1 | /* |
2 | * Copyright 2020 Google LLC |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef GrBlockAllocator_DEFINED |
9 | #define GrBlockAllocator_DEFINED |
10 | |
11 | #include "include/private/GrTypesPriv.h" |
12 | #include "include/private/SkNoncopyable.h" |
13 | |
14 | #include <memory> // std::unique_ptr |
15 | #include <cstddef> // max_align_t |
16 | |
17 | /** |
18 | * GrBlockAllocator provides low-level support for a block allocated arena with a dynamic tail that |
19 | * tracks space reservations within each block. Its APIs provide the ability to reserve space, |
20 | * resize reservations, and release reservations. It will automatically create new blocks if needed |
21 | * and destroy all remaining blocks when it is destructed. It assumes that anything allocated within |
22 | * its blocks has its destructors called externally. It is recommended that GrBlockAllocator is |
23 | * wrapped by a higher-level allocator that uses the low-level APIs to implement a simpler, |
24 | * purpose-focused API w/o having to worry as much about byte-level concerns. |
25 | * |
26 | * GrBlockAllocator has no limit to its total size, but each allocation is limited to 512MB (which |
27 | * should be sufficient for Ganesh's use cases). This upper allocation limit allows all internal |
28 | * operations to be performed using 'int' and avoid many overflow checks. Static asserts are used |
29 | * to ensure that those operations would not overflow when using the largest possible values. |
30 | * |
31 | * Possible use modes: |
32 | * 1. No upfront allocation, either on the stack or as a field |
33 | * GrBlockAllocator allocator(policy, heapAllocSize); |
34 | * |
35 | * 2. In-place new'd |
36 | * void* mem = operator new(totalSize); |
37 | * GrBlockAllocator* allocator = new (mem) GrBlockAllocator(policy, heapAllocSize, |
38 | * totalSize- sizeof(GrBlockAllocator)); |
39 | * delete allocator; |
40 | * |
41 | * 3. Use GrSBlockAllocator to increase the preallocation size |
42 | * GrSBlockAllocator<1024> allocator(policy, heapAllocSize); |
43 | * sizeof(allocator) == 1024; |
44 | */ |
45 | class GrBlockAllocator final : SkNoncopyable { |
46 | public: |
47 | // Largest size that can be requested from allocate(), chosen because it's the largest pow-2 |
48 | // that is less than int32_t::max()/2. |
49 | static constexpr int kMaxAllocationSize = 1 << 29; |
50 | |
51 | enum class GrowthPolicy : int { |
52 | kFixed, // Next block size = N |
53 | kLinear, // = #blocks * N |
54 | kFibonacci, // = fibonacci(#blocks) * N |
55 | kExponential, // = 2^#blocks * N |
56 | kLast = kExponential |
57 | }; |
58 | static constexpr int kGrowthPolicyCount = static_cast<int>(GrowthPolicy::kLast) + 1; |
59 | |
60 | class Block; |
61 | |
62 | // Tuple representing a range of bytes, marking the unaligned start, the first aligned point |
63 | // after any padding, and the upper limit depending on requested size. |
64 | struct ByteRange { |
65 | Block* fBlock; // Owning block |
66 | int fStart; // Inclusive byte lower limit of byte range |
67 | int fAlignedOffset; // >= start, matching alignment requirement (i.e. first real byte) |
68 | int fEnd; // Exclusive upper limit of byte range |
69 | }; |
70 | |
71 | class Block final { |
72 | public: |
73 | ~Block(); |
74 | void operator delete(void* p) { ::operator delete(p); } |
75 | |
76 | // Return the maximum allocation size with the given alignment that can fit in this block. |
77 | template <size_t Align = 1, size_t Padding = 0> |
78 | int avail() const { return std::max(0, fSize - this->cursor<Align, Padding>()); } |
79 | |
80 | // Return the aligned offset of the first allocation, assuming it was made with the |
81 | // specified Align, and Padding. The returned offset does not mean a valid allocation |
82 | // starts at that offset, this is a utility function for classes built on top to manage |
83 | // indexing into a block effectively. |
84 | template <size_t Align = 1, size_t Padding = 0> |
85 | int firstAlignedOffset() const { return this->alignedOffset<Align, Padding>(kDataStart); } |
86 | |
87 | // Convert an offset into this block's storage into a usable pointer. |
88 | void* ptr(int offset) { |
89 | SkASSERT(offset >= kDataStart && offset < fSize); |
90 | return reinterpret_cast<char*>(this) + offset; |
91 | } |
92 | const void* ptr(int offset) const { return const_cast<Block*>(this)->ptr(offset); } |
