); |
111 | } |
112 | static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar scale) { |
113 | return Scale(scale, scale); |
114 | } |
115 | static SkMatrix SK_WARN_UNUSED_RESULT MakeTrans(SkVector t) { return MakeTrans(t.x(), t.y()); } |
116 | static SkMatrix SK_WARN_UNUSED_RESULT MakeTrans(SkIVector t) { return MakeTrans(t.x(), t.y()); } |
117 | // end DEPRECATED |
118 | #endif |
119 | |
120 | /** Sets SkMatrix to: |
121 | |
122 | | scaleX skewX transX | |
123 | | skewY scaleY transY | |
124 | | pers0 pers1 pers2 | |
125 | |
126 | @param scaleX horizontal scale factor |
127 | @param skewX horizontal skew factor |
128 | @param transX horizontal translation |
129 | @param skewY vertical skew factor |
130 | @param scaleY vertical scale factor |
131 | @param transY vertical translation |
132 | @param pers0 input x-axis perspective factor |
133 | @param pers1 input y-axis perspective factor |
134 | @param pers2 perspective scale factor |
135 | @return SkMatrix constructed from parameters |
136 | */ |
137 | static SkMatrix SK_WARN_UNUSED_RESULT MakeAll(SkScalar scaleX, SkScalar skewX, SkScalar transX, |
138 | SkScalar skewY, SkScalar scaleY, SkScalar transY, |
139 | SkScalar pers0, SkScalar pers1, SkScalar pers2) { |
140 | SkMatrix m; |
141 | m.setAll(scaleX, skewX, transX, skewY, scaleY, transY, pers0, pers1, pers2); |
142 | return m; |
143 | } |
144 | |
145 | /** \enum SkMatrix::TypeMask |
146 | Enum of bit fields for mask returned by getType(). |
147 | Used to identify the complexity of SkMatrix, to optimize performance. |
148 | */ |
149 | enum TypeMask { |
150 | kIdentity_Mask = 0, //!< identity SkMatrix; all bits clear |
151 | kTranslate_Mask = 0x01, //!< translation SkMatrix |
152 | kScale_Mask = 0x02, //!< scale SkMatrix |
153 | kAffine_Mask = 0x04, //!< skew or rotate SkMatrix |
154 | kPerspective_Mask = 0x08, //!< perspective SkMatrix |
155 | }; |
156 | |
157 | /** Returns a bit field describing the transformations the matrix may |
158 | perform. The bit field is computed conservatively, so it may include |
159 | false positives. For example, when kPerspective_Mask is set, all |
160 | other bits are set. |
161 | |
162 | @return kIdentity_Mask, or combinations of: kTranslate_Mask, kScale_Mask, |
163 | kAffine_Mask, kPerspective_Mask |
164 | */ |
165 | TypeMask getType() const { |
166 | if (fTypeMask & kUnknown_Mask) { |
167 | fTypeMask = this->computeTypeMask(); |
168 | } |
169 | // only return the public masks |
170 | return (TypeMask)(fTypeMask & 0xF); |
171 | } |
172 | |
173 | /** Returns true if SkMatrix is identity. Identity matrix is: |
174 | |
175 | | 1 0 0 | |
176 | | 0 1 0 | |
177 | | 0 0 1 | |
178 | |
179 | @return true if SkMatrix has no effect |
180 | */ |
181 | bool isIdentity() const { |
182 | return this->getType() == 0; |
183 | } |
184 | |
185 | /** Returns true if SkMatrix at most scales and translates. SkMatrix may be identity, |
186 | contain only scale elements, only translate elements, or both. SkMatrix form is: |
187 | |
188 | | scale-x 0 translate-x | |
189 | | 0 scale-y translate-y | |
190 | | 0 0 1 | |
191 | |
192 | @return true if SkMatrix is identity; or scales, translates, or both |
193 | */ |
194 | bool isScaleTranslate() const { |
195 | return !(this->getType() & ~(kScale_Mask | kTranslate_Mask)); |
196 | } |
197 | |
198 | /** Returns true if SkMatrix is identity, or translates. SkMatrix form is: |
199 | |
200 | | 1 0 translate-x | |
201 | | 0 1 translate-y | |
202 | | 0 0 1 | |
203 | |
204 | @return true if SkMatrix is identity, or translates |
205 | */ |
206 | bool isTranslate() const { return !(this->getType() & ~(kTranslate_Mask)); } |
207 | |
208 | /** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity, |
209 | or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all |
210 | cases, SkMatrix may also have translation. SkMatrix form is either: |
211 | |
212 | | scale-x 0 translate-x | |
213 | | 0 scale-y translate-y | |
214 | | 0 0 1 | |
215 | |
216 | or |
217 | |
218 | | 0 rotate-x translate-x | |
219 | | rotate-y 0 translate-y | |
220 | | 0 0 1 | |
221 | |
222 | for non-zero values of scale-x, scale-y, rotate-x, and rotate-y. |
223 | |
224 | Also called preservesAxisAlignment(); use the one that provides better inline |
225 | documentation. |
226 | |
227 | @return true if SkMatrix maps one SkRect into another |
228 | */ |
229 | bool rectStaysRect() const { |
230 | if (fTypeMask & kUnknown_Mask) { |
231 | fTypeMask = this->computeTypeMask(); |
232 | } |
233 | return (fTypeMask & kRectStaysRect_Mask) != 0; |
234 | } |
235 | |
236 | /** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity, |
237 | or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all |
238 | cases, SkMatrix may also have translation. SkMatrix form is either: |
239 | |
240 | | scale-x 0 translate-x | |
241 | | 0 scale-y translate-y | |
242 | | 0 0 1 | |
243 | |
244 | or |
245 | |
246 | | 0 rotate-x translate-x | |
247 | | rotate-y 0 translate-y | |
248 | | 0 0 1 | |
249 | |
250 | for non-zero values of scale-x, scale-y, rotate-x, and rotate-y. |
251 | |
252 | Also called rectStaysRect(); use the one that provides better inline |
253 | documentation. |
254 | |
255 | @return true if SkMatrix maps one SkRect into another |
256 | */ |
257 | bool preservesAxisAlignment() const { return this->rectStaysRect(); } |
258 | |
259 | /** Returns true if the matrix contains perspective elements. SkMatrix form is: |
260 | |
261 | | -- -- -- | |
262 | | -- -- -- | |
263 | | perspective-x perspective-y perspective-scale | |
264 | |
265 | where perspective-x or perspective-y is non-zero, or perspective-scale is |
266 | not one. All other elements may have any value. |
267 | |
268 | @return true if SkMatrix is in most general form |
269 | */ |
270 | bool hasPerspective() const { |
271 | return SkToBool(this->getPerspectiveTypeMaskOnly() & |
272 | kPerspective_Mask); |
273 | } |
274 | |
275 | /** Returns true if SkMatrix contains only translation, rotation, reflection, and |
276 | uniform scale. |
277 | Returns false if SkMatrix contains different scales, skewing, perspective, or |
278 | degenerate forms that collapse to a line or point. |
279 | |
280 | Describes that the SkMatrix makes rendering with and without the matrix are |
281 | visually alike; a transformed circle remains a circle. Mathematically, this is |
282 | referred to as similarity of a Euclidean space, or a similarity transformation. |
283 | |
284 | Preserves right angles, keeping the arms of the angle equal lengths. |
285 | |
286 | @param tol to be deprecated |
287 | @return true if SkMatrix only rotates, uniformly scales, translates |
288 | |
289 | example: https://fiddle.skia.org/c/@Matrix_isSimilarity |
290 | */ |
291 | bool isSimilarity(SkScalar tol = SK_ScalarNearlyZero) const; |
292 | |
293 | /** Returns true if SkMatrix contains only translation, rotation, reflection, and |
294 | scale. Scale may differ along rotated axes. |
295 | Returns false if SkMatrix skewing, perspective, or degenerate forms that collapse |
296 | to a line or point. |
297 | |
298 | Preserves right angles, but not requiring that the arms of the angle |
299 | retain equal lengths. |
300 | |
301 | @param tol to be deprecated |
302 | @return true if SkMatrix only rotates, scales, translates |
303 | |
304 | example: https://fiddle.skia.org/c/@Matrix_preservesRightAngles |
305 | */ |
306 | bool preservesRightAngles(SkScalar tol = SK_ScalarNearlyZero) const; |
307 | |
308 | /** SkMatrix organizes its values in row order. These members correspond to |
309 | each value in SkMatrix. |
310 | */ |
311 | static constexpr int kMScaleX = 0; //!< horizontal scale factor |
312 | static constexpr int kMSkewX = 1; //!< horizontal skew factor |
313 | static constexpr int kMTransX = 2; //!< horizontal translation |
314 | static constexpr int kMSkewY = 3; //!< vertical skew factor |
315 | static constexpr int kMScaleY = 4; //!< vertical scale factor |
316 | static constexpr int kMTransY = 5; //!< vertical translation |
317 | static constexpr int kMPersp0 = 6; //!< input x perspective factor |
318 | static constexpr int kMPersp1 = 7; //!< input y perspective factor |
319 | static constexpr int kMPersp2 = 8; //!< perspective bias |
320 | |
321 | /** Affine arrays are in column major order to match the matrix used by |
