| 1 | /* |
| 2 | * Copyright 2011 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef SkTArray_DEFINED |
| 9 | #define SkTArray_DEFINED |
| 10 | |
| 11 | #include "include/core/SkMath.h" |
| 12 | #include "include/core/SkTypes.h" |
| 13 | #include "include/private/SkMalloc.h" |
| 14 | #include "include/private/SkSafe32.h" |
| 15 | #include "include/private/SkTLogic.h" |
| 16 | #include "include/private/SkTemplates.h" |
| 17 | |
| 18 | #include <string.h> |
| 19 | #include <memory> |
| 20 | #include <new> |
| 21 | #include <utility> |
| 22 | |
| 23 | /** SkTArray<T> implements a typical, mostly std::vector-like array. |
| 24 | Each T will be default-initialized on allocation, and ~T will be called on destruction. |
| 25 | |
| 26 | MEM_MOVE controls the behavior when a T needs to be moved (e.g. when the array is resized) |
| 27 | - true: T will be bit-copied via memcpy. |
| 28 | - false: T will be moved via move-constructors. |
| 29 | |
| 30 | Modern implementations of std::vector<T> will generally provide similar performance |
| 31 | characteristics when used with appropriate care. Consider using std::vector<T> in new code. |
| 32 | */ |
| 33 | template <typename T, bool MEM_MOVE = false> class SkTArray { |
| 34 | public: |
| 35 | /** |
| 36 | * Creates an empty array with no initial storage |
| 37 | */ |
| 38 | SkTArray() { this->init(); } |
| 39 | |
| 40 | /** |
| 41 | * Creates an empty array that will preallocate space for reserveCount |
| 42 | * elements. |
| 43 | */ |
| 44 | explicit SkTArray(int reserveCount) { this->init(0, reserveCount); } |
| 45 | |
| 46 | /** |
| 47 | * Copies one array to another. The new array will be heap allocated. |
| 48 | */ |
| 49 | SkTArray(const SkTArray& that) { |
| 50 | this->init(that.fCount); |
| 51 | this->copy(that.fItemArray); |
| 52 | } |
| 53 | |
| 54 | SkTArray(SkTArray&& that) { |
| 55 | if (that.fOwnMemory) { |
| 56 | fItemArray = that.fItemArray; |
| 57 | fCount = that.fCount; |
| 58 | fAllocCount = that.fAllocCount; |
| 59 | fOwnMemory = true; |
| 60 | fReserved = that.fReserved; |
| 61 | |
| 62 | that.fItemArray = nullptr; |
| 63 | that.fCount = 0; |
| 64 | that.fAllocCount = 0; |
| 65 | that.fOwnMemory = true; |
| 66 | that.fReserved = false; |
| 67 | } else { |
| 68 | this->init(that.fCount); |
| 69 | that.move(fItemArray); |
| 70 | that.fCount = 0; |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | /** |
| 75 | * Creates a SkTArray by copying contents of a standard C array. The new |
| 76 | * array will be heap allocated. Be careful not to use this constructor |
| 77 | * when you really want the (void*, int) version. |
| 78 | */ |
| 79 | SkTArray(const T* array, int count) { |
| 80 | this->init(count); |
| 81 | this->copy(array); |
| 82 | } |
| 83 | |
| 84 | SkTArray& operator=(const SkTArray& that) { |
| 85 | if (this == &that) { |
| 86 | return *this; |
| 87 | } |
| 88 | for (int i = 0; i < fCount; ++i) { |
| 89 | fItemArray[i].~T(); |
| 90 | } |
| 91 | fCount = 0; |
| 92 | this->checkRealloc(that.count()); |
| 93 | fCount = that.count(); |
| 94 | this->copy(that.fItemArray); |
| 95 | return *this; |
| 96 | } |
| 97 | SkTArray& operator=(SkTArray&& that) { |
