1 | /* |
2 | * Copyright 2019 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SKVX_DEFINED |
9 | #define SKVX_DEFINED |
10 | |
11 | // skvx::Vec<N,T> are SIMD vectors of N T's, a v1.5 successor to SkNx<N,T>. |
12 | // |
13 | // This time we're leaning a bit less on platform-specific intrinsics and a bit |
14 | // more on Clang/GCC vector extensions, but still keeping the option open to |
15 | // drop in platform-specific intrinsics, actually more easily than before. |
16 | // |
17 | // We've also fixed a few of the caveats that used to make SkNx awkward to work |
18 | // with across translation units. skvx::Vec<N,T> always has N*sizeof(T) size |
19 | // and alignment[1][2] and is safe to use across translation units freely. |
20 | // |
21 | // [1] Ideally we'd only align to T, but that tanks ARMv7 NEON codegen. |
22 | // [2] Some compilers barf if we try to use N*sizeof(T), so instead we leave them at T. |
23 | |
24 | // Please try to keep this file independent of Skia headers. |
25 | #include <algorithm> // std::min, std::max |
26 | #include <cmath> // std::ceil, std::floor, std::trunc, std::round, std::sqrt, etc. |
27 | #include <cstdint> // intXX_t |
28 | #include <cstring> // memcpy() |
29 | #include <initializer_list> // std::initializer_list |
30 | |
31 | #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) |
32 | #include <immintrin.h> |
33 | #elif defined(__ARM_NEON) |
34 | #include <arm_neon.h> |
35 | #endif |
36 | |
37 | #if defined __wasm_simd128__ |
38 | // WASM SIMD intrinsics definitions: https://github.com/llvm/llvm-project/blob/master/clang/lib/Headers/wasm_simd128.h |
39 | #include <wasm_simd128.h> |
40 | #endif |
41 | |
42 | #if !defined(__clang__) && defined(__GNUC__) && defined(__mips64) |
43 | // GCC 7 hits an internal compiler error when targeting MIPS64. |
44 | #define SKVX_ALIGNMENT |
45 | #elif !defined(__clang__) && defined(_MSC_VER) && defined(_M_IX86) |
46 | // Our SkVx unit tests fail when built by MSVC for 32-bit x86. |
47 | #define SKVX_ALIGNMENT |
48 | #else |
49 | #define SKVX_ALIGNMENT alignas(N * sizeof(T)) |
50 | #endif |
51 | |
52 | #if defined(__GNUC__) && !defined(__clang__) && defined(__SSE__) |
53 | // GCC warns about ABI changes when returning >= 32 byte vectors when -mavx is not enabled. |
54 | // This only happens for types like VExt whose ABI we don't care about, not for Vec itself. |
55 | #pragma GCC diagnostic ignored "-Wpsabi" |
56 | #endif |
57 | |
58 | // To avoid ODR violations, all methods must be force-inlined, |
59 | // and all standalone functions must be static, perhaps using these helpers. |
60 | #if defined(_MSC_VER) |
61 | #define SKVX_ALWAYS_INLINE __forceinline |
62 | #else |
63 | #define SKVX_ALWAYS_INLINE __attribute__((always_inline)) |
64 | #endif |
65 | |
66 | #define SIT template < typename T> static inline |
67 | #define SINT template <int N, typename T> static inline |
68 | #define SINTU template <int N, typename T, typename U, \ |
69 | typename=typename std::enable_if<std::is_convertible<U,T>::value>::type> \ |
70 | static inline |
71 | |
72 | namespace skvx { |
73 | |
74 | // All Vec have the same simple memory layout, the same as `T vec[N]`. |
75 | template <int N, typename T> |
76 | struct SKVX_ALIGNMENT Vec { |
77 | static_assert((N & (N-1)) == 0, "N must be a power of 2." ); |
78 | static_assert(sizeof(T) >= alignof(T), "What kind of crazy T is this?" ); |
79 | |
80 | Vec<N/2,T> lo, hi; |
81 | |
82 | // Methods belong here in the class declaration of Vec only if: |
83 | // - they must be here, like constructors or operator[]; |
84 | // - they'll definitely never want a specialized implementation. |
85 | // Other operations on Vec should be defined outside the type. |
86 | |
87 | SKVX_ALWAYS_INLINE Vec() = default; |
88 | |
89 | template <typename U, |
90 | typename=typename std::enable_if<std::is_convertible<U,T>::value>::type> |
91 | SKVX_ALWAYS_INLINE |
92 | Vec(U x) : lo(x), hi(x) {} |
93 | |
94 | SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) { |
95 | T vals[N] = {0}; |
96 | memcpy(vals, xs.begin(), std::min(xs.size(), (size_t)N)*sizeof(T)); |
97 | |
98 | lo = Vec<N/2,T>::Load(vals + 0); |
99 | hi = Vec<N/2,T>::Load(vals + N/2); |
100 | } |
101 | |
102 | SKVX_ALWAYS_INLINE T operator[](int i) const { return i < N/2 ? lo[i] : hi[i-N/2]; } |
103 | SKVX_ALWAYS_INLINE T& operator[](int i) { return i < N/2 ? lo[i] : hi[i-N/2]; } |
104 | |
105 | SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) { |
106 | Vec v; |
107 | memcpy(&v, ptr, sizeof(Vec)); |
108 | return v; |
109 | } |
110 | SKVX_ALWAYS_INLINE void store(void* ptr) const { |
111 | memcpy(ptr, this, sizeof(Vec)); |
112 | } |
113 | }; |
114 | |