93 | |
94 | // Every block has an extra 'int' for clients to use however they want. It will start |
95 | // at 0 when a new block is made, or when the head block is reset. |
96 | int metadata() const { return fMetadata; } |
97 | void setMetadata(int value) { fMetadata = value; } |
98 | |
99 | /** |
100 | * Release the byte range between offset 'start' (inclusive) and 'end' (exclusive). This |
101 | * will return true if those bytes were successfully reclaimed, i.e. a subsequent allocation |
102 | * request could occupy the space. Regardless of return value, the provided byte range that |
103 | * [start, end) represents should not be used until it's re-allocated with allocate<...>(). |
104 | */ |
105 | inline bool release(int start, int end); |
106 | |
107 | /** |
108 | * Resize a previously reserved byte range of offset 'start' (inclusive) to 'end' |
109 | * (exclusive). 'deltaBytes' is the SIGNED change to length of the reservation. |
110 | * |
111 | * When negative this means the reservation is shrunk and the new length is (end - start - |
112 | * |deltaBytes|). If this new length would be 0, the byte range can no longer be used (as if |
113 | * it were released instead). Asserts that it would not shrink the reservation below 0. |
114 | * |
115 | * If 'deltaBytes' is positive, the allocator attempts to increase the length of the |
116 | * reservation. If 'deltaBytes' is less than or equal to avail() and it was the last |
117 | * allocation in the block, it can be resized. If there is not enough available bytes to |
118 | * accommodate the increase in size, or another allocation is blocking the increase in size, |
119 | * then false will be returned and the reserved byte range is unmodified. |
120 | */ |
121 | inline bool resize(int start, int end, int deltaBytes); |
122 | |
123 | private: |
124 | friend class GrBlockAllocator; |
125 | |
126 | Block(Block* prev, int allocationSize); |
127 | |
128 | // Get fCursor, but aligned such that ptr(rval) satisfies Align. |
129 | template <size_t Align, size_t Padding> |
130 | int cursor() const { return this->alignedOffset<Align, Padding>(fCursor); } |
131 | |
132 | template <size_t Align, size_t Padding> |
133 | int alignedOffset(int offset) const; |
134 | |
135 | bool isScratch() const { return fCursor < 0; } |
136 | void markAsScratch() { fCursor = -1; } |
137 | |
138 | SkDEBUGCODE(int fSentinel;) // known value to check for bad back pointers to blocks |
139 | |
140 | Block* fNext; // doubly-linked list of blocks |
141 | Block* fPrev; |
142 | |
143 | // Each block tracks its own cursor because as later blocks are released, an older block |
144 | // may become the active tail again. |
145 | int fSize; // includes the size of the BlockHeader and requested metadata |
146 | int fCursor; // (this + fCursor) points to next available allocation |
147 | int fMetadata; |
148 | |
149 | // On release builds, a Block's other 2 pointers and 3 int fields leaves 4 bytes of padding |
150 | // for 8 and 16 aligned systems. Currently this is only manipulated in the head block for |
151 | // an allocator-level metadata and is explicitly not reset when the head block is "released" |
152 | // Down the road we could instead choose to offer multiple metadata slots per block. |
153 | int fAllocatorMetadata; |
154 | }; |
155 | |
156 | // The size of the head block is determined by 'additionalPreallocBytes'. Subsequent heap blocks |
157 | // are determined by 'policy' and 'blockIncrementBytes', although 'blockIncrementBytes' will be |
158 | // aligned to std::max_align_t. |
159 | // |
160 | // When 'additionalPreallocBytes' > 0, the allocator assumes that many extra bytes immediately |
161 | // after the allocator can be used by its inline head block. This is useful when the allocator |
162 | // is in-place new'ed into a larger block of memory, but it should remain set to 0 if stack |
163 | // allocated or if the class layout does not guarantee that space is present. |
164 | GrBlockAllocator(GrowthPolicy policy, size_t blockIncrementBytes, |
165 | size_t additionalPreallocBytes = 0); |
166 | |
167 | ~GrBlockAllocator() { this->reset(); } |
168 | void operator delete(void* p) { ::operator delete(p); } |
169 | |
170 | /** |
171 | * Helper to calculate the minimum number of bytes needed for heap block size, under the |
172 | * assumption that Align will be the requested alignment of the first call to allocate(). |