322 | PDF and XPS. |
323 | */ |
324 | static constexpr int kAScaleX = 0; //!< horizontal scale factor |
325 | static constexpr int kASkewY = 1; //!< vertical skew factor |
326 | static constexpr int kASkewX = 2; //!< horizontal skew factor |
327 | static constexpr int kAScaleY = 3; //!< vertical scale factor |
328 | static constexpr int kATransX = 4; //!< horizontal translation |
329 | static constexpr int kATransY = 5; //!< vertical translation |
330 | |
331 | /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is |
332 | defined. |
333 | |
334 | @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
335 | kMPersp0, kMPersp1, kMPersp2 |
336 | @return value corresponding to index |
337 | */ |
338 | SkScalar operator[](int index) const { |
339 | SkASSERT((unsigned)index < 9); |
340 | return fMat[index]; |
341 | } |
342 | |
343 | /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is |
344 | defined. |
345 | |
346 | @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
347 | kMPersp0, kMPersp1, kMPersp2 |
348 | @return value corresponding to index |
349 | */ |
350 | SkScalar get(int index) const { |
351 | SkASSERT((unsigned)index < 9); |
352 | return fMat[index]; |
353 | } |
354 | |
355 | /** Returns scale factor multiplied by x-axis input, contributing to x-axis output. |
356 | With mapPoints(), scales SkPoint along the x-axis. |
357 | |
358 | @return horizontal scale factor |
359 | */ |
360 | SkScalar getScaleX() const { return fMat[kMScaleX]; } |
361 | |
362 | /** Returns scale factor multiplied by y-axis input, contributing to y-axis output. |
363 | With mapPoints(), scales SkPoint along the y-axis. |
364 | |
365 | @return vertical scale factor |
366 | */ |
367 | SkScalar getScaleY() const { return fMat[kMScaleY]; } |
368 | |
369 | /** Returns scale factor multiplied by x-axis input, contributing to y-axis output. |
370 | With mapPoints(), skews SkPoint along the y-axis. |
371 | Skewing both axes can rotate SkPoint. |
372 | |
373 | @return vertical skew factor |
374 | */ |
375 | SkScalar getSkewY() const { return fMat[kMSkewY]; } |
376 | |
377 | /** Returns scale factor multiplied by y-axis input, contributing to x-axis output. |
378 | With mapPoints(), skews SkPoint along the x-axis. |
379 | Skewing both axes can rotate SkPoint. |
380 | |
381 | @return horizontal scale factor |
382 | */ |
383 | SkScalar getSkewX() const { return fMat[kMSkewX]; } |
384 | |
385 | /** Returns translation contributing to x-axis output. |
386 | With mapPoints(), moves SkPoint along the x-axis. |
387 | |
388 | @return horizontal translation factor |
389 | */ |
390 | SkScalar getTranslateX() const { return fMat[kMTransX]; } |
391 | |
392 | /** Returns translation contributing to y-axis output. |
393 | With mapPoints(), moves SkPoint along the y-axis. |
394 | |
395 | @return vertical translation factor |
396 | */ |
397 | SkScalar getTranslateY() const { return fMat[kMTransY]; } |
398 | |
399 | /** Returns factor scaling input x-axis relative to input y-axis. |
400 | |
401 | @return input x-axis perspective factor |
402 | */ |
403 | SkScalar getPerspX() const { return fMat[kMPersp0]; } |
404 | |
405 | /** Returns factor scaling input y-axis relative to input x-axis. |
406 | |
407 | @return input y-axis perspective factor |
408 | */ |
409 | SkScalar getPerspY() const { return fMat[kMPersp1]; } |
410 | |
411 | /** Returns writable SkMatrix value. Asserts if index is out of range and SK_DEBUG is |
412 | defined. Clears internal cache anticipating that caller will change SkMatrix value. |
413 | |
414 | Next call to read SkMatrix state may recompute cache; subsequent writes to SkMatrix |
415 | value must be followed by dirtyMatrixTypeCache(). |
416 | |
417 | @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
418 | kMPersp0, kMPersp1, kMPersp2 |
419 | @return writable value corresponding to index |
420 | */ |
421 | SkScalar& operator[](int index) { |
422 | SkASSERT((unsigned)index < 9); |
423 | this->setTypeMask(kUnknown_Mask); |
424 | return fMat[index]; |
425 | } |
426 | |
427 | /** Sets SkMatrix value. Asserts if index is out of range and SK_DEBUG is |
428 | defined. Safer than operator[]; internal cache is always maintained. |
429 | |
430 | @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
431 | kMPersp0, kMPersp1, kMPersp2 |
432 | @param value scalar to store in SkMatrix |
433 | */ |
434 | SkMatrix& set(int index, SkScalar value) { |
435 | SkASSERT((unsigned)index < 9); |
436 | fMat[index] = value; |
437 | this->setTypeMask(kUnknown_Mask); |
438 | return *this; |
439 | } |
440 | |
441 | /** Sets horizontal scale factor. |
442 | |
443 | @param v horizontal scale factor to store |
444 | */ |
445 | SkMatrix& setScaleX(SkScalar v) { return this->set(kMScaleX, v); } |
446 | |
447 | /** Sets vertical scale factor. |
448 | |
449 | @param v vertical scale factor to store |
450 | */ |
451 | SkMatrix& setScaleY(SkScalar v) { return this->set(kMScaleY, v); } |
452 | |
453 | /** Sets vertical skew factor. |
454 | |
455 | @param v vertical skew factor to store |
456 | */ |
457 | SkMatrix& setSkewY(SkScalar v) { return this->set(kMSkewY, v); } |
458 | |
459 | /** Sets horizontal skew factor. |
460 | |
461 | @param v horizontal skew factor to store |
462 | */ |
463 | SkMatrix& setSkewX(SkScalar v) { return this->set(kMSkewX, v); } |
464 | |
465 | /** Sets horizontal translation. |
466 | |
467 | @param v horizontal translation to store |
468 | */ |
469 | SkMatrix& setTranslateX(SkScalar v) { return this->set(kMTransX, v); } |
470 | |
471 | /** Sets vertical translation. |
472 | |
473 | @param v vertical translation to store |
474 | */ |
475 | SkMatrix& setTranslateY(SkScalar v) { return this->set(kMTransY, v); } |
476 | |
477 | /** Sets input x-axis perspective factor, which causes mapXY() to vary input x-axis values |
478 | inversely proportional to input y-axis values. |
479 | |
480 | @param v perspective factor |
481 | */ |
482 | SkMatrix& setPerspX(SkScalar v) { return this->set(kMPersp0, v); } |
483 | |
484 | /** Sets input y-axis perspective factor, which causes mapXY() to vary input y-axis values |
485 | inversely proportional to input x-axis values. |
486 | |
487 | @param v perspective factor |
488 | */ |
489 | SkMatrix& setPerspY(SkScalar v) { return this->set(kMPersp1, v); } |
490 | |
491 | /** Sets all values from parameters. Sets matrix to: |
492 | |
493 | | scaleX skewX transX | |
494 | | skewY scaleY transY | |
495 | | persp0 persp1 persp2 | |
496 | |
497 | @param scaleX horizontal scale factor to store |
498 | @param skewX horizontal skew factor to store |
499 | @param transX horizontal translation to store |
500 | @param skewY vertical skew factor to store |
501 | @param scaleY vertical scale factor to store |
502 | @param transY vertical translation to store |
503 | @param persp0 input x-axis values perspective factor to store |
504 | @param persp1 input y-axis values perspective factor to store |
505 | @param persp2 perspective scale factor to store |
506 | */ |
507 | SkMatrix& setAll(SkScalar scaleX, SkScalar skewX, SkScalar transX, |
508 | SkScalar skewY, SkScalar scaleY, SkScalar transY, |
509 | SkScalar persp0, SkScalar persp1, SkScalar persp2) { |
510 | fMat[kMScaleX] = scaleX; |
511 | fMat[kMSkewX] = skewX; |
512 | fMat[kMTransX] = transX; |
513 | fMat[kMSkewY] = skewY; |
514 | fMat[kMScaleY] = scaleY; |
515 | fMat[kMTransY] = transY; |
516 | fMat[kMPersp0] = persp0; |
517 | fMat[kMPersp1] = persp1; |
518 | fMat[kMPersp2] = persp2; |
519 | this->setTypeMask(kUnknown_Mask); |
520 | return *this; |
521 | } |
522 | |
523 | /** Copies nine scalar values contained by SkMatrix into buffer, in member value |
524 | ascending order: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
525 | kMPersp0, kMPersp1, kMPersp2. |
526 | |
527 | @param buffer storage for nine scalar values |
528 | */ |
529 | void get9(SkScalar buffer[9]) const { |
530 | memcpy(buffer, fMat, 9 * sizeof(SkScalar)); |
531 | } |
532 | |
533 | /** Sets SkMatrix to nine scalar values in buffer, in member value ascending order: |
534 | kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, kMPersp0, kMPersp1, |
535 | kMPersp2. |
536 | |
537 | Sets matrix to: |
538 | |
539 | | buffer[0] buffer[1] buffer[2] | |
540 | | buffer[3] buffer[4] buffer[5] | |