115 | template <typename T> |
116 | struct Vec<1,T> { |
117 | T val; |
118 | |
119 | SKVX_ALWAYS_INLINE Vec() = default; |
120 | |
121 | template <typename U, |
122 | typename=typename std::enable_if<std::is_convertible<U,T>::value>::type> |
123 | SKVX_ALWAYS_INLINE |
124 | Vec(U x) : val(x) {} |
125 | |
126 | SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) : val(xs.size() ? *xs.begin() : 0) {} |
127 | |
128 | SKVX_ALWAYS_INLINE T operator[](int) const { return val; } |
129 | SKVX_ALWAYS_INLINE T& operator[](int) { return val; } |
130 | |
131 | SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) { |
132 | Vec v; |
133 | memcpy(&v, ptr, sizeof(Vec)); |
134 | return v; |
135 | } |
136 | SKVX_ALWAYS_INLINE void store(void* ptr) const { |
137 | memcpy(ptr, this, sizeof(Vec)); |
138 | } |
139 | }; |
140 | |
141 | template <typename D, typename S> |
142 | static inline D unchecked_bit_pun(const S& s) { |
143 | D d; |
144 | memcpy(&d, &s, sizeof(D)); |
145 | return d; |
146 | } |
147 | |
148 | template <typename D, typename S> |
149 | static inline D bit_pun(const S& s) { |
150 | static_assert(sizeof(D) == sizeof(S), "" ); |
151 | return unchecked_bit_pun<D>(s); |
152 | } |
153 | |
154 | // Translate from a value type T to its corresponding Mask, the result of a comparison. |
155 | template <typename T> struct Mask { using type = T; }; |
156 | template <> struct Mask<float > { using type = int32_t; }; |
157 | template <> struct Mask<double> { using type = int64_t; }; |
158 | template <typename T> using M = typename Mask<T>::type; |
159 | |
160 | // Join two Vec<N,T> into one Vec<2N,T>. |
161 | SINT Vec<2*N,T> join(const Vec<N,T>& lo, const Vec<N,T>& hi) { |
162 | Vec<2*N,T> v; |
163 | v.lo = lo; |
164 | v.hi = hi; |
165 | return v; |
166 | } |
167 | |
168 | // We have two default strategies for implementing most operations: |
169 | // 1) lean on Clang/GCC vector extensions when available; |
170 | // 2) recurse to scalar portable implementations when not. |
171 | // At the end we can drop in platform-specific implementations that override either default. |
172 | |
173 | #if !defined(SKNX_NO_SIMD) && (defined(__clang__) || defined(__GNUC__)) |
174 | |
175 | // VExt<N,T> types have the same size as Vec<N,T> and support most operations directly. |
176 | // N.B. VExt<N,T> alignment is N*alignof(T), stricter than Vec<N,T>'s alignof(T). |
177 | #if defined(__clang__) |
178 | template <int N, typename T> |
179 | using VExt = T __attribute__((ext_vector_type(N))); |
180 | |
181 | #elif defined(__GNUC__) |
182 | template <int N, typename T> |
183 | struct VExtHelper { |
184 | typedef T __attribute__((vector_size(N*sizeof(T)))) type; |
185 | }; |
186 | |
187 | template <int N, typename T> |
188 | using VExt = typename VExtHelper<N,T>::type; |
189 | |
190 | // For some reason some (new!) versions of GCC cannot seem to deduce N in the generic |
191 | // to_vec<N,T>() below for N=4 and T=float. This workaround seems to help... |
192 | static inline Vec<4,float> to_vec(VExt<4,float> v) { return bit_pun<Vec<4,float>>(v); } |
193 | #endif |
194 | |
195 | SINT VExt<N,T> to_vext(const Vec<N,T>& v) { return bit_pun<VExt<N,T>>(v); } |
196 | SINT Vec <N,T> to_vec(const VExt<N,T>& v) { return bit_pun<Vec <N,T>>(v); } |
197 | |
198 | SINT Vec<N,T> operator+(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) + to_vext(y)); } |
199 | SINT Vec<N,T> operator-(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) - to_vext(y)); } |
200 | SINT Vec<N,T> operator*(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) * to_vext(y)); } |
201 | SINT Vec<N,T> operator/(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) / to_vext(y)); } |
202 | |
203 | SINT Vec<N,T> operator^(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) ^ to_vext(y)); } |
204 | SINT Vec<N,T> operator&(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) & to_vext(y)); } |
205 | SINT Vec<N,T> operator|(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) | to_vext(y)); } |
206 | |
207 | SINT Vec<N,T> operator!(const Vec<N,T>& x) { return to_vec<N,T>(!to_vext(x)); } |
208 | SINT Vec<N,T> operator-(const Vec<N,T>& x) { return to_vec<N,T>(-to_vext(x)); } |
209 | SINT Vec<N,T> operator~(const Vec<N,T>& x) { return to_vec<N,T>(~to_vext(x)); } |
210 | |
211 | SINT Vec<N,T> operator<<(const Vec<N,T>& x, int bits) { return to_vec<N,T>(to_vext(x) << bits); } |
212 | SINT Vec<N,T> operator>>(const Vec<N,T>& x, int bits) { return to_vec<N,T>(to_vext(x) >> bits); } |
213 | |
214 | SINT Vec<N,M<T>> operator==(const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) == to_vext(y)); } |
215 | SINT Vec<N,M<T>> operator!=(const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) != to_vext(y)); } |
