| 1 | /* |
| 2 | * Copyright 2006 The Android Open Source Project |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef SkTSort_DEFINED |
| 9 | #define SkTSort_DEFINED |
| 10 | |
| 11 | #include "include/core/SkTypes.h" |
| 12 | #include "include/private/SkTo.h" |
| 13 | #include "src/core/SkMathPriv.h" |
| 14 | |
| 15 | #include <utility> |
| 16 | |
| 17 | /////////////////////////////////////////////////////////////////////////////// |
| 18 | |
| 19 | /* Sifts a broken heap. The input array is a heap from root to bottom |
| 20 | * except that the root entry may be out of place. |
| 21 | * |
| 22 | * Sinks a hole from array[root] to leaf and then sifts the original array[root] element |
| 23 | * from the leaf level up. |
| 24 | * |
| 25 | * This version does extra work, in that it copies child to parent on the way down, |
| 26 | * then copies parent to child on the way back up. When copies are inexpensive, |
| 27 | * this is an optimization as this sift variant should only be used when |
| 28 | * the potentially out of place root entry value is expected to be small. |
| 29 | * |
| 30 | * @param root the one based index into array of the out-of-place root of the heap. |
| 31 | * @param bottom the one based index in the array of the last entry in the heap. |
| 32 | */ |
| 33 | template <typename T, typename C> |
| 34 | void SkTHeapSort_SiftUp(T array[], size_t root, size_t bottom, const C& lessThan) { |
| 35 | T x = array[root-1]; |
| 36 | size_t start = root; |
| 37 | size_t j = root << 1; |
| 38 | while (j <= bottom) { |
| 39 | if (j < bottom && lessThan(array[j-1], array[j])) { |
| 40 | ++j; |
| 41 | } |
| 42 | array[root-1] = array[j-1]; |
| 43 | root = j; |
| 44 | j = root << 1; |
| 45 | } |
| 46 | j = root >> 1; |
| 47 | while (j >= start) { |
| 48 | if (lessThan(array[j-1], x)) { |
| 49 | array[root-1] = array[j-1]; |
| 50 | root = j; |
| 51 | j = root >> 1; |
| 52 | } else { |
| 53 | break; |
| 54 | } |
| 55 | } |
| 56 | array[root-1] = x; |
| 57 | } |
| 58 | |
| 59 | /* Sifts a broken heap. The input array is a heap from root to bottom |
| 60 | * except that the root entry may be out of place. |
| 61 | * |
| 62 | * Sifts the array[root] element from the root down. |
| 63 | * |
| 64 | * @param root the one based index into array of the out-of-place root of the heap. |
| 65 | * @param bottom the one based index in the array of the last entry in the heap. |
| 66 | */ |
| 67 | template <typename T, typename C> |
| 68 | void SkTHeapSort_SiftDown(T array[], size_t root, size_t bottom, const C& lessThan) { |
| 69 | T x = array[root-1]; |
| 70 | size_t child = root << 1; |
| 71 | while (child <= bottom) { |
| 72 | if (child < bottom && lessThan(array[child-1], array[child])) { |
| 73 | ++child; |
| 74 | } |
| 75 | if (lessThan(x, array[child-1])) { |
| 76 | array[root-1] = array[child-1]; |
| 77 | root = child; |
| 78 | child = root << 1; |
| 79 | } else { |
| 80 | break; |
| 81 | } |
| 82 | } |
| 83 | array[root-1] = x; |
| 84 | } |
| 85 | |
| 86 | /** Sorts the array of size count using comparator lessThan using a Heap Sort algorithm. Be sure to |
| 87 | * specialize swap if T has an efficient swap operation. |
| 88 | * |
| 89 | * @param array the array to be sorted. |
| 90 | * @param count the number of elements in the array. |
| 91 | * @param lessThan a functor with bool operator()(T a, T b) which returns true if a comes before b. |
| 92 | */ |
| 93 | template <typename T, typename C> void SkTHeapSort(T array[], size_t count, const C& lessThan) { |
| 94 | for (size_t i = count >> 1; i > 0; --i) { |
| 95 | SkTHeapSort_SiftDown(array, i, count, lessThan); |
| 96 | } |
| 97 | |
| 98 | for (size_t i = count - 1; i > 0; --i) { |
| 99 | using std::swap; |
| 100 | swap(array[0], array[i]); |
| 101 | SkTHeapSort_SiftUp(array, 1, i, lessThan); |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | /** Sorts the array of size count using comparator '<' using a Heap Sort algorithm. */ |
| 106 | template <typename T> void SkTHeapSort(T array[], size_t count) { |
| 107 | SkTHeapSort(array, count, [](const T& a, const T& b) { return a < b; }); |
| 108 | } |
| 109 | |
| 110 | /////////////////////////////////////////////////////////////////////////////// |
| 111 | |