173 | * Ex. To store N instances of T in a heap block, the 'blockIncrementBytes' should be set to |
174 | * BlockOverhead<alignof(T)>() + N * sizeof(T) when making the GrBlockAllocator. |
175 | */ |
176 | template<size_t Align = 1, size_t Padding = 0> |
177 | static constexpr size_t BlockOverhead(); |
178 | |
179 | /** |
180 | * Helper to calculate the minimum number of bytes needed for a preallocation, under the |
181 | * assumption that Align will be the requested alignment of the first call to allocate(). |
182 | * Ex. To preallocate a GrSBlockAllocator to hold N instances of T, its arge should be |
183 | * Overhead<alignof(T)>() + N * sizeof(T) |
184 | */ |
185 | template<size_t Align = 1, size_t Padding = 0> |
186 | static constexpr size_t Overhead(); |
187 | |
188 | /** |
189 | * Return the total number of bytes of the allocator, including its instance overhead, per-block |
190 | * overhead and space used for allocations. |
191 | */ |
192 | size_t totalSize() const; |
193 | /** |
194 | * Return the total number of bytes usable for allocations. This includes bytes that have |
195 | * been reserved already by a call to allocate() and bytes that are still available. It is |
196 | * totalSize() minus all allocator and block-level overhead. |
197 | */ |
198 | size_t totalUsableSpace() const; |
199 | /** |
200 | * Return the total number of usable bytes that have been reserved by allocations. This will |
201 | * be less than or equal to totalUsableSpace(). |
202 | */ |
203 | size_t totalSpaceInUse() const; |
204 | |
205 | /** |
206 | * Return the total number of bytes that were pre-allocated for the GrBlockAllocator. This will |
207 | * include 'additionalPreallocBytes' passed to the constructor, and represents what the total |
208 | * size would become after a call to reset(). |
209 | */ |
210 | size_t preallocSize() const { |
211 | // Don't double count fHead's Block overhead in both sizeof(GrBlockAllocator) and fSize. |
212 | return sizeof(GrBlockAllocator) + fHead.fSize - BaseHeadBlockSize(); |
213 | } |
214 | /** |
215 | * Return the usable size of the inline head block; this will be equal to |
216 | * 'additionalPreallocBytes' plus any alignment padding that the system had to add to Block. |
217 | * The returned value represents what could be allocated before a heap block is be created. |
218 | */ |
219 | size_t preallocUsableSpace() const { |
220 | return fHead.fSize - kDataStart; |
221 | } |
222 | |
223 | /** |
224 | * Get the current value of the allocator-level metadata (a user-oriented slot). This is |
225 | * separate from any block-level metadata, but can serve a similar purpose to compactly support |
226 | * data collections on top of GrBlockAllocator. |
227 | */ |
228 | int metadata() const { return fHead.fAllocatorMetadata; } |
229 | |
230 | /** |
231 | * Set the current value of the allocator-level metadata. |
232 | */ |
233 | void setMetadata(int value) { fHead.fAllocatorMetadata = value; } |
234 | |
235 | /** |
236 | * Reserve space that will hold 'size' bytes. This will automatically allocate a new block if |
237 | * there is not enough available space in the current block to provide 'size' bytes. The |
238 | * returned ByteRange tuple specifies the Block owning the reserved memory, the full byte range, |
239 | * and the aligned offset within that range to use for the user-facing pointer. The following |
240 | * invariants hold: |
241 | * |
242 | * 1. block->ptr(alignedOffset) is aligned to Align |
243 | * 2. end - alignedOffset == size |
244 | * 3. Padding <= alignedOffset - start <= Padding + Align - 1 |
245 | * |
246 | * Invariant #3, when Padding > 0, allows intermediate allocators to embed metadata along with |
247 | * the allocations. If the Padding bytes are used for some 'struct Meta', then |
248 | * ptr(alignedOffset - sizeof(Meta)) can be safely used as a Meta* if Meta's alignment |
249 | * requirements are less than or equal to the alignment specified in allocate<>. This can be |
250 | * easily guaranteed by using the pattern: |
251 | * |
252 | * allocate<max(UserAlign, alignof(Meta)), sizeof(Meta)>(userSize); |
253 | * |
254 | * This ensures that ptr(alignedOffset) will always satisfy UserAlign and |
255 | * ptr(alignedOffset - sizeof(Meta)) will always satisfy alignof(Meta). Alternatively, memcpy |
256 | * can be used to read and write values between start and alignedOffset without worrying about |