216 | SINT Vec<N,M<T>> operator<=(const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) <= to_vext(y)); } |
217 | SINT Vec<N,M<T>> operator>=(const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) >= to_vext(y)); } |
218 | SINT Vec<N,M<T>> operator< (const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) < to_vext(y)); } |
219 | SINT Vec<N,M<T>> operator> (const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) > to_vext(y)); } |
220 | |
221 | #else |
222 | |
223 | // Either SKNX_NO_SIMD is defined, or Clang/GCC vector extensions are not available. |
224 | // We'll implement things portably, in a way that should be easily autovectorizable. |
225 | |
226 | // N == 1 scalar implementations. |
227 | SIT Vec<1,T> operator+(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val + y.val; } |
228 | SIT Vec<1,T> operator-(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val - y.val; } |
229 | SIT Vec<1,T> operator*(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val * y.val; } |
230 | SIT Vec<1,T> operator/(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val / y.val; } |
231 | |
232 | SIT Vec<1,T> operator^(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val ^ y.val; } |
233 | SIT Vec<1,T> operator&(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val & y.val; } |
234 | SIT Vec<1,T> operator|(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val | y.val; } |
235 | |
236 | SIT Vec<1,T> operator!(const Vec<1,T>& x) { return !x.val; } |
237 | SIT Vec<1,T> operator-(const Vec<1,T>& x) { return -x.val; } |
238 | SIT Vec<1,T> operator~(const Vec<1,T>& x) { return ~x.val; } |
239 | |
240 | SIT Vec<1,T> operator<<(const Vec<1,T>& x, int bits) { return x.val << bits; } |
241 | SIT Vec<1,T> operator>>(const Vec<1,T>& x, int bits) { return x.val >> bits; } |
242 | |
243 | SIT Vec<1,M<T>> operator==(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val == y.val ? ~0 : 0; } |
244 | SIT Vec<1,M<T>> operator!=(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val != y.val ? ~0 : 0; } |
245 | SIT Vec<1,M<T>> operator<=(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val <= y.val ? ~0 : 0; } |
246 | SIT Vec<1,M<T>> operator>=(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val >= y.val ? ~0 : 0; } |
247 | SIT Vec<1,M<T>> operator< (const Vec<1,T>& x, const Vec<1,T>& y) { return x.val < y.val ? ~0 : 0; } |
248 | SIT Vec<1,M<T>> operator> (const Vec<1,T>& x, const Vec<1,T>& y) { return x.val > y.val ? ~0 : 0; } |
249 | |
250 | // All default N != 1 implementations just recurse on lo and hi halves. |
251 | SINT Vec<N,T> operator+(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo + y.lo, x.hi + y.hi); } |
252 | SINT Vec<N,T> operator-(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo - y.lo, x.hi - y.hi); } |
253 | SINT Vec<N,T> operator*(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo * y.lo, x.hi * y.hi); } |
254 | SINT Vec<N,T> operator/(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo / y.lo, x.hi / y.hi); } |
255 | |
256 | SINT Vec<N,T> operator^(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo ^ y.lo, x.hi ^ y.hi); } |
257 | SINT Vec<N,T> operator&(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo & y.lo, x.hi & y.hi); } |
258 | SINT Vec<N,T> operator|(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo | y.lo, x.hi | y.hi); } |
259 | |
260 | SINT Vec<N,T> operator!(const Vec<N,T>& x) { return join(!x.lo, !x.hi); } |
261 | SINT Vec<N,T> operator-(const Vec<N,T>& x) { return join(-x.lo, -x.hi); } |
262 | SINT Vec<N,T> operator~(const Vec<N,T>& x) { return join(~x.lo, ~x.hi); } |
263 | |
264 | SINT Vec<N,T> operator<<(const Vec<N,T>& x, int bits) { return join(x.lo << bits, x.hi << bits); } |
265 | SINT Vec<N,T> operator>>(const Vec<N,T>& x, int bits) { return join(x.lo >> bits, x.hi >> bits); } |
266 | |
267 | SINT Vec<N,M<T>> operator==(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo == y.lo, x.hi == y.hi); } |
268 | SINT Vec<N,M<T>> operator!=(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo != y.lo, x.hi != y.hi); } |
269 | SINT Vec<N,M<T>> operator<=(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo <= y.lo, x.hi <= y.hi); } |
270 | SINT Vec<N,M<T>> operator>=(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo >= y.lo, x.hi >= y.hi); } |
271 | SINT Vec<N,M<T>> operator< (const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo < y.lo, x.hi < y.hi); } |
272 | SINT Vec<N,M<T>> operator> (const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo > y.lo, x.hi > y.hi); } |
273 | #endif |
274 | |
275 | // Some operations we want are not expressible with Clang/GCC vector |
