| 1 | /* |
| 2 | * Copyright 2006 The Android Open Source Project |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkRect.h" |
| 9 | |
| 10 | #include "include/private/SkMalloc.h" |
| 11 | #include "src/core/SkRectPriv.h" |
| 12 | |
| 13 | bool SkIRect::intersect(const SkIRect& a, const SkIRect& b) { |
| 14 | SkIRect tmp = { |
| 15 | std::max(a.fLeft, b.fLeft), |
| 16 | std::max(a.fTop, b.fTop), |
| 17 | std::min(a.fRight, b.fRight), |
| 18 | std::min(a.fBottom, b.fBottom) |
| 19 | }; |
| 20 | if (tmp.isEmpty()) { |
| 21 | return false; |
| 22 | } |
| 23 | *this = tmp; |
| 24 | return true; |
| 25 | } |
| 26 | |
| 27 | void SkIRect::join(const SkIRect& r) { |
| 28 | // do nothing if the params are empty |
| 29 | if (r.fLeft >= r.fRight || r.fTop >= r.fBottom) { |
| 30 | return; |
| 31 | } |
| 32 | |
| 33 | // if we are empty, just assign |
| 34 | if (fLeft >= fRight || fTop >= fBottom) { |
| 35 | *this = r; |
| 36 | } else { |
| 37 | if (r.fLeft < fLeft) fLeft = r.fLeft; |
| 38 | if (r.fTop < fTop) fTop = r.fTop; |
| 39 | if (r.fRight > fRight) fRight = r.fRight; |
| 40 | if (r.fBottom > fBottom) fBottom = r.fBottom; |
| 41 | } |
| 42 | } |
| 43 | |
| 44 | ///////////////////////////////////////////////////////////////////////////// |
| 45 | |
| 46 | void SkRect::toQuad(SkPoint quad[4]) const { |
| 47 | SkASSERT(quad); |
| 48 | |
| 49 | quad[0].set(fLeft, fTop); |
| 50 | quad[1].set(fRight, fTop); |
| 51 | quad[2].set(fRight, fBottom); |
| 52 | quad[3].set(fLeft, fBottom); |
| 53 | } |
| 54 | |
| 55 | #include "include/private/SkNx.h" |
| 56 | |
| 57 | bool SkRect::setBoundsCheck(const SkPoint pts[], int count) { |
| 58 | SkASSERT((pts && count > 0) || count == 0); |
| 59 | |
| 60 | if (count <= 0) { |
| 61 | this->setEmpty(); |
| 62 | return true; |
| 63 | } |
| 64 | |
| 65 | Sk4s min, max; |
| 66 | if (count & 1) { |
| 67 | min = max = Sk4s(pts->fX, pts->fY, |
| 68 | pts->fX, pts->fY); |
| 69 | pts += 1; |
| 70 | count -= 1; |
| 71 | } else { |
| 72 | min = max = Sk4s::Load(pts); |
| 73 | pts += 2; |
| 74 | count -= 2; |
| 75 | } |
| 76 | |
| 77 | Sk4s accum = min * 0; |
| 78 | while (count) { |
| 79 | Sk4s xy = Sk4s::Load(pts); |
| 80 | accum = accum * xy; |
| 81 | min = Sk4s::Min(min, xy); |
| 82 | max = Sk4s::Max(max, xy); |
| 83 | pts += 2; |
| 84 | count -= 2; |
| 85 | } |
| 86 | |
| 87 | bool all_finite = (accum * 0 == 0).allTrue(); |
| 88 | if (all_finite) { |
| 89 | this->setLTRB(std::min(min[0], min[2]), std::min(min[1], min[3]), |
| 90 | std::max(max[0], max[2]), std::max(max[1], max[3])); |
| 91 | } else { |
| 92 | this->setEmpty(); |
| 93 | } |
| 94 | return all_finite; |
| 95 | } |
| 96 | |
| 97 | void SkRect::setBoundsNoCheck(const SkPoint pts[], int count) { |
| 98 | if (!this->setBoundsCheck(pts, count)) { |
| 99 | this->setLTRB(SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN); |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | #define CHECK_INTERSECT(al, at, ar, ab, bl, bt, br, bb) \ |
| 104 | SkScalar L = std::max(al, bl); \ |
| 105 | SkScalar R = std::min(ar, br); \ |
| 106 | SkScalar T = std::max(at, bt); \ |
