1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkRect.h" |
9 | |
10 | #include "include/private/SkMalloc.h" |
11 | #include "src/core/SkRectPriv.h" |
12 | |
13 | bool SkIRect::intersect(const SkIRect& a, const SkIRect& b) { |
14 | SkIRect tmp = { |
15 | std::max(a.fLeft, b.fLeft), |
16 | std::max(a.fTop, b.fTop), |
17 | std::min(a.fRight, b.fRight), |
18 | std::min(a.fBottom, b.fBottom) |
19 | }; |
20 | if (tmp.isEmpty()) { |
21 | return false; |
22 | } |
23 | *this = tmp; |
24 | return true; |
25 | } |
26 | |
27 | void SkIRect::join(const SkIRect& r) { |
28 | // do nothing if the params are empty |
29 | if (r.fLeft >= r.fRight || r.fTop >= r.fBottom) { |
30 | return; |
31 | } |
32 | |
33 | // if we are empty, just assign |
34 | if (fLeft >= fRight || fTop >= fBottom) { |
35 | *this = r; |
36 | } else { |
37 | if (r.fLeft < fLeft) fLeft = r.fLeft; |
38 | if (r.fTop < fTop) fTop = r.fTop; |
39 | if (r.fRight > fRight) fRight = r.fRight; |
40 | if (r.fBottom > fBottom) fBottom = r.fBottom; |
41 | } |
42 | } |
43 | |
44 | ///////////////////////////////////////////////////////////////////////////// |
45 | |
46 | void SkRect::toQuad(SkPoint quad[4]) const { |
47 | SkASSERT(quad); |
48 | |
49 | quad[0].set(fLeft, fTop); |
50 | quad[1].set(fRight, fTop); |
51 | quad[2].set(fRight, fBottom); |
52 | quad[3].set(fLeft, fBottom); |
53 | } |
54 | |
55 | #include "include/private/SkNx.h" |
56 | |
57 | bool SkRect::setBoundsCheck(const SkPoint pts[], int count) { |
58 | SkASSERT((pts && count > 0) || count == 0); |
59 | |
60 | if (count <= 0) { |
61 | this->setEmpty(); |
62 | return true; |
63 | } |
64 | |
65 | Sk4s min, max; |
66 | if (count & 1) { |
67 | min = max = Sk4s(pts->fX, pts->fY, |
68 | pts->fX, pts->fY); |
69 | pts += 1; |
70 | count -= 1; |
71 | } else { |
72 | min = max = Sk4s::Load(pts); |
73 | pts += 2; |
74 | count -= 2; |
75 | } |
76 | |
77 | Sk4s accum = min * 0; |
78 | while (count) { |
79 | Sk4s xy = Sk4s::Load(pts); |
80 | accum = accum * xy; |
81 | min = Sk4s::Min(min, xy); |
82 | max = Sk4s::Max(max, xy); |
83 | pts += 2; |
84 | count -= 2; |
85 | } |
86 | |
87 | bool all_finite = (accum * 0 == 0).allTrue(); |
88 | if (all_finite) { |
89 | this->setLTRB(std::min(min[0], min[2]), std::min(min[1], min[3]), |
90 | std::max(max[0], max[2]), std::max(max[1], max[3])); |
91 | } else { |
92 | this->setEmpty(); |
93 | } |
94 | return all_finite; |
95 | } |
96 | |
97 | void SkRect::setBoundsNoCheck(const SkPoint pts[], int count) { |
98 | if (!this->setBoundsCheck(pts, count)) { |
99 | this->setLTRB(SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN); |
100 | } |
101 | } |
102 | |
103 | #define CHECK_INTERSECT(al, at, ar, ab, bl, bt, br, bb) \ |
104 | SkScalar L = std::max(al, bl); \ |
105 | SkScalar R = std::min(ar, br); \ |
106 | SkScalar T = std::max(at, bt); \ |
107 | SkScalar B = std::min(ab, bb); \ |
108 | do { if (!(L < R && T < B)) return false; } while (0) |
109 | // do the !(opposite) check so we return false if either arg is NaN |
110 | |
111 | bool SkRect::intersect(const SkRect& r) { |
112 | CHECK_INTERSECT(r.fLeft, r.fTop, r.fRight, r.fBottom, fLeft, fTop, fRight, fBottom); |
113 | this->setLTRB(L, T, R, B); |
114 | return true; |
115 | } |
116 | |
117 | bool SkRect::intersect(const SkRect& a, const SkRect& b) { |
118 | CHECK_INTERSECT(a.fLeft, a.fTop, a.fRight, a.fBottom, b.fLeft, b.fTop, b.fRight, b.fBottom); |
119 | this->setLTRB(L, T, R, B); |
120 | return true; |
121 | } |
122 | |
123 | void SkRect::join(const SkRect& r) { |
124 | if (r.isEmpty()) { |
125 | return; |
126 | } |
127 | |
128 | if (this->isEmpty()) { |
129 | *this = r; |
130 | } else { |
131 | fLeft = std::min(fLeft, r.fLeft); |
132 | fTop = std::min(fTop, r.fTop); |
133 | fRight = std::max(fRight, r.fRight); |
134 | fBottom = std::max(fBottom, r.fBottom); |
135 | } |
136 | } |
137 | |
138 | //////////////////////////////////////////////////////////////////////////////////////////////// |
139 | |
140 | #include "include/core/SkString.h" |
141 | #include "src/core/SkStringUtils.h" |
142 | |
143 | static const char* set_scalar(SkString* storage, SkScalar value, SkScalarAsStringType asType) { |
144 | storage->reset(); |
145 | SkAppendScalar(storage, value, asType); |
146 | return storage->c_str(); |
147 | } |
148 | |
149 | void SkRect::dump(bool asHex) const { |