| 98 | if (this == &that) { |
| 99 | return *this; |
| 100 | } |
| 101 | for (int i = 0; i < fCount; ++i) { |
| 102 | fItemArray[i].~T(); |
| 103 | } |
| 104 | fCount = 0; |
| 105 | this->checkRealloc(that.count()); |
| 106 | fCount = that.count(); |
| 107 | that.move(fItemArray); |
| 108 | that.fCount = 0; |
| 109 | return *this; |
| 110 | } |
| 111 | |
| 112 | ~SkTArray() { |
| 113 | for (int i = 0; i < fCount; ++i) { |
| 114 | fItemArray[i].~T(); |
| 115 | } |
| 116 | if (fOwnMemory) { |
| 117 | sk_free(fItemArray); |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | /** |
| 122 | * Resets to count() == 0 and resets any reserve count. |
| 123 | */ |
| 124 | void reset() { |
| 125 | this->pop_back_n(fCount); |
| 126 | fReserved = false; |
| 127 | } |
| 128 | |
| 129 | /** |
| 130 | * Resets to count() = n newly constructed T objects and resets any reserve count. |
| 131 | */ |
| 132 | void reset(int n) { |
| 133 | SkASSERT(n >= 0); |
| 134 | for (int i = 0; i < fCount; ++i) { |
| 135 | fItemArray[i].~T(); |
| 136 | } |
| 137 | // Set fCount to 0 before calling checkRealloc so that no elements are moved. |
| 138 | fCount = 0; |
| 139 | this->checkRealloc(n); |
| 140 | fCount = n; |
| 141 | for (int i = 0; i < fCount; ++i) { |
| 142 | new (fItemArray + i) T; |
| 143 | } |
| 144 | fReserved = false; |
| 145 | } |
| 146 | |
| 147 | /** |
| 148 | * Resets to a copy of a C array and resets any reserve count. |
| 149 | */ |
| 150 | void reset(const T* array, int count) { |
| 151 | for (int i = 0; i < fCount; ++i) { |
| 152 | fItemArray[i].~T(); |
| 153 | } |
| 154 | fCount = 0; |
| 155 | this->checkRealloc(count); |
| 156 | fCount = count; |
| 157 | this->copy(array); |
| 158 | fReserved = false; |
| 159 | } |
| 160 | |
| 161 | /** |
| 162 | * Ensures there is enough reserved space for n additional elements. The is guaranteed at least |
| 163 | * until the array size grows above n and subsequently shrinks below n, any version of reset() |
| 164 | * is called, or reserve() is called again. |
| 165 | */ |
| 166 | void reserve(int n) { |
| 167 | SkASSERT(n >= 0); |
| 168 | if (n > 0) { |
| 169 | this->checkRealloc(n); |
| 170 | fReserved = fOwnMemory; |
| 171 | } else { |
| 172 | fReserved = false; |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | void removeShuffle(int n) { |
| 177 | SkASSERT(n < fCount); |
| 178 | int newCount = fCount - 1; |
| 179 | fCount = newCount; |
| 180 | fItemArray[n].~T(); |
| 181 | if (n != newCount) { |
| 182 | this->move(n, newCount); |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | /** |
| 187 | * Number of elements in the array. |
| 188 | */ |
| 189 | int count() const { return fCount; } |
| 190 | |
| 191 | /** |
| 192 | * Is the array empty. |
| 193 | */ |
| 194 | bool empty() const { return !fCount; } |
| 195 | |
| 196 | /** |
| 197 | * Adds 1 new default-initialized T value and returns it by reference. Note |
| 198 | * the reference only remains valid until the next call that adds or removes |
| 199 | * elements. |
| 200 | */ |
| 201 | T& push_back() { |
| 202 | void* newT = this->push_back_raw(1); |
| 203 | return *new (newT) T; |
| 204 | } |