| 107 | SkScalar B = std::min(ab, bb); \ |
| 108 | do { if (!(L < R && T < B)) return false; } while (0) |
| 109 | // do the !(opposite) check so we return false if either arg is NaN |
| 110 | |
| 111 | bool SkRect::intersect(const SkRect& r) { |
| 112 | CHECK_INTERSECT(r.fLeft, r.fTop, r.fRight, r.fBottom, fLeft, fTop, fRight, fBottom); |
| 113 | this->setLTRB(L, T, R, B); |
| 114 | return true; |
| 115 | } |
| 116 | |
| 117 | bool SkRect::intersect(const SkRect& a, const SkRect& b) { |
| 118 | CHECK_INTERSECT(a.fLeft, a.fTop, a.fRight, a.fBottom, b.fLeft, b.fTop, b.fRight, b.fBottom); |
| 119 | this->setLTRB(L, T, R, B); |
| 120 | return true; |
| 121 | } |
| 122 | |
| 123 | void SkRect::join(const SkRect& r) { |
| 124 | if (r.isEmpty()) { |
| 125 | return; |
| 126 | } |
| 127 | |
| 128 | if (this->isEmpty()) { |
| 129 | *this = r; |
| 130 | } else { |
| 131 | fLeft = std::min(fLeft, r.fLeft); |
| 132 | fTop = std::min(fTop, r.fTop); |
| 133 | fRight = std::max(fRight, r.fRight); |
| 134 | fBottom = std::max(fBottom, r.fBottom); |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | //////////////////////////////////////////////////////////////////////////////////////////////// |
| 139 | |
| 140 | #include "include/core/SkString.h" |
| 141 | #include "src/core/SkStringUtils.h" |
| 142 | |
| 143 | static const char* set_scalar(SkString* storage, SkScalar value, SkScalarAsStringType asType) { |
| 144 | storage->reset(); |
| 145 | SkAppendScalar(storage, value, asType); |
| 146 | return storage->c_str(); |
| 147 | } |
| 148 | |
| 149 | void SkRect::dump(bool asHex) const { |
| 150 | SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType; |
| 151 | |
| 152 | SkString line; |
| 153 | if (asHex) { |
| 154 | SkString tmp; |
| 155 | line.printf( "SkRect::MakeLTRB(%s, /* %f */\n" , set_scalar(&tmp, fLeft, asType), fLeft); |
| 156 | line.appendf(" %s, /* %f */\n" , set_scalar(&tmp, fTop, asType), fTop); |
| 157 | line.appendf(" %s, /* %f */\n" , set_scalar(&tmp, fRight, asType), fRight); |
| 158 | line.appendf(" %s /* %f */);" , set_scalar(&tmp, fBottom, asType), fBottom); |
| 159 | } else { |
| 160 | SkString strL, strT, strR, strB; |
| 161 | SkAppendScalarDec(&strL, fLeft); |
| 162 | SkAppendScalarDec(&strT, fTop); |
| 163 | SkAppendScalarDec(&strR, fRight); |
| 164 | SkAppendScalarDec(&strB, fBottom); |
| 165 | line.printf("SkRect::MakeLTRB(%s, %s, %s, %s);" , |
| 166 | strL.c_str(), strT.c_str(), strR.c_str(), strB.c_str()); |
| 167 | } |
| 168 | SkDebugf("%s\n" , line.c_str()); |
| 169 | } |
| 170 | |
| 171 | //////////////////////////////////////////////////////////////////////////////////////////////// |
| 172 | |
| 173 | template<typename R, typename C> |
| 174 | static bool subtract(const R& a, const R& b, R* out) { |
| 175 | static constexpr C kZero = C(0); |
| 176 | |
| 177 | if (!R::Intersects(a, b)) { |
| 178 | // Either already empty, or subtracting the empty rect, or there's no intersection, so |
| 179 | // in all cases the answer is A. |
| 180 | *out = a; |
| 181 | return true; |
| 182 | } |
| 183 | |
