1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "include/core/SkRect.h"
9
10#include "include/private/SkMalloc.h"
11#include "src/core/SkRectPriv.h"
12
13bool SkIRect::intersect(const SkIRect& a, const SkIRect& b) {
14 SkIRect tmp = {
15 std::max(a.fLeft, b.fLeft),
16 std::max(a.fTop, b.fTop),
17 std::min(a.fRight, b.fRight),
18 std::min(a.fBottom, b.fBottom)
19 };
20 if (tmp.isEmpty()) {
21 return false;
22 }
23 *this = tmp;
24 return true;
25}
26
27void SkIRect::join(const SkIRect& r) {
28 // do nothing if the params are empty
29 if (r.fLeft >= r.fRight || r.fTop >= r.fBottom) {
30 return;
31 }
32
33 // if we are empty, just assign
34 if (fLeft >= fRight || fTop >= fBottom) {
35 *this = r;
36 } else {
37 if (r.fLeft < fLeft) fLeft = r.fLeft;
38 if (r.fTop < fTop) fTop = r.fTop;
39 if (r.fRight > fRight) fRight = r.fRight;
40 if (r.fBottom > fBottom) fBottom = r.fBottom;
41 }
42}
43
44/////////////////////////////////////////////////////////////////////////////
45
46void SkRect::toQuad(SkPoint quad[4]) const {
47 SkASSERT(quad);
48
49 quad[0].set(fLeft, fTop);
50 quad[1].set(fRight, fTop);
51 quad[2].set(fRight, fBottom);
52 quad[3].set(fLeft, fBottom);
53}
54
55#include "include/private/SkNx.h"
56
57bool SkRect::setBoundsCheck(const SkPoint pts[], int count) {
58 SkASSERT((pts && count > 0) || count == 0);
59
60 if (count <= 0) {
61 this->setEmpty();
62 return true;
63 }
64
65 Sk4s min, max;
66 if (count & 1) {
67 min = max = Sk4s(pts->fX, pts->fY,
68 pts->fX, pts->fY);
69 pts += 1;
70 count -= 1;
71 } else {
72 min = max = Sk4s::Load(pts);
73 pts += 2;
74 count -= 2;
75 }
76
77 Sk4s accum = min * 0;
78 while (count) {
79 Sk4s xy = Sk4s::Load(pts);
80 accum = accum * xy;
81 min = Sk4s::Min(min, xy);
82 max = Sk4s::Max(max, xy);
83 pts += 2;
84 count -= 2;
85 }
86
87 bool all_finite = (accum * 0 == 0).allTrue();
88 if (all_finite) {
89 this->setLTRB(std::min(min[0], min[2]), std::min(min[1], min[3]),
90 std::max(max[0], max[2]), std::max(max[1], max[3]));
91 } else {
92 this->setEmpty();
93 }
94 return all_finite;
95}
96
97void SkRect::setBoundsNoCheck(const SkPoint pts[], int count) {
98 if (!this->setBoundsCheck(pts, count)) {
99 this->setLTRB(SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN);
100 }
101}
102
103#define CHECK_INTERSECT(al, at, ar, ab, bl, bt, br, bb) \
104 SkScalar L = std::max(al, bl); \
105 SkScalar R = std::min(ar, br); \
106 SkScalar T = std::max(at, bt); \
107 SkScalar B = std::min(ab, bb); \
108 do { if (!(L < R && T < B)) return false; } while (0)
109 // do the !(opposite) check so we return false if either arg is NaN
110
111bool SkRect::intersect(const SkRect& r) {
112 CHECK_INTERSECT(r.fLeft, r.fTop, r.fRight, r.fBottom, fLeft, fTop, fRight, fBottom);
113 this->setLTRB(L, T, R, B);
114 return true;
115}
116
117bool SkRect::intersect(const SkRect& a, const SkRect& b) {
118 CHECK_INTERSECT(a.fLeft, a.fTop, a.fRight, a.fBottom, b.fLeft, b.fTop, b.fRight, b.fBottom);
119 this->setLTRB(L, T, R, B);
120 return true;
121}
122
123void SkRect::join(const SkRect& r) {
124 if (r.isEmpty()) {
125 return;
126 }
127
128 if (this->isEmpty()) {
129 *this = r;
130 } else {
131 fLeft = std::min(fLeft, r.fLeft);
132 fTop = std::min(fTop, r.fTop);
133 fRight = std::max(fRight, r.fRight);
134 fBottom = std::max(fBottom, r.fBottom);
135 }
136}
137
138////////////////////////////////////////////////////////////////////////////////////////////////
139
140#include "include/core/SkString.h"
141#include "src/core/SkStringUtils.h"
142
143static const char* set_scalar(SkString* storage, SkScalar value, SkScalarAsStringType asType) {
144 storage->reset();
145 SkAppendScalar(storage, value, asType);
146 return storage->c_str();
147}
148
149void SkRect::dump(bool asHex) const {
150 SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType;
151
152 SkString line;