541 | | buffer[6] buffer[7] buffer[8] | |
542 | |
543 | In the future, set9 followed by get9 may not return the same values. Since SkMatrix |
544 | maps non-homogeneous coordinates, scaling all nine values produces an equivalent |
545 | transformation, possibly improving precision. |
546 | |
547 | @param buffer nine scalar values |
548 | */ |
549 | SkMatrix& set9(const SkScalar buffer[9]); |
550 | |
551 | /** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to: |
552 | |
553 | | 1 0 0 | |
554 | | 0 1 0 | |
555 | | 0 0 1 | |
556 | |
557 | Also called setIdentity(); use the one that provides better inline |
558 | documentation. |
559 | */ |
560 | SkMatrix& reset(); |
561 | |
562 | /** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to: |
563 | |
564 | | 1 0 0 | |
565 | | 0 1 0 | |
566 | | 0 0 1 | |
567 | |
568 | Also called reset(); use the one that provides better inline |
569 | documentation. |
570 | */ |
571 | SkMatrix& setIdentity() { return this->reset(); } |
572 | |
573 | /** Sets SkMatrix to translate by (dx, dy). |
574 | |
575 | @param dx horizontal translation |
576 | @param dy vertical translation |
577 | */ |
578 | SkMatrix& setTranslate(SkScalar dx, SkScalar dy); |
579 | |
580 | /** Sets SkMatrix to translate by (v.fX, v.fY). |
581 | |
582 | @param v vector containing horizontal and vertical translation |
583 | */ |
584 | SkMatrix& setTranslate(const SkVector& v) { return this->setTranslate(v.fX, v.fY); } |
585 | |
586 | /** Sets SkMatrix to scale by sx and sy, about a pivot point at (px, py). |
587 | The pivot point is unchanged when mapped with SkMatrix. |
588 | |
589 | @param sx horizontal scale factor |
590 | @param sy vertical scale factor |
591 | @param px pivot on x-axis |
592 | @param py pivot on y-axis |
593 | */ |
594 | SkMatrix& setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); |
595 | |
596 | /** Sets SkMatrix to scale by sx and sy about at pivot point at (0, 0). |
597 | |
598 | @param sx horizontal scale factor |
599 | @param sy vertical scale factor |
600 | */ |
601 | SkMatrix& setScale(SkScalar sx, SkScalar sy); |
602 | |
603 | /** Sets SkMatrix to rotate by degrees about a pivot point at (px, py). |
604 | The pivot point is unchanged when mapped with SkMatrix. |
605 | |
606 | Positive degrees rotates clockwise. |
607 | |
608 | @param degrees angle of axes relative to upright axes |
609 | @param px pivot on x-axis |
610 | @param py pivot on y-axis |
611 | */ |
612 | SkMatrix& setRotate(SkScalar degrees, SkScalar px, SkScalar py); |
613 | |
614 | /** Sets SkMatrix to rotate by degrees about a pivot point at (0, 0). |
615 | Positive degrees rotates clockwise. |
616 | |
617 | @param degrees angle of axes relative to upright axes |
618 | */ |
619 | SkMatrix& setRotate(SkScalar degrees); |
620 | |
621 | /** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (px, py). |
622 | The pivot point is unchanged when mapped with SkMatrix. |
623 | |
624 | Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1). |
625 | Vector length specifies scale. |
626 | |
627 | @param sinValue rotation vector x-axis component |
628 | @param cosValue rotation vector y-axis component |
629 | @param px pivot on x-axis |
630 | @param py pivot on y-axis |
631 | */ |
632 | SkMatrix& setSinCos(SkScalar sinValue, SkScalar cosValue, |
633 | SkScalar px, SkScalar py); |
634 | |
635 | /** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (0, 0). |
636 | |
637 | Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1). |
638 | Vector length specifies scale. |
639 | |
640 | @param sinValue rotation vector x-axis component |
641 | @param cosValue rotation vector y-axis component |
642 | */ |
643 | SkMatrix& setSinCos(SkScalar sinValue, SkScalar cosValue); |
644 | |
645 | /** Sets SkMatrix to rotate, scale, and translate using a compressed matrix form. |
646 | |
647 | Vector (rsxForm.fSSin, rsxForm.fSCos) describes the angle of rotation relative |
648 | to (0, 1). Vector length specifies scale. Mapped point is rotated and scaled |
649 | by vector, then translated by (rsxForm.fTx, rsxForm.fTy). |
650 | |
651 | @param rsxForm compressed SkRSXform matrix |
652 | @return reference to SkMatrix |
653 | |
654 | example: https://fiddle.skia.org/c/@Matrix_setRSXform |
655 | */ |
656 | SkMatrix& setRSXform(const SkRSXform& rsxForm); |
657 | |
658 | /** Sets SkMatrix to skew by kx and ky, about a pivot point at (px, py). |
659 | The pivot point is unchanged when mapped with SkMatrix. |
660 | |
661 | @param kx horizontal skew factor |
662 | @param ky vertical skew factor |
663 | @param px pivot on x-axis |
664 | @param py pivot on y-axis |
665 | */ |
666 | SkMatrix& setSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); |
667 | |
668 | /** Sets SkMatrix to skew by kx and ky, about a pivot point at (0, 0). |
669 | |
670 | @param kx horizontal skew factor |
671 | @param ky vertical skew factor |
672 | */ |
673 | SkMatrix& setSkew(SkScalar kx, SkScalar ky); |
674 | |
675 | /** Sets SkMatrix to SkMatrix a multiplied by SkMatrix b. Either a or b may be this. |
676 | |
677 | Given: |
678 | |
679 | | A B C | | J K L | |
680 | a = | D E F |, b = | M N O | |
681 | | G H I | | P Q R | |
682 | |
683 | sets SkMatrix to: |
684 | |
685 | | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | |
686 | a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | |
687 | | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | |
688 | |
689 | @param a SkMatrix on left side of multiply expression |
690 | @param b SkMatrix on right side of multiply expression |
691 | */ |
692 | SkMatrix& setConcat(const SkMatrix& a, const SkMatrix& b); |
693 | |
694 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from translation (dx, dy). |
695 | This can be thought of as moving the point to be mapped before applying SkMatrix. |
696 | |
697 | Given: |
698 | |
699 | | A B C | | 1 0 dx | |
700 | Matrix = | D E F |, T(dx, dy) = | 0 1 dy | |
701 | | G H I | | 0 0 1 | |
702 | |
703 | sets SkMatrix to: |
704 | |
705 | | A B C | | 1 0 dx | | A B A*dx+B*dy+C | |
706 | Matrix * T(dx, dy) = | D E F | | 0 1 dy | = | D E D*dx+E*dy+F | |
707 | | G H I | | 0 0 1 | | G H G*dx+H*dy+I | |
708 | |
709 | @param dx x-axis translation before applying SkMatrix |
710 | @param dy y-axis translation before applying SkMatrix |
711 | */ |
712 | SkMatrix& preTranslate(SkScalar dx, SkScalar dy); |
713 | |
714 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy) |
715 | about pivot point (px, py). |
716 | This can be thought of as scaling about a pivot point before applying SkMatrix. |
717 | |
718 | Given: |
719 | |
720 | | A B C | | sx 0 dx | |
721 | Matrix = | D E F |, S(sx, sy, px, py) = | 0 sy dy | |
722 | | G H I | | 0 0 1 | |
723 | |
724 | where |
725 | |
726 | dx = px - sx * px |
727 | dy = py - sy * py |
728 | |
729 | sets SkMatrix to: |
730 | |
731 | | A B C | | sx 0 dx | | A*sx B*sy A*dx+B*dy+C | |
732 | Matrix * S(sx, sy, px, py) = | D E F | | 0 sy dy | = | D*sx E*sy D*dx+E*dy+F | |
733 | | G H I | | 0 0 1 | | G*sx H*sy G*dx+H*dy+I | |
734 | |
735 | @param sx horizontal scale factor |
736 | @param sy vertical scale factor |
737 | @param px pivot on x-axis |
738 | @param py pivot on y-axis |
739 | */ |
740 | SkMatrix& preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); |
741 | |
742 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy) |
743 | about pivot point (0, 0). |
744 | This can be thought of as scaling about the origin before applying SkMatrix. |
745 | |
746 | Given: |
747 | |
748 | | A B C | | sx 0 0 | |
749 | Matrix = | D E F |, S(sx, sy) = | 0 sy 0 | |
750 | | G H I | | 0 0 1 | |
751 | |
752 | sets SkMatrix to: |
753 | |
754 | | A B C | | sx 0 0 | | A*sx B*sy C | |
755 | Matrix * S(sx, sy) = | D E F | | 0 sy 0 | = | D*sx E*sy F | |
756 | | G H I | | 0 0 1 | | G*sx H*sy I | |
757 | |
758 | @param sx horizontal scale factor |
759 | @param sy vertical scale factor |
760 | */ |
761 | SkMatrix& preScale(SkScalar sx, SkScalar sy); |
762 | |
763 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees |
764 | about pivot point (px, py). |
765 | This can be thought of as rotating about a pivot point before applying SkMatrix. |
766 | |
767 | Positive degrees rotates clockwise. |
768 | |
769 | Given: |
770 | |
771 | | A B C | | c -s dx | |
