| 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/core/SkRTree.h" |
| 9 | |
| 10 | SkRTree::SkRTree() : fCount(0) {} |
| 11 | |
| 12 | void SkRTree::insert(const SkRect boundsArray[], int N) { |
| 13 | SkASSERT(0 == fCount); |
| 14 | |
| 15 | std::vector<Branch> branches; |
| 16 | branches.reserve(N); |
| 17 | |
| 18 | for (int i = 0; i < N; i++) { |
| 19 | const SkRect& bounds = boundsArray[i]; |
| 20 | if (bounds.isEmpty()) { |
| 21 | continue; |
| 22 | } |
| 23 | |
| 24 | Branch b; |
| 25 | b.fBounds = bounds; |
| 26 | b.fOpIndex = i; |
| 27 | branches.push_back(b); |
| 28 | } |
| 29 | |
| 30 | fCount = (int)branches.size(); |
| 31 | if (fCount) { |
| 32 | if (1 == fCount) { |
| 33 | fNodes.reserve(1); |
| 34 | Node* n = this->allocateNodeAtLevel(0); |
| 35 | n->fNumChildren = 1; |
| 36 | n->fChildren[0] = branches[0]; |
| 37 | fRoot.fSubtree = n; |
| 38 | fRoot.fBounds = branches[0].fBounds; |
| 39 | } else { |
| 40 | fNodes.reserve(CountNodes(fCount)); |
| 41 | fRoot = this->bulkLoad(&branches); |
| 42 | } |
| 43 | } |
| 44 | } |
| 45 | |
| 46 | SkRTree::Node* SkRTree::allocateNodeAtLevel(uint16_t level) { |
| 47 | SkDEBUGCODE(Node* p = fNodes.data()); |
| 48 | fNodes.push_back(Node{}); |
| 49 | Node& out = fNodes.back(); |
| 50 | SkASSERT(fNodes.data() == p); // If this fails, we didn't reserve() enough. |
| 51 | out.fNumChildren = 0; |
| 52 | out.fLevel = level; |
| 53 | return &out; |
| 54 | } |
| 55 | |
| 56 | // This function parallels bulkLoad, but just counts how many nodes bulkLoad would allocate. |
| 57 | int SkRTree::CountNodes(int branches) { |
| 58 | if (branches == 1) { |
| 59 | return 1; |
| 60 | } |
| 61 | int numBranches = branches / kMaxChildren; |
| 62 | int remainder = branches % kMaxChildren; |
| 63 | if (remainder > 0) { |
| 64 | numBranches++; |
| 65 | if (remainder >= kMinChildren) { |
| 66 | remainder = 0; |
| 67 | } else { |
| 68 | remainder = kMinChildren - remainder; |
| 69 | } |
| 70 | } |
| 71 | int currentBranch = 0; |
| 72 | int nodes = 0; |
| 73 | while (currentBranch < branches) { |
| 74 | int incrementBy = kMaxChildren; |
| 75 | if (remainder != 0) { |
| 76 | if (remainder <= kMaxChildren - kMinChildren) { |
| 77 | incrementBy -= remainder; |
| 78 | remainder = 0; |
| 79 | } else { |
| 80 | incrementBy = kMinChildren; |
| 81 | remainder -= kMaxChildren - kMinChildren; |
| 82 | } |
| 83 | } |
| 84 | nodes++; |
| 85 | currentBranch++; |
| 86 | for (int k = 1; k < incrementBy && currentBranch < branches; ++k) { |
| 87 | currentBranch++; |
| 88 | } |
| 89 | } |
| 90 | return nodes + CountNodes(nodes); |
| 91 | } |
| 92 | |
| 93 | SkRTree::Branch SkRTree::bulkLoad(std::vector<Branch>* branches, int level) { |
| 94 | if (branches->size() == 1) { // Only one branch. It will be the root. |
| 95 | return (*branches)[0]; |
| 96 | } |
| 97 | |
| 98 | // We might sort our branches here, but we expect Blink gives us a reasonable x,y order. |
| 99 | // Skipping a call to sort (in Y) here resulted in a 17% win for recording with negligible |
| 100 | // difference in playback speed. |
| 101 | int numBranches = (int)branches->size() / kMaxChildren; |
| 102 | int remainder = (int)branches->size() % kMaxChildren; |
| 103 | int newBranches = 0; |
| 104 | |
| 105 | if (remainder > 0) { |
| 106 | ++numBranches; |
| 107 | // If the remainder isn't enough to fill a node, we'll add fewer nodes to other branches. |
| 108 | if (remainder >= kMinChildren) { |
| 109 | remainder = 0; |
| 110 | } else { |
| 111 | remainder = kMinChildren - remainder; |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | int currentBranch = 0; |
| 116 | while (currentBranch < (int)branches->size()) { |
| 117 | int incrementBy = kMaxChildren; |
| 118 | if (remainder != 0) { |
| 119 | // if need be, omit some nodes to make up for remainder |
| 120 | if (remainder <= kMaxChildren - kMinChildren) { |
| 121 | incrementBy -= remainder; |
| 122 | remainder = 0; |
| 123 | } else { |
| 124 | incrementBy = kMinChildren; |
| 125 | remainder -= kMaxChildren - kMinChildren; |
| 126 | } |
| 127 | } |
| 128 | Node* n = allocateNodeAtLevel(level); |
| 129 | n->fNumChildren = 1; |
| 130 | n->fChildren[0] = (*branches)[currentBranch]; |
| 131 | Branch b; |
| 132 | b.fBounds = (*branches)[currentBranch].fBounds; |
| 133 | b.fSubtree = n; |
| 134 | ++currentBranch; |
| 135 | for (int k = 1; k < incrementBy && currentBranch < (int)branches->size(); ++k) { |
| 136 | b.fBounds.join((*branches)[currentBranch].fBounds); |
| 137 | n->fChildren[k] = (*branches)[currentBranch]; |
| 138 | ++n->fNumChildren; |
| 139 | ++currentBranch; |
| 140 | } |
| 141 | (*branches)[newBranches] = b; |
| 142 | ++newBranches; |
| 143 | } |
| 144 | branches->resize(newBranches); |
| 145 | return this->bulkLoad(branches, level + 1); |
| 146 | } |
| 147 | |
| 148 | void SkRTree::search(const SkRect& query, std::vector<int>* results) const { |
| 149 | if (fCount > 0 && SkRect::Intersects(fRoot.fBounds, query)) { |
| 150 | this->search(fRoot.fSubtree, query, results); |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | void SkRTree::search(Node* node, const SkRect& query, std::vector<int>* results) const { |
| 155 | for (int i = 0; i < node->fNumChildren; ++i) { |
| 156 | if (SkRect::Intersects(node->fChildren[i].fBounds, query)) { |
| 157 | if (0 == node->fLevel) { |
| 158 | results->push_back(node->fChildren[i].fOpIndex); |
| 159 | } else { |
| 160 | this->search(node->fChildren[i].fSubtree, query, results); |
| 161 | } |
| 162 | } |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | size_t SkRTree::bytesUsed() const { |
| 167 | size_t byteCount = sizeof(SkRTree); |
| 168 | |
| 169 | byteCount += fNodes.capacity() * sizeof(Node); |
| 170 | |
| 171 | return byteCount; |
| 172 | } |
| 173 | |