| 184 | // 4 rectangles to consider. If the edge in A is contained in B, the resulting difference can |
| 185 | // be represented exactly as a rectangle. Otherwise the difference is the largest subrectangle |
| 186 | // that is disjoint from B: |
| 187 | // 1. Left part of A: (A.left, A.top, B.left, A.bottom) |
| 188 | // 2. Right part of A: (B.right, A.top, A.right, A.bottom) |
| 189 | // 3. Top part of A: (A.left, A.top, A.right, B.top) |
| 190 | // 4. Bottom part of A: (A.left, B.bottom, A.right, A.bottom) |
| 191 | |
| 192 | C height = a.height(); |
| 193 | C width = a.width(); |
| 194 | |
| 195 | // Compute the areas of the 4 rects described above. Depending on how B intersects A, there |
| 196 | // will be 1 to 4 positive areas: |
| 197 | // - 4 occur when A contains B |
| 198 | // - 3 occur when B intersects a single edge |
| 199 | // - 2 occur when B intersects at a corner, or spans two opposing edges |
| 200 | // - 1 occurs when B spans two opposing edges and contains a 3rd, resulting in an exact rect |
| 201 | // - 0 occurs when B contains A, resulting in the empty rect |
| 202 | C leftArea = kZero, rightArea = kZero, topArea = kZero, bottomArea = kZero; |
| 203 | int positiveCount = 0; |
| 204 | if (b.fLeft > a.fLeft) { |
| 205 | leftArea = (b.fLeft - a.fLeft) * height; |
| 206 | positiveCount++; |
| 207 | } |
| 208 | if (a.fRight > b.fRight) { |
| 209 | rightArea = (a.fRight - b.fRight) * height; |
| 210 | positiveCount++; |
| 211 | } |
| 212 | if (b.fTop > a.fTop) { |
| 213 | topArea = (b.fTop - a.fTop) * width; |
| 214 | positiveCount++; |
| 215 | } |
| 216 | if (a.fBottom > b.fBottom) { |
| 217 | bottomArea = (a.fBottom - b.fBottom) * width; |
| 218 | positiveCount++; |
| 219 | } |
| 220 | |
| 221 | if (positiveCount == 0) { |
| 222 | SkASSERT(b.contains(a)); |
| 223 | *out = R::MakeEmpty(); |
| 224 | return true; |
| 225 | } |
| 226 | |
| 227 | *out = a; |
| 228 | if (leftArea > rightArea && leftArea > topArea && leftArea > bottomArea) { |
| 229 | // Left chunk of A, so the new right edge is B's left edge |
| 230 | out->fRight = b.fLeft; |
| 231 | } else if (rightArea > topArea && rightArea > bottomArea) { |
| 232 | // Right chunk of A, so the new left edge is B's right edge |
| 233 | out->fLeft = b.fRight; |
| 234 | } else if (topArea > bottomArea) { |
| 235 | // Top chunk of A, so the new bottom edge is B's top edge |
| 236 | out->fBottom = b.fTop; |
| 237 | } else { |
| 238 | // Bottom chunk of A, so the new top edge is B's bottom edge |
| 239 | SkASSERT(bottomArea > kZero); |
| 240 | out->fTop = b.fBottom; |
| 241 | } |
| 242 | |
| 243 | // If we have 1 valid area, the disjoint shape is representable as a rectangle. |
| 244 | SkASSERT(!R::Intersects(*out, b)); |
| 245 | return positiveCount == 1; |
| 246 | } |
| 247 | |
| 248 | bool SkRectPriv::Subtract(const SkRect& a, const SkRect& b, SkRect* out) { |
| 249 | return subtract<SkRect, SkScalar>(a, b, out); |
| 250 | } |
| 251 | |
| 252 | bool SkRectPriv::Subtract(const SkIRect& a, const SkIRect& b, SkIRect* out) { |
| 253 | return subtract<SkIRect, int>(a, b, out); |
| 254 | } |
| 255 | |