772 | Matrix = | D E F |, R(degrees, px, py) = | s c dy | |
773 | | G H I | | 0 0 1 | |
774 | |
775 | where |
776 | |
777 | c = cos(degrees) |
778 | s = sin(degrees) |
779 | dx = s * py + (1 - c) * px |
780 | dy = -s * px + (1 - c) * py |
781 | |
782 | sets SkMatrix to: |
783 | |
784 | | A B C | | c -s dx | | Ac+Bs -As+Bc A*dx+B*dy+C | |
785 | Matrix * R(degrees, px, py) = | D E F | | s c dy | = | Dc+Es -Ds+Ec D*dx+E*dy+F | |
786 | | G H I | | 0 0 1 | | Gc+Hs -Gs+Hc G*dx+H*dy+I | |
787 | |
788 | @param degrees angle of axes relative to upright axes |
789 | @param px pivot on x-axis |
790 | @param py pivot on y-axis |
791 | */ |
792 | SkMatrix& preRotate(SkScalar degrees, SkScalar px, SkScalar py); |
793 | |
794 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees |
795 | about pivot point (0, 0). |
796 | This can be thought of as rotating about the origin before applying SkMatrix. |
797 | |
798 | Positive degrees rotates clockwise. |
799 | |
800 | Given: |
801 | |
802 | | A B C | | c -s 0 | |
803 | Matrix = | D E F |, R(degrees, px, py) = | s c 0 | |
804 | | G H I | | 0 0 1 | |
805 | |
806 | where |
807 | |
808 | c = cos(degrees) |
809 | s = sin(degrees) |
810 | |
811 | sets SkMatrix to: |
812 | |
813 | | A B C | | c -s 0 | | Ac+Bs -As+Bc C | |
814 | Matrix * R(degrees, px, py) = | D E F | | s c 0 | = | Dc+Es -Ds+Ec F | |
815 | | G H I | | 0 0 1 | | Gc+Hs -Gs+Hc I | |
816 | |
817 | @param degrees angle of axes relative to upright axes |
818 | */ |
819 | SkMatrix& preRotate(SkScalar degrees); |
820 | |
821 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky) |
822 | about pivot point (px, py). |
823 | This can be thought of as skewing about a pivot point before applying SkMatrix. |
824 | |
825 | Given: |
826 | |
827 | | A B C | | 1 kx dx | |
828 | Matrix = | D E F |, K(kx, ky, px, py) = | ky 1 dy | |
829 | | G H I | | 0 0 1 | |
830 | |
831 | where |
832 | |
833 | dx = -kx * py |
834 | dy = -ky * px |
835 | |
836 | sets SkMatrix to: |
837 | |
838 | | A B C | | 1 kx dx | | A+B*ky A*kx+B A*dx+B*dy+C | |
839 | Matrix * K(kx, ky, px, py) = | D E F | | ky 1 dy | = | D+E*ky D*kx+E D*dx+E*dy+F | |
840 | | G H I | | 0 0 1 | | G+H*ky G*kx+H G*dx+H*dy+I | |
841 | |
842 | @param kx horizontal skew factor |
843 | @param ky vertical skew factor |
844 | @param px pivot on x-axis |
845 | @param py pivot on y-axis |
846 | */ |
847 | SkMatrix& preSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); |
848 | |
849 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky) |
850 | about pivot point (0, 0). |
851 | This can be thought of as skewing about the origin before applying SkMatrix. |
852 | |
853 | Given: |
854 | |
855 | | A B C | | 1 kx 0 | |
856 | Matrix = | D E F |, K(kx, ky) = | ky 1 0 | |
857 | | G H I | | 0 0 1 | |
858 | |
859 | sets SkMatrix to: |
860 | |
861 | | A B C | | 1 kx 0 | | A+B*ky A*kx+B C | |
862 | Matrix * K(kx, ky) = | D E F | | ky 1 0 | = | D+E*ky D*kx+E F | |
863 | | G H I | | 0 0 1 | | G+H*ky G*kx+H I | |
864 | |
865 | @param kx horizontal skew factor |
866 | @param ky vertical skew factor |
867 | */ |
868 | SkMatrix& preSkew(SkScalar kx, SkScalar ky); |
869 | |
870 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix other. |
871 | This can be thought of mapping by other before applying SkMatrix. |
872 | |
873 | Given: |
874 | |
875 | | A B C | | J K L | |
876 | Matrix = | D E F |, other = | M N O | |
877 | | G H I | | P Q R | |
878 | |
879 | sets SkMatrix to: |
880 | |
881 | | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | |
882 | Matrix * other = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | |
883 | | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | |
884 | |
885 | @param other SkMatrix on right side of multiply expression |
886 | */ |
887 | SkMatrix& preConcat(const SkMatrix& other); |
888 | |
889 | /** Sets SkMatrix to SkMatrix constructed from translation (dx, dy) multiplied by SkMatrix. |
890 | This can be thought of as moving the point to be mapped after applying SkMatrix. |
891 | |
892 | Given: |
893 | |
894 | | J K L | | 1 0 dx | |
895 | Matrix = | M N O |, T(dx, dy) = | 0 1 dy | |
896 | | P Q R | | 0 0 1 | |
897 | |
898 | sets SkMatrix to: |
899 | |
900 | | 1 0 dx | | J K L | | J+dx*P K+dx*Q L+dx*R | |
901 | T(dx, dy) * Matrix = | 0 1 dy | | M N O | = | M+dy*P N+dy*Q O+dy*R | |
902 | | 0 0 1 | | P Q R | | P Q R | |
903 | |
904 | @param dx x-axis translation after applying SkMatrix |
905 | @param dy y-axis translation after applying SkMatrix |
906 | */ |
907 | SkMatrix& postTranslate(SkScalar dx, SkScalar dy); |
908 | |
909 | /** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point |
910 | (px, py), multiplied by SkMatrix. |
911 | This can be thought of as scaling about a pivot point after applying SkMatrix. |
912 | |
913 | Given: |
914 | |
915 | | J K L | | sx 0 dx | |
916 | Matrix = | M N O |, S(sx, sy, px, py) = | 0 sy dy | |
917 | | P Q R | | 0 0 1 | |
918 | |
919 | where |
920 | |
921 | dx = px - sx * px |
922 | dy = py - sy * py |
923 | |
924 | sets SkMatrix to: |
925 | |
926 | | sx 0 dx | | J K L | | sx*J+dx*P sx*K+dx*Q sx*L+dx+R | |
927 | S(sx, sy, px, py) * Matrix = | 0 sy dy | | M N O | = | sy*M+dy*P sy*N+dy*Q sy*O+dy*R | |
928 | | 0 0 1 | | P Q R | | P Q R | |
929 | |
930 | @param sx horizontal scale factor |
931 | @param sy vertical scale factor |
932 | @param px pivot on x-axis |
933 | @param py pivot on y-axis |
934 | */ |
935 | SkMatrix& postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); |
936 | |
937 | /** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point |
938 | (0, 0), multiplied by SkMatrix. |
939 | This can be thought of as scaling about the origin after applying SkMatrix. |
940 | |
941 | Given: |
942 | |
943 | | J K L | | sx 0 0 | |
944 | Matrix = | M N O |, S(sx, sy) = | 0 sy 0 | |
945 | | P Q R | | 0 0 1 | |
946 | |
947 | sets SkMatrix to: |
948 | |
949 | | sx 0 0 | | J K L | | sx*J sx*K sx*L | |
950 | S(sx, sy) * Matrix = | 0 sy 0 | | M N O | = | sy*M sy*N sy*O | |
951 | | 0 0 1 | | P Q R | | P Q R | |
952 | |
953 | @param sx horizontal scale factor |
954 | @param sy vertical scale factor |
955 | */ |
956 | SkMatrix& postScale(SkScalar sx, SkScalar sy); |
957 | |
958 | /** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point |
959 | (px, py), multiplied by SkMatrix. |
960 | This can be thought of as rotating about a pivot point after applying SkMatrix. |
961 | |
962 | Positive degrees rotates clockwise. |
963 | |
964 | Given: |
965 | |
966 | | J K L | | c -s dx | |
967 | Matrix = | M N O |, R(degrees, px, py) = | s c dy | |
968 | | P Q R | | 0 0 1 | |
969 | |
970 | where |
971 | |
972 | c = cos(degrees) |
973 | s = sin(degrees) |
974 | dx = s * py + (1 - c) * px |
975 | dy = -s * px + (1 - c) * py |
976 | |
977 | sets SkMatrix to: |
978 | |
979 | |c -s dx| |J K L| |cJ-sM+dx*P cK-sN+dx*Q cL-sO+dx+R| |
980 | R(degrees, px, py) * Matrix = |s c dy| |M N O| = |sJ+cM+dy*P sK+cN+dy*Q sL+cO+dy*R| |
981 | |0 0 1| |P Q R| | P Q R| |
982 | |
983 | @param degrees angle of axes relative to upright axes |
984 | @param px pivot on x-axis |
985 | @param py pivot on y-axis |
986 | */ |
987 | SkMatrix& postRotate(SkScalar degrees, SkScalar px, SkScalar py); |
988 | |
989 | /** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point |
990 | (0, 0), multiplied by SkMatrix. |
991 | This can be thought of as rotating about the origin after applying SkMatrix. |
992 | |
993 | Positive degrees rotates clockwise. |
994 | |
995 | Given: |
996 | |
997 | | J K L | | c -s 0 | |
998 | Matrix = | M N O |, R(degrees, px, py) = | s c 0 | |
999 | | P Q R | | 0 0 1 | |
1000 | |
1001 | where |
1002 | |
1003 | c = cos(degrees) |
1004 | s = sin(degrees) |
1005 | |
1006 | sets SkMatrix to: |
1007 | |
1008 | | c -s dx | | J K L | | cJ-sM cK-sN cL-sO | |
1009 | R(degrees, px, py) * Matrix = | s c dy | | M N O | = | sJ+cM sK+cN sL+cO | |
1010 | | 0 0 1 | | P Q R | | P Q R | |
1011 | |
1012 | @param degrees angle of axes relative to upright axes |
1013 | */ |
1014 | SkMatrix& postRotate(SkScalar degrees); |
1015 | |
1016 | /** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point |
1017 | (px, py), multiplied by SkMatrix. |
1018 | This can be thought of as skewing about a pivot point after applying SkMatrix. |
1019 | |
1020 | Given: |
1021 | |