| 112 | /** Sorts the array of size count using comparator lessThan using an Insertion Sort algorithm. */ |
| 113 | template <typename T, typename C> |
| 114 | static void SkTInsertionSort(T* left, int count, const C& lessThan) { |
| 115 | T* right = left + count - 1; |
| 116 | for (T* next = left + 1; next <= right; ++next) { |
| 117 | if (!lessThan(*next, *(next - 1))) { |
| 118 | continue; |
| 119 | } |
| 120 | T insert = std::move(*next); |
| 121 | T* hole = next; |
| 122 | do { |
| 123 | *hole = std::move(*(hole - 1)); |
| 124 | --hole; |
| 125 | } while (left < hole && lessThan(insert, *(hole - 1))); |
| 126 | *hole = std::move(insert); |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | /////////////////////////////////////////////////////////////////////////////// |
| 131 | |
| 132 | template <typename T, typename C> |
| 133 | static T* SkTQSort_Partition(T* left, int count, T* pivot, const C& lessThan) { |
| 134 | T* right = left + count - 1; |
| 135 | using std::swap; |
| 136 | T pivotValue = *pivot; |
| 137 | swap(*pivot, *right); |
| 138 | T* newPivot = left; |
| 139 | while (left < right) { |
| 140 | if (lessThan(*left, pivotValue)) { |
| 141 | swap(*left, *newPivot); |
| 142 | newPivot += 1; |
| 143 | } |
| 144 | left += 1; |
| 145 | } |
| 146 | swap(*newPivot, *right); |
| 147 | return newPivot; |
| 148 | } |
| 149 | |
| 150 | /* Introsort is a modified Quicksort. |
| 151 | * When the region to be sorted is a small constant size, it uses Insertion Sort. |
| 152 | * When depth becomes zero, it switches over to Heap Sort. |
| 153 | * This implementation recurses on the left region after pivoting and loops on the right, |
| 154 | * we already limit the stack depth by switching to heap sort, |
| 155 | * and cache locality on the data appears more important than saving a few stack frames. |
| 156 | * |
| 157 | * @param depth at this recursion depth, switch to Heap Sort. |
| 158 | * @param left points to the beginning of the region to be sorted |
| 159 | * @param count number of items to be sorted |
| 160 | * @param lessThan a functor/lambda which returns true if a comes before b. |
| 161 | */ |
| 162 | template <typename T, typename C> |
| 163 | void SkTIntroSort(int depth, T* left, int count, const C& lessThan) { |
| 164 | for (;;) { |
| 165 | if (count <= 32) { |
| 166 | SkTInsertionSort(left, count, lessThan); |
| 167 | return; |
| 168 | } |
| 169 | |
| 170 | if (depth == 0) { |
| 171 | SkTHeapSort<T>(left, count, lessThan); |
| 172 | return; |
| 173 | } |
| 174 | --depth; |
| 175 | |
| 176 | T* middle = left + ((count - 1) >> 1); |
| 177 | T* pivot = SkTQSort_Partition(left, count, middle, lessThan); |
| 178 | int pivotCount = pivot - left; |
| 179 | |
| 180 | SkTIntroSort(depth, left, pivotCount, lessThan); |
| 181 | left += pivotCount + 1; |
| 182 | count -= pivotCount + 1; |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | /** Sorts the region from left to right using comparator lessThan using Introsort. |
| 187 | * Be sure to specialize `swap` if T has an efficient swap operation. |
| 188 | * |
| 189 | * @param begin points to the beginning of the region to be sorted |
| 190 | * @param end points past the end of the region to be sorted |
| 191 | * @param lessThan a functor/lambda which returns true if a comes before b. |
| 192 | */ |
| 193 | template <typename T, typename C> |
| 194 | void SkTQSort(T* begin, T* end, const C& lessThan) { |
| 195 | int n = SkToInt(end - begin); |
| 196 | if (n <= 1) { |
| 197 | return; |
| 198 | } |
| 199 | // Limit Introsort recursion depth to no more than 2 * ceil(log2(n-1)). |
| 200 | int depth = 2 * SkNextLog2(n - 1); |
| 201 | SkTIntroSort(depth, begin, n, lessThan); |
| 202 | } |
| 203 | |
| 204 | /** Sorts the region from left to right using comparator 'a < b' using Introsort. */ |
| 205 | template <typename T> void SkTQSort(T* begin, T* end) { |
| 206 | SkTQSort(begin, end, [](const T& a, const T& b) { return a < b; }); |
| 207 | } |
| 208 | |
| 209 | /** Sorts the region from left to right using comparator '*a < *b' using Introsort. */ |
| 210 | template <typename T> void SkTQSort(T** begin, T** end) { |
| 211 | SkTQSort(begin, end, [](const T* a, const T* b) { return *a < *b; }); |
| 212 | } |
| 213 | |
| 214 | #endif |
| 215 | |