150 | SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType; |
151 | |
152 | SkString line; |
153 | if (asHex) { |
154 | SkString tmp; |
155 | line.printf( "SkRect::MakeLTRB(%s, /* %f */\n" , set_scalar(&tmp, fLeft, asType), fLeft); |
156 | line.appendf(" %s, /* %f */\n" , set_scalar(&tmp, fTop, asType), fTop); |
157 | line.appendf(" %s, /* %f */\n" , set_scalar(&tmp, fRight, asType), fRight); |
158 | line.appendf(" %s /* %f */);" , set_scalar(&tmp, fBottom, asType), fBottom); |
159 | } else { |
160 | SkString strL, strT, strR, strB; |
161 | SkAppendScalarDec(&strL, fLeft); |
162 | SkAppendScalarDec(&strT, fTop); |
163 | SkAppendScalarDec(&strR, fRight); |
164 | SkAppendScalarDec(&strB, fBottom); |
165 | line.printf("SkRect::MakeLTRB(%s, %s, %s, %s);" , |
166 | strL.c_str(), strT.c_str(), strR.c_str(), strB.c_str()); |
167 | } |
168 | SkDebugf("%s\n" , line.c_str()); |
169 | } |
170 | |
171 | //////////////////////////////////////////////////////////////////////////////////////////////// |
172 | |
173 | template<typename R, typename C> |
174 | static bool subtract(const R& a, const R& b, R* out) { |
175 | static constexpr C kZero = C(0); |
176 | |
177 | if (!R::Intersects(a, b)) { |
178 | // Either already empty, or subtracting the empty rect, or there's no intersection, so |
179 | // in all cases the answer is A. |
180 | *out = a; |
181 | return true; |
182 | } |
183 | |
184 | // 4 rectangles to consider. If the edge in A is contained in B, the resulting difference can |
185 | // be represented exactly as a rectangle. Otherwise the difference is the largest subrectangle |
186 | // that is disjoint from B: |
187 | // 1. Left part of A: (A.left, A.top, B.left, A.bottom) |
188 | // 2. Right part of A: (B.right, A.top, A.right, A.bottom) |
189 | // 3. Top part of A: (A.left, A.top, A.right, B.top) |
190 | // 4. Bottom part of A: (A.left, B.bottom, A.right, A.bottom) |
191 | |
192 | C height = a.height(); |
193 | C width = a.width(); |
194 | |
195 | // Compute the areas of the 4 rects described above. Depending on how B intersects A, there |
196 | // will be 1 to 4 positive areas: |
197 | // - 4 occur when A contains B |
198 | // - 3 occur when B intersects a single edge |
199 | // - 2 occur when B intersects at a corner, or spans two opposing edges |
200 | // - 1 occurs when B spans two opposing edges and contains a 3rd, resulting in an exact rect |
201 | // - 0 occurs when B contains A, resulting in the empty rect |
202 | C leftArea = kZero, rightArea = kZero, topArea = kZero, bottomArea = kZero; |
203 | int positiveCount = 0; |
204 | if (b.fLeft > a.fLeft) { |
205 | leftArea = (b.fLeft - a.fLeft) * height; |
206 | positiveCount++; |
207 | } |
208 | if (a.fRight > b.fRight) { |
209 | rightArea = (a.fRight - b.fRight) * height; |
210 | positiveCount++; |
211 | } |
212 | if (b.fTop > a.fTop) { |
213 | topArea = (b.fTop - a.fTop) * width; |
214 | positiveCount++; |
215 | } |
216 | if (a.fBottom > b.fBottom) { |
217 | bottomArea = (a.fBottom - b.fBottom) * width; |
218 | positiveCount++; |
219 | } |
220 | |
221 | if (positiveCount == 0) { |
222 | SkASSERT(b.contains(a)); |
223 | *out = R::MakeEmpty(); |
224 | return true; |
225 | } |
226 | |
227 | *out = a; |
228 | if (leftArea > rightArea && leftArea > topArea && leftArea > bottomArea) { |
229 | // Left chunk of A, so the new right edge is B's left edge |
230 | out->fRight = b.fLeft; |
231 | } else if (rightArea > topArea && rightArea > bottomArea) { |
232 | // Right chunk of A, so the new left edge is B's right edge |
233 | out->fLeft = b.fRight; |
234 | } else if (topArea > bottomArea) { |
235 | // Top chunk of A, so the new bottom edge is B's top edge |
236 | out->fBottom = b.fTop; |
237 | } else { |
238 | // Bottom chunk of A, so the new top edge is B's bottom edge |
239 | SkASSERT(bottomArea > kZero); |
240 | out->fTop = b.fBottom; |
241 | } |
242 | |
243 | // If we have 1 valid area, the disjoint shape is representable as a rectangle. |
244 | SkASSERT(!R::Intersects(*out, b)); |
245 | return positiveCount == 1; |
246 | } |
247 | |
248 | bool SkRectPriv::Subtract(const SkRect& a, const SkRect& b, SkRect* out) { |
249 | return subtract<SkRect, SkScalar>(a, b, out); |
250 | } |
251 | |
252 | bool SkRectPriv::Subtract(const SkIRect& a, const SkIRect& b, SkIRect* out) { |
253 | return subtract<SkIRect, int>(a, b, out); |
254 | } |
255 | |