257 | * alignment requirements of the metadata. |
258 | * |
259 | * For over-aligned allocations, the alignedOffset (as an int) may not be a multiple of Align, |
260 | * but the result of ptr(alignedOffset) will be a multiple of Align. |
261 | */ |
262 | template <size_t Align, size_t Padding = 0> |
263 | ByteRange allocate(size_t size); |
264 | |
265 | enum ReserveFlags : unsigned { |
266 | // If provided to reserve(), the input 'size' will be rounded up to the next size determined |
267 | // by the growth policy of the GrBlockAllocator. If not, 'size' will be aligned to max_align |
268 | kIgnoreGrowthPolicy_Flag = 0b01, |
269 | // If provided to reserve(), the number of available bytes of the current block will not |
270 | // be used to satisfy the reservation (assuming the contiguous range was long enough to |
271 | // begin with). |
272 | kIgnoreExistingBytes_Flag = 0b10, |
273 | |
274 | kNo_ReserveFlags = 0b00 |
275 | }; |
276 | |
277 | /** |
278 | * Ensure the block allocator has 'size' contiguous available bytes. After calling this |
279 | * function, currentBlock()->avail<Align, Padding>() may still report less than 'size' if the |
280 | * reserved space was added as a scratch block. This is done so that anything remaining in |
281 | * the current block can still be used if a smaller-than-size allocation is requested. If 'size' |
282 | * is requested by a subsequent allocation, the scratch block will automatically be activated |
283 | * and the request will not itself trigger any malloc. |
284 | * |
285 | * The optional 'flags' controls how the input size is allocated; by default it will attempt |
286 | * to use available contiguous bytes in the current block and will respect the growth policy |
287 | * of the allocator. |
288 | */ |
289 | template <size_t Align = 1, size_t Padding = 0> |
290 | void reserve(size_t size, ReserveFlags flags = kNo_ReserveFlags); |
291 | |
292 | /** |
293 | * Return a pointer to the start of the current block. This will never be null. |
294 | */ |
295 | const Block* currentBlock() const { return fTail; } |
296 | Block* currentBlock() { return fTail; } |
297 | |
298 | const Block* headBlock() const { return &fHead; } |
299 | Block* headBlock() { return &fHead; } |
300 | |
301 | /** |
302 | * Return the block that owns the allocated 'ptr'. Assuming that earlier, an allocation was |
303 | * returned as {b, start, alignedOffset, end}, and 'p = b->ptr(alignedOffset)', then a call |
304 | * to 'owningBlock<Align, Padding>(p, start) == b'. |
305 | * |
306 | * If calling code has already made a pointer to their metadata, i.e. 'm = p - Padding', then |
307 | * 'owningBlock<Align, 0>(m, start)' will also return b, allowing you to recover the block from |
308 | * the metadata pointer. |
309 | * |
310 | * If calling code has access to the original alignedOffset, this function should not be used |
311 | * since the owning block is just 'p - alignedOffset', regardless of original Align or Padding. |
312 | */ |
313 | template <size_t Align, size_t Padding = 0> |
314 | Block* owningBlock(const void* ptr, int start); |
315 | |
316 | template <size_t Align, size_t Padding = 0> |
317 | const Block* owningBlock(const void* ptr, int start) const { |
318 | return const_cast<GrBlockAllocator*>(this)->owningBlock<Align, Padding>(ptr, start); |
319 | } |
320 | |
321 | /** |
322 | * Find the owning block of the allocated pointer, 'p'. Without any additional information this |
323 | * is O(N) on the number of allocated blocks. |
324 | */ |
325 | Block* findOwningBlock(const void* ptr); |
326 | const Block* findOwningBlock(const void* ptr) const { |
327 | return const_cast<GrBlockAllocator*>(this)->findOwningBlock(ptr); |
328 | } |
329 | |
330 | /** |
331 | * Explicitly free an entire block, invalidating any remaining allocations from the block. |
332 | * GrBlockAllocator will release all alive blocks automatically when it is destroyed, but this |
333 | * function can be used to reclaim memory over the lifetime of the allocator. The provided |
334 | * 'block' pointer must have previously come from a call to currentBlock() or allocate(). |
335 | * |
336 | * If 'block' represents the inline-allocated head block, its cursor and metadata are instead |
337 | * reset to their defaults. |
338 | * |
339 | * If the block is not the head block, it may be kept as a scratch block to be reused for |
