1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | |
9 | #ifndef SkTDArray_DEFINED |
10 | #define SkTDArray_DEFINED |
11 | |
12 | #include "include/core/SkTypes.h" |
13 | #include "include/private/SkMalloc.h" |
14 | #include "include/private/SkTo.h" |
15 | |
16 | #include <algorithm> |
17 | #include <initializer_list> |
18 | #include <utility> |
19 | |
20 | /** SkTDArray<T> implements a std::vector-like array for raw data-only objects that do not require |
21 | construction or destruction. The constructor and destructor for T will not be called; T objects |
22 | will always be moved via raw memcpy. Newly created T objects will contain uninitialized memory. |
23 | |
24 | In most cases, std::vector<T> can provide a similar level of performance for POD objects when |
25 | used with appropriate care. In new code, consider std::vector<T> instead. |
26 | */ |
27 | template <typename T> class SkTDArray { |
28 | public: |
29 | SkTDArray() : fArray(nullptr), fReserve(0), fCount(0) {} |
30 | SkTDArray(const T src[], int count) { |
31 | SkASSERT(src || count == 0); |
32 | |
33 | fReserve = fCount = 0; |
34 | fArray = nullptr; |
35 | if (count) { |
36 | fArray = (T*)sk_malloc_throw(count * sizeof(T)); |
37 | memcpy(fArray, src, sizeof(T) * count); |
38 | fReserve = fCount = count; |
39 | } |
40 | } |
41 | SkTDArray(const std::initializer_list<T>& list) : SkTDArray(list.begin(), list.size()) {} |
42 | SkTDArray(const SkTDArray<T>& src) : fArray(nullptr), fReserve(0), fCount(0) { |
43 | SkTDArray<T> tmp(src.fArray, src.fCount); |
44 | this->swap(tmp); |
45 | } |
46 | SkTDArray(SkTDArray<T>&& src) : fArray(nullptr), fReserve(0), fCount(0) { |
47 | this->swap(src); |
48 | } |
49 | ~SkTDArray() { |
50 | sk_free(fArray); |
51 | } |
52 | |
53 | SkTDArray<T>& operator=(const SkTDArray<T>& src) { |
54 | if (this != &src) { |
55 | if (src.fCount > fReserve) { |
56 | SkTDArray<T> tmp(src.fArray, src.fCount); |
57 | this->swap(tmp); |
58 | } else { |
59 | sk_careful_memcpy(fArray, src.fArray, sizeof(T) * src.fCount); |
60 | fCount = src.fCount; |
61 | } |
62 | } |
63 | return *this; |
64 | } |
65 | SkTDArray<T>& operator=(SkTDArray<T>&& src) { |
66 | if (this != &src) { |
67 | this->swap(src); |
68 | src.reset(); |
69 | } |
70 | return *this; |
71 | } |
72 | |
73 | friend bool operator==(const SkTDArray<T>& a, const SkTDArray<T>& b) { |
74 | return a.fCount == b.fCount && |
75 | (a.fCount == 0 || |
76 | !memcmp(a.fArray, b.fArray, a.fCount * sizeof(T))); |
77 | } |
78 | friend bool operator!=(const SkTDArray<T>& a, const SkTDArray<T>& b) { |
79 | return !(a == b); |
80 | } |
81 | |
82 | void swap(SkTDArray<T>& that) { |
83 | using std::swap; |
84 | swap(fArray, that.fArray); |
85 | swap(fReserve, that.fReserve); |
86 | swap(fCount, that.fCount); |
87 | } |
88 | |
89 | bool isEmpty() const { return fCount == 0; } |
90 | bool empty() const { return this->isEmpty(); } |
91 | |
92 | /** |
93 | * Return the number of elements in the array |
94 | */ |
95 | int count() const { return fCount; } |
96 | size_t size() const { return fCount; } |
97 | |
98 | /** |
99 | * Return the total number of elements allocated. |
100 | * reserved() - count() gives you the number of elements you can add |
101 | * without causing an allocation. |
102 | */ |
103 | int reserved() const { return fReserve; } |
104 | |
105 | /** |
106 | * return the number of bytes in the array: count * sizeof(T) |
107 | */ |
108 | size_t bytes() const { return fCount * sizeof(T); } |
109 | |
110 | T* begin() { return fArray; } |
111 | const T* begin() const { return fArray; } |
112 | T* end() { return fArray ? fArray + fCount : nullptr; } |
113 | const T* end() const { return fArray ? fArray + fCount : nullptr; } |
114 | |
115 | T& operator[](int index) { |
116 | SkASSERT(index < fCount); |
117 | return fArray[index]; |
118 | } |
119 | const T& operator[](int index) const { |
120 | SkASSERT(index < fCount); |