| 205 | |
| 206 | /** |
| 207 | * Version of above that uses a copy constructor to initialize the new item |
| 208 | */ |
| 209 | T& push_back(const T& t) { |
| 210 | void* newT = this->push_back_raw(1); |
| 211 | return *new (newT) T(t); |
| 212 | } |
| 213 | |
| 214 | /** |
| 215 | * Version of above that uses a move constructor to initialize the new item |
| 216 | */ |
| 217 | T& push_back(T&& t) { |
| 218 | void* newT = this->push_back_raw(1); |
| 219 | return *new (newT) T(std::move(t)); |
| 220 | } |
| 221 | |
| 222 | /** |
| 223 | * Construct a new T at the back of this array. |
| 224 | */ |
| 225 | template<class... Args> T& emplace_back(Args&&... args) { |
| 226 | void* newT = this->push_back_raw(1); |
| 227 | return *new (newT) T(std::forward<Args>(args)...); |
| 228 | } |
| 229 | |
| 230 | /** |
| 231 | * Allocates n more default-initialized T values, and returns the address of |
| 232 | * the start of that new range. Note: this address is only valid until the |
| 233 | * next API call made on the array that might add or remove elements. |
| 234 | */ |
| 235 | T* push_back_n(int n) { |
| 236 | SkASSERT(n >= 0); |
| 237 | void* newTs = this->push_back_raw(n); |
| 238 | for (int i = 0; i < n; ++i) { |
| 239 | new (static_cast<char*>(newTs) + i * sizeof(T)) T; |
| 240 | } |
| 241 | return static_cast<T*>(newTs); |
| 242 | } |
| 243 | |
| 244 | /** |
| 245 | * Version of above that uses a copy constructor to initialize all n items |
| 246 | * to the same T. |
| 247 | */ |
| 248 | T* push_back_n(int n, const T& t) { |
| 249 | SkASSERT(n >= 0); |
| 250 | void* newTs = this->push_back_raw(n); |
| 251 | for (int i = 0; i < n; ++i) { |
| 252 | new (static_cast<char*>(newTs) + i * sizeof(T)) T(t); |
| 253 | } |
| 254 | return static_cast<T*>(newTs); |
| 255 | } |
| 256 | |
| 257 | /** |
| 258 | * Version of above that uses a copy constructor to initialize the n items |
| 259 | * to separate T values. |
| 260 | */ |
| 261 | T* push_back_n(int n, const T t[]) { |
| 262 | SkASSERT(n >= 0); |
| 263 | this->checkRealloc(n); |
| 264 | for (int i = 0; i < n; ++i) { |
| 265 | new (fItemArray + fCount + i) T(t[i]); |
| 266 | } |
| 267 | fCount += n; |
| 268 | return fItemArray + fCount - n; |
| 269 | } |
| 270 | |
| 271 | /** |
| 272 | * Version of above that uses the move constructor to set n items. |
| 273 | */ |
| 274 | T* move_back_n(int n, T* t) { |
| 275 | SkASSERT(n >= 0); |
| 276 | this->checkRealloc(n); |
| 277 | for (int i = 0; i < n; ++i) { |
| 278 | new (fItemArray + fCount + i) T(std::move(t[i])); |
| 279 | } |
| 280 | fCount += n; |
| 281 | return fItemArray + fCount - n; |
| 282 | } |
| 283 | |
| 284 | /** |
| 285 | * Removes the last element. Not safe to call when count() == 0. |
| 286 | */ |
| 287 | void pop_back() { |
| 288 | SkASSERT(fCount > 0); |
| 289 | --fCount; |
| 290 | fItemArray[fCount].~T(); |
| 291 | this->checkRealloc(0); |
| 292 | } |
| 293 | |
| 294 | /** |
| 295 | * Removes the last n elements. Not safe to call when count() < n. |
| 296 | */ |
| 297 | void pop_back_n(int n) { |
| 298 | SkASSERT(n >= 0); |
| 299 | SkASSERT(fCount >= n); |
| 300 | fCount -= n; |
| 301 | for (int i = 0; i < n; ++i) { |