276 | // extensions, so we implement them using the recursive approach. |
277 | |
278 | // N == 1 scalar implementations. |
279 | SIT Vec<1,T> if_then_else(const Vec<1,M<T>>& cond, const Vec<1,T>& t, const Vec<1,T>& e) { |
280 | // In practice this scalar implementation is unlikely to be used. See if_then_else() below. |
281 | return bit_pun<Vec<1,T>>(( cond & bit_pun<Vec<1, M<T>>>(t)) | |
282 | (~cond & bit_pun<Vec<1, M<T>>>(e)) ); |
283 | } |
284 | |
285 | SIT bool any(const Vec<1,T>& x) { return x.val != 0; } |
286 | SIT bool all(const Vec<1,T>& x) { return x.val != 0; } |
287 | |
288 | SIT T min(const Vec<1,T>& x) { return x.val; } |
289 | SIT T max(const Vec<1,T>& x) { return x.val; } |
290 | |
291 | SIT Vec<1,T> min(const Vec<1,T>& x, const Vec<1,T>& y) { return std::min(x.val, y.val); } |
292 | SIT Vec<1,T> max(const Vec<1,T>& x, const Vec<1,T>& y) { return std::max(x.val, y.val); } |
293 | SIT Vec<1,T> pow(const Vec<1,T>& x, const Vec<1,T>& y) { return std::pow(x.val, y.val); } |
294 | |
295 | SIT Vec<1,T> atan(const Vec<1,T>& x) { return std:: atan(x.val); } |
296 | SIT Vec<1,T> ceil(const Vec<1,T>& x) { return std:: ceil(x.val); } |
297 | SIT Vec<1,T> floor(const Vec<1,T>& x) { return std::floor(x.val); } |
298 | SIT Vec<1,T> trunc(const Vec<1,T>& x) { return std::trunc(x.val); } |
299 | SIT Vec<1,T> round(const Vec<1,T>& x) { return std::round(x.val); } |
300 | SIT Vec<1,T> sqrt(const Vec<1,T>& x) { return std:: sqrt(x.val); } |
301 | SIT Vec<1,T> abs(const Vec<1,T>& x) { return std:: abs(x.val); } |
302 | SIT Vec<1,T> sin(const Vec<1,T>& x) { return std:: sin(x.val); } |
303 | SIT Vec<1,T> cos(const Vec<1,T>& x) { return std:: cos(x.val); } |
304 | SIT Vec<1,T> tan(const Vec<1,T>& x) { return std:: tan(x.val); } |
305 | |
306 | SIT Vec<1,int> lrint(const Vec<1,T>& x) { return (int)std::lrint(x.val); } |
307 | |
308 | SIT Vec<1,T> rcp(const Vec<1,T>& x) { return 1 / x.val; } |
309 | SIT Vec<1,T> rsqrt(const Vec<1,T>& x) { return rcp(sqrt(x)); } |
310 | |
311 | // All default N != 1 implementations just recurse on lo and hi halves. |
312 | SINT Vec<N,T> if_then_else(const Vec<N,M<T>>& cond, const Vec<N,T>& t, const Vec<N,T>& e) { |
313 | // Specializations inline here so they can generalize what types the apply to. |
314 | // (This header is used in C++14 contexts, so we have to kind of fake constexpr if.) |
315 | #if defined(__AVX__) |
316 | if /*constexpr*/ (N == 8 && sizeof(T) == 4) { |
317 | return unchecked_bit_pun<Vec<N,T>>(_mm256_blendv_ps(unchecked_bit_pun<__m256>(e), |
318 | unchecked_bit_pun<__m256>(t), |
319 | unchecked_bit_pun<__m256>(cond))); |
320 | } |
321 | #endif |
322 | #if defined(__SSE4_1__) |
323 | if /*constexpr*/ (N == 4 && sizeof(T) == 4) { |
324 | return unchecked_bit_pun<Vec<N,T>>(_mm_blendv_ps(unchecked_bit_pun<__m128>(e), |
325 | unchecked_bit_pun<__m128>(t), |
326 | unchecked_bit_pun<__m128>(cond))); |
327 | } |
328 | #endif |
329 | #if defined(__ARM_NEON) |
330 | if /*constexpr*/ (N == 4 && sizeof(T) == 4) { |
331 | return unchecked_bit_pun<Vec<N,T>>(vbslq_f32(unchecked_bit_pun< uint32x4_t>(cond), |
332 | unchecked_bit_pun<float32x4_t>(t), |
333 | unchecked_bit_pun<float32x4_t>(e))); |
334 | } |
335 | #endif |
336 | // Recurse for large vectors to try to hit the specializations above. |
337 | if /*constexpr*/ (N > 4) { |
338 | return join(if_then_else(cond.lo, t.lo, e.lo), |
339 | if_then_else(cond.hi, t.hi, e.hi)); |
340 | } |
341 | // This default can lead to better code than the recursing onto scalars. |
342 | return bit_pun<Vec<N,T>>(( cond & bit_pun<Vec<N, M<T>>>(t)) | |
343 | (~cond & bit_pun<Vec<N, M<T>>>(e)) ); |
344 | } |
345 | |
346 | SINT bool any(const Vec<N,T>& x) { return any(x.lo) || any(x.hi); } |
347 | SINT bool all(const Vec<N,T>& x) { return all(x.lo) && all(x.hi); } |
348 | |
349 | SINT T min(const Vec<N,T>& x) { return std::min(min(x.lo), min(x.hi)); } |
350 | SINT T max(const Vec<N,T>& x) { return std::max(max(x.lo), max(x.hi)); } |
351 | |
352 | SINT Vec<N,T> min(const Vec<N,T>& x, const Vec<N,T>& y) { return join(min(x.lo, y.lo), min(x.hi, y.hi)); } |
353 | SINT Vec<N,T> max(const Vec<N,T>& x, const Vec<N,T>& y) { return join(max(x.lo, y.lo), max(x.hi, y.hi)); } |
354 | SINT Vec<N,T> pow(const Vec<N,T>& x, const Vec<N,T>& y) { return join(pow(x.lo, y.lo), pow(x.hi, y.hi)); } |
355 | |
356 | SINT Vec<N,T> atan(const Vec<N,T>& x) { return join( atan(x.lo), atan(x.hi)); } |
357 | SINT Vec<N,T> ceil(const Vec<N,T>& x) { return join( ceil(x.lo), ceil(x.hi)); } |
358 | SINT Vec<N,T> floor(const Vec<N,T>& x) { return join(floor(x.lo), floor(x.hi)); } |
359 | SINT Vec<N,T> trunc(const Vec<N,T>& x) { return join(trunc(x.lo), trunc(x.hi)); } |