121 | return fArray[index]; |
122 | } |
123 | |
124 | T& getAt(int index) { |
125 | return (*this)[index]; |
126 | } |
127 | |
128 | const T& back() const { SkASSERT(fCount > 0); return fArray[fCount-1]; } |
129 | T& back() { SkASSERT(fCount > 0); return fArray[fCount-1]; } |
130 | |
131 | void reset() { |
132 | if (fArray) { |
133 | sk_free(fArray); |
134 | fArray = nullptr; |
135 | fReserve = fCount = 0; |
136 | } else { |
137 | SkASSERT(fReserve == 0 && fCount == 0); |
138 | } |
139 | } |
140 | |
141 | void rewind() { |
142 | // same as setCount(0) |
143 | fCount = 0; |
144 | } |
145 | |
146 | /** |
147 | * Sets the number of elements in the array. |
148 | * If the array does not have space for count elements, it will increase |
149 | * the storage allocated to some amount greater than that required. |
150 | * It will never shrink the storage. |
151 | */ |
152 | void setCount(int count) { |
153 | SkASSERT(count >= 0); |
154 | if (count > fReserve) { |
155 | this->resizeStorageToAtLeast(count); |
156 | } |
157 | fCount = count; |
158 | } |
159 | |
160 | void setReserve(int reserve) { |
161 | SkASSERT(reserve >= 0); |
162 | if (reserve > fReserve) { |
163 | this->resizeStorageToAtLeast(reserve); |
164 | } |
165 | } |
166 | void reserve(size_t n) { |
167 | SkASSERT_RELEASE(SkTFitsIn<int>(n)); |
168 | this->setReserve(SkToInt(n)); |
169 | } |
170 | |
171 | T* prepend() { |
172 | this->adjustCount(1); |
173 | memmove(fArray + 1, fArray, (fCount - 1) * sizeof(T)); |
174 | return fArray; |
175 | } |
176 | |
177 | T* append() { |
178 | return this->append(1, nullptr); |
179 | } |
180 | T* append(int count, const T* src = nullptr) { |
181 | int oldCount = fCount; |
182 | if (count) { |
183 | SkASSERT(src == nullptr || fArray == nullptr || |
184 | src + count <= fArray || fArray + oldCount <= src); |
185 | |
186 | this->adjustCount(count); |
187 | if (src) { |
188 | memcpy(fArray + oldCount, src, sizeof(T) * count); |
189 | } |
190 | } |
191 | return fArray + oldCount; |
192 | } |
193 | |
194 | T* insert(int index) { |
195 | return this->insert(index, 1, nullptr); |
196 | } |
197 | T* insert(int index, int count, const T* src = nullptr) { |
198 | SkASSERT(count); |
199 | SkASSERT(index <= fCount); |
200 | size_t oldCount = fCount; |
201 | this->adjustCount(count); |
202 | T* dst = fArray + index; |
203 | memmove(dst + count, dst, sizeof(T) * (oldCount - index)); |
204 | if (src) { |
205 | memcpy(dst, src, sizeof(T) * count); |
206 | } |
207 | return dst; |
208 | } |
209 | |
210 | void remove(int index, int count = 1) { |
211 | SkASSERT(index + count <= fCount); |
212 | fCount = fCount - count; |
213 | memmove(fArray + index, fArray + index + count, sizeof(T) * (fCount - index)); |
214 | } |
215 | |
216 | void removeShuffle(int index) { |
217 | SkASSERT(index < fCount); |
218 | int newCount = fCount - 1; |
219 | fCount = newCount; |
220 | if (index != newCount) { |
221 | memcpy(fArray + index, fArray + newCount, sizeof(T)); |
222 | } |
223 | } |
224 | |
225 | int find(const T& elem) const { |
226 | const T* iter = fArray; |
227 | const T* stop = fArray + fCount; |
228 | |
229 | for (; iter < stop; iter++) { |
230 | if (*iter == elem) { |
231 | return SkToInt(iter - fArray); |
232 | } |
233 | } |
234 | return -1; |
235 | } |
236 | |
237 | int rfind(const T& elem) const { |
238 | const T* iter = fArray + fCount; |
239 | const T* stop = fArray; |
240 | |
241 | while (iter > stop) { |
242 | if (*--iter == elem) { |
243 | return SkToInt(iter - stop); |
244 | } |
245 | } |
246 | return -1; |
247 | } |
248 | |
249 | /** |
250 | * Returns true iff the array contains this element. |
251 | */ |
252 | bool contains(const T& elem) const { |
253 | return (this->find(elem) >= 0); |
254 | } |
255 | |
256 | /** |
257 | * Copies up to max elements into dst. The number of items copied is |
258 | * capped by count - index. The actual number copied is returned. |