| 302 | fItemArray[fCount + i].~T(); |
| 303 | } |
| 304 | this->checkRealloc(0); |
| 305 | } |
| 306 | |
| 307 | /** |
| 308 | * Pushes or pops from the back to resize. Pushes will be default |
| 309 | * initialized. |
| 310 | */ |
| 311 | void resize_back(int newCount) { |
| 312 | SkASSERT(newCount >= 0); |
| 313 | |
| 314 | if (newCount > fCount) { |
| 315 | this->push_back_n(newCount - fCount); |
| 316 | } else if (newCount < fCount) { |
| 317 | this->pop_back_n(fCount - newCount); |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | /** Swaps the contents of this array with that array. Does a pointer swap if possible, |
| 322 | otherwise copies the T values. */ |
| 323 | void swap(SkTArray& that) { |
| 324 | using std::swap; |
| 325 | if (this == &that) { |
| 326 | return; |
| 327 | } |
| 328 | if (fOwnMemory && that.fOwnMemory) { |
| 329 | swap(fItemArray, that.fItemArray); |
| 330 | swap(fCount, that.fCount); |
| 331 | swap(fAllocCount, that.fAllocCount); |
| 332 | } else { |
| 333 | // This could be more optimal... |
| 334 | SkTArray copy(std::move(that)); |
| 335 | that = std::move(*this); |
| 336 | *this = std::move(copy); |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | T* begin() { |
| 341 | return fItemArray; |
| 342 | } |
| 343 | const T* begin() const { |
| 344 | return fItemArray; |
| 345 | } |
| 346 | T* end() { |
| 347 | return fItemArray ? fItemArray + fCount : nullptr; |
| 348 | } |
| 349 | const T* end() const { |
| 350 | return fItemArray ? fItemArray + fCount : nullptr; |
| 351 | } |
| 352 | T* data() { return fItemArray; } |
| 353 | const T* data() const { return fItemArray; } |
| 354 | size_t size() const { return (size_t)fCount; } |
| 355 | void resize(size_t count) { this->resize_back((int)count); } |
| 356 | |
| 357 | /** |
| 358 | * Get the i^th element. |
| 359 | */ |
| 360 | T& operator[] (int i) { |
| 361 | SkASSERT(i < fCount); |
| 362 | SkASSERT(i >= 0); |
| 363 | return fItemArray[i]; |
| 364 | } |
| 365 | |
| 366 | const T& operator[] (int i) const { |
| 367 | SkASSERT(i < fCount); |
| 368 | SkASSERT(i >= 0); |
| 369 | return fItemArray[i]; |
| 370 | } |
| 371 | |
| 372 | T& at(int i) { return (*this)[i]; } |
| 373 | const T& at(int i) const { return (*this)[i]; } |
| 374 | |
| 375 | /** |
| 376 | * equivalent to operator[](0) |
| 377 | */ |
| 378 | T& front() { SkASSERT(fCount > 0); return fItemArray[0];} |
| 379 | |
| 380 | const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];} |
| 381 | |
| 382 | /** |
| 383 | * equivalent to operator[](count() - 1) |
| 384 | */ |
| 385 | T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];} |
| 386 | |
| 387 | const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];} |
| 388 | |
| 389 | /** |
| 390 | * equivalent to operator[](count()-1-i) |
| 391 | */ |
| 392 | T& fromBack(int i) { |
| 393 | SkASSERT(i >= 0); |
| 394 | SkASSERT(i < fCount); |
| 395 | return fItemArray[fCount - i - 1]; |
| 396 | } |
| 397 | |
| 398 | const T& fromBack(int i) const { |
| 399 | SkASSERT(i >= 0); |
| 400 | SkASSERT(i < fCount); |
| 401 | return fItemArray[fCount - i - 1]; |
| 402 | } |
| 403 | |