340 | * subsequent allocation requests, instead of making an entirely new block. A scratch block is |
341 | * not visible when iterating over blocks but is reported in the total size of the allocator. |
342 | */ |
343 | void releaseBlock(Block* block); |
344 | |
345 | /** |
346 | * Detach every heap-allocated block owned by 'other' and concatenate them to this allocator's |
347 | * list of blocks. This memory is now managed by this allocator. Since this only transfers |
348 | * ownership of a Block, and a Block itself does not move, any previous allocations remain |
349 | * valid and associated with their original Block instances. GrBlockAllocator-level functions |
350 | * that accept allocated pointers (e.g. findOwningBlock), must now use this allocator and not |
351 | * 'other' for these allocations. |
352 | * |
353 | * The head block of 'other' cannot be stolen, so higher-level allocators and memory structures |
354 | * must handle that data differently. |
355 | */ |
356 | void stealHeapBlocks(GrBlockAllocator* other); |
357 | |
358 | /** |
359 | * Explicitly free all blocks (invalidating all allocations), and resets the head block to its |
360 | * default state. The allocator-level metadata is reset to 0 as well. |
361 | */ |
362 | void reset(); |
363 | |
364 | /** |
365 | * Remove any reserved scratch space, either from calling reserve() or releaseBlock(). |
366 | */ |
367 | void resetScratchSpace(); |
368 | |
369 | template <bool Forward, bool Const> class BlockIter; |
370 | |
371 | /** |
372 | * Clients can iterate over all active Blocks in the GrBlockAllocator using for loops: |
373 | * |
374 | * Forward iteration from head to tail block (or non-const variant): |
375 | * for (const Block* b : this->blocks()) { } |
376 | * Reverse iteration from tail to head block: |
377 | * for (const Block* b : this->rblocks()) { } |
378 | * |
379 | * It is safe to call releaseBlock() on the active block while looping. |
380 | */ |
381 | inline BlockIter<true, false> blocks(); |
382 | inline BlockIter<true, true> blocks() const; |
383 | inline BlockIter<false, false> rblocks(); |
384 | inline BlockIter<false, true> rblocks() const; |
385 | |
386 | #ifdef SK_DEBUG |
387 | static constexpr int kAssignedMarker = 0xBEEFFACE; |
388 | static constexpr int kFreedMarker = 0xCAFEBABE; |
389 | |
390 | void validate() const; |
391 | #endif |
392 | |
393 | #if GR_TEST_UTILS |
394 | int testingOnly_scratchBlockSize() const { return this->scratchBlockSize(); } |
395 | #endif |
396 | |
397 | private: |
398 | static constexpr int kDataStart = sizeof(Block); |
399 | #ifdef SK_FORCE_8_BYTE_ALIGNMENT |
400 | // This is an issue for WASM builds using emscripten, which had std::max_align_t = 16, but |
401 | // was returning pointers only aligned to 8 bytes. |
402 | // https://github.com/emscripten-core/emscripten/issues/10072 |
403 | // |
404 | // Setting this to 8 will let GrBlockAllocator properly correct for the pointer address if |
405 | // a 16-byte aligned allocation is requested in wasm (unlikely since we don't use long |
406 | // doubles). |
407 | static constexpr size_t kAddressAlign = 8; |
408 | #else |
409 | // The alignment Block addresses will be at when created using operator new |
410 | // (spec-compliant is pointers are aligned to max_align_t). |
411 | static constexpr size_t kAddressAlign = alignof(std::max_align_t); |
412 | #endif |
413 | |
414 | // Calculates the size of a new Block required to store a kMaxAllocationSize request for the |
415 | // given alignment and padding bytes. Also represents maximum valid fCursor value in a Block. |
416 | template<size_t Align, size_t Padding> |
417 | static constexpr size_t MaxBlockSize(); |
418 | |
419 | static constexpr int BaseHeadBlockSize() { |
420 | return sizeof(GrBlockAllocator) - offsetof(GrBlockAllocator, fHead); |
421 | } |
422 | |
423 | // Append a new block to the end of the block linked list, updating fTail. 'minSize' must |
424 | // have enough room for sizeof(Block). 'maxSize' is the upper limit of fSize for the new block |
425 | // that will preserve the static guarantees GrBlockAllocator makes. |
426 | void addBlock(int minSize, int maxSize); |
427 | |
428 | int scratchBlockSize() const { return fHead.fPrev ? fHead.fPrev->fSize : 0; } |
429 | |
430 | Block* fTail; // All non-head blocks are heap allocated; tail will never be null. |
431 | |
