| 1 | /* |
| 2 | * Copyright 2015 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkRWBuffer.h" |
| 9 | |
| 10 | #include "include/core/SkStream.h" |
| 11 | #include "include/private/SkMalloc.h" |
| 12 | #include "include/private/SkTo.h" |
| 13 | |
| 14 | #include <algorithm> |
| 15 | #include <atomic> |
| 16 | #include <new> |
| 17 | |
| 18 | // Force small chunks to be a page's worth |
| 19 | static const size_t kMinAllocSize = 4096; |
| 20 | |
| 21 | struct SkBufferBlock { |
| 22 | SkBufferBlock* fNext; // updated by the writer |
| 23 | size_t fUsed; // updated by the writer |
| 24 | const size_t fCapacity; |
| 25 | |
| 26 | SkBufferBlock(size_t capacity) : fNext(nullptr), fUsed(0), fCapacity(capacity) {} |
| 27 | |
| 28 | const void* startData() const { return this + 1; } |
| 29 | |
| 30 | size_t avail() const { return fCapacity - fUsed; } |
| 31 | void* availData() { return (char*)this->startData() + fUsed; } |
| 32 | |
| 33 | static SkBufferBlock* Alloc(size_t length) { |
| 34 | size_t capacity = LengthToCapacity(length); |
| 35 | void* buffer = sk_malloc_throw(sizeof(SkBufferBlock) + capacity); |
| 36 | return new (buffer) SkBufferBlock(capacity); |
| 37 | } |
| 38 | |
| 39 | // Return number of bytes actually appended. Important that we always completely this block |
| 40 | // before spilling into the next, since the reader uses fCapacity to know how many it can read. |
| 41 | // |
| 42 | size_t append(const void* src, size_t length) { |
| 43 | this->validate(); |
| 44 | size_t amount = std::min(this->avail(), length); |
| 45 | memcpy(this->availData(), src, amount); |
| 46 | fUsed += amount; |
| 47 | this->validate(); |
| 48 | return amount; |
| 49 | } |
| 50 | |
| 51 | // Do not call in the reader thread, since the writer may be updating fUsed. |
| 52 | // (The assertion is still true, but TSAN still may complain about its raciness.) |
| 53 | void validate() const { |
| 54 | #ifdef SK_DEBUG |
| 55 | SkASSERT(fCapacity > 0); |
| 56 | SkASSERT(fUsed <= fCapacity); |
| 57 | #endif |
| 58 | } |
| 59 | |
| 60 | private: |
| 61 | static size_t LengthToCapacity(size_t length) { |
| 62 | const size_t minSize = kMinAllocSize - sizeof(SkBufferBlock); |
| 63 | return std::max(length, minSize); |
| 64 | } |
| 65 | }; |
| 66 | |
| 67 | struct SkBufferHead { |
| 68 | mutable std::atomic<int32_t> fRefCnt; |
| 69 | SkBufferBlock fBlock; |
| 70 | |
| 71 | SkBufferHead(size_t capacity) : fRefCnt(1), fBlock(capacity) {} |
| 72 | |
| 73 | static size_t LengthToCapacity(size_t length) { |
| 74 | const size_t minSize = kMinAllocSize - sizeof(SkBufferHead); |
| 75 | return std::max(length, minSize); |
| 76 | } |
| 77 | |
| 78 | static SkBufferHead* Alloc(size_t length) { |
| 79 | size_t capacity = LengthToCapacity(length); |
| 80 | size_t size = sizeof(SkBufferHead) + capacity; |
| 81 | void* buffer = sk_malloc_throw(size); |
| 82 | return new (buffer) SkBufferHead(capacity); |
| 83 | } |
| 84 | |
| 85 | void ref() const { |
| 86 | SkAssertResult(fRefCnt.fetch_add(+1, std::memory_order_relaxed)); |
| 87 | } |
| 88 | |
| 89 | void unref() const { |
| 90 | // A release here acts in place of all releases we "should" have been doing in ref(). |
| 91 | int32_t oldRefCnt = fRefCnt.fetch_add(-1, std::memory_order_acq_rel); |
| 92 | SkASSERT(oldRefCnt); |
| 93 | if (1 == oldRefCnt) { |
| 94 | // Like unique(), the acquire is only needed on success. |
| 95 | SkBufferBlock* block = fBlock.fNext; |
| 96 | sk_free((void*)this); |
| 97 | while (block) { |
| 98 | SkBufferBlock* next = block->fNext; |
| 99 | sk_free(block); |
| 100 | block = next; |
| 101 | } |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | void validate(size_t minUsed, const SkBufferBlock* tail = nullptr) const { |
| 106 | #ifdef SK_DEBUG |
| 107 | SkASSERT(fRefCnt.load(std::memory_order_relaxed) > 0); |
| 108 | size_t totalUsed = 0; |
| 109 | const SkBufferBlock* block = &fBlock; |
| 110 | const SkBufferBlock* lastBlock = block; |
| 111 | while (block) { |