| 404 | bool operator==(const SkTArray<T, MEM_MOVE>& right) const { |
| 405 | int leftCount = this->count(); |
| 406 | if (leftCount != right.count()) { |
| 407 | return false; |
| 408 | } |
| 409 | for (int index = 0; index < leftCount; ++index) { |
| 410 | if (fItemArray[index] != right.fItemArray[index]) { |
| 411 | return false; |
| 412 | } |
| 413 | } |
| 414 | return true; |
| 415 | } |
| 416 | |
| 417 | bool operator!=(const SkTArray<T, MEM_MOVE>& right) const { |
| 418 | return !(*this == right); |
| 419 | } |
| 420 | |
| 421 | inline int allocCntForTest() const; |
| 422 | |
| 423 | protected: |
| 424 | /** |
| 425 | * Creates an empty array that will use the passed storage block until it |
| 426 | * is insufficiently large to hold the entire array. |
| 427 | */ |
| 428 | template <int N> |
| 429 | SkTArray(SkAlignedSTStorage<N,T>* storage) { |
| 430 | this->initWithPreallocatedStorage(0, storage->get(), N); |
| 431 | } |
| 432 | |
| 433 | /** |
| 434 | * Copy another array, using preallocated storage if preAllocCount >= |
| 435 | * array.count(). Otherwise storage will only be used when array shrinks |
| 436 | * to fit. |
| 437 | */ |
| 438 | template <int N> |
| 439 | SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) { |
| 440 | this->initWithPreallocatedStorage(array.fCount, storage->get(), N); |
| 441 | this->copy(array.fItemArray); |
| 442 | } |
| 443 | |
| 444 | /** |
| 445 | * Move another array, using preallocated storage if preAllocCount >= |
| 446 | * array.count(). Otherwise storage will only be used when array shrinks |
| 447 | * to fit. |
| 448 | */ |
| 449 | template <int N> |
| 450 | SkTArray(SkTArray&& array, SkAlignedSTStorage<N,T>* storage) { |
| 451 | this->initWithPreallocatedStorage(array.fCount, storage->get(), N); |
| 452 | array.move(fItemArray); |
| 453 | array.fCount = 0; |
| 454 | } |
| 455 | |
| 456 | /** |
| 457 | * Copy a C array, using preallocated storage if preAllocCount >= |
| 458 | * count. Otherwise storage will only be used when array shrinks |
| 459 | * to fit. |
| 460 | */ |
| 461 | template <int N> |
| 462 | SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) { |
| 463 | this->initWithPreallocatedStorage(count, storage->get(), N); |
| 464 | this->copy(array); |
| 465 | } |
| 466 | |
| 467 | private: |
| 468 | void init(int count = 0, int reserveCount = 0) { |
| 469 | SkASSERT(count >= 0); |
| 470 | SkASSERT(reserveCount >= 0); |
| 471 | fCount = count; |
| 472 | if (!count && !reserveCount) { |
| 473 | fAllocCount = 0; |
| 474 | fItemArray = nullptr; |
| 475 | fOwnMemory = true; |
| 476 | fReserved = false; |
| 477 | } else { |
| 478 | fAllocCount = std::max(count, std::max(kMinHeapAllocCount, reserveCount)); |
| 479 | fItemArray = (T*)sk_malloc_throw((size_t)fAllocCount, sizeof(T)); |
| 480 | fOwnMemory = true; |
| 481 | fReserved = reserveCount > 0; |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | void initWithPreallocatedStorage(int count, void* preallocStorage, int preallocCount) { |
| 486 | SkASSERT(count >= 0); |
| 487 | SkASSERT(preallocCount > 0); |
| 488 | SkASSERT(preallocStorage); |
| 489 | fCount = count; |
| 490 | fItemArray = nullptr; |