259 | */ |
260 | int copyRange(T* dst, int index, int max) const { |
261 | SkASSERT(max >= 0); |
262 | SkASSERT(!max || dst); |
263 | if (index >= fCount) { |
264 | return 0; |
265 | } |
266 | int count = std::min(max, fCount - index); |
267 | memcpy(dst, fArray + index, sizeof(T) * count); |
268 | return count; |
269 | } |
270 | |
271 | void copy(T* dst) const { |
272 | this->copyRange(dst, 0, fCount); |
273 | } |
274 | |
275 | // routines to treat the array like a stack |
276 | void push_back(const T& v) { *this->append() = v; } |
277 | T* push() { return this->append(); } |
278 | const T& top() const { return (*this)[fCount - 1]; } |
279 | T& top() { return (*this)[fCount - 1]; } |
280 | void pop(T* elem) { SkASSERT(fCount > 0); if (elem) *elem = (*this)[fCount - 1]; --fCount; } |
281 | void pop() { SkASSERT(fCount > 0); --fCount; } |
282 | |
283 | void deleteAll() { |
284 | T* iter = fArray; |
285 | T* stop = fArray + fCount; |
286 | while (iter < stop) { |
287 | delete *iter; |
288 | iter += 1; |
289 | } |
290 | this->reset(); |
291 | } |
292 | |
293 | void freeAll() { |
294 | T* iter = fArray; |
295 | T* stop = fArray + fCount; |
296 | while (iter < stop) { |
297 | sk_free(*iter); |
298 | iter += 1; |
299 | } |
300 | this->reset(); |
301 | } |
302 | |
303 | void unrefAll() { |
304 | T* iter = fArray; |
305 | T* stop = fArray + fCount; |
306 | while (iter < stop) { |
307 | (*iter)->unref(); |
308 | iter += 1; |
309 | } |
310 | this->reset(); |
311 | } |
312 | |
313 | void safeUnrefAll() { |
314 | T* iter = fArray; |
315 | T* stop = fArray + fCount; |
316 | while (iter < stop) { |
317 | SkSafeUnref(*iter); |
318 | iter += 1; |
319 | } |
320 | this->reset(); |
321 | } |
322 | |
323 | #ifdef SK_DEBUG |
324 | void validate() const { |
325 | SkASSERT((fReserve == 0 && fArray == nullptr) || |
326 | (fReserve > 0 && fArray != nullptr)); |
327 | SkASSERT(fCount <= fReserve); |
328 | } |
329 | #endif |
330 | |
331 | void shrinkToFit() { |
332 | if (fReserve != fCount) { |
333 | SkASSERT(fReserve > fCount); |
334 | fReserve = fCount; |
335 | fArray = (T*)sk_realloc_throw(fArray, fReserve * sizeof(T)); |
336 | } |
337 | } |
338 | |
339 | private: |
340 | T* fArray; |
341 | int fReserve; // size of the allocation in fArray (#elements) |
342 | int fCount; // logical number of elements (fCount <= fReserve) |
343 | |
344 | /** |
345 | * Adjusts the number of elements in the array. |
346 | * This is the same as calling setCount(count() + delta). |
347 | */ |
348 | void adjustCount(int delta) { |
349 | SkASSERT(delta > 0); |
350 | |
351 | // We take care to avoid overflow here. |
352 | // The sum of fCount and delta is at most 4294967294, which fits fine in uint32_t. |
353 | uint32_t count = (uint32_t)fCount + (uint32_t)delta; |
354 | SkASSERT_RELEASE( SkTFitsIn<int>(count) ); |
355 | |
356 | this->setCount(SkTo<int>(count)); |
357 | } |
358 | |
359 | /** |
360 | * Increase the storage allocation such that it can hold (fCount + extra) |
361 | * elements. |
362 | * It never shrinks the allocation, and it may increase the allocation by |
363 | * more than is strictly required, based on a private growth heuristic. |
364 | * |
365 | * note: does NOT modify fCount |
366 | */ |
367 | void resizeStorageToAtLeast(int count) { |
368 | SkASSERT(count > fReserve); |
369 | |
370 | // We take care to avoid overflow here. |
371 | // The maximum value we can get for reserve here is 2684354563, which fits in uint32_t. |
372 | uint32_t reserve = (uint32_t)count + 4; |
373 | reserve += reserve / 4; |
374 | SkASSERT_RELEASE( SkTFitsIn<int>(reserve) ); |
375 | |
376 | fReserve = SkTo<int>(reserve); |
377 | fArray = (T*)sk_realloc_throw(fArray, (size_t)fReserve * sizeof(T)); |
378 | } |
379 | }; |
380 | |
381 | template <typename T> static inline void swap(SkTDArray<T>& a, SkTDArray<T>& b) { |
382 | a.swap(b); |
383 | } |
384 | |
385 | #endif |
386 | |