| 112 | block->validate(); |
| 113 | totalUsed += block->fUsed; |
| 114 | lastBlock = block; |
| 115 | block = block->fNext; |
| 116 | } |
| 117 | SkASSERT(minUsed <= totalUsed); |
| 118 | if (tail) { |
| 119 | SkASSERT(tail == lastBlock); |
| 120 | } |
| 121 | #endif |
| 122 | } |
| 123 | }; |
| 124 | |
| 125 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 126 | // The reader can only access block.fCapacity (which never changes), and cannot access |
| 127 | // block.fUsed, which may be updated by the writer. |
| 128 | // |
| 129 | SkROBuffer::SkROBuffer(const SkBufferHead* head, size_t available, const SkBufferBlock* tail) |
| 130 | : fHead(head), fAvailable(available), fTail(tail) |
| 131 | { |
| 132 | if (head) { |
| 133 | fHead->ref(); |
| 134 | SkASSERT(available > 0); |
| 135 | head->validate(available, tail); |
| 136 | } else { |
| 137 | SkASSERT(0 == available); |
| 138 | SkASSERT(!tail); |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | SkROBuffer::~SkROBuffer() { |
| 143 | if (fHead) { |
| 144 | fHead->unref(); |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | SkROBuffer::Iter::Iter(const SkROBuffer* buffer) { |
| 149 | this->reset(buffer); |
| 150 | } |
| 151 | |
| 152 | SkROBuffer::Iter::Iter(const sk_sp<SkROBuffer>& buffer) { |
| 153 | this->reset(buffer.get()); |
| 154 | } |
| 155 | |
| 156 | void SkROBuffer::Iter::reset(const SkROBuffer* buffer) { |
| 157 | fBuffer = buffer; |
| 158 | if (buffer && buffer->fHead) { |
| 159 | fBlock = &buffer->fHead->fBlock; |
| 160 | fRemaining = buffer->fAvailable; |
| 161 | } else { |
| 162 | fBlock = nullptr; |
| 163 | fRemaining = 0; |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | const void* SkROBuffer::Iter::data() const { |
| 168 | return fRemaining ? fBlock->startData() : nullptr; |
| 169 | } |
| 170 | |
| 171 | size_t SkROBuffer::Iter::size() const { |
| 172 | if (!fBlock) { |
| 173 | return 0; |
| 174 | } |
| 175 | return std::min(fBlock->fCapacity, fRemaining); |
| 176 | } |
| 177 | |
| 178 | bool SkROBuffer::Iter::next() { |
| 179 | if (fRemaining) { |
| 180 | fRemaining -= this->size(); |
| 181 | if (fBuffer->fTail == fBlock) { |
| 182 | // There are more blocks, but fBuffer does not know about them. |
| 183 | SkASSERT(0 == fRemaining); |
| 184 | fBlock = nullptr; |
| 185 | } else { |
| 186 | fBlock = fBlock->fNext; |
| 187 | } |
| 188 | } |
| 189 | return fRemaining != 0; |
| 190 | } |
| 191 | |
| 192 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 193 | |
| 194 | SkRWBuffer::SkRWBuffer(size_t initialCapacity) : fHead(nullptr), fTail(nullptr), fTotalUsed(0) { |
| 195 | if (initialCapacity) { |
| 196 | fHead = SkBufferHead::Alloc(initialCapacity); |
| 197 | fTail = &fHead->fBlock; |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | SkRWBuffer::~SkRWBuffer() { |
| 202 | this->validate(); |
| 203 | if (fHead) { |
| 204 | fHead->unref(); |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | // It is important that we always completely fill the current block before spilling over to the |
| 209 | // next, since our reader will be using fCapacity (min'd against its total available) to know how |
| 210 | // many bytes to read from a given block. |
| 211 | // |
| 212 | void SkRWBuffer::append(const void* src, size_t length, size_t reserve) { |
| 213 | this->validate(); |
| 214 | if (0 == length) { |
| 215 | return; |
| 216 | } |
| 217 | |
| 218 | fTotalUsed += length; |
| 219 | |
| 220 | if (nullptr == fHead) { |
| 221 | fHead = SkBufferHead::Alloc(length + reserve); |
| 222 | fTail = &fHead->fBlock; |
| 223 | } |
| 224 | |
| 225 | size_t written = fTail->append(src, length); |
| 226 | SkASSERT(written <= length); |
| 227 | src = (const char*)src + written; |
| 228 | length -= written; |
| 229 | |
| 230 | if (length) { |
| 231 | SkBufferBlock* block = SkBufferBlock::Alloc(length + reserve); |
| 232 | fTail->fNext = block; |
| 233 | fTail = block; |
| 234 | written = fTail->append(src, length); |
| 235 | SkASSERT(written == length); |
| 236 | } |