| 491 | fReserved = false; |
| 492 | if (count > preallocCount) { |
| 493 | fAllocCount = std::max(count, kMinHeapAllocCount); |
| 494 | fItemArray = (T*)sk_malloc_throw(fAllocCount, sizeof(T)); |
| 495 | fOwnMemory = true; |
| 496 | } else { |
| 497 | fAllocCount = preallocCount; |
| 498 | fItemArray = (T*)preallocStorage; |
| 499 | fOwnMemory = false; |
| 500 | } |
| 501 | } |
| 502 | |
| 503 | /** In the following move and copy methods, 'dst' is assumed to be uninitialized raw storage. |
| 504 | * In the following move methods, 'src' is destroyed leaving behind uninitialized raw storage. |
| 505 | */ |
| 506 | void copy(const T* src) { |
| 507 | // Some types may be trivially copyable, in which case we *could* use memcopy; but |
| 508 | // MEM_MOVE == true implies that the type is trivially movable, and not necessarily |
| 509 | // trivially copyable (think sk_sp<>). So short of adding another template arg, we |
| 510 | // must be conservative and use copy construction. |
| 511 | for (int i = 0; i < fCount; ++i) { |
| 512 | new (fItemArray + i) T(src[i]); |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | template <bool E = MEM_MOVE> std::enable_if_t<E, void> move(int dst, int src) { |
| 517 | memcpy(&fItemArray[dst], &fItemArray[src], sizeof(T)); |
| 518 | } |
| 519 | template <bool E = MEM_MOVE> std::enable_if_t<E, void> move(void* dst) { |
| 520 | sk_careful_memcpy(dst, fItemArray, fCount * sizeof(T)); |
| 521 | } |
| 522 | |
| 523 | template <bool E = MEM_MOVE> std::enable_if_t<!E, void> move(int dst, int src) { |
| 524 | new (&fItemArray[dst]) T(std::move(fItemArray[src])); |
| 525 | fItemArray[src].~T(); |
| 526 | } |
| 527 | template <bool E = MEM_MOVE> std::enable_if_t<!E, void> move(void* dst) { |
| 528 | for (int i = 0; i < fCount; ++i) { |
| 529 | new (static_cast<char*>(dst) + sizeof(T) * (size_t)i) T(std::move(fItemArray[i])); |
| 530 | fItemArray[i].~T(); |
| 531 | } |
| 532 | } |
| 533 | |
| 534 | static constexpr int kMinHeapAllocCount = 8; |
| 535 | |
| 536 | // Helper function that makes space for n objects, adjusts the count, but does not initialize |
| 537 | // the new objects. |
| 538 | void* push_back_raw(int n) { |
| 539 | this->checkRealloc(n); |
| 540 | void* ptr = fItemArray + fCount; |
| 541 | fCount += n; |
| 542 | return ptr; |
| 543 | } |
| 544 | |
| 545 | void checkRealloc(int delta) { |
| 546 | SkASSERT(fCount >= 0); |
| 547 | SkASSERT(fAllocCount >= 0); |
| 548 | SkASSERT(-delta <= fCount); |
| 549 | |
| 550 | // Move into 64bit math temporarily, to avoid local overflows |
| 551 | int64_t newCount = fCount + delta; |
| 552 | |
| 553 | // We allow fAllocCount to be in the range [newCount, 3*newCount]. We also never shrink |
| 554 | // when we're currently using preallocated memory, would allocate less than |
| 555 | // kMinHeapAllocCount, or a reserve count was specified that has yet to be exceeded. |
| 556 | bool mustGrow = newCount > fAllocCount; |
| 557 | bool shouldShrink = fAllocCount > 3 * newCount && fOwnMemory && !fReserved; |
| 558 | if (!mustGrow && !shouldShrink) { |
| 559 | return; |
| 560 | } |
| 561 | |
| 562 | |
| 563 | // Whether we're growing or shrinking, we leave at least 50% extra space for future growth. |