432 | // All remaining state is packed into 64 bits to keep GrBlockAllocator at 16 bytes + head block |
433 | // (on a 64-bit system). |
434 | |
435 | // Growth of the block size is controlled by four factors: BlockIncrement, N0 and N1, and a |
436 | // policy defining how N0 is updated. When a new block is needed, we calculate N1' = N0 + N1. |
437 | // Depending on the policy, N0' = N0 (no growth or linear growth), or N0' = N1 (Fibonacci), or |
438 | // N0' = N1' (exponential). The size of the new block is N1' * BlockIncrement * MaxAlign, |
439 | // after which fN0 and fN1 store N0' and N1' clamped into 23 bits. With current bit allocations, |
440 | // N1' is limited to 2^24, and assuming MaxAlign=16, then BlockIncrement must be '2' in order to |
441 | // eventually reach the hard 2^29 size limit of GrBlockAllocator. |
442 | |
443 | // Next heap block size = (fBlockIncrement * alignof(std::max_align_t) * (fN0 + fN1)) |
444 | uint64_t fBlockIncrement : 16; |
445 | uint64_t fGrowthPolicy : 2; // GrowthPolicy |
446 | uint64_t fN0 : 23; // = 1 for linear/exp.; = 0 for fixed/fibonacci, initially |
447 | uint64_t fN1 : 23; // = 1 initially |
448 | |
449 | // Inline head block, must be at the end so that it can utilize any additional reserved space |
450 | // from the initial allocation. |
451 | // The head block's prev pointer may be non-null, which signifies a scratch block that may be |
452 | // reused instead of allocating an entirely new block (this helps when allocate+release calls |
453 | // bounce back and forth across the capacity of a block). |
454 | alignas(kAddressAlign) Block fHead; |
455 | |
456 | static_assert(kGrowthPolicyCount <= 4); |
457 | }; |
458 | |
459 | // A wrapper around GrBlockAllocator that includes preallocated storage for the head block. |
460 | // N will be the preallocSize() reported by the allocator. |
461 | template<size_t N> |
462 | class GrSBlockAllocator : SkNoncopyable { |
463 | public: |
464 | using GrowthPolicy = GrBlockAllocator::GrowthPolicy; |
465 | |
466 | GrSBlockAllocator() { |
467 | new (fStorage) GrBlockAllocator(GrowthPolicy::kFixed, N, N - sizeof(GrBlockAllocator)); |
468 | } |
469 | explicit GrSBlockAllocator(GrowthPolicy policy) { |
470 | new (fStorage) GrBlockAllocator(policy, N, N - sizeof(GrBlockAllocator)); |
471 | } |
472 | |
473 | GrSBlockAllocator(GrowthPolicy policy, size_t blockIncrementBytes) { |
474 | new (fStorage) GrBlockAllocator(policy, blockIncrementBytes, N - sizeof(GrBlockAllocator)); |
475 | } |
476 | |
477 | ~GrSBlockAllocator() { |
478 | this->allocator()->~GrBlockAllocator(); |
479 | } |
480 | |
481 | GrBlockAllocator* operator->() { return this->allocator(); } |
482 | const GrBlockAllocator* operator->() const { return this->allocator(); } |
483 | |
484 | GrBlockAllocator* allocator() { return reinterpret_cast<GrBlockAllocator*>(fStorage); } |
485 | const GrBlockAllocator* allocator() const { |
486 | return reinterpret_cast<const GrBlockAllocator*>(fStorage); |
487 | } |
488 | |
489 | private: |
490 | static_assert(N >= sizeof(GrBlockAllocator)); |
491 | |
492 | // Will be used to placement new the allocator |
493 | alignas(GrBlockAllocator) char fStorage[N]; |
494 | }; |
495 | |
496 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
497 | // Template and inline implementations |
498 | |
499 | GR_MAKE_BITFIELD_OPS(GrBlockAllocator::ReserveFlags) |
500 | |
501 | template<size_t Align, size_t Padding> |
502 | constexpr size_t GrBlockAllocator::BlockOverhead() { |
503 | static_assert(GrAlignTo(kDataStart + Padding, Align) >= sizeof(Block)); |
504 | return GrAlignTo(kDataStart + Padding, Align); |
505 | } |
506 | |
507 | template<size_t Align, size_t Padding> |
508 | constexpr size_t GrBlockAllocator::Overhead() { |
509 | // NOTE: On most platforms, GrBlockAllocator is packed; this is not the case on debug builds |
510 | // due to extra fields, or on WASM due to 4byte pointers but 16byte max align. |
511 | return std::max(sizeof(GrBlockAllocator), |
512 | offsetof(GrBlockAllocator, fHead) + BlockOverhead<Align, Padding>()); |
513 | } |
514 | |
515 | template<size_t Align, size_t Padding> |
516 | constexpr size_t GrBlockAllocator::MaxBlockSize() { |
517 | // Without loss of generality, assumes 'align' will be the largest encountered alignment for the |
518 | // allocator (if it's not, the largest align will be encountered by the compiler and pass/fail |