| 237 | this->validate(); |
| 238 | } |
| 239 | |
| 240 | #ifdef SK_DEBUG |
| 241 | void SkRWBuffer::validate() const { |
| 242 | if (fHead) { |
| 243 | fHead->validate(fTotalUsed, fTail); |
| 244 | } else { |
| 245 | SkASSERT(nullptr == fTail); |
| 246 | SkASSERT(0 == fTotalUsed); |
| 247 | } |
| 248 | } |
| 249 | #endif |
| 250 | |
| 251 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 252 | |
| 253 | class SkROBufferStreamAsset : public SkStreamAsset { |
| 254 | void validate() const { |
| 255 | #ifdef SK_DEBUG |
| 256 | SkASSERT(fGlobalOffset <= fBuffer->size()); |
| 257 | SkASSERT(fLocalOffset <= fIter.size()); |
| 258 | SkASSERT(fLocalOffset <= fGlobalOffset); |
| 259 | #endif |
| 260 | } |
| 261 | |
| 262 | #ifdef SK_DEBUG |
| 263 | class AutoValidate { |
| 264 | SkROBufferStreamAsset* fStream; |
| 265 | public: |
| 266 | AutoValidate(SkROBufferStreamAsset* stream) : fStream(stream) { stream->validate(); } |
| 267 | ~AutoValidate() { fStream->validate(); } |
| 268 | }; |
| 269 | #define AUTO_VALIDATE AutoValidate av(this); |
| 270 | #else |
| 271 | #define AUTO_VALIDATE |
| 272 | #endif |
| 273 | |
| 274 | public: |
| 275 | SkROBufferStreamAsset(sk_sp<SkROBuffer> buffer) : fBuffer(std::move(buffer)), fIter(fBuffer) { |
| 276 | fGlobalOffset = fLocalOffset = 0; |
| 277 | } |
| 278 | |
| 279 | size_t getLength() const override { return fBuffer->size(); } |
| 280 | |
| 281 | bool rewind() override { |
| 282 | AUTO_VALIDATE |
| 283 | fIter.reset(fBuffer.get()); |
| 284 | fGlobalOffset = fLocalOffset = 0; |
| 285 | return true; |
| 286 | } |
| 287 | |
| 288 | size_t read(void* dst, size_t request) override { |
| 289 | AUTO_VALIDATE |
| 290 | size_t bytesRead = 0; |
| 291 | for (;;) { |
| 292 | size_t size = fIter.size(); |
| 293 | SkASSERT(fLocalOffset <= size); |
| 294 | size_t avail = std::min(size - fLocalOffset, request - bytesRead); |
| 295 | if (dst) { |
| 296 | memcpy(dst, (const char*)fIter.data() + fLocalOffset, avail); |
| 297 | dst = (char*)dst + avail; |
| 298 | } |
| 299 | bytesRead += avail; |
| 300 | fLocalOffset += avail; |
| 301 | SkASSERT(bytesRead <= request); |
| 302 | if (bytesRead == request) { |
| 303 | break; |
| 304 | } |
| 305 | // If we get here, we've exhausted the current iter |
| 306 | SkASSERT(fLocalOffset == size); |
| 307 | fLocalOffset = 0; |
| 308 | if (!fIter.next()) { |
| 309 | break; // ran out of data |
| 310 | } |
| 311 | } |
| 312 | fGlobalOffset += bytesRead; |
| 313 | SkASSERT(fGlobalOffset <= fBuffer->size()); |
| 314 | return bytesRead; |
| 315 | } |
| 316 | |
| 317 | bool isAtEnd() const override { |
| 318 | return fBuffer->size() == fGlobalOffset; |
| 319 | } |
| 320 | |
| 321 | size_t getPosition() const override { |
| 322 | return fGlobalOffset; |
| 323 | } |
| 324 | |
| 325 | bool seek(size_t position) override { |
| 326 | AUTO_VALIDATE |
| 327 | if (position < fGlobalOffset) { |
| 328 | this->rewind(); |
| 329 | } |
| 330 | (void)this->skip(position - fGlobalOffset); |
| 331 | return true; |
| 332 | } |
| 333 | |
| 334 | bool move(long offset) override{ |
| 335 | AUTO_VALIDATE |
| 336 | offset += fGlobalOffset; |
| 337 | if (offset <= 0) { |
| 338 | this->rewind(); |
| 339 | } else { |
| 340 | (void)this->seek(SkToSizeT(offset)); |
| 341 | } |
| 342 | return true; |
| 343 | } |
| 344 | |
| 345 | private: |
| 346 | SkStreamAsset* onDuplicate() const override { |
| 347 | return new SkROBufferStreamAsset(fBuffer); |
| 348 | } |
| 349 | |
| 350 | SkStreamAsset* onFork() const override { |
| 351 | auto clone = this->duplicate(); |
| 352 | clone->seek(this->getPosition()); |
| 353 | return clone.release(); |
| 354 | } |
| 355 | |
| 356 | sk_sp<SkROBuffer> fBuffer; |
| 357 | SkROBuffer::Iter fIter; |
| 358 | size_t fLocalOffset; |
| 359 | size_t fGlobalOffset; |
| 360 | }; |
| 361 | |
| 362 | std::unique_ptr<SkStreamAsset> SkRWBuffer::makeStreamSnapshot() const { |
| 363 | return std::make_unique<SkROBufferStreamAsset>(this->makeROBufferSnapshot()); |
| 364 | } |
| 365 | |