1022 | | J K L | | 1 kx dx | |
1023 | Matrix = | M N O |, K(kx, ky, px, py) = | ky 1 dy | |
1024 | | P Q R | | 0 0 1 | |
1025 | |
1026 | where |
1027 | |
1028 | dx = -kx * py |
1029 | dy = -ky * px |
1030 | |
1031 | sets SkMatrix to: |
1032 | |
1033 | | 1 kx dx| |J K L| |J+kx*M+dx*P K+kx*N+dx*Q L+kx*O+dx+R| |
1034 | K(kx, ky, px, py) * Matrix = |ky 1 dy| |M N O| = |ky*J+M+dy*P ky*K+N+dy*Q ky*L+O+dy*R| |
1035 | | 0 0 1| |P Q R| | P Q R| |
1036 | |
1037 | @param kx horizontal skew factor |
1038 | @param ky vertical skew factor |
1039 | @param px pivot on x-axis |
1040 | @param py pivot on y-axis |
1041 | */ |
1042 | SkMatrix& postSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); |
1043 | |
1044 | /** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point |
1045 | (0, 0), multiplied by SkMatrix. |
1046 | This can be thought of as skewing about the origin after applying SkMatrix. |
1047 | |
1048 | Given: |
1049 | |
1050 | | J K L | | 1 kx 0 | |
1051 | Matrix = | M N O |, K(kx, ky) = | ky 1 0 | |
1052 | | P Q R | | 0 0 1 | |
1053 | |
1054 | sets SkMatrix to: |
1055 | |
1056 | | 1 kx 0 | | J K L | | J+kx*M K+kx*N L+kx*O | |
1057 | K(kx, ky) * Matrix = | ky 1 0 | | M N O | = | ky*J+M ky*K+N ky*L+O | |
1058 | | 0 0 1 | | P Q R | | P Q R | |
1059 | |
1060 | @param kx horizontal skew factor |
1061 | @param ky vertical skew factor |
1062 | */ |
1063 | SkMatrix& postSkew(SkScalar kx, SkScalar ky); |
1064 | |
1065 | /** Sets SkMatrix to SkMatrix other multiplied by SkMatrix. |
1066 | This can be thought of mapping by other after applying SkMatrix. |
1067 | |
1068 | Given: |
1069 | |
1070 | | J K L | | A B C | |
1071 | Matrix = | M N O |, other = | D E F | |
1072 | | P Q R | | G H I | |
1073 | |
1074 | sets SkMatrix to: |
1075 | |
1076 | | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | |
1077 | other * Matrix = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | |
1078 | | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | |
1079 | |
1080 | @param other SkMatrix on left side of multiply expression |
1081 | */ |
1082 | SkMatrix& postConcat(const SkMatrix& other); |
1083 | |
1084 | /** \enum SkMatrix::ScaleToFit |
1085 | ScaleToFit describes how SkMatrix is constructed to map one SkRect to another. |
1086 | ScaleToFit may allow SkMatrix to have unequal horizontal and vertical scaling, |
1087 | or may restrict SkMatrix to square scaling. If restricted, ScaleToFit specifies |
1088 | how SkMatrix maps to the side or center of the destination SkRect. |
1089 | */ |
1090 | enum ScaleToFit { |
1091 | kFill_ScaleToFit, //!< scales in x and y to fill destination SkRect |
1092 | kStart_ScaleToFit, //!< scales and aligns to left and top |
1093 | kCenter_ScaleToFit, //!< scales and aligns to center |
1094 | kEnd_ScaleToFit, //!< scales and aligns to right and bottom |
1095 | }; |
1096 | |
1097 | /** Sets SkMatrix to scale and translate src SkRect to dst SkRect. stf selects whether |
1098 | mapping completely fills dst or preserves the aspect ratio, and how to align |
1099 | src within dst. Returns false if src is empty, and sets SkMatrix to identity. |
1100 | Returns true if dst is empty, and sets SkMatrix to: |
1101 | |
1102 | | 0 0 0 | |
1103 | | 0 0 0 | |
1104 | | 0 0 1 | |
1105 | |
1106 | @param src SkRect to map from |
1107 | @param dst SkRect to map to |
1108 | @return true if SkMatrix can represent SkRect mapping |
1109 | |
1110 | example: https://fiddle.skia.org/c/@Matrix_setRectToRect |
1111 | */ |
1112 | bool setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf); |
1113 | |
1114 | /** Returns SkMatrix set to scale and translate src SkRect to dst SkRect. stf selects |
1115 | whether mapping completely fills dst or preserves the aspect ratio, and how to |
1116 | align src within dst. Returns the identity SkMatrix if src is empty. If dst is |
1117 | empty, returns SkMatrix set to: |
1118 | |
1119 | | 0 0 0 | |
1120 | | 0 0 0 | |
1121 | | 0 0 1 | |
1122 | |
1123 | @param src SkRect to map from |
1124 | @param dst SkRect to map to |
1125 | @return SkMatrix mapping src to dst |
1126 | */ |
1127 | static SkMatrix MakeRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf) { |
1128 | SkMatrix m; |
1129 | m.setRectToRect(src, dst, stf); |
1130 | return m; |
1131 | } |
1132 | |
1133 | /** Sets SkMatrix to map src to dst. count must be zero or greater, and four or less. |
1134 | |
1135 | If count is zero, sets SkMatrix to identity and returns true. |
1136 | If count is one, sets SkMatrix to translate and returns true. |
1137 | If count is two or more, sets SkMatrix to map SkPoint if possible; returns false |
1138 | if SkMatrix cannot be constructed. If count is four, SkMatrix may include |
1139 | perspective. |
1140 | |
1141 | @param src SkPoint to map from |
1142 | @param dst SkPoint to map to |
1143 | @param count number of SkPoint in src and dst |
1144 | @return true if SkMatrix was constructed successfully |
1145 | |
1146 | example: https://fiddle.skia.org/c/@Matrix_setPolyToPoly |
1147 | */ |
1148 | bool setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count); |
1149 | |
1150 | /** Sets inverse to reciprocal matrix, returning true if SkMatrix can be inverted. |
1151 | Geometrically, if SkMatrix maps from source to destination, inverse SkMatrix |
1152 | maps from destination to source. If SkMatrix can not be inverted, inverse is |
1153 | unchanged. |
1154 | |
1155 | @param inverse storage for inverted SkMatrix; may be nullptr |
1156 | @return true if SkMatrix can be inverted |
1157 | */ |
1158 | bool SK_WARN_UNUSED_RESULT invert(SkMatrix* inverse) const { |
1159 | // Allow the trivial case to be inlined. |
1160 | if (this->isIdentity()) { |
1161 | if (inverse) { |
1162 | inverse->reset(); |
1163 | } |
1164 | return true; |
1165 | } |
1166 | return this->invertNonIdentity(inverse); |
1167 | } |
1168 | |
1169 | /** Fills affine with identity values in column major order. |
1170 | Sets affine to: |
1171 | |
1172 | | 1 0 0 | |
1173 | | 0 1 0 | |
1174 | |
1175 | Affine 3 by 2 matrices in column major order are used by OpenGL and XPS. |
1176 | |
1177 | @param affine storage for 3 by 2 affine matrix |
1178 | |
1179 | example: https://fiddle.skia.org/c/@Matrix_SetAffineIdentity |
1180 | */ |
1181 | static void SetAffineIdentity(SkScalar affine[6]); |
1182 | |
1183 | /** Fills affine in column major order. Sets affine to: |
1184 | |
1185 | | scale-x skew-x translate-x | |
1186 | | skew-y scale-y translate-y | |
1187 | |
1188 | If SkMatrix contains perspective, returns false and leaves affine unchanged. |
1189 | |
1190 | @param affine storage for 3 by 2 affine matrix; may be nullptr |
1191 | @return true if SkMatrix does not contain perspective |
1192 | */ |
1193 | bool SK_WARN_UNUSED_RESULT asAffine(SkScalar affine[6]) const; |
1194 | |
1195 | /** Sets SkMatrix to affine values, passed in column major order. Given affine, |
1196 | column, then row, as: |
1197 | |
1198 | | scale-x skew-x translate-x | |
1199 | | skew-y scale-y translate-y | |
1200 | |
1201 | SkMatrix is set, row, then column, to: |
1202 | |
1203 | | scale-x skew-x translate-x | |
1204 | | skew-y scale-y translate-y | |
1205 | | 0 0 1 | |
1206 | |
1207 | @param affine 3 by 2 affine matrix |
1208 | */ |
1209 | SkMatrix& setAffine(const SkScalar affine[6]); |
1210 | |
1211 | /** |
1212 | * A matrix is categorized as 'perspective' if the bottom row is not [0, 0, 1]. |
1213 | * However, for most uses (e.g. mapPoints) a bottom row of [0, 0, X] behaves like a |
1214 | * non-perspective matrix, though it will be categorized as perspective. Calling |
1215 | * normalizePerspective() will change the matrix such that, if its bottom row was [0, 0, X], |
1216 | * it will be changed to [0, 0, 1] by scaling the rest of the matrix by 1/X. |
1217 | * |
1218 | * | A B C | | A/X B/X C/X | |
1219 | * | D E F | -> | D/X E/X F/X | for X != 0 |
1220 | * | 0 0 X | | 0 0 1 | |
1221 | */ |
1222 | void normalizePerspective() { |
1223 | if (fMat[8] != 1) { |
1224 | this->doNormalizePerspective(); |
1225 | } |
1226 | } |
1227 | |
1228 | /** Maps src SkPoint array of length count to dst SkPoint array of equal or greater |
1229 | length. SkPoint are mapped by multiplying each SkPoint by SkMatrix. Given: |
1230 | |
1231 | | A B C | | x | |
1232 | Matrix = | D E F |, pt = | y | |
1233 | | G H I | | 1 | |