| 564 | int64_t newAllocCount = newCount + ((newCount + 1) >> 1); |
| 565 | // Align the new allocation count to kMinHeapAllocCount. |
| 566 | static_assert(SkIsPow2(kMinHeapAllocCount), "min alloc count not power of two." ); |
| 567 | newAllocCount = (newAllocCount + (kMinHeapAllocCount - 1)) & ~(kMinHeapAllocCount - 1); |
| 568 | // At small sizes the old and new alloc count can both be kMinHeapAllocCount. |
| 569 | if (newAllocCount == fAllocCount) { |
| 570 | return; |
| 571 | } |
| 572 | |
| 573 | fAllocCount = Sk64_pin_to_s32(newAllocCount); |
| 574 | SkASSERT(fAllocCount >= newCount); |
| 575 | T* newItemArray = (T*)sk_malloc_throw((size_t)fAllocCount, sizeof(T)); |
| 576 | this->move(newItemArray); |
| 577 | if (fOwnMemory) { |
| 578 | sk_free(fItemArray); |
| 579 | |
| 580 | } |
| 581 | fItemArray = newItemArray; |
| 582 | fOwnMemory = true; |
| 583 | fReserved = false; |
| 584 | } |
| 585 | |
| 586 | T* fItemArray; |
| 587 | int fCount; |
| 588 | int fAllocCount; |
| 589 | bool fOwnMemory : 1; |
| 590 | bool fReserved : 1; |
| 591 | }; |
| 592 | |
| 593 | template <typename T, bool M> static inline void swap(SkTArray<T, M>& a, SkTArray<T, M>& b) { |
| 594 | a.swap(b); |
| 595 | } |
| 596 | |
| 597 | template<typename T, bool MEM_MOVE> constexpr int SkTArray<T, MEM_MOVE>::kMinHeapAllocCount; |
| 598 | |
| 599 | /** |
| 600 | * Subclass of SkTArray that contains a preallocated memory block for the array. |
| 601 | */ |
| 602 | template <int N, typename T, bool MEM_MOVE= false> |
| 603 | class SkSTArray : public SkTArray<T, MEM_MOVE> { |
| 604 | private: |
| 605 | typedef SkTArray<T, MEM_MOVE> INHERITED; |
| 606 | |
| 607 | public: |
| 608 | SkSTArray() : INHERITED(&fStorage) { |
| 609 | } |
| 610 | |
| 611 | SkSTArray(const SkSTArray& array) |
| 612 | : INHERITED(array, &fStorage) { |
| 613 | } |
| 614 | |
| 615 | SkSTArray(SkSTArray&& array) |
| 616 | : INHERITED(std::move(array), &fStorage) { |
| 617 | } |
| 618 | |
| 619 | explicit SkSTArray(const INHERITED& array) |
| 620 | : INHERITED(array, &fStorage) { |
| 621 | } |
| 622 | |
| 623 | explicit SkSTArray(INHERITED&& array) |
| 624 | : INHERITED(std::move(array), &fStorage) { |
| 625 | } |
| 626 | |
| 627 | explicit SkSTArray(int reserveCount) |
| 628 | : INHERITED(reserveCount) { |
| 629 | } |
| 630 | |
| 631 | SkSTArray(const T* array, int count) |
| 632 | : INHERITED(array, count, &fStorage) { |
| 633 | } |
| 634 | |
| 635 | SkSTArray& operator=(const SkSTArray& array) { |
| 636 | INHERITED::operator=(array); |
| 637 | return *this; |
| 638 | } |
| 639 | |
| 640 | SkSTArray& operator=(SkSTArray&& array) { |
| 641 | INHERITED::operator=(std::move(array)); |
| 642 | return *this; |
| 643 | } |
| 644 | |
| 645 | SkSTArray& operator=(const INHERITED& array) { |
| 646 | INHERITED::operator=(array); |
| 647 | return *this; |
| 648 | } |
| 649 | |
| 650 | SkSTArray& operator=(INHERITED&& array) { |
| 651 | INHERITED::operator=(std::move(array)); |
| 652 | return *this; |
| 653 | } |
| 654 | |
| 655 | private: |
| 656 | SkAlignedSTStorage<N,T> fStorage; |
| 657 | }; |
| 658 | |
| 659 | #endif |
| 660 | |