360 | SINT Vec<N,T> round(const Vec<N,T>& x) { return join(round(x.lo), round(x.hi)); } |
361 | SINT Vec<N,T> sqrt(const Vec<N,T>& x) { return join( sqrt(x.lo), sqrt(x.hi)); } |
362 | SINT Vec<N,T> abs(const Vec<N,T>& x) { return join( abs(x.lo), abs(x.hi)); } |
363 | SINT Vec<N,T> sin(const Vec<N,T>& x) { return join( sin(x.lo), sin(x.hi)); } |
364 | SINT Vec<N,T> cos(const Vec<N,T>& x) { return join( cos(x.lo), cos(x.hi)); } |
365 | SINT Vec<N,T> tan(const Vec<N,T>& x) { return join( tan(x.lo), tan(x.hi)); } |
366 | |
367 | SINT Vec<N,int> lrint(const Vec<N,T>& x) { return join(lrint(x.lo), lrint(x.hi)); } |
368 | |
369 | SINT Vec<N,T> rcp(const Vec<N,T>& x) { return join( rcp(x.lo), rcp(x.hi)); } |
370 | SINT Vec<N,T> rsqrt(const Vec<N,T>& x) { return join(rsqrt(x.lo), rsqrt(x.hi)); } |
371 | |
372 | |
373 | // Scalar/vector operations just splat the scalar to a vector... |
374 | SINTU Vec<N,T> operator+ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) + y; } |
375 | SINTU Vec<N,T> operator- (U x, const Vec<N,T>& y) { return Vec<N,T>(x) - y; } |
376 | SINTU Vec<N,T> operator* (U x, const Vec<N,T>& y) { return Vec<N,T>(x) * y; } |
377 | SINTU Vec<N,T> operator/ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) / y; } |
378 | SINTU Vec<N,T> operator^ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) ^ y; } |
379 | SINTU Vec<N,T> operator& (U x, const Vec<N,T>& y) { return Vec<N,T>(x) & y; } |
380 | SINTU Vec<N,T> operator| (U x, const Vec<N,T>& y) { return Vec<N,T>(x) | y; } |
381 | SINTU Vec<N,M<T>> operator==(U x, const Vec<N,T>& y) { return Vec<N,T>(x) == y; } |
382 | SINTU Vec<N,M<T>> operator!=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) != y; } |
383 | SINTU Vec<N,M<T>> operator<=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) <= y; } |
384 | SINTU Vec<N,M<T>> operator>=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) >= y; } |
385 | SINTU Vec<N,M<T>> operator< (U x, const Vec<N,T>& y) { return Vec<N,T>(x) < y; } |
386 | SINTU Vec<N,M<T>> operator> (U x, const Vec<N,T>& y) { return Vec<N,T>(x) > y; } |
387 | SINTU Vec<N,T> min(U x, const Vec<N,T>& y) { return min(Vec<N,T>(x), y); } |
388 | SINTU Vec<N,T> max(U x, const Vec<N,T>& y) { return max(Vec<N,T>(x), y); } |
389 | SINTU Vec<N,T> pow(U x, const Vec<N,T>& y) { return pow(Vec<N,T>(x), y); } |
390 | |
391 | // ... and same deal for vector/scalar operations. |
392 | SINTU Vec<N,T> operator+ (const Vec<N,T>& x, U y) { return x + Vec<N,T>(y); } |
393 | SINTU Vec<N,T> operator- (const Vec<N,T>& x, U y) { return x - Vec<N,T>(y); } |
394 | SINTU Vec<N,T> operator* (const Vec<N,T>& x, U y) { return x * Vec<N,T>(y); } |
395 | SINTU Vec<N,T> operator/ (const Vec<N,T>& x, U y) { return x / Vec<N,T>(y); } |
396 | SINTU Vec<N,T> operator^ (const Vec<N,T>& x, U y) { return x ^ Vec<N,T>(y); } |
397 | SINTU Vec<N,T> operator& (const Vec<N,T>& x, U y) { return x & Vec<N,T>(y); } |
398 | SINTU Vec<N,T> operator| (const Vec<N,T>& x, U y) { return x | Vec<N,T>(y); } |
399 | SINTU Vec<N,M<T>> operator==(const Vec<N,T>& x, U y) { return x == Vec<N,T>(y); } |
400 | SINTU Vec<N,M<T>> operator!=(const Vec<N,T>& x, U y) { return x != Vec<N,T>(y); } |
401 | SINTU Vec<N,M<T>> operator<=(const Vec<N,T>& x, U y) { return x <= Vec<N,T>(y); } |
402 | SINTU Vec<N,M<T>> operator>=(const Vec<N,T>& x, U y) { return x >= Vec<N,T>(y); } |
403 | SINTU Vec<N,M<T>> operator< (const Vec<N,T>& x, U y) { return x < Vec<N,T>(y); } |
404 | SINTU Vec<N,M<T>> operator> (const Vec<N,T>& x, U y) { return x > Vec<N,T>(y); } |
405 | SINTU Vec<N,T> min(const Vec<N,T>& x, U y) { return min(x, Vec<N,T>(y)); } |
406 | SINTU Vec<N,T> max(const Vec<N,T>& x, U y) { return max(x, Vec<N,T>(y)); } |
407 | SINTU Vec<N,T> pow(const Vec<N,T>& x, U y) { return pow(x, Vec<N,T>(y)); } |
408 | |
409 | // The various op= operators, for vectors... |
410 | SINT Vec<N,T>& operator+=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x + y); } |
411 | SINT Vec<N,T>& operator-=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x - y); } |
412 | SINT Vec<N,T>& operator*=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x * y); } |
413 | SINT Vec<N,T>& operator/=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x / y); } |
414 | SINT Vec<N,T>& operator^=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x ^ y); } |
415 | SINT Vec<N,T>& operator&=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x & y); } |
416 | SINT Vec<N,T>& operator|=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x | y); } |
417 | |
418 | // ... for scalars... |
419 | SINTU Vec<N,T>& operator+=(Vec<N,T>& x, U y) { return (x = x + Vec<N,T>(y)); } |