1234 | |
1235 | where |
1236 | |
1237 | for (i = 0; i < count; ++i) { |
1238 | x = src[i].fX |
1239 | y = src[i].fY |
1240 | } |
1241 | |
1242 | each dst SkPoint is computed as: |
1243 | |
1244 | |A B C| |x| Ax+By+C Dx+Ey+F |
1245 | Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
1246 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1247 | |
1248 | src and dst may point to the same storage. |
1249 | |
1250 | @param dst storage for mapped SkPoint |
1251 | @param src SkPoint to transform |
1252 | @param count number of SkPoint to transform |
1253 | |
1254 | example: https://fiddle.skia.org/c/@Matrix_mapPoints |
1255 | */ |
1256 | void mapPoints(SkPoint dst[], const SkPoint src[], int count) const; |
1257 | |
1258 | /** Maps pts SkPoint array of length count in place. SkPoint are mapped by multiplying |
1259 | each SkPoint by SkMatrix. Given: |
1260 | |
1261 | | A B C | | x | |
1262 | Matrix = | D E F |, pt = | y | |
1263 | | G H I | | 1 | |
1264 | |
1265 | where |
1266 | |
1267 | for (i = 0; i < count; ++i) { |
1268 | x = pts[i].fX |
1269 | y = pts[i].fY |
1270 | } |
1271 | |
1272 | each resulting pts SkPoint is computed as: |
1273 | |
1274 | |A B C| |x| Ax+By+C Dx+Ey+F |
1275 | Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
1276 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1277 | |
1278 | @param pts storage for mapped SkPoint |
1279 | @param count number of SkPoint to transform |
1280 | */ |
1281 | void mapPoints(SkPoint pts[], int count) const { |
1282 | this->mapPoints(pts, pts, count); |
1283 | } |
1284 | |
1285 | /** Maps src SkPoint3 array of length count to dst SkPoint3 array, which must of length count or |
1286 | greater. SkPoint3 array is mapped by multiplying each SkPoint3 by SkMatrix. Given: |
1287 | |
1288 | | A B C | | x | |
1289 | Matrix = | D E F |, src = | y | |
1290 | | G H I | | z | |
1291 | |
1292 | each resulting dst SkPoint is computed as: |
1293 | |
1294 | |A B C| |x| |
1295 | Matrix * src = |D E F| |y| = |Ax+By+Cz Dx+Ey+Fz Gx+Hy+Iz| |
1296 | |G H I| |z| |
1297 | |
1298 | @param dst storage for mapped SkPoint3 array |
1299 | @param src SkPoint3 array to transform |
1300 | @param count items in SkPoint3 array to transform |
1301 | |
1302 | example: https://fiddle.skia.org/c/@Matrix_mapHomogeneousPoints |
1303 | */ |
1304 | void mapHomogeneousPoints(SkPoint3 dst[], const SkPoint3 src[], int count) const; |
1305 | |
1306 | /** |
1307 | * Returns homogeneous points, starting with 2D src points (with implied w = 1). |
1308 | */ |
1309 | void mapHomogeneousPoints(SkPoint3 dst[], const SkPoint src[], int count) const; |
1310 | |
1311 | /** Maps SkPoint (x, y) to result. SkPoint is mapped by multiplying by SkMatrix. Given: |
1312 | |
1313 | | A B C | | x | |
1314 | Matrix = | D E F |, pt = | y | |
1315 | | G H I | | 1 | |
1316 | |
1317 | result is computed as: |
1318 | |
1319 | |A B C| |x| Ax+By+C Dx+Ey+F |
1320 | Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
1321 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1322 | |
1323 | @param x x-axis value of SkPoint to map |
1324 | @param y y-axis value of SkPoint to map |
1325 | @param result storage for mapped SkPoint |
1326 | |
1327 | example: https://fiddle.skia.org/c/@Matrix_mapXY |
1328 | */ |
1329 | void mapXY(SkScalar x, SkScalar y, SkPoint* result) const; |
1330 | |
1331 | /** Returns SkPoint (x, y) multiplied by SkMatrix. Given: |
1332 | |
1333 | | A B C | | x | |
1334 | Matrix = | D E F |, pt = | y | |
1335 | | G H I | | 1 | |
1336 | |
1337 | result is computed as: |
1338 | |
1339 | |A B C| |x| Ax+By+C Dx+Ey+F |
1340 | Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
1341 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1342 | |
1343 | @param x x-axis value of SkPoint to map |
1344 | @param y y-axis value of SkPoint to map |
1345 | @return mapped SkPoint |
1346 | */ |
1347 | SkPoint mapXY(SkScalar x, SkScalar y) const { |
1348 | SkPoint result; |
1349 | this->mapXY(x,y, &result); |
1350 | return result; |
1351 | } |
1352 | |
1353 | /** Maps src vector array of length count to vector SkPoint array of equal or greater |
1354 | length. Vectors are mapped by multiplying each vector by SkMatrix, treating |
1355 | SkMatrix translation as zero. Given: |
1356 | |
1357 | | A B 0 | | x | |
1358 | Matrix = | D E 0 |, src = | y | |
1359 | | G H I | | 1 | |
1360 | |
1361 | where |
1362 | |
1363 | for (i = 0; i < count; ++i) { |
1364 | x = src[i].fX |
1365 | y = src[i].fY |
1366 | } |
1367 | |
1368 | each dst vector is computed as: |
1369 | |
1370 | |A B 0| |x| Ax+By Dx+Ey |
1371 | Matrix * src = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , ------- |
1372 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1373 | |
1374 | src and dst may point to the same storage. |
1375 | |
1376 | @param dst storage for mapped vectors |
1377 | @param src vectors to transform |
1378 | @param count number of vectors to transform |
1379 | |
1380 | example: https://fiddle.skia.org/c/@Matrix_mapVectors |
1381 | */ |
1382 | void mapVectors(SkVector dst[], const SkVector src[], int count) const; |
1383 | |
1384 | /** Maps vecs vector array of length count in place, multiplying each vector by |
1385 | SkMatrix, treating SkMatrix translation as zero. Given: |
1386 | |
1387 | | A B 0 | | x | |
1388 | Matrix = | D E 0 |, vec = | y | |
1389 | | G H I | | 1 | |
1390 | |
1391 | where |
1392 | |
1393 | for (i = 0; i < count; ++i) { |
1394 | x = vecs[i].fX |
1395 | y = vecs[i].fY |
1396 | } |
1397 | |
1398 | each result vector is computed as: |
1399 | |
1400 | |A B 0| |x| Ax+By Dx+Ey |
1401 | Matrix * vec = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , ------- |
1402 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1403 | |
1404 | @param vecs vectors to transform, and storage for mapped vectors |
1405 | @param count number of vectors to transform |
1406 | */ |
1407 | void mapVectors(SkVector vecs[], int count) const { |
1408 | this->mapVectors(vecs, vecs, count); |
1409 | } |
1410 | |
1411 | /** Maps vector (dx, dy) to result. Vector is mapped by multiplying by SkMatrix, |
1412 | treating SkMatrix translation as zero. Given: |
1413 | |
1414 | | A B 0 | | dx | |
1415 | Matrix = | D E 0 |, vec = | dy | |
1416 | | G H I | | 1 | |
1417 | |
1418 | each result vector is computed as: |
1419 | |
1420 | |A B 0| |dx| A*dx+B*dy D*dx+E*dy |
1421 | Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , ----------- |
1422 | |G H I| | 1| G*dx+H*dy+I G*dx+*dHy+I |
1423 | |
1424 | @param dx x-axis value of vector to map |
1425 | @param dy y-axis value of vector to map |
1426 | @param result storage for mapped vector |
1427 | */ |
1428 | void mapVector(SkScalar dx, SkScalar dy, SkVector* result) const { |
1429 | SkVector vec = { dx, dy }; |
1430 | this->mapVectors(result, &vec, 1); |
1431 | } |
1432 | |
1433 | /** Returns vector (dx, dy) multiplied by SkMatrix, treating SkMatrix translation as zero. |
1434 | Given: |
1435 | |
1436 | | A B 0 | | dx | |
1437 | Matrix = | D E 0 |, vec = | dy | |
1438 | | G H I | | 1 | |
1439 | |
1440 | each result vector is computed as: |
1441 | |
1442 | |A B 0| |dx| A*dx+B*dy D*dx+E*dy |
1443 | Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , ----------- |
1444 | |G H I| | 1| G*dx+H*dy+I G*dx+*dHy+I |
1445 | |
1446 | @param dx x-axis value of vector to map |
1447 | @param dy y-axis value of vector to map |
1448 | @return mapped vector |
1449 | */ |
1450 | SkVector mapVector(SkScalar dx, SkScalar dy) const { |
1451 | SkVector vec = { dx, dy }; |
1452 | this->mapVectors(&vec, &vec, 1); |
1453 | return vec; |
1454 | } |
1455 | |
1456 | /** Sets dst to bounds of src corners mapped by SkMatrix. |
1457 | Returns true if mapped corners are dst corners. |
1458 | |
1459 | Returned value is the same as calling rectStaysRect(). |
1460 | |
1461 | @param dst storage for bounds of mapped SkPoint |
1462 | @param src SkRect to map |
1463 | @param pc whether to apply perspective clipping |
1464 | @return true if dst is equivalent to mapped src |
1465 | |
1466 | example: https://fiddle.skia.org/c/@Matrix_mapRect |
1467 | */ |
1468 | bool mapRect(SkRect* dst, const SkRect& src, |
1469 | SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const; |
1470 | |
1471 | /** Sets rect to bounds of rect corners mapped by SkMatrix. |
