| 1 | /* |
| 2 | * Copyright 2018 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkCubicMap.h" |
| 9 | #include "include/private/SkNx.h" |
| 10 | #include "src/core/SkOpts.h" |
| 11 | |
| 12 | //#define CUBICMAP_TRACK_MAX_ERROR |
| 13 | |
| 14 | #ifdef CUBICMAP_TRACK_MAX_ERROR |
| 15 | #include "src/pathops/SkPathOpsCubic.h" |
| 16 | #endif |
| 17 | |
| 18 | static inline bool nearly_zero(SkScalar x) { |
| 19 | SkASSERT(x >= 0); |
| 20 | return x <= 0.0000000001f; |
| 21 | } |
| 22 | |
| 23 | #ifdef CUBICMAP_TRACK_MAX_ERROR |
| 24 | static int max_iters; |
| 25 | #endif |
| 26 | |
| 27 | #ifdef CUBICMAP_TRACK_MAX_ERROR |
| 28 | static float compute_slow(float A, float B, float C, float x) { |
| 29 | double roots[3]; |
| 30 | SkDEBUGCODE(int count =) SkDCubic::RootsValidT(A, B, C, -x, roots); |
| 31 | SkASSERT(count == 1); |
| 32 | return (float)roots[0]; |
| 33 | } |
| 34 | |
| 35 | static float max_err; |
| 36 | #endif |
| 37 | |
| 38 | static float compute_t_from_x(float A, float B, float C, float x) { |
| 39 | #ifdef CUBICMAP_TRACK_MAX_ERROR |
| 40 | float answer = compute_slow(A, B, C, x); |
| 41 | #endif |
| 42 | float answer2 = SkOpts::cubic_solver(A, B, C, -x); |
| 43 | |
| 44 | #ifdef CUBICMAP_TRACK_MAX_ERROR |
| 45 | float err = sk_float_abs(answer - answer2); |
| 46 | if (err > max_err) { |
| 47 | max_err = err; |
| 48 | SkDebugf("max error %g\n" , max_err); |
| 49 | } |
| 50 | #endif |
| 51 | return answer2; |
| 52 | } |
| 53 | |
| 54 | float SkCubicMap::computeYFromX(float x) const { |
| 55 | x = SkTPin(x, 0.0f, 1.0f); |
| 56 | |
| 57 | if (nearly_zero(x) || nearly_zero(1 - x)) { |
| 58 | return x; |
| 59 | } |
| 60 | if (fType == kLine_Type) { |
| 61 | return x; |
| 62 | } |
| 63 | float t; |
| 64 | if (fType == kCubeRoot_Type) { |
| 65 | t = sk_float_pow(x / fCoeff[0].fX, 1.0f / 3); |
| 66 | } else { |
| 67 | t = compute_t_from_x(fCoeff[0].fX, fCoeff[1].fX, fCoeff[2].fX, x); |
| 68 | } |
| 69 | float a = fCoeff[0].fY; |
| 70 | float b = fCoeff[1].fY; |
| 71 | float c = fCoeff[2].fY; |
| 72 | float y = ((a * t + b) * t + c) * t; |
| 73 | |
| 74 | return y; |
| 75 | } |
| 76 | |
| 77 | static inline bool coeff_nearly_zero(float delta) { |
| 78 | return sk_float_abs(delta) <= 0.0000001f; |
| 79 | } |
| 80 | |
| 81 | SkCubicMap::SkCubicMap(SkPoint p1, SkPoint p2) { |
| 82 | // Clamp X values only (we allow Ys outside [0..1]). |
| 83 | p1.fX = std::min(std::max(p1.fX, 0.0f), 1.0f); |
| 84 | p2.fX = std::min(std::max(p2.fX, 0.0f), 1.0f); |
| 85 | |
| 86 | Sk2s s1 = Sk2s::Load(&p1) * 3; |
| 87 | Sk2s s2 = Sk2s::Load(&p2) * 3; |
| 88 | |
| 89 | (Sk2s(1) + s1 - s2).store(&fCoeff[0]); |
| 90 | (s2 - s1 - s1).store(&fCoeff[1]); |
| 91 | s1.store(&fCoeff[2]); |
| 92 | |
| 93 | fType = kSolver_Type; |
| 94 | if (SkScalarNearlyEqual(p1.fX, p1.fY) && SkScalarNearlyEqual(p2.fX, p2.fY)) { |
| 95 | fType = kLine_Type; |
| 96 | } else if (coeff_nearly_zero(fCoeff[1].fX) && coeff_nearly_zero(fCoeff[2].fX)) { |
| 97 | fType = kCubeRoot_Type; |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | SkPoint SkCubicMap::computeFromT(float t) const { |
| 102 | Sk2s a = Sk2s::Load(&fCoeff[0]); |
| 103 | Sk2s b = Sk2s::Load(&fCoeff[1]); |
| 104 | Sk2s c = Sk2s::Load(&fCoeff[2]); |
| 105 | |
| 106 | SkPoint result; |
| 107 | (((a * t + b) * t + c) * t).store(&result); |
| 108 | return result; |
| 109 | } |
| 110 | |