420 | SINTU Vec<N,T>& operator-=(Vec<N,T>& x, U y) { return (x = x - Vec<N,T>(y)); } |
421 | SINTU Vec<N,T>& operator*=(Vec<N,T>& x, U y) { return (x = x * Vec<N,T>(y)); } |
422 | SINTU Vec<N,T>& operator/=(Vec<N,T>& x, U y) { return (x = x / Vec<N,T>(y)); } |
423 | SINTU Vec<N,T>& operator^=(Vec<N,T>& x, U y) { return (x = x ^ Vec<N,T>(y)); } |
424 | SINTU Vec<N,T>& operator&=(Vec<N,T>& x, U y) { return (x = x & Vec<N,T>(y)); } |
425 | SINTU Vec<N,T>& operator|=(Vec<N,T>& x, U y) { return (x = x | Vec<N,T>(y)); } |
426 | |
427 | // ... and for shifts. |
428 | SINT Vec<N,T>& operator<<=(Vec<N,T>& x, int bits) { return (x = x << bits); } |
429 | SINT Vec<N,T>& operator>>=(Vec<N,T>& x, int bits) { return (x = x >> bits); } |
430 | |
431 | // cast() Vec<N,S> to Vec<N,D>, as if applying a C-cast to each lane. |
432 | template <typename D, typename S> |
433 | static inline Vec<1,D> cast(const Vec<1,S>& src) { return (D)src.val; } |
434 | |
435 | template <typename D, int N, typename S> |
436 | static inline Vec<N,D> cast(const Vec<N,S>& src) { |
437 | #if !defined(SKNX_NO_SIMD) && defined(__clang__) |
438 | return to_vec(__builtin_convertvector(to_vext(src), VExt<N,D>)); |
439 | #else |
440 | return join(cast<D>(src.lo), cast<D>(src.hi)); |
441 | #endif |
442 | } |
443 | |
444 | // Shuffle values from a vector pretty arbitrarily: |
445 | // skvx::Vec<4,float> rgba = {R,G,B,A}; |
446 | // shuffle<2,1,0,3> (rgba) ~> {B,G,R,A} |
447 | // shuffle<2,1> (rgba) ~> {B,G} |
448 | // shuffle<2,1,2,1,2,1,2,1>(rgba) ~> {B,G,B,G,B,G,B,G} |
449 | // shuffle<3,3,3,3> (rgba) ~> {A,A,A,A} |
450 | // The only real restriction is that the output also be a legal N=power-of-two sknx::Vec. |
451 | template <int... Ix, int N, typename T> |
452 | static inline Vec<sizeof...(Ix),T> shuffle(const Vec<N,T>& x) { |
453 | #if !defined(SKNX_NO_SIMD) && defined(__clang__) |
454 | return to_vec<sizeof...(Ix),T>(__builtin_shufflevector(to_vext(x), to_vext(x), Ix...)); |
455 | #else |
456 | return { x[Ix]... }; |
457 | #endif |
458 | } |
459 | |
460 | // fma() delivers a fused mul-add, even if that's really expensive. Call it when you know it's not. |
461 | static inline Vec<1,float> fma(const Vec<1,float>& x, |
462 | const Vec<1,float>& y, |
463 | const Vec<1,float>& z) { |
464 | return std::fma(x.val, y.val, z.val); |
465 | } |
466 | template <int N> |
467 | static inline Vec<N,float> fma(const Vec<N,float>& x, |
468 | const Vec<N,float>& y, |
469 | const Vec<N,float>& z) { |
470 | return join(fma(x.lo, y.lo, z.lo), |
471 | fma(x.hi, y.hi, z.hi)); |
472 | } |
473 | |
474 | template <int N> |
475 | static inline Vec<N,float> fract(const Vec<N,float>& x) { |
476 | return x - floor(x); |
477 | } |
478 | |
479 | // The default cases for to_half/from_half are borrowed from skcms, |
480 | // and assume inputs are finite and treat/flush denorm half floats as/to zero. |
481 | // Key constants to watch for: |
482 | // - a float is 32-bit, 1-8-23 sign-exponent-mantissa, with 127 exponent bias; |
483 | // - a half is 16-bit, 1-5-10 sign-exponent-mantissa, with 15 exponent bias. |
484 | template <int N> |
485 | static inline Vec<N,uint16_t> to_half_finite_ftz(const Vec<N,float>& x) { |
486 | Vec<N,uint32_t> sem = bit_pun<Vec<N,uint32_t>>(x), |
487 | s = sem & 0x8000'0000, |
488 | em = sem ^ s, |
489 | is_denorm = em < 0x3880'0000; |
490 | return cast<uint16_t>(if_then_else(is_denorm, Vec<N,uint32_t>(0) |
491 | , (s>>16) + (em>>13) - ((127-15)<<10))); |
492 | } |
493 | template <int N> |
494 | static inline Vec<N,float> from_half_finite_ftz(const Vec<N,uint16_t>& x) { |
495 | Vec<N,uint32_t> wide = cast<uint32_t>(x), |
496 | s = wide & 0x8000, |
497 | em = wide ^ s; |
498 | auto is_denorm = bit_pun<Vec<N,int32_t>>(em < 0x0400); |
499 | return if_then_else(is_denorm, Vec<N,float>(0) |
500 | , bit_pun<Vec<N,float>>( (s<<16) + (em<<13) + ((127-15)<<23) )); |
501 | } |
502 | |
503 | // Like if_then_else(), these N=1 base cases won't actually be used unless explicitly called. |
504 | static inline Vec<1,uint16_t> to_half(const Vec<1,float>& x) { return to_half_finite_ftz(x); } |
505 | static inline Vec<1,float> from_half(const Vec<1,uint16_t>& x) { return from_half_finite_ftz(x); } |
506 | |
507 | template <int N> |
508 | static inline Vec<N,uint16_t> to_half(const Vec<N,float>& x) { |
509 | #if defined(__F16C__) |
510 | if /*constexpr*/ (N == 8) { |
511 | return unchecked_bit_pun<Vec<N,uint16_t>>(_mm256_cvtps_ph(unchecked_bit_pun<__m256>(x), |
512 | _MM_FROUND_CUR_DIRECTION)); |
513 | } |
514 | #endif |
515 | #if defined(__aarch64__) |
516 | if /*constexpr*/ (N == 4) { |
517 | return unchecked_bit_pun<Vec<N,uint16_t>>(vcvt_f16_f32(unchecked_bit_pun<float32x4_t>(x))); |