153 if (asHex) {
154 SkString tmp;
155 line.printf( "SkRect::MakeLTRB(%s, /* %f */\n", set_scalar(&tmp, fLeft, asType), fLeft);
156 line.appendf(" %s, /* %f */\n", set_scalar(&tmp, fTop, asType), fTop);
157 line.appendf(" %s, /* %f */\n", set_scalar(&tmp, fRight, asType), fRight);
158 line.appendf(" %s /* %f */);", set_scalar(&tmp, fBottom, asType), fBottom);
159 } else {
160 SkString strL, strT, strR, strB;
161 SkAppendScalarDec(&strL, fLeft);
162 SkAppendScalarDec(&strT, fTop);
163 SkAppendScalarDec(&strR, fRight);
164 SkAppendScalarDec(&strB, fBottom);
165 line.printf("SkRect::MakeLTRB(%s, %s, %s, %s);",
166 strL.c_str(), strT.c_str(), strR.c_str(), strB.c_str());
167 }
168 SkDebugf("%s\n", line.c_str());
169}
170
171////////////////////////////////////////////////////////////////////////////////////////////////
172
173template<typename R, typename C>
174static bool subtract(const R& a, const R& b, R* out) {
175 static constexpr C kZero = C(0);
176
177 if (!R::Intersects(a, b)) {
178 // Either already empty, or subtracting the empty rect, or there's no intersection, so
179 // in all cases the answer is A.
180 *out = a;
181 return true;
182 }
183
184 // 4 rectangles to consider. If the edge in A is contained in B, the resulting difference can
185 // be represented exactly as a rectangle. Otherwise the difference is the largest subrectangle
186 // that is disjoint from B:
187 // 1. Left part of A: (A.left, A.top, B.left, A.bottom)
188 // 2. Right part of A: (B.right, A.top, A.right, A.bottom)
189 // 3. Top part of A: (A.left, A.top, A.right, B.top)
190 // 4. Bottom part of A: (A.left, B.bottom, A.right, A.bottom)
191
192 C height = a.height();
193 C width = a.width();
194
195 // Compute the areas of the 4 rects described above. Depending on how B intersects A, there
196 // will be 1 to 4 positive areas:
197 // - 4 occur when A contains B
198 // - 3 occur when B intersects a single edge
199 // - 2 occur when B intersects at a corner, or spans two opposing edges
200 // - 1 occurs when B spans two opposing edges and contains a 3rd, resulting in an exact rect
201 // - 0 occurs when B contains A, resulting in the empty rect
202 C leftArea = kZero, rightArea = kZero, topArea = kZero, bottomArea = kZero;
203 int positiveCount = 0;
204 if (b.fLeft > a.fLeft) {
205 leftArea = (b.fLeft - a.fLeft) * height;
206 positiveCount++;
207 }
208 if (a.fRight > b.fRight) {
209 rightArea = (a.fRight - b.fRight) * height;
210 positiveCount++;
211 }
212 if (b.fTop > a.fTop) {
213 topArea = (b.fTop - a.fTop) * width;
214 positiveCount++;
215 }
216 if (a.fBottom > b.fBottom) {
217 bottomArea = (a.fBottom - b.fBottom) * width;
218 positiveCount++;
219 }
220
221 if (positiveCount == 0) {
222 SkASSERT(b.contains(a));
223 *out = R::MakeEmpty();
224 return true;
225 }
226
227 *out = a;
228 if (leftArea > rightArea && leftArea > topArea && leftArea > bottomArea) {
229 // Left chunk of A, so the new right edge is B's left edge
230 out->fRight = b.fLeft;
231 } else if (rightArea > topArea && rightArea > bottomArea) {
232 // Right chunk of A, so the new left edge is B's right edge
233 out->fLeft = b.fRight;
234 } else if (topArea > bottomArea) {
235 // Top chunk of A, so the new bottom edge is B's top edge
236 out->fBottom = b.fTop;
237 } else {
238 // Bottom chunk of A, so the new top edge is B's bottom edge
239 SkASSERT(bottomArea > kZero);
240 out->fTop = b.fBottom;
241 }
242
243 // If we have 1 valid area, the disjoint shape is representable as a rectangle.
244 SkASSERT(!R::Intersects(*out, b));
245 return positiveCount == 1;
246}
247
248bool SkRectPriv::Subtract(const SkRect& a, const SkRect& b, SkRect* out) {
249 return subtract<SkRect, SkScalar>(a, b, out);
250}
251
252bool SkRectPriv::Subtract(const SkIRect& a, const SkIRect& b, SkIRect* out) {
253 return subtract<SkIRect, int>(a, b, out);
254}
255