519 | // the same set of static asserts). |
520 | return BlockOverhead<Align, Padding>() + kMaxAllocationSize; |
521 | } |
522 | |
523 | template<size_t Align, size_t Padding> |
524 | void GrBlockAllocator::reserve(size_t size, ReserveFlags flags) { |
525 | if (size > kMaxAllocationSize) { |
526 | SK_ABORT("Allocation too large (%zu bytes requested)" , size); |
527 | } |
528 | int iSize = (int) size; |
529 | if ((flags & kIgnoreExistingBytes_Flag) || |
530 | this->currentBlock()->avail<Align, Padding>() < iSize) { |
531 | |
532 | int blockSize = BlockOverhead<Align, Padding>() + iSize; |
533 | int maxSize = (flags & kIgnoreGrowthPolicy_Flag) ? blockSize |
534 | : MaxBlockSize<Align, Padding>(); |
535 | SkASSERT((size_t) maxSize <= (MaxBlockSize<Align, Padding>())); |
536 | |
537 | SkDEBUGCODE(auto oldTail = fTail;) |
538 | this->addBlock(blockSize, maxSize); |
539 | SkASSERT(fTail != oldTail); |
540 | // Releasing the just added block will move it into scratch space, allowing the original |
541 | // tail's bytes to be used first before the scratch block is activated. |
542 | this->releaseBlock(fTail); |
543 | } |
544 | } |
545 | |
546 | template <size_t Align, size_t Padding> |
547 | GrBlockAllocator::ByteRange GrBlockAllocator::allocate(size_t size) { |
548 | // Amount of extra space for a new block to make sure the allocation can succeed. |
549 | static constexpr int kBlockOverhead = (int) BlockOverhead<Align, Padding>(); |
550 | |
551 | // Ensures 'offset' and 'end' calculations will be valid |
552 | static_assert((kMaxAllocationSize + GrAlignTo(MaxBlockSize<Align, Padding>(), Align)) |
553 | <= (size_t) std::numeric_limits<int32_t>::max()); |
554 | // Ensures size + blockOverhead + addBlock's alignment operations will be valid |
555 | static_assert(kMaxAllocationSize + kBlockOverhead + ((1 << 12) - 1) // 4K align for large blocks |
556 | <= std::numeric_limits<int32_t>::max()); |
557 | |
558 | if (size > kMaxAllocationSize) { |
559 | SK_ABORT("Allocation too large (%zu bytes requested)" , size); |
560 | } |
561 | |
562 | int iSize = (int) size; |
563 | int offset = fTail->cursor<Align, Padding>(); |
564 | int end = offset + iSize; |
565 | if (end > fTail->fSize) { |
566 | this->addBlock(iSize + kBlockOverhead, MaxBlockSize<Align, Padding>()); |
567 | offset = fTail->cursor<Align, Padding>(); |
568 | end = offset + iSize; |
569 | } |
570 | |
571 | // Check invariants |
572 | SkASSERT(end <= fTail->fSize); |
573 | SkASSERT(end - offset == iSize); |
574 | SkASSERT(offset - fTail->fCursor >= (int) Padding && |
575 | offset - fTail->fCursor <= (int) (Padding + Align - 1)); |
576 | SkASSERT(reinterpret_cast<uintptr_t>(fTail->ptr(offset)) % Align == 0); |
577 | |
578 | int start = fTail->fCursor; |
579 | fTail->fCursor = end; |
580 | return {fTail, start, offset, end}; |
581 | } |
582 | |
583 | template <size_t Align, size_t Padding> |
584 | GrBlockAllocator::Block* GrBlockAllocator::owningBlock(const void* p, int start) { |
585 | // 'p' was originally formed by aligning 'block + start + Padding', producing the inequality: |
586 | // block + start + Padding <= p <= block + start + Padding + Align-1 |
587 | // Rearranging this yields: |
588 | // block <= p - start - Padding <= block + Align-1 |
589 | // Masking these terms by ~(Align-1) reconstructs 'block' if the alignment of the block is |
590 | // greater than or equal to Align (since block & ~(Align-1) == (block + Align-1) & ~(Align-1) |
591 | // in that case). Overalignment does not reduce to inequality unfortunately. |
592 | if /* constexpr */ (Align <= kAddressAlign) { |
593 | Block* block = reinterpret_cast<Block*>( |
594 | (reinterpret_cast<uintptr_t>(p) - start - Padding) & ~(Align - 1)); |
595 | SkASSERT(block->fSentinel == kAssignedMarker); |
596 | return block; |
597 | } else { |
598 | // There's not a constant-time expression available to reconstruct the block from 'p', |
599 | // but this is unlikely to happen frequently. |
600 | return this->findOwningBlock(p); |
601 | } |
602 | } |
603 | |
604 | template <size_t Align, size_t Padding> |
605 | int GrBlockAllocator::Block::alignedOffset(int offset) const { |
606 | static_assert(SkIsPow2(Align)); |
607 | // Aligning adds (Padding + Align - 1) as an intermediate step, so ensure that can't overflow |
608 | static_assert(MaxBlockSize<Align, Padding>() + Padding + Align - 1 |