1472 | Returns true if mapped corners are computed rect corners. |
1473 | |
1474 | Returned value is the same as calling rectStaysRect(). |
1475 | |
1476 | @param rect rectangle to map, and storage for bounds of mapped corners |
1477 | @param pc whether to apply perspective clipping |
1478 | @return true if result is equivalent to mapped rect |
1479 | */ |
1480 | bool mapRect(SkRect* rect, SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const { |
1481 | return this->mapRect(rect, *rect, pc); |
1482 | } |
1483 | |
1484 | /** Returns bounds of src corners mapped by SkMatrix. |
1485 | |
1486 | @param src rectangle to map |
1487 | @return mapped bounds |
1488 | */ |
1489 | SkRect mapRect(const SkRect& src, |
1490 | SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const { |
1491 | SkRect dst; |
1492 | (void)this->mapRect(&dst, src, pc); |
1493 | return dst; |
1494 | } |
1495 | |
1496 | /** Maps four corners of rect to dst. SkPoint are mapped by multiplying each |
1497 | rect corner by SkMatrix. rect corner is processed in this order: |
1498 | (rect.fLeft, rect.fTop), (rect.fRight, rect.fTop), (rect.fRight, rect.fBottom), |
1499 | (rect.fLeft, rect.fBottom). |
1500 | |
1501 | rect may be empty: rect.fLeft may be greater than or equal to rect.fRight; |
1502 | rect.fTop may be greater than or equal to rect.fBottom. |
1503 | |
1504 | Given: |
1505 | |
1506 | | A B C | | x | |
1507 | Matrix = | D E F |, pt = | y | |
1508 | | G H I | | 1 | |
1509 | |
1510 | where pt is initialized from each of (rect.fLeft, rect.fTop), |
1511 | (rect.fRight, rect.fTop), (rect.fRight, rect.fBottom), (rect.fLeft, rect.fBottom), |
1512 | each dst SkPoint is computed as: |
1513 | |
1514 | |A B C| |x| Ax+By+C Dx+Ey+F |
1515 | Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
1516 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1517 | |
1518 | @param dst storage for mapped corner SkPoint |
1519 | @param rect SkRect to map |
1520 | |
1521 | Note: this does not perform perspective clipping (as that might result in more than |
1522 | 4 points, so results are suspect if the matrix contains perspective. |
1523 | */ |
1524 | void mapRectToQuad(SkPoint dst[4], const SkRect& rect) const { |
1525 | // This could potentially be faster if we only transformed each x and y of the rect once. |
1526 | rect.toQuad(dst); |
1527 | this->mapPoints(dst, 4); |
1528 | } |
1529 | |
1530 | /** Sets dst to bounds of src corners mapped by SkMatrix. If matrix contains |
1531 | elements other than scale or translate: asserts if SK_DEBUG is defined; |
1532 | otherwise, results are undefined. |
1533 | |
1534 | @param dst storage for bounds of mapped SkPoint |
1535 | @param src SkRect to map |
1536 | |
1537 | example: https://fiddle.skia.org/c/@Matrix_mapRectScaleTranslate |
1538 | */ |
1539 | void mapRectScaleTranslate(SkRect* dst, const SkRect& src) const; |
1540 | |
1541 | /** Returns geometric mean radius of ellipse formed by constructing circle of |
1542 | size radius, and mapping constructed circle with SkMatrix. The result squared is |
1543 | equal to the major axis length times the minor axis length. |
1544 | Result is not meaningful if SkMatrix contains perspective elements. |
1545 | |
1546 | @param radius circle size to map |
1547 | @return average mapped radius |
1548 | |
1549 | example: https://fiddle.skia.org/c/@Matrix_mapRadius |
1550 | */ |
1551 | SkScalar mapRadius(SkScalar radius) const; |
1552 | |
1553 | /** Compares a and b; returns true if a and b are numerically equal. Returns true |
1554 | even if sign of zero values are different. Returns false if either SkMatrix |
1555 | contains NaN, even if the other SkMatrix also contains NaN. |
1556 | |
1557 | @param a SkMatrix to compare |
1558 | @param b SkMatrix to compare |
1559 | @return true if SkMatrix a and SkMatrix b are numerically equal |
1560 | */ |
1561 | friend SK_API bool operator==(const SkMatrix& a, const SkMatrix& b); |
1562 | |
1563 | /** Compares a and b; returns true if a and b are not numerically equal. Returns false |
1564 | even if sign of zero values are different. Returns true if either SkMatrix |
1565 | contains NaN, even if the other SkMatrix also contains NaN. |
1566 | |
1567 | @param a SkMatrix to compare |
1568 | @param b SkMatrix to compare |
1569 | @return true if SkMatrix a and SkMatrix b are numerically not equal |
1570 | */ |
1571 | friend SK_API bool operator!=(const SkMatrix& a, const SkMatrix& b) { |
1572 | return !(a == b); |
1573 | } |
1574 | |
1575 | /** Writes text representation of SkMatrix to standard output. Floating point values |
1576 | are written with limited precision; it may not be possible to reconstruct |
1577 | original SkMatrix from output. |
1578 | |
1579 | example: https://fiddle.skia.org/c/@Matrix_dump |
1580 | */ |
1581 | void dump() const; |
1582 | |
1583 | /** Returns the minimum scaling factor of SkMatrix by decomposing the scaling and |
1584 | skewing elements. |
1585 | Returns -1 if scale factor overflows or SkMatrix contains perspective. |
1586 | |
1587 | @return minimum scale factor |
1588 | |
1589 | example: https://fiddle.skia.org/c/@Matrix_getMinScale |
1590 | */ |
1591 | SkScalar getMinScale() const; |
1592 | |
1593 | /** Returns the maximum scaling factor of SkMatrix by decomposing the scaling and |
1594 | skewing elements. |
1595 | Returns -1 if scale factor overflows or SkMatrix contains perspective. |
1596 | |
1597 | @return maximum scale factor |
1598 | |
1599 | example: https://fiddle.skia.org/c/@Matrix_getMaxScale |
1600 | */ |
1601 | SkScalar getMaxScale() const; |
1602 | |
1603 | /** Sets scaleFactors[0] to the minimum scaling factor, and scaleFactors[1] to the |
1604 | maximum scaling factor. Scaling factors are computed by decomposing |
1605 | the SkMatrix scaling and skewing elements. |
1606 | |
1607 | Returns true if scaleFactors are found; otherwise, returns false and sets |
1608 | scaleFactors to undefined values. |
1609 | |
1610 | @param scaleFactors storage for minimum and maximum scale factors |
1611 | @return true if scale factors were computed correctly |
1612 | */ |
1613 | bool SK_WARN_UNUSED_RESULT getMinMaxScales(SkScalar scaleFactors[2]) const; |
1614 | |
1615 | /** Decomposes SkMatrix into scale components and whatever remains. Returns false if |
1616 | SkMatrix could not be decomposed. |
1617 | |
1618 | Sets scale to portion of SkMatrix that scale axes. Sets remaining to SkMatrix |
1619 | with scaling factored out. remaining may be passed as nullptr |
1620 | to determine if SkMatrix can be decomposed without computing remainder. |
1621 | |
1622 | Returns true if scale components are found. scale and remaining are |
1623 | unchanged if SkMatrix contains perspective; scale factors are not finite, or |
1624 | are nearly zero. |
1625 | |
1626 | On success: Matrix = Remaining * scale. |
1627 | |
1628 | @param scale axes scaling factors; may be nullptr |
1629 | @param remaining SkMatrix without scaling; may be nullptr |
1630 | @return true if scale can be computed |
1631 | |
1632 | example: https://fiddle.skia.org/c/@Matrix_decomposeScale |
1633 | */ |
1634 | bool decomposeScale(SkSize* scale, SkMatrix* remaining = nullptr) const; |
1635 | |
1636 | /** Returns reference to const identity SkMatrix. Returned SkMatrix is set to: |
1637 | |
1638 | | 1 0 0 | |
1639 | | 0 1 0 | |
1640 | | 0 0 1 | |
1641 | |
1642 | @return const identity SkMatrix |
1643 | |
1644 | example: https://fiddle.skia.org/c/@Matrix_I |
1645 | */ |
1646 | static const SkMatrix& I(); |
1647 | |
1648 | /** Returns reference to a const SkMatrix with invalid values. Returned SkMatrix is set |
1649 | to: |
1650 | |
1651 | | SK_ScalarMax SK_ScalarMax SK_ScalarMax | |
1652 | | SK_ScalarMax SK_ScalarMax SK_ScalarMax | |
1653 | | SK_ScalarMax SK_ScalarMax SK_ScalarMax | |
1654 | |
1655 | @return const invalid SkMatrix |
1656 | |
1657 | example: https://fiddle.skia.org/c/@Matrix_InvalidMatrix |
1658 | */ |
1659 | static const SkMatrix& InvalidMatrix(); |
1660 | |
1661 | /** Returns SkMatrix a multiplied by SkMatrix b. |
1662 | |
1663 | Given: |
1664 | |
1665 | | A B C | | J K L | |
1666 | a = | D E F |, b = | M N O | |
1667 | | G H I | | P Q R | |
1668 | |
1669 | sets SkMatrix to: |
1670 | |
1671 | | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | |
1672 | a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | |
1673 | | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | |
1674 | |
1675 | @param a SkMatrix on left side of multiply expression |
1676 | @param b SkMatrix on right side of multiply expression |
1677 | @return SkMatrix computed from a times b |
1678 | */ |
1679 | static SkMatrix Concat(const SkMatrix& a, const SkMatrix& b) { |
1680 | SkMatrix result; |
1681 | result.setConcat(a, b); |
1682 | return result; |
1683 | } |
1684 | |
1685 | friend SkMatrix operator*(const SkMatrix& a, const SkMatrix& b) { |
1686 | return Concat(a, b); |
1687 | } |
1688 | |
1689 | /** Sets internal cache to unknown state. Use to force update after repeated |
1690 | modifications to SkMatrix element reference returned by operator[](int index). |
1691 | */ |
1692 | void dirtyMatrixTypeCache() { |
1693 | this->setTypeMask(kUnknown_Mask); |
1694 | } |
1695 | |
1696 | /** Initializes SkMatrix with scale and translate elements. |
1697 | |
1698 | | sx 0 tx | |
1699 | | 0 sy ty | |
1700 | | 0 0 1 | |
1701 | |
1702 | @param sx horizontal scale factor to store |
1703 | @param sy vertical scale factor to store |
1704 | @param tx horizontal translation to store |
1705 | @param ty vertical translation to store |
1706 | */ |
1707 | void setScaleTranslate(SkScalar sx, SkScalar sy, SkScalar tx, SkScalar ty) { |
1708 | fMat[kMScaleX] = sx; |
1709 | fMat[kMSkewX] = 0; |
1710 | fMat[kMTransX] = tx; |
1711 | |
1712 | fMat[kMSkewY] = 0; |
1713 | fMat[kMScaleY] = sy; |
1714 | fMat[kMTransY] = ty; |
1715 | |
1716 | fMat[kMPersp0] = 0; |
1717 | fMat[kMPersp1] = 0; |
1718 | fMat[kMPersp2] = 1; |
1719 | |
1720 | int mask = 0; |
1721 | if (sx != 1 || sy != 1) { |
1722 | mask |= kScale_Mask; |
1723 | } |
1724 | if (tx || ty) { |
1725 | mask |= kTranslate_Mask; |
1726 | } |
1727 | this->setTypeMask(mask | kRectStaysRect_Mask); |
1728 | } |
1729 | |
1730 | /** Returns true if all elements of the matrix are finite. Returns false if any |
1731 | element is infinity, or NaN. |
1732 | |
1733 | @return true if matrix has only finite elements |
1734 | */ |
1735 | bool isFinite() const { return SkScalarsAreFinite(fMat, 9); } |
1736 | |
1737 | private: |
1738 | /** Set if the matrix will map a rectangle to another rectangle. This |
1739 | can be true if the matrix is scale-only, or rotates a multiple of |
1740 | 90 degrees. |
1741 | |
1742 | This bit will be set on identity matrices |
1743 | */ |
1744 | static constexpr int kRectStaysRect_Mask = 0x10; |
1745 | |
1746 | /** Set if the perspective bit is valid even though the rest of |
1747 | the matrix is Unknown. |
1748 | */ |
1749 | static constexpr int kOnlyPerspectiveValid_Mask = 0x40; |
1750 | |
1751 | static constexpr int kUnknown_Mask = 0x80; |
1752 | |
1753 | static constexpr int kORableMasks = kTranslate_Mask | |
1754 | kScale_Mask | |
1755 | kAffine_Mask | |
1756 | kPerspective_Mask; |
1757 | |
1758 | static constexpr int kAllMasks = kTranslate_Mask | |
1759 | kScale_Mask | |
1760 | kAffine_Mask | |
1761 | kPerspective_Mask | |
1762 | kRectStaysRect_Mask; |
1763 | |
1764 | SkScalar fMat[9]; |
1765 | mutable int32_t fTypeMask; |
1766 | |
1767 | constexpr SkMatrix(SkScalar sx, SkScalar kx, SkScalar tx, |
1768 | SkScalar ky, SkScalar sy, SkScalar ty, |
1769 | SkScalar p0, SkScalar p1, SkScalar p2, int typeMask) |
1770 | : fMat{sx, kx, tx, |
1771 | ky, sy, ty, |
1772 | p0, p1, p2} |
1773 | , fTypeMask(typeMask) {} |
1774 | |
1775 | static void ComputeInv(SkScalar dst[9], const SkScalar src[9], double invDet, bool isPersp); |
1776 | |
1777 | uint8_t computeTypeMask() const; |
1778 | uint8_t computePerspectiveTypeMask() const; |
1779 | |
1780 | void setTypeMask(int mask) { |
1781 | // allow kUnknown or a valid mask |
1782 | SkASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask || |
1783 | ((kUnknown_Mask | kOnlyPerspectiveValid_Mask) & mask) |
1784 | == (kUnknown_Mask | kOnlyPerspectiveValid_Mask)); |
1785 | fTypeMask = mask; |
1786 | } |
1787 | |
1788 | void orTypeMask(int mask) { |
1789 | SkASSERT((mask & kORableMasks) == mask); |
1790 | fTypeMask |= mask; |
1791 | } |
1792 | |
1793 | void clearTypeMask(int mask) { |
1794 | // only allow a valid mask |
1795 | SkASSERT((mask & kAllMasks) == mask); |
1796 | fTypeMask &= ~mask; |
1797 | } |
1798 | |
1799 | TypeMask getPerspectiveTypeMaskOnly() const { |
1800 | if ((fTypeMask & kUnknown_Mask) && |
1801 | !(fTypeMask & kOnlyPerspectiveValid_Mask)) { |
1802 | fTypeMask = this->computePerspectiveTypeMask(); |
1803 | } |
1804 | return (TypeMask)(fTypeMask & 0xF); |
1805 | } |
1806 | |
1807 | /** Returns true if we already know that the matrix is identity; |
1808 | false otherwise. |
1809 | */ |
1810 | bool isTriviallyIdentity() const { |
1811 | if (fTypeMask & kUnknown_Mask) { |
1812 | return false; |
1813 | } |
1814 | return ((fTypeMask & 0xF) == 0); |
1815 | } |
1816 | |
1817 | inline void updateTranslateMask() { |
1818 | if ((fMat[kMTransX] != 0) | (fMat[kMTransY] != 0)) { |
1819 | fTypeMask |= kTranslate_Mask; |
1820 | } else { |
1821 | fTypeMask &= ~kTranslate_Mask; |
1822 | } |
1823 | } |
1824 | |
1825 | typedef void (*MapXYProc)(const SkMatrix& mat, SkScalar x, SkScalar y, |
1826 | SkPoint* result); |
1827 | |
1828 | static MapXYProc GetMapXYProc(TypeMask mask) { |
1829 | SkASSERT((mask & ~kAllMasks) == 0); |
1830 | return gMapXYProcs[mask & kAllMasks]; |
1831 | } |
1832 | |
1833 | MapXYProc getMapXYProc() const { |
1834 | return GetMapXYProc(this->getType()); |
1835 | } |
1836 | |
1837 | typedef void (*MapPtsProc)(const SkMatrix& mat, SkPoint dst[], |
1838 | const SkPoint src[], int count); |
1839 | |
1840 | static MapPtsProc GetMapPtsProc(TypeMask mask) { |
1841 | SkASSERT((mask & ~kAllMasks) == 0); |
1842 | return gMapPtsProcs[mask & kAllMasks]; |
1843 | } |
1844 | |
1845 | MapPtsProc getMapPtsProc() const { |
1846 | return GetMapPtsProc(this->getType()); |
1847 | } |
1848 | |
1849 | bool SK_WARN_UNUSED_RESULT invertNonIdentity(SkMatrix* inverse) const; |
1850 | |
1851 | static bool Poly2Proc(const SkPoint[], SkMatrix*); |
1852 | static bool Poly3Proc(const SkPoint[], SkMatrix*); |
1853 | static bool Poly4Proc(const SkPoint[], SkMatrix*); |
1854 | |
1855 | static void Identity_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1856 | static void Trans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1857 | static void Scale_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1858 | static void ScaleTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1859 | static void Rot_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1860 | static void RotTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1861 | static void Persp_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1862 | |
1863 | static const MapXYProc gMapXYProcs[]; |
1864 | |
1865 | static void Identity_pts(const SkMatrix&, SkPoint[], const SkPoint[], int); |
1866 | static void Trans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
1867 | static void Scale_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
1868 | static void ScaleTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], |
1869 | int count); |
1870 | static void Persp_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
1871 | |
1872 | static void Affine_vpts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
1873 | |
1874 | static const MapPtsProc gMapPtsProcs[]; |
1875 | |
1876 | // return the number of bytes written, whether or not buffer is null |
1877 | size_t writeToMemory(void* buffer) const; |
1878 | /** |
1879 | * Reads data from the buffer parameter |
1880 | * |
1881 | * @param buffer Memory to read from |
1882 | * @param length Amount of memory available in the buffer |
1883 | * @return number of bytes read (must be a multiple of 4) or |
1884 | * 0 if there was not enough memory available |
1885 | */ |
1886 | size_t readFromMemory(const void* buffer, size_t length); |
1887 | |
1888 | // legacy method -- still needed? why not just postScale(1/divx, ...)? |
1889 | bool postIDiv(int divx, int divy); |
1890 | void doNormalizePerspective(); |
1891 | |
1892 | friend class SkPerspIter; |
1893 | friend class SkMatrixPriv; |
1894 | friend class SerializationTest; |
1895 | }; |
1896 | SK_END_REQUIRE_DENSE |
1897 | |
1898 | #endif |
1899 | |