518 | |
519 | } |
520 | #endif |
521 | if /*constexpr*/ (N > 4) { |
522 | return join(to_half(x.lo), |
523 | to_half(x.hi)); |
524 | } |
525 | return to_half_finite_ftz(x); |
526 | } |
527 | |
528 | template <int N> |
529 | static inline Vec<N,float> from_half(const Vec<N,uint16_t>& x) { |
530 | #if defined(__F16C__) |
531 | if /*constexpr*/ (N == 8) { |
532 | return unchecked_bit_pun<Vec<N,float>>(_mm256_cvtph_ps(unchecked_bit_pun<__m128i>(x))); |
533 | } |
534 | #endif |
535 | #if defined(__aarch64__) |
536 | if /*constexpr*/ (N == 4) { |
537 | return unchecked_bit_pun<Vec<N,float>>(vcvt_f32_f16(unchecked_bit_pun<float16x4_t>(x))); |
538 | } |
539 | #endif |
540 | if /*constexpr*/ (N > 4) { |
541 | return join(from_half(x.lo), |
542 | from_half(x.hi)); |
543 | } |
544 | return from_half_finite_ftz(x); |
545 | } |
546 | |
547 | |
548 | // div255(x) = (x + 127) / 255 is a bit-exact rounding divide-by-255, packing down to 8-bit. |
549 | template <int N> |
550 | static inline Vec<N,uint8_t> div255(const Vec<N,uint16_t>& x) { |
551 | return cast<uint8_t>( (x+127)/255 ); |
552 | } |
553 | |
554 | // approx_scale(x,y) approximates div255(cast<uint16_t>(x)*cast<uint16_t>(y)) within a bit, |
555 | // and is always perfect when x or y is 0 or 255. |
556 | template <int N> |
557 | static inline Vec<N,uint8_t> approx_scale(const Vec<N,uint8_t>& x, const Vec<N,uint8_t>& y) { |
558 | // All of (x*y+x)/256, (x*y+y)/256, and (x*y+255)/256 meet the criteria above. |
559 | // We happen to have historically picked (x*y+x)/256. |
560 | auto X = cast<uint16_t>(x), |
561 | Y = cast<uint16_t>(y); |
562 | return cast<uint8_t>( (X*Y+X)/256 ); |
563 | } |
564 | |
565 | #if !defined(SKNX_NO_SIMD) && defined(__ARM_NEON) |
566 | // With NEON we can do eight u8*u8 -> u16 in one instruction, vmull_u8 (read, mul-long). |
567 | static inline Vec<8,uint16_t> mull(const Vec<8,uint8_t>& x, |
568 | const Vec<8,uint8_t>& y) { |
569 | return to_vec<8,uint16_t>(vmull_u8(to_vext(x), |
570 | to_vext(y))); |
571 | } |
572 | |
573 | template <int N> |
574 | static inline typename std::enable_if<(N < 8), |
575 | Vec<N,uint16_t>>::type mull(const Vec<N,uint8_t>& x, |
576 | const Vec<N,uint8_t>& y) { |
577 | // N < 8 --> double up data until N == 8, returning the part we need. |
578 | return mull(join(x,x), |
579 | join(y,y)).lo; |
580 | } |
581 | |
582 | template <int N> |
583 | static inline typename std::enable_if<(N > 8), |
584 | Vec<N,uint16_t>>::type mull(const Vec<N,uint8_t>& x, |
585 | const Vec<N,uint8_t>& y) { |
586 | // N > 8 --> usual join(lo,hi) strategy to recurse down to N == 8. |
587 | return join(mull(x.lo, y.lo), |
588 | mull(x.hi, y.hi)); |
589 | } |
590 | #else |
591 | // Nothing special when we don't have NEON... just cast up to 16-bit and multiply. |
592 | template <int N> |
593 | static inline Vec<N,uint16_t> mull(const Vec<N,uint8_t>& x, |
594 | const Vec<N,uint8_t>& y) { |
595 | return cast<uint16_t>(x) |
596 | * cast<uint16_t>(y); |
597 | } |
598 | #endif |
599 | |
600 | #if !defined(SKNX_NO_SIMD) |
601 | |
602 | // Platform-specific specializations and overloads can now drop in here. |
603 | |
604 | #if defined(__AVX__) |
605 | static inline Vec<8,float> sqrt(const Vec<8,float>& x) { |
606 | return bit_pun<Vec<8,float>>(_mm256_sqrt_ps(bit_pun<__m256>(x))); |
607 | } |
608 | static inline Vec<8,float> rsqrt(const Vec<8,float>& x) { |
609 | return bit_pun<Vec<8,float>>(_mm256_rsqrt_ps(bit_pun<__m256>(x))); |
610 | } |
611 | static inline Vec<8,float> rcp(const Vec<8,float>& x) { |
612 | return bit_pun<Vec<8,float>>(_mm256_rcp_ps(bit_pun<__m256>(x))); |
613 | } |
614 | static inline Vec<8,int> lrint(const Vec<8,float>& x) { |
615 | return bit_pun<Vec<8,int>>(_mm256_cvtps_epi32(bit_pun<__m256>(x))); |
616 | } |
617 | #endif |
618 | |
619 | #if defined(__SSE__) |
620 | static inline Vec<4,float> sqrt(const Vec<4,float>& x) { |
621 | return bit_pun<Vec<4,float>>(_mm_sqrt_ps(bit_pun<__m128>(x))); |
622 | } |
623 | static inline Vec<4,float> rsqrt(const Vec<4,float>& x) { |
624 | return bit_pun<Vec<4,float>>(_mm_rsqrt_ps(bit_pun<__m128>(x))); |
625 | } |
626 | static inline Vec<4,float> rcp(const Vec<4,float>& x) { |
627 | return bit_pun<Vec<4,float>>(_mm_rcp_ps(bit_pun<__m128>(x))); |
628 | } |
629 | static inline Vec<4,int> lrint(const Vec<4,float>& x) { |
630 | return bit_pun<Vec<4,int>>(_mm_cvtps_epi32(bit_pun<__m128>(x))); |
631 | } |
632 | |
633 | static inline Vec<2,float> sqrt(const Vec<2,float>& x) { |
634 | return shuffle<0,1>( sqrt(shuffle<0,1,0,1>(x))); |
635 | } |
636 | static inline Vec<2,float> rsqrt(const Vec<2,float>& x) { |
637 | return shuffle<0,1>(rsqrt(shuffle<0,1,0,1>(x))); |
638 | } |
639 | static inline Vec<2,float> rcp(const Vec<2,float>& x) { |
640 | return shuffle<0,1>( rcp(shuffle<0,1,0,1>(x))); |
641 | } |
642 | static inline Vec<2,int> lrint(const Vec<2,float>& x) { |
643 | return shuffle<0,1>(lrint(shuffle<0,1,0,1>(x))); |
644 | } |
645 | #endif |
646 | |
647 | #if defined(__AVX2__) |
648 | static inline Vec<4,float> fma(const Vec<4,float>& x, |
649 | const Vec<4,float>& y, |
650 | const Vec<4,float>& z) { |
651 | return bit_pun<Vec<4,float>>(_mm_fmadd_ps(bit_pun<__m128>(x), |
652 | bit_pun<__m128>(y), |
653 | bit_pun<__m128>(z))); |
654 | } |
655 | |
656 | static inline Vec<8,float> fma(const Vec<8,float>& x, |
657 | const Vec<8,float>& y, |
658 | const Vec<8,float>& z) { |
659 | return bit_pun<Vec<8,float>>(_mm256_fmadd_ps(bit_pun<__m256>(x), |
660 | bit_pun<__m256>(y), |
661 | bit_pun<__m256>(z))); |
662 | } |
663 | #elif defined(__aarch64__) |
664 | static inline Vec<4,float> fma(const Vec<4,float>& x, |
665 | const Vec<4,float>& y, |
666 | const Vec<4,float>& z) { |
667 | // These instructions tend to work like z += xy, so the order here is z,x,y. |
668 | return bit_pun<Vec<4,float>>(vfmaq_f32(bit_pun<float32x4_t>(z), |
669 | bit_pun<float32x4_t>(x), |
670 | bit_pun<float32x4_t>(y))); |
671 | } |
672 | #endif |
673 | |
674 | // WASM SIMD compatible operations which are not automatically compiled to SIMD commands |
675 | // by emscripten: |
676 | #if defined __wasm_simd128__ |
677 | static inline Vec<4,float> min(const Vec<4,float>& x, const Vec<4,float>& y) { |
678 | return to_vec<4,float>(wasm_f32x4_min(to_vext(x), to_vext(y))); |
679 | } |
680 | static inline Vec<4,float> max(const Vec<4,float>& x, const Vec<4,float>& y) { |
681 | return to_vec<4,float>(wasm_f32x4_max(to_vext(x), to_vext(y))); |
682 | } |
683 | static inline Vec<4,float> sqrt(const Vec<4,float>& x) { |
684 | return to_vec<4,float>(wasm_f32x4_sqrt(to_vext(x))); |
685 | } |
686 | static inline Vec<4,float> abs(const Vec<4,float>& x) { |
687 | return to_vec<4,float>(wasm_f32x4_abs(to_vext(x))); |
688 | } |
689 | static inline Vec<4,float> rcp(const Vec<4,float>& x) { |
690 | return 1.0f / x; |
691 | } |
692 | static inline Vec<4,float> rsqrt(const Vec<4,float>& x) { |
693 | return 1.0f / sqrt(x); |
694 | } |
695 | |
696 | static inline Vec<2,double> min(const Vec<2,double>& x, const Vec<2,double>& y) { |
697 | return to_vec<2,double>(wasm_f64x2_min(to_vext(x), to_vext(y))); |
698 | } |
699 | static inline Vec<2,double> max(const Vec<2,double>& x, const Vec<2,double>& y) { |
700 | return to_vec<2,double>(wasm_f64x2_max(to_vext(x), to_vext(y))); |
701 | } |
702 | static inline Vec<2,double> sqrt(const Vec<2,double>& x) { |
703 | return to_vec<2,double>(wasm_f64x2_sqrt(to_vext(x))); |
704 | } |
705 | static inline Vec<2,double> abs(const Vec<2,double>& x) { |
706 | return to_vec<2,double>(wasm_f64x2_abs(to_vext(x))); |
707 | } |
708 | static inline Vec<2,double> rcp(const Vec<2,double>& x) { |
709 | return 1.0f / x; |
710 | } |
711 | static inline Vec<2,double> rsqrt(const Vec<2,double>& x) { |
712 | return 1.0f / sqrt(x); |
713 | } |
714 | |
715 | static inline bool any(const Vec<4,int32_t>& x) { |
716 | return wasm_i32x4_any_true(to_vext(x)); |
717 | } |
718 | static inline bool all(const Vec<4,int32_t>& x) { |
719 | return wasm_i32x4_all_true(to_vext(x)); |
720 | } |
721 | static inline Vec<4,int32_t> min(const Vec<4,int32_t>& x, const Vec<4,int32_t>& y) { |
722 | return to_vec<4,int32_t>(wasm_i32x4_min(to_vext(x), to_vext(y))); |
723 | } |
724 | static inline Vec<4,int32_t> max(const Vec<4,int32_t>& x, const Vec<4,int32_t>& y) { |
725 | return to_vec<4,int32_t>(wasm_i32x4_max(to_vext(x), to_vext(y))); |
726 | } |
727 | static inline Vec<4,int32_t> abs(const Vec<4,int32_t>& x) { |
728 | return to_vec<4,int32_t>(wasm_i32x4_abs(to_vext(x))); |
729 | } |
730 | |
731 | static inline bool any(const Vec<4,uint32_t>& x) { |
732 | return wasm_i32x4_any_true(to_vext(x)); |
733 | } |
734 | static inline bool all(const Vec<4,uint32_t>& x) { |
735 | return wasm_i32x4_all_true(to_vext(x)); |
736 | } |
737 | static inline Vec<4,uint32_t> min(const Vec<4,uint32_t>& x, |
738 | const Vec<4,uint32_t>& y) { |
739 | return to_vec<4,uint32_t>(wasm_u32x4_min(to_vext(x), to_vext(y))); |
740 | } |
741 | static inline Vec<4,uint32_t> max(const Vec<4,uint32_t>& x, |
742 | const Vec<4,uint32_t>& y) { |
743 | return to_vec<4,uint32_t>(wasm_u32x4_max(to_vext(x), to_vext(y))); |
744 | } |
745 | #endif |
746 | |
747 | #endif // !defined(SKNX_NO_SIMD) |
748 | |
749 | } // namespace skvx |
750 | |
751 | #undef SINTU |
752 | #undef SINT |
753 | #undef SIT |
754 | #undef SKVX_ALIGNMENT |
755 | |
756 | #endif//SKVX_DEFINED |
757 | |