609 | <= (size_t) std::numeric_limits<int32_t>::max()); |
610 | |
611 | if /* constexpr */ (Align <= kAddressAlign) { |
612 | // Same as GrAlignTo, but operates on ints instead of size_t |
613 | return (offset + Padding + Align - 1) & ~(Align - 1); |
614 | } else { |
615 | // Must take into account that 'this' may be starting at a pointer that doesn't satisfy the |
616 | // larger alignment request, so must align the entire pointer, not just offset |
617 | uintptr_t blockPtr = reinterpret_cast<uintptr_t>(this); |
618 | uintptr_t alignedPtr = (blockPtr + offset + Padding + Align - 1) & ~(Align - 1); |
619 | SkASSERT(alignedPtr - blockPtr <= (uintptr_t) std::numeric_limits<int32_t>::max()); |
620 | return (int) (alignedPtr - blockPtr); |
621 | } |
622 | } |
623 | |
624 | bool GrBlockAllocator::Block::resize(int start, int end, int deltaBytes) { |
625 | SkASSERT(fSentinel == kAssignedMarker); |
626 | SkASSERT(start >= kDataStart && end <= fSize && start < end); |
627 | |
628 | if (deltaBytes > kMaxAllocationSize || deltaBytes < -kMaxAllocationSize) { |
629 | // Cannot possibly satisfy the resize and could overflow subsequent math |
630 | return false; |
631 | } |
632 | if (fCursor == end) { |
633 | int nextCursor = end + deltaBytes; |
634 | SkASSERT(nextCursor >= start); |
635 | // We still check nextCursor >= start for release builds that wouldn't assert. |
636 | if (nextCursor <= fSize && nextCursor >= start) { |
637 | fCursor = nextCursor; |
638 | return true; |
639 | } |
640 | } |
641 | return false; |
642 | } |
643 | |
644 | // NOTE: release is equivalent to resize(start, end, start - end), and the compiler can optimize |
645 | // most of the operations away, but it wasn't able to remove the unnecessary branch comparing the |
646 | // new cursor to the block size or old start, so release() gets a specialization. |
647 | bool GrBlockAllocator::Block::release(int start, int end) { |
648 | SkASSERT(fSentinel == kAssignedMarker); |
649 | SkASSERT(start >= kDataStart && end <= fSize && start < end); |
650 | if (fCursor == end) { |
651 | fCursor = start; |
652 | return true; |
653 | } else { |
654 | return false; |
655 | } |
656 | } |
657 | |
658 | ///////// Block iteration |
659 | template <bool Forward, bool Const> |
660 | class GrBlockAllocator::BlockIter { |
661 | private: |
662 | using BlockT = typename std::conditional<Const, const Block, Block>::type; |
663 | using AllocatorT = |
664 | typename std::conditional<Const, const GrBlockAllocator, GrBlockAllocator>::type; |
665 | |
666 | public: |
667 | BlockIter(AllocatorT* allocator) : fAllocator(allocator) {} |
668 | |
669 | class Item { |
670 | public: |
671 | bool operator!=(const Item& other) const { return fBlock != other.fBlock; } |
672 | |
673 | BlockT* operator*() const { return fBlock; } |
674 | |
675 | Item& operator++() { |
676 | this->advance(fNext); |
677 | return *this; |
678 | } |
679 | |
680 | private: |
681 | friend BlockIter; |
682 | |
683 | Item(BlockT* block) { this->advance(block); } |
684 | |
685 | void advance(BlockT* block) { |
686 | fBlock = block; |
687 | fNext = block ? (Forward ? block->fNext : block->fPrev) : nullptr; |
688 | if (!Forward && fNext && fNext->isScratch()) { |
689 | // For reverse-iteration only, we need to stop at the head, not the scratch block |
690 | // possibly stashed in head->prev. |
691 | fNext = nullptr; |
692 | } |
693 | SkASSERT(!fNext || !fNext->isScratch()); |
694 | } |
695 | |
696 | BlockT* fBlock; |
697 | // Cache this before operator++ so that fBlock can be released during iteration |
698 | BlockT* fNext; |
699 | }; |
700 | |
701 | Item begin() const { return Item(Forward ? &fAllocator->fHead : fAllocator->fTail); } |
702 | Item end() const { return Item(nullptr); } |
703 | |
704 | private: |
705 | AllocatorT* fAllocator; |
706 | }; |
707 | |
708 | GrBlockAllocator::BlockIter<true, false> GrBlockAllocator::blocks() { |
709 | return BlockIter<true, false>(this); |
710 | } |
711 | GrBlockAllocator::BlockIter<true, true> GrBlockAllocator::blocks() const { |
712 | return BlockIter<true, true>(this); |
713 | } |
714 | GrBlockAllocator::BlockIter<false, false> GrBlockAllocator::rblocks() { |
715 | return BlockIter<false, false>(this); |
716 | } |
717 | GrBlockAllocator::BlockIter<false, true> GrBlockAllocator::rblocks() const { |
718 | return BlockIter<false, true>(this); |
719 | } |
720 | |
721 | #endif // GrBlockAllocator_